drm/i915: Rename object_set_domain to object_set_to_gpu_domain
[linux-2.6/mini2440.git] / drivers / gpu / drm / i915 / i915_gem.c
blob50c75327d5673728905346782ac4835e261d2316
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
34 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36 static void
37 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
38 uint32_t read_domains,
39 uint32_t write_domain);
40 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
43 static int i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj,
44 int write);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
52 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
53 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
55 static void
56 i915_gem_cleanup_ringbuffer(struct drm_device *dev);
58 int
59 i915_gem_init_ioctl(struct drm_device *dev, void *data,
60 struct drm_file *file_priv)
62 drm_i915_private_t *dev_priv = dev->dev_private;
63 struct drm_i915_gem_init *args = data;
65 mutex_lock(&dev->struct_mutex);
67 if (args->gtt_start >= args->gtt_end ||
68 (args->gtt_start & (PAGE_SIZE - 1)) != 0 ||
69 (args->gtt_end & (PAGE_SIZE - 1)) != 0) {
70 mutex_unlock(&dev->struct_mutex);
71 return -EINVAL;
74 drm_mm_init(&dev_priv->mm.gtt_space, args->gtt_start,
75 args->gtt_end - args->gtt_start);
77 dev->gtt_total = (uint32_t) (args->gtt_end - args->gtt_start);
79 mutex_unlock(&dev->struct_mutex);
81 return 0;
84 int
85 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
86 struct drm_file *file_priv)
88 struct drm_i915_gem_get_aperture *args = data;
90 if (!(dev->driver->driver_features & DRIVER_GEM))
91 return -ENODEV;
93 args->aper_size = dev->gtt_total;
94 args->aper_available_size = (args->aper_size -
95 atomic_read(&dev->pin_memory));
97 return 0;
102 * Creates a new mm object and returns a handle to it.
105 i915_gem_create_ioctl(struct drm_device *dev, void *data,
106 struct drm_file *file_priv)
108 struct drm_i915_gem_create *args = data;
109 struct drm_gem_object *obj;
110 int handle, ret;
112 args->size = roundup(args->size, PAGE_SIZE);
114 /* Allocate the new object */
115 obj = drm_gem_object_alloc(dev, args->size);
116 if (obj == NULL)
117 return -ENOMEM;
119 ret = drm_gem_handle_create(file_priv, obj, &handle);
120 mutex_lock(&dev->struct_mutex);
121 drm_gem_object_handle_unreference(obj);
122 mutex_unlock(&dev->struct_mutex);
124 if (ret)
125 return ret;
127 args->handle = handle;
129 return 0;
133 * Reads data from the object referenced by handle.
135 * On error, the contents of *data are undefined.
138 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
139 struct drm_file *file_priv)
141 struct drm_i915_gem_pread *args = data;
142 struct drm_gem_object *obj;
143 struct drm_i915_gem_object *obj_priv;
144 ssize_t read;
145 loff_t offset;
146 int ret;
148 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
149 if (obj == NULL)
150 return -EBADF;
151 obj_priv = obj->driver_private;
153 /* Bounds check source.
155 * XXX: This could use review for overflow issues...
157 if (args->offset > obj->size || args->size > obj->size ||
158 args->offset + args->size > obj->size) {
159 drm_gem_object_unreference(obj);
160 return -EINVAL;
163 mutex_lock(&dev->struct_mutex);
165 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
166 args->size);
167 if (ret != 0) {
168 drm_gem_object_unreference(obj);
169 mutex_unlock(&dev->struct_mutex);
170 return ret;
173 offset = args->offset;
175 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
176 args->size, &offset);
177 if (read != args->size) {
178 drm_gem_object_unreference(obj);
179 mutex_unlock(&dev->struct_mutex);
180 if (read < 0)
181 return read;
182 else
183 return -EINVAL;
186 drm_gem_object_unreference(obj);
187 mutex_unlock(&dev->struct_mutex);
189 return 0;
192 /* This is the fast write path which cannot handle
193 * page faults in the source data
196 static inline int
197 fast_user_write(struct io_mapping *mapping,
198 loff_t page_base, int page_offset,
199 char __user *user_data,
200 int length)
202 char *vaddr_atomic;
203 unsigned long unwritten;
205 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
206 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
207 user_data, length);
208 io_mapping_unmap_atomic(vaddr_atomic);
209 if (unwritten)
210 return -EFAULT;
211 return 0;
214 /* Here's the write path which can sleep for
215 * page faults
218 static inline int
219 slow_user_write(struct io_mapping *mapping,
220 loff_t page_base, int page_offset,
221 char __user *user_data,
222 int length)
224 char __iomem *vaddr;
225 unsigned long unwritten;
227 vaddr = io_mapping_map_wc(mapping, page_base);
228 if (vaddr == NULL)
229 return -EFAULT;
230 unwritten = __copy_from_user(vaddr + page_offset,
231 user_data, length);
232 io_mapping_unmap(vaddr);
233 if (unwritten)
234 return -EFAULT;
235 return 0;
238 static int
239 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
240 struct drm_i915_gem_pwrite *args,
241 struct drm_file *file_priv)
243 struct drm_i915_gem_object *obj_priv = obj->driver_private;
244 drm_i915_private_t *dev_priv = dev->dev_private;
245 ssize_t remain;
246 loff_t offset, page_base;
247 char __user *user_data;
248 int page_offset, page_length;
249 int ret;
251 user_data = (char __user *) (uintptr_t) args->data_ptr;
252 remain = args->size;
253 if (!access_ok(VERIFY_READ, user_data, remain))
254 return -EFAULT;
257 mutex_lock(&dev->struct_mutex);
258 ret = i915_gem_object_pin(obj, 0);
259 if (ret) {
260 mutex_unlock(&dev->struct_mutex);
261 return ret;
263 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
264 if (ret)
265 goto fail;
267 obj_priv = obj->driver_private;
268 offset = obj_priv->gtt_offset + args->offset;
269 obj_priv->dirty = 1;
271 while (remain > 0) {
272 /* Operation in this page
274 * page_base = page offset within aperture
275 * page_offset = offset within page
276 * page_length = bytes to copy for this page
278 page_base = (offset & ~(PAGE_SIZE-1));
279 page_offset = offset & (PAGE_SIZE-1);
280 page_length = remain;
281 if ((page_offset + remain) > PAGE_SIZE)
282 page_length = PAGE_SIZE - page_offset;
284 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
285 page_offset, user_data, page_length);
287 /* If we get a fault while copying data, then (presumably) our
288 * source page isn't available. In this case, use the
289 * non-atomic function
291 if (ret) {
292 ret = slow_user_write (dev_priv->mm.gtt_mapping,
293 page_base, page_offset,
294 user_data, page_length);
295 if (ret)
296 goto fail;
299 remain -= page_length;
300 user_data += page_length;
301 offset += page_length;
304 fail:
305 i915_gem_object_unpin(obj);
306 mutex_unlock(&dev->struct_mutex);
308 return ret;
311 static int
312 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
313 struct drm_i915_gem_pwrite *args,
314 struct drm_file *file_priv)
316 int ret;
317 loff_t offset;
318 ssize_t written;
320 mutex_lock(&dev->struct_mutex);
322 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
323 if (ret) {
324 mutex_unlock(&dev->struct_mutex);
325 return ret;
328 offset = args->offset;
330 written = vfs_write(obj->filp,
331 (char __user *)(uintptr_t) args->data_ptr,
332 args->size, &offset);
333 if (written != args->size) {
334 mutex_unlock(&dev->struct_mutex);
335 if (written < 0)
336 return written;
337 else
338 return -EINVAL;
341 mutex_unlock(&dev->struct_mutex);
343 return 0;
347 * Writes data to the object referenced by handle.
349 * On error, the contents of the buffer that were to be modified are undefined.
352 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
353 struct drm_file *file_priv)
355 struct drm_i915_gem_pwrite *args = data;
356 struct drm_gem_object *obj;
357 struct drm_i915_gem_object *obj_priv;
358 int ret = 0;
360 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
361 if (obj == NULL)
362 return -EBADF;
363 obj_priv = obj->driver_private;
365 /* Bounds check destination.
367 * XXX: This could use review for overflow issues...
369 if (args->offset > obj->size || args->size > obj->size ||
370 args->offset + args->size > obj->size) {
371 drm_gem_object_unreference(obj);
372 return -EINVAL;
375 /* We can only do the GTT pwrite on untiled buffers, as otherwise
376 * it would end up going through the fenced access, and we'll get
377 * different detiling behavior between reading and writing.
378 * pread/pwrite currently are reading and writing from the CPU
379 * perspective, requiring manual detiling by the client.
381 if (obj_priv->tiling_mode == I915_TILING_NONE &&
382 dev->gtt_total != 0)
383 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
384 else
385 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
387 #if WATCH_PWRITE
388 if (ret)
389 DRM_INFO("pwrite failed %d\n", ret);
390 #endif
392 drm_gem_object_unreference(obj);
394 return ret;
398 * Called when user space prepares to use an object with the CPU, either
399 * through the mmap ioctl's mapping or a GTT mapping.
402 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
403 struct drm_file *file_priv)
405 struct drm_i915_gem_set_domain *args = data;
406 struct drm_gem_object *obj;
407 uint32_t read_domains = args->read_domains;
408 uint32_t write_domain = args->write_domain;
409 int ret;
411 if (!(dev->driver->driver_features & DRIVER_GEM))
412 return -ENODEV;
414 /* Only handle setting domains to types used by the CPU. */
415 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
416 return -EINVAL;
418 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
419 return -EINVAL;
421 /* Having something in the write domain implies it's in the read
422 * domain, and only that read domain. Enforce that in the request.
424 if (write_domain != 0 && read_domains != write_domain)
425 return -EINVAL;
427 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
428 if (obj == NULL)
429 return -EBADF;
431 mutex_lock(&dev->struct_mutex);
432 #if WATCH_BUF
433 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
434 obj, obj->size, read_domains, write_domain);
435 #endif
436 if (read_domains & I915_GEM_DOMAIN_GTT) {
437 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
438 } else {
439 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
442 drm_gem_object_unreference(obj);
443 mutex_unlock(&dev->struct_mutex);
444 return ret;
448 * Called when user space has done writes to this buffer
451 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
452 struct drm_file *file_priv)
454 struct drm_i915_gem_sw_finish *args = data;
455 struct drm_gem_object *obj;
456 struct drm_i915_gem_object *obj_priv;
457 int ret = 0;
459 if (!(dev->driver->driver_features & DRIVER_GEM))
460 return -ENODEV;
462 mutex_lock(&dev->struct_mutex);
463 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
464 if (obj == NULL) {
465 mutex_unlock(&dev->struct_mutex);
466 return -EBADF;
469 #if WATCH_BUF
470 DRM_INFO("%s: sw_finish %d (%p %d)\n",
471 __func__, args->handle, obj, obj->size);
472 #endif
473 obj_priv = obj->driver_private;
475 /* Pinned buffers may be scanout, so flush the cache */
476 if (obj_priv->pin_count)
477 i915_gem_object_flush_cpu_write_domain(obj);
479 drm_gem_object_unreference(obj);
480 mutex_unlock(&dev->struct_mutex);
481 return ret;
485 * Maps the contents of an object, returning the address it is mapped
486 * into.
488 * While the mapping holds a reference on the contents of the object, it doesn't
489 * imply a ref on the object itself.
492 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
493 struct drm_file *file_priv)
495 struct drm_i915_gem_mmap *args = data;
496 struct drm_gem_object *obj;
497 loff_t offset;
498 unsigned long addr;
500 if (!(dev->driver->driver_features & DRIVER_GEM))
501 return -ENODEV;
503 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
504 if (obj == NULL)
505 return -EBADF;
507 offset = args->offset;
509 down_write(&current->mm->mmap_sem);
510 addr = do_mmap(obj->filp, 0, args->size,
511 PROT_READ | PROT_WRITE, MAP_SHARED,
512 args->offset);
513 up_write(&current->mm->mmap_sem);
514 mutex_lock(&dev->struct_mutex);
515 drm_gem_object_unreference(obj);
516 mutex_unlock(&dev->struct_mutex);
517 if (IS_ERR((void *)addr))
518 return addr;
520 args->addr_ptr = (uint64_t) addr;
522 return 0;
525 static void
526 i915_gem_object_free_page_list(struct drm_gem_object *obj)
528 struct drm_i915_gem_object *obj_priv = obj->driver_private;
529 int page_count = obj->size / PAGE_SIZE;
530 int i;
532 if (obj_priv->page_list == NULL)
533 return;
536 for (i = 0; i < page_count; i++)
537 if (obj_priv->page_list[i] != NULL) {
538 if (obj_priv->dirty)
539 set_page_dirty(obj_priv->page_list[i]);
540 mark_page_accessed(obj_priv->page_list[i]);
541 page_cache_release(obj_priv->page_list[i]);
543 obj_priv->dirty = 0;
545 drm_free(obj_priv->page_list,
546 page_count * sizeof(struct page *),
547 DRM_MEM_DRIVER);
548 obj_priv->page_list = NULL;
551 static void
552 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
554 struct drm_device *dev = obj->dev;
555 drm_i915_private_t *dev_priv = dev->dev_private;
556 struct drm_i915_gem_object *obj_priv = obj->driver_private;
558 /* Add a reference if we're newly entering the active list. */
559 if (!obj_priv->active) {
560 drm_gem_object_reference(obj);
561 obj_priv->active = 1;
563 /* Move from whatever list we were on to the tail of execution. */
564 list_move_tail(&obj_priv->list,
565 &dev_priv->mm.active_list);
566 obj_priv->last_rendering_seqno = seqno;
569 static void
570 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
572 struct drm_device *dev = obj->dev;
573 drm_i915_private_t *dev_priv = dev->dev_private;
574 struct drm_i915_gem_object *obj_priv = obj->driver_private;
576 BUG_ON(!obj_priv->active);
577 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
578 obj_priv->last_rendering_seqno = 0;
581 static void
582 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
584 struct drm_device *dev = obj->dev;
585 drm_i915_private_t *dev_priv = dev->dev_private;
586 struct drm_i915_gem_object *obj_priv = obj->driver_private;
588 i915_verify_inactive(dev, __FILE__, __LINE__);
589 if (obj_priv->pin_count != 0)
590 list_del_init(&obj_priv->list);
591 else
592 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
594 obj_priv->last_rendering_seqno = 0;
595 if (obj_priv->active) {
596 obj_priv->active = 0;
597 drm_gem_object_unreference(obj);
599 i915_verify_inactive(dev, __FILE__, __LINE__);
603 * Creates a new sequence number, emitting a write of it to the status page
604 * plus an interrupt, which will trigger i915_user_interrupt_handler.
606 * Must be called with struct_lock held.
608 * Returned sequence numbers are nonzero on success.
610 static uint32_t
611 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
613 drm_i915_private_t *dev_priv = dev->dev_private;
614 struct drm_i915_gem_request *request;
615 uint32_t seqno;
616 int was_empty;
617 RING_LOCALS;
619 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
620 if (request == NULL)
621 return 0;
623 /* Grab the seqno we're going to make this request be, and bump the
624 * next (skipping 0 so it can be the reserved no-seqno value).
626 seqno = dev_priv->mm.next_gem_seqno;
627 dev_priv->mm.next_gem_seqno++;
628 if (dev_priv->mm.next_gem_seqno == 0)
629 dev_priv->mm.next_gem_seqno++;
631 BEGIN_LP_RING(4);
632 OUT_RING(MI_STORE_DWORD_INDEX);
633 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
634 OUT_RING(seqno);
636 OUT_RING(MI_USER_INTERRUPT);
637 ADVANCE_LP_RING();
639 DRM_DEBUG("%d\n", seqno);
641 request->seqno = seqno;
642 request->emitted_jiffies = jiffies;
643 was_empty = list_empty(&dev_priv->mm.request_list);
644 list_add_tail(&request->list, &dev_priv->mm.request_list);
646 /* Associate any objects on the flushing list matching the write
647 * domain we're flushing with our flush.
649 if (flush_domains != 0) {
650 struct drm_i915_gem_object *obj_priv, *next;
652 list_for_each_entry_safe(obj_priv, next,
653 &dev_priv->mm.flushing_list, list) {
654 struct drm_gem_object *obj = obj_priv->obj;
656 if ((obj->write_domain & flush_domains) ==
657 obj->write_domain) {
658 obj->write_domain = 0;
659 i915_gem_object_move_to_active(obj, seqno);
665 if (was_empty && !dev_priv->mm.suspended)
666 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
667 return seqno;
671 * Command execution barrier
673 * Ensures that all commands in the ring are finished
674 * before signalling the CPU
676 static uint32_t
677 i915_retire_commands(struct drm_device *dev)
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
681 uint32_t flush_domains = 0;
682 RING_LOCALS;
684 /* The sampler always gets flushed on i965 (sigh) */
685 if (IS_I965G(dev))
686 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
687 BEGIN_LP_RING(2);
688 OUT_RING(cmd);
689 OUT_RING(0); /* noop */
690 ADVANCE_LP_RING();
691 return flush_domains;
695 * Moves buffers associated only with the given active seqno from the active
696 * to inactive list, potentially freeing them.
698 static void
699 i915_gem_retire_request(struct drm_device *dev,
700 struct drm_i915_gem_request *request)
702 drm_i915_private_t *dev_priv = dev->dev_private;
704 /* Move any buffers on the active list that are no longer referenced
705 * by the ringbuffer to the flushing/inactive lists as appropriate.
707 while (!list_empty(&dev_priv->mm.active_list)) {
708 struct drm_gem_object *obj;
709 struct drm_i915_gem_object *obj_priv;
711 obj_priv = list_first_entry(&dev_priv->mm.active_list,
712 struct drm_i915_gem_object,
713 list);
714 obj = obj_priv->obj;
716 /* If the seqno being retired doesn't match the oldest in the
717 * list, then the oldest in the list must still be newer than
718 * this seqno.
720 if (obj_priv->last_rendering_seqno != request->seqno)
721 return;
722 #if WATCH_LRU
723 DRM_INFO("%s: retire %d moves to inactive list %p\n",
724 __func__, request->seqno, obj);
725 #endif
727 if (obj->write_domain != 0)
728 i915_gem_object_move_to_flushing(obj);
729 else
730 i915_gem_object_move_to_inactive(obj);
735 * Returns true if seq1 is later than seq2.
737 static int
738 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
740 return (int32_t)(seq1 - seq2) >= 0;
743 uint32_t
744 i915_get_gem_seqno(struct drm_device *dev)
746 drm_i915_private_t *dev_priv = dev->dev_private;
748 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
752 * This function clears the request list as sequence numbers are passed.
754 void
755 i915_gem_retire_requests(struct drm_device *dev)
757 drm_i915_private_t *dev_priv = dev->dev_private;
758 uint32_t seqno;
760 seqno = i915_get_gem_seqno(dev);
762 while (!list_empty(&dev_priv->mm.request_list)) {
763 struct drm_i915_gem_request *request;
764 uint32_t retiring_seqno;
766 request = list_first_entry(&dev_priv->mm.request_list,
767 struct drm_i915_gem_request,
768 list);
769 retiring_seqno = request->seqno;
771 if (i915_seqno_passed(seqno, retiring_seqno) ||
772 dev_priv->mm.wedged) {
773 i915_gem_retire_request(dev, request);
775 list_del(&request->list);
776 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
777 } else
778 break;
782 void
783 i915_gem_retire_work_handler(struct work_struct *work)
785 drm_i915_private_t *dev_priv;
786 struct drm_device *dev;
788 dev_priv = container_of(work, drm_i915_private_t,
789 mm.retire_work.work);
790 dev = dev_priv->dev;
792 mutex_lock(&dev->struct_mutex);
793 i915_gem_retire_requests(dev);
794 if (!dev_priv->mm.suspended &&
795 !list_empty(&dev_priv->mm.request_list))
796 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
797 mutex_unlock(&dev->struct_mutex);
801 * Waits for a sequence number to be signaled, and cleans up the
802 * request and object lists appropriately for that event.
804 static int
805 i915_wait_request(struct drm_device *dev, uint32_t seqno)
807 drm_i915_private_t *dev_priv = dev->dev_private;
808 int ret = 0;
810 BUG_ON(seqno == 0);
812 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
813 dev_priv->mm.waiting_gem_seqno = seqno;
814 i915_user_irq_get(dev);
815 ret = wait_event_interruptible(dev_priv->irq_queue,
816 i915_seqno_passed(i915_get_gem_seqno(dev),
817 seqno) ||
818 dev_priv->mm.wedged);
819 i915_user_irq_put(dev);
820 dev_priv->mm.waiting_gem_seqno = 0;
822 if (dev_priv->mm.wedged)
823 ret = -EIO;
825 if (ret && ret != -ERESTARTSYS)
826 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
827 __func__, ret, seqno, i915_get_gem_seqno(dev));
829 /* Directly dispatch request retiring. While we have the work queue
830 * to handle this, the waiter on a request often wants an associated
831 * buffer to have made it to the inactive list, and we would need
832 * a separate wait queue to handle that.
834 if (ret == 0)
835 i915_gem_retire_requests(dev);
837 return ret;
840 static void
841 i915_gem_flush(struct drm_device *dev,
842 uint32_t invalidate_domains,
843 uint32_t flush_domains)
845 drm_i915_private_t *dev_priv = dev->dev_private;
846 uint32_t cmd;
847 RING_LOCALS;
849 #if WATCH_EXEC
850 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
851 invalidate_domains, flush_domains);
852 #endif
854 if (flush_domains & I915_GEM_DOMAIN_CPU)
855 drm_agp_chipset_flush(dev);
857 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
858 I915_GEM_DOMAIN_GTT)) {
860 * read/write caches:
862 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
863 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
864 * also flushed at 2d versus 3d pipeline switches.
866 * read-only caches:
868 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
869 * MI_READ_FLUSH is set, and is always flushed on 965.
871 * I915_GEM_DOMAIN_COMMAND may not exist?
873 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
874 * invalidated when MI_EXE_FLUSH is set.
876 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
877 * invalidated with every MI_FLUSH.
879 * TLBs:
881 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
882 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
883 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
884 * are flushed at any MI_FLUSH.
887 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
888 if ((invalidate_domains|flush_domains) &
889 I915_GEM_DOMAIN_RENDER)
890 cmd &= ~MI_NO_WRITE_FLUSH;
891 if (!IS_I965G(dev)) {
893 * On the 965, the sampler cache always gets flushed
894 * and this bit is reserved.
896 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
897 cmd |= MI_READ_FLUSH;
899 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
900 cmd |= MI_EXE_FLUSH;
902 #if WATCH_EXEC
903 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
904 #endif
905 BEGIN_LP_RING(2);
906 OUT_RING(cmd);
907 OUT_RING(0); /* noop */
908 ADVANCE_LP_RING();
913 * Ensures that all rendering to the object has completed and the object is
914 * safe to unbind from the GTT or access from the CPU.
916 static int
917 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
919 struct drm_device *dev = obj->dev;
920 struct drm_i915_gem_object *obj_priv = obj->driver_private;
921 int ret;
923 /* This function only exists to support waiting for existing rendering,
924 * not for emitting required flushes.
926 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
928 /* If there is rendering queued on the buffer being evicted, wait for
929 * it.
931 if (obj_priv->active) {
932 #if WATCH_BUF
933 DRM_INFO("%s: object %p wait for seqno %08x\n",
934 __func__, obj, obj_priv->last_rendering_seqno);
935 #endif
936 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
937 if (ret != 0)
938 return ret;
941 return 0;
945 * Unbinds an object from the GTT aperture.
947 static int
948 i915_gem_object_unbind(struct drm_gem_object *obj)
950 struct drm_device *dev = obj->dev;
951 struct drm_i915_gem_object *obj_priv = obj->driver_private;
952 int ret = 0;
954 #if WATCH_BUF
955 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
956 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
957 #endif
958 if (obj_priv->gtt_space == NULL)
959 return 0;
961 if (obj_priv->pin_count != 0) {
962 DRM_ERROR("Attempting to unbind pinned buffer\n");
963 return -EINVAL;
966 /* Move the object to the CPU domain to ensure that
967 * any possible CPU writes while it's not in the GTT
968 * are flushed when we go to remap it. This will
969 * also ensure that all pending GPU writes are finished
970 * before we unbind.
972 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
973 if (ret) {
974 if (ret != -ERESTARTSYS)
975 DRM_ERROR("set_domain failed: %d\n", ret);
976 return ret;
979 if (obj_priv->agp_mem != NULL) {
980 drm_unbind_agp(obj_priv->agp_mem);
981 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
982 obj_priv->agp_mem = NULL;
985 BUG_ON(obj_priv->active);
987 i915_gem_object_free_page_list(obj);
989 if (obj_priv->gtt_space) {
990 atomic_dec(&dev->gtt_count);
991 atomic_sub(obj->size, &dev->gtt_memory);
993 drm_mm_put_block(obj_priv->gtt_space);
994 obj_priv->gtt_space = NULL;
997 /* Remove ourselves from the LRU list if present. */
998 if (!list_empty(&obj_priv->list))
999 list_del_init(&obj_priv->list);
1001 return 0;
1004 static int
1005 i915_gem_evict_something(struct drm_device *dev)
1007 drm_i915_private_t *dev_priv = dev->dev_private;
1008 struct drm_gem_object *obj;
1009 struct drm_i915_gem_object *obj_priv;
1010 int ret = 0;
1012 for (;;) {
1013 /* If there's an inactive buffer available now, grab it
1014 * and be done.
1016 if (!list_empty(&dev_priv->mm.inactive_list)) {
1017 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1018 struct drm_i915_gem_object,
1019 list);
1020 obj = obj_priv->obj;
1021 BUG_ON(obj_priv->pin_count != 0);
1022 #if WATCH_LRU
1023 DRM_INFO("%s: evicting %p\n", __func__, obj);
1024 #endif
1025 BUG_ON(obj_priv->active);
1027 /* Wait on the rendering and unbind the buffer. */
1028 ret = i915_gem_object_unbind(obj);
1029 break;
1032 /* If we didn't get anything, but the ring is still processing
1033 * things, wait for one of those things to finish and hopefully
1034 * leave us a buffer to evict.
1036 if (!list_empty(&dev_priv->mm.request_list)) {
1037 struct drm_i915_gem_request *request;
1039 request = list_first_entry(&dev_priv->mm.request_list,
1040 struct drm_i915_gem_request,
1041 list);
1043 ret = i915_wait_request(dev, request->seqno);
1044 if (ret)
1045 break;
1047 /* if waiting caused an object to become inactive,
1048 * then loop around and wait for it. Otherwise, we
1049 * assume that waiting freed and unbound something,
1050 * so there should now be some space in the GTT
1052 if (!list_empty(&dev_priv->mm.inactive_list))
1053 continue;
1054 break;
1057 /* If we didn't have anything on the request list but there
1058 * are buffers awaiting a flush, emit one and try again.
1059 * When we wait on it, those buffers waiting for that flush
1060 * will get moved to inactive.
1062 if (!list_empty(&dev_priv->mm.flushing_list)) {
1063 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1064 struct drm_i915_gem_object,
1065 list);
1066 obj = obj_priv->obj;
1068 i915_gem_flush(dev,
1069 obj->write_domain,
1070 obj->write_domain);
1071 i915_add_request(dev, obj->write_domain);
1073 obj = NULL;
1074 continue;
1077 DRM_ERROR("inactive empty %d request empty %d "
1078 "flushing empty %d\n",
1079 list_empty(&dev_priv->mm.inactive_list),
1080 list_empty(&dev_priv->mm.request_list),
1081 list_empty(&dev_priv->mm.flushing_list));
1082 /* If we didn't do any of the above, there's nothing to be done
1083 * and we just can't fit it in.
1085 return -ENOMEM;
1087 return ret;
1090 static int
1091 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1093 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1094 int page_count, i;
1095 struct address_space *mapping;
1096 struct inode *inode;
1097 struct page *page;
1098 int ret;
1100 if (obj_priv->page_list)
1101 return 0;
1103 /* Get the list of pages out of our struct file. They'll be pinned
1104 * at this point until we release them.
1106 page_count = obj->size / PAGE_SIZE;
1107 BUG_ON(obj_priv->page_list != NULL);
1108 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1109 DRM_MEM_DRIVER);
1110 if (obj_priv->page_list == NULL) {
1111 DRM_ERROR("Faled to allocate page list\n");
1112 return -ENOMEM;
1115 inode = obj->filp->f_path.dentry->d_inode;
1116 mapping = inode->i_mapping;
1117 for (i = 0; i < page_count; i++) {
1118 page = read_mapping_page(mapping, i, NULL);
1119 if (IS_ERR(page)) {
1120 ret = PTR_ERR(page);
1121 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1122 i915_gem_object_free_page_list(obj);
1123 return ret;
1125 obj_priv->page_list[i] = page;
1127 return 0;
1131 * Finds free space in the GTT aperture and binds the object there.
1133 static int
1134 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1136 struct drm_device *dev = obj->dev;
1137 drm_i915_private_t *dev_priv = dev->dev_private;
1138 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1139 struct drm_mm_node *free_space;
1140 int page_count, ret;
1142 if (alignment == 0)
1143 alignment = PAGE_SIZE;
1144 if (alignment & (PAGE_SIZE - 1)) {
1145 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1146 return -EINVAL;
1149 search_free:
1150 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1151 obj->size, alignment, 0);
1152 if (free_space != NULL) {
1153 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1154 alignment);
1155 if (obj_priv->gtt_space != NULL) {
1156 obj_priv->gtt_space->private = obj;
1157 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1160 if (obj_priv->gtt_space == NULL) {
1161 /* If the gtt is empty and we're still having trouble
1162 * fitting our object in, we're out of memory.
1164 #if WATCH_LRU
1165 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1166 #endif
1167 if (list_empty(&dev_priv->mm.inactive_list) &&
1168 list_empty(&dev_priv->mm.flushing_list) &&
1169 list_empty(&dev_priv->mm.active_list)) {
1170 DRM_ERROR("GTT full, but LRU list empty\n");
1171 return -ENOMEM;
1174 ret = i915_gem_evict_something(dev);
1175 if (ret != 0) {
1176 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1177 return ret;
1179 goto search_free;
1182 #if WATCH_BUF
1183 DRM_INFO("Binding object of size %d at 0x%08x\n",
1184 obj->size, obj_priv->gtt_offset);
1185 #endif
1186 ret = i915_gem_object_get_page_list(obj);
1187 if (ret) {
1188 drm_mm_put_block(obj_priv->gtt_space);
1189 obj_priv->gtt_space = NULL;
1190 return ret;
1193 page_count = obj->size / PAGE_SIZE;
1194 /* Create an AGP memory structure pointing at our pages, and bind it
1195 * into the GTT.
1197 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1198 obj_priv->page_list,
1199 page_count,
1200 obj_priv->gtt_offset,
1201 obj_priv->agp_type);
1202 if (obj_priv->agp_mem == NULL) {
1203 i915_gem_object_free_page_list(obj);
1204 drm_mm_put_block(obj_priv->gtt_space);
1205 obj_priv->gtt_space = NULL;
1206 return -ENOMEM;
1208 atomic_inc(&dev->gtt_count);
1209 atomic_add(obj->size, &dev->gtt_memory);
1211 /* Assert that the object is not currently in any GPU domain. As it
1212 * wasn't in the GTT, there shouldn't be any way it could have been in
1213 * a GPU cache
1215 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1216 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1218 return 0;
1221 void
1222 i915_gem_clflush_object(struct drm_gem_object *obj)
1224 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1226 /* If we don't have a page list set up, then we're not pinned
1227 * to GPU, and we can ignore the cache flush because it'll happen
1228 * again at bind time.
1230 if (obj_priv->page_list == NULL)
1231 return;
1233 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1236 /** Flushes any GPU write domain for the object if it's dirty. */
1237 static void
1238 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1240 struct drm_device *dev = obj->dev;
1241 uint32_t seqno;
1243 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1244 return;
1246 /* Queue the GPU write cache flushing we need. */
1247 i915_gem_flush(dev, 0, obj->write_domain);
1248 seqno = i915_add_request(dev, obj->write_domain);
1249 obj->write_domain = 0;
1250 i915_gem_object_move_to_active(obj, seqno);
1253 /** Flushes the GTT write domain for the object if it's dirty. */
1254 static void
1255 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1257 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1258 return;
1260 /* No actual flushing is required for the GTT write domain. Writes
1261 * to it immediately go to main memory as far as we know, so there's
1262 * no chipset flush. It also doesn't land in render cache.
1264 obj->write_domain = 0;
1267 /** Flushes the CPU write domain for the object if it's dirty. */
1268 static void
1269 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1271 struct drm_device *dev = obj->dev;
1273 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1274 return;
1276 i915_gem_clflush_object(obj);
1277 drm_agp_chipset_flush(dev);
1278 obj->write_domain = 0;
1282 * Moves a single object to the GTT read, and possibly write domain.
1284 * This function returns when the move is complete, including waiting on
1285 * flushes to occur.
1287 static int
1288 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1290 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1291 int ret;
1293 i915_gem_object_flush_gpu_write_domain(obj);
1294 /* Wait on any GPU rendering and flushing to occur. */
1295 ret = i915_gem_object_wait_rendering(obj);
1296 if (ret != 0)
1297 return ret;
1299 /* If we're writing through the GTT domain, then CPU and GPU caches
1300 * will need to be invalidated at next use.
1302 if (write)
1303 obj->read_domains &= I915_GEM_DOMAIN_GTT;
1305 i915_gem_object_flush_cpu_write_domain(obj);
1307 /* It should now be out of any other write domains, and we can update
1308 * the domain values for our changes.
1310 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1311 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1312 if (write) {
1313 obj->write_domain = I915_GEM_DOMAIN_GTT;
1314 obj_priv->dirty = 1;
1317 return 0;
1321 * Moves a single object to the CPU read, and possibly write domain.
1323 * This function returns when the move is complete, including waiting on
1324 * flushes to occur.
1326 static int
1327 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1329 struct drm_device *dev = obj->dev;
1330 int ret;
1332 i915_gem_object_flush_gpu_write_domain(obj);
1333 /* Wait on any GPU rendering and flushing to occur. */
1334 ret = i915_gem_object_wait_rendering(obj);
1335 if (ret != 0)
1336 return ret;
1338 i915_gem_object_flush_gtt_write_domain(obj);
1340 /* If we have a partially-valid cache of the object in the CPU,
1341 * finish invalidating it and free the per-page flags.
1343 i915_gem_object_set_to_full_cpu_read_domain(obj);
1345 /* Flush the CPU cache if it's still invalid. */
1346 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
1347 i915_gem_clflush_object(obj);
1348 drm_agp_chipset_flush(dev);
1350 obj->read_domains |= I915_GEM_DOMAIN_CPU;
1353 /* It should now be out of any other write domains, and we can update
1354 * the domain values for our changes.
1356 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1358 /* If we're writing through the CPU, then the GPU read domains will
1359 * need to be invalidated at next use.
1361 if (write) {
1362 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1363 obj->write_domain = I915_GEM_DOMAIN_CPU;
1366 return 0;
1370 * Set the next domain for the specified object. This
1371 * may not actually perform the necessary flushing/invaliding though,
1372 * as that may want to be batched with other set_domain operations
1374 * This is (we hope) the only really tricky part of gem. The goal
1375 * is fairly simple -- track which caches hold bits of the object
1376 * and make sure they remain coherent. A few concrete examples may
1377 * help to explain how it works. For shorthand, we use the notation
1378 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1379 * a pair of read and write domain masks.
1381 * Case 1: the batch buffer
1383 * 1. Allocated
1384 * 2. Written by CPU
1385 * 3. Mapped to GTT
1386 * 4. Read by GPU
1387 * 5. Unmapped from GTT
1388 * 6. Freed
1390 * Let's take these a step at a time
1392 * 1. Allocated
1393 * Pages allocated from the kernel may still have
1394 * cache contents, so we set them to (CPU, CPU) always.
1395 * 2. Written by CPU (using pwrite)
1396 * The pwrite function calls set_domain (CPU, CPU) and
1397 * this function does nothing (as nothing changes)
1398 * 3. Mapped by GTT
1399 * This function asserts that the object is not
1400 * currently in any GPU-based read or write domains
1401 * 4. Read by GPU
1402 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1403 * As write_domain is zero, this function adds in the
1404 * current read domains (CPU+COMMAND, 0).
1405 * flush_domains is set to CPU.
1406 * invalidate_domains is set to COMMAND
1407 * clflush is run to get data out of the CPU caches
1408 * then i915_dev_set_domain calls i915_gem_flush to
1409 * emit an MI_FLUSH and drm_agp_chipset_flush
1410 * 5. Unmapped from GTT
1411 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1412 * flush_domains and invalidate_domains end up both zero
1413 * so no flushing/invalidating happens
1414 * 6. Freed
1415 * yay, done
1417 * Case 2: The shared render buffer
1419 * 1. Allocated
1420 * 2. Mapped to GTT
1421 * 3. Read/written by GPU
1422 * 4. set_domain to (CPU,CPU)
1423 * 5. Read/written by CPU
1424 * 6. Read/written by GPU
1426 * 1. Allocated
1427 * Same as last example, (CPU, CPU)
1428 * 2. Mapped to GTT
1429 * Nothing changes (assertions find that it is not in the GPU)
1430 * 3. Read/written by GPU
1431 * execbuffer calls set_domain (RENDER, RENDER)
1432 * flush_domains gets CPU
1433 * invalidate_domains gets GPU
1434 * clflush (obj)
1435 * MI_FLUSH and drm_agp_chipset_flush
1436 * 4. set_domain (CPU, CPU)
1437 * flush_domains gets GPU
1438 * invalidate_domains gets CPU
1439 * wait_rendering (obj) to make sure all drawing is complete.
1440 * This will include an MI_FLUSH to get the data from GPU
1441 * to memory
1442 * clflush (obj) to invalidate the CPU cache
1443 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1444 * 5. Read/written by CPU
1445 * cache lines are loaded and dirtied
1446 * 6. Read written by GPU
1447 * Same as last GPU access
1449 * Case 3: The constant buffer
1451 * 1. Allocated
1452 * 2. Written by CPU
1453 * 3. Read by GPU
1454 * 4. Updated (written) by CPU again
1455 * 5. Read by GPU
1457 * 1. Allocated
1458 * (CPU, CPU)
1459 * 2. Written by CPU
1460 * (CPU, CPU)
1461 * 3. Read by GPU
1462 * (CPU+RENDER, 0)
1463 * flush_domains = CPU
1464 * invalidate_domains = RENDER
1465 * clflush (obj)
1466 * MI_FLUSH
1467 * drm_agp_chipset_flush
1468 * 4. Updated (written) by CPU again
1469 * (CPU, CPU)
1470 * flush_domains = 0 (no previous write domain)
1471 * invalidate_domains = 0 (no new read domains)
1472 * 5. Read by GPU
1473 * (CPU+RENDER, 0)
1474 * flush_domains = CPU
1475 * invalidate_domains = RENDER
1476 * clflush (obj)
1477 * MI_FLUSH
1478 * drm_agp_chipset_flush
1480 static void
1481 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
1482 uint32_t read_domains,
1483 uint32_t write_domain)
1485 struct drm_device *dev = obj->dev;
1486 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1487 uint32_t invalidate_domains = 0;
1488 uint32_t flush_domains = 0;
1490 BUG_ON(read_domains & I915_GEM_DOMAIN_CPU);
1491 BUG_ON(write_domain == I915_GEM_DOMAIN_CPU);
1493 #if WATCH_BUF
1494 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
1495 __func__, obj,
1496 obj->read_domains, read_domains,
1497 obj->write_domain, write_domain);
1498 #endif
1500 * If the object isn't moving to a new write domain,
1501 * let the object stay in multiple read domains
1503 if (write_domain == 0)
1504 read_domains |= obj->read_domains;
1505 else
1506 obj_priv->dirty = 1;
1509 * Flush the current write domain if
1510 * the new read domains don't match. Invalidate
1511 * any read domains which differ from the old
1512 * write domain
1514 if (obj->write_domain && obj->write_domain != read_domains) {
1515 flush_domains |= obj->write_domain;
1516 invalidate_domains |= read_domains & ~obj->write_domain;
1519 * Invalidate any read caches which may have
1520 * stale data. That is, any new read domains.
1522 invalidate_domains |= read_domains & ~obj->read_domains;
1523 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
1524 #if WATCH_BUF
1525 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
1526 __func__, flush_domains, invalidate_domains);
1527 #endif
1528 i915_gem_clflush_object(obj);
1531 if ((write_domain | flush_domains) != 0)
1532 obj->write_domain = write_domain;
1533 obj->read_domains = read_domains;
1535 dev->invalidate_domains |= invalidate_domains;
1536 dev->flush_domains |= flush_domains;
1537 #if WATCH_BUF
1538 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
1539 __func__,
1540 obj->read_domains, obj->write_domain,
1541 dev->invalidate_domains, dev->flush_domains);
1542 #endif
1546 * Moves the object from a partially CPU read to a full one.
1548 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
1549 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
1551 static void
1552 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
1554 struct drm_device *dev = obj->dev;
1555 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1557 if (!obj_priv->page_cpu_valid)
1558 return;
1560 /* If we're partially in the CPU read domain, finish moving it in.
1562 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
1563 int i;
1565 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
1566 if (obj_priv->page_cpu_valid[i])
1567 continue;
1568 drm_clflush_pages(obj_priv->page_list + i, 1);
1570 drm_agp_chipset_flush(dev);
1573 /* Free the page_cpu_valid mappings which are now stale, whether
1574 * or not we've got I915_GEM_DOMAIN_CPU.
1576 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
1577 DRM_MEM_DRIVER);
1578 obj_priv->page_cpu_valid = NULL;
1582 * Set the CPU read domain on a range of the object.
1584 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
1585 * not entirely valid. The page_cpu_valid member of the object flags which
1586 * pages have been flushed, and will be respected by
1587 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
1588 * of the whole object.
1590 * This function returns when the move is complete, including waiting on
1591 * flushes to occur.
1593 static int
1594 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
1595 uint64_t offset, uint64_t size)
1597 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1598 int i, ret;
1600 if (offset == 0 && size == obj->size)
1601 return i915_gem_object_set_to_cpu_domain(obj, 0);
1603 i915_gem_object_flush_gpu_write_domain(obj);
1604 /* Wait on any GPU rendering and flushing to occur. */
1605 ret = i915_gem_object_wait_rendering(obj);
1606 if (ret != 0)
1607 return ret;
1608 i915_gem_object_flush_gtt_write_domain(obj);
1610 /* If we're already fully in the CPU read domain, we're done. */
1611 if (obj_priv->page_cpu_valid == NULL &&
1612 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
1613 return 0;
1615 /* Otherwise, create/clear the per-page CPU read domain flag if we're
1616 * newly adding I915_GEM_DOMAIN_CPU
1618 if (obj_priv->page_cpu_valid == NULL) {
1619 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
1620 DRM_MEM_DRIVER);
1621 if (obj_priv->page_cpu_valid == NULL)
1622 return -ENOMEM;
1623 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
1624 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
1626 /* Flush the cache on any pages that are still invalid from the CPU's
1627 * perspective.
1629 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
1630 i++) {
1631 if (obj_priv->page_cpu_valid[i])
1632 continue;
1634 drm_clflush_pages(obj_priv->page_list + i, 1);
1636 obj_priv->page_cpu_valid[i] = 1;
1639 /* It should now be out of any other write domains, and we can update
1640 * the domain values for our changes.
1642 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1644 obj->read_domains |= I915_GEM_DOMAIN_CPU;
1646 return 0;
1650 * Once all of the objects have been set in the proper domain,
1651 * perform the necessary flush and invalidate operations.
1653 * Returns the write domains flushed, for use in flush tracking.
1655 static uint32_t
1656 i915_gem_dev_set_domain(struct drm_device *dev)
1658 uint32_t flush_domains = dev->flush_domains;
1661 * Now that all the buffers are synced to the proper domains,
1662 * flush and invalidate the collected domains
1664 if (dev->invalidate_domains | dev->flush_domains) {
1665 #if WATCH_EXEC
1666 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
1667 __func__,
1668 dev->invalidate_domains,
1669 dev->flush_domains);
1670 #endif
1671 i915_gem_flush(dev,
1672 dev->invalidate_domains,
1673 dev->flush_domains);
1674 dev->invalidate_domains = 0;
1675 dev->flush_domains = 0;
1678 return flush_domains;
1682 * Pin an object to the GTT and evaluate the relocations landing in it.
1684 static int
1685 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
1686 struct drm_file *file_priv,
1687 struct drm_i915_gem_exec_object *entry)
1689 struct drm_device *dev = obj->dev;
1690 drm_i915_private_t *dev_priv = dev->dev_private;
1691 struct drm_i915_gem_relocation_entry reloc;
1692 struct drm_i915_gem_relocation_entry __user *relocs;
1693 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1694 int i, ret;
1695 void __iomem *reloc_page;
1697 /* Choose the GTT offset for our buffer and put it there. */
1698 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
1699 if (ret)
1700 return ret;
1702 entry->offset = obj_priv->gtt_offset;
1704 relocs = (struct drm_i915_gem_relocation_entry __user *)
1705 (uintptr_t) entry->relocs_ptr;
1706 /* Apply the relocations, using the GTT aperture to avoid cache
1707 * flushing requirements.
1709 for (i = 0; i < entry->relocation_count; i++) {
1710 struct drm_gem_object *target_obj;
1711 struct drm_i915_gem_object *target_obj_priv;
1712 uint32_t reloc_val, reloc_offset;
1713 uint32_t __iomem *reloc_entry;
1715 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
1716 if (ret != 0) {
1717 i915_gem_object_unpin(obj);
1718 return ret;
1721 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
1722 reloc.target_handle);
1723 if (target_obj == NULL) {
1724 i915_gem_object_unpin(obj);
1725 return -EBADF;
1727 target_obj_priv = target_obj->driver_private;
1729 /* The target buffer should have appeared before us in the
1730 * exec_object list, so it should have a GTT space bound by now.
1732 if (target_obj_priv->gtt_space == NULL) {
1733 DRM_ERROR("No GTT space found for object %d\n",
1734 reloc.target_handle);
1735 drm_gem_object_unreference(target_obj);
1736 i915_gem_object_unpin(obj);
1737 return -EINVAL;
1740 if (reloc.offset > obj->size - 4) {
1741 DRM_ERROR("Relocation beyond object bounds: "
1742 "obj %p target %d offset %d size %d.\n",
1743 obj, reloc.target_handle,
1744 (int) reloc.offset, (int) obj->size);
1745 drm_gem_object_unreference(target_obj);
1746 i915_gem_object_unpin(obj);
1747 return -EINVAL;
1749 if (reloc.offset & 3) {
1750 DRM_ERROR("Relocation not 4-byte aligned: "
1751 "obj %p target %d offset %d.\n",
1752 obj, reloc.target_handle,
1753 (int) reloc.offset);
1754 drm_gem_object_unreference(target_obj);
1755 i915_gem_object_unpin(obj);
1756 return -EINVAL;
1759 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
1760 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
1761 DRM_ERROR("reloc with read/write CPU domains: "
1762 "obj %p target %d offset %d "
1763 "read %08x write %08x",
1764 obj, reloc.target_handle,
1765 (int) reloc.offset,
1766 reloc.read_domains,
1767 reloc.write_domain);
1768 return -EINVAL;
1771 if (reloc.write_domain && target_obj->pending_write_domain &&
1772 reloc.write_domain != target_obj->pending_write_domain) {
1773 DRM_ERROR("Write domain conflict: "
1774 "obj %p target %d offset %d "
1775 "new %08x old %08x\n",
1776 obj, reloc.target_handle,
1777 (int) reloc.offset,
1778 reloc.write_domain,
1779 target_obj->pending_write_domain);
1780 drm_gem_object_unreference(target_obj);
1781 i915_gem_object_unpin(obj);
1782 return -EINVAL;
1785 #if WATCH_RELOC
1786 DRM_INFO("%s: obj %p offset %08x target %d "
1787 "read %08x write %08x gtt %08x "
1788 "presumed %08x delta %08x\n",
1789 __func__,
1790 obj,
1791 (int) reloc.offset,
1792 (int) reloc.target_handle,
1793 (int) reloc.read_domains,
1794 (int) reloc.write_domain,
1795 (int) target_obj_priv->gtt_offset,
1796 (int) reloc.presumed_offset,
1797 reloc.delta);
1798 #endif
1800 target_obj->pending_read_domains |= reloc.read_domains;
1801 target_obj->pending_write_domain |= reloc.write_domain;
1803 /* If the relocation already has the right value in it, no
1804 * more work needs to be done.
1806 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
1807 drm_gem_object_unreference(target_obj);
1808 continue;
1811 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1812 if (ret != 0) {
1813 drm_gem_object_unreference(target_obj);
1814 i915_gem_object_unpin(obj);
1815 return -EINVAL;
1818 /* Map the page containing the relocation we're going to
1819 * perform.
1821 reloc_offset = obj_priv->gtt_offset + reloc.offset;
1822 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
1823 (reloc_offset &
1824 ~(PAGE_SIZE - 1)));
1825 reloc_entry = (uint32_t __iomem *)(reloc_page +
1826 (reloc_offset & (PAGE_SIZE - 1)));
1827 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
1829 #if WATCH_BUF
1830 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
1831 obj, (unsigned int) reloc.offset,
1832 readl(reloc_entry), reloc_val);
1833 #endif
1834 writel(reloc_val, reloc_entry);
1835 io_mapping_unmap_atomic(reloc_page);
1837 /* Write the updated presumed offset for this entry back out
1838 * to the user.
1840 reloc.presumed_offset = target_obj_priv->gtt_offset;
1841 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
1842 if (ret != 0) {
1843 drm_gem_object_unreference(target_obj);
1844 i915_gem_object_unpin(obj);
1845 return ret;
1848 drm_gem_object_unreference(target_obj);
1851 #if WATCH_BUF
1852 if (0)
1853 i915_gem_dump_object(obj, 128, __func__, ~0);
1854 #endif
1855 return 0;
1858 /** Dispatch a batchbuffer to the ring
1860 static int
1861 i915_dispatch_gem_execbuffer(struct drm_device *dev,
1862 struct drm_i915_gem_execbuffer *exec,
1863 uint64_t exec_offset)
1865 drm_i915_private_t *dev_priv = dev->dev_private;
1866 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
1867 (uintptr_t) exec->cliprects_ptr;
1868 int nbox = exec->num_cliprects;
1869 int i = 0, count;
1870 uint32_t exec_start, exec_len;
1871 RING_LOCALS;
1873 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
1874 exec_len = (uint32_t) exec->batch_len;
1876 if ((exec_start | exec_len) & 0x7) {
1877 DRM_ERROR("alignment\n");
1878 return -EINVAL;
1881 if (!exec_start)
1882 return -EINVAL;
1884 count = nbox ? nbox : 1;
1886 for (i = 0; i < count; i++) {
1887 if (i < nbox) {
1888 int ret = i915_emit_box(dev, boxes, i,
1889 exec->DR1, exec->DR4);
1890 if (ret)
1891 return ret;
1894 if (IS_I830(dev) || IS_845G(dev)) {
1895 BEGIN_LP_RING(4);
1896 OUT_RING(MI_BATCH_BUFFER);
1897 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1898 OUT_RING(exec_start + exec_len - 4);
1899 OUT_RING(0);
1900 ADVANCE_LP_RING();
1901 } else {
1902 BEGIN_LP_RING(2);
1903 if (IS_I965G(dev)) {
1904 OUT_RING(MI_BATCH_BUFFER_START |
1905 (2 << 6) |
1906 MI_BATCH_NON_SECURE_I965);
1907 OUT_RING(exec_start);
1908 } else {
1909 OUT_RING(MI_BATCH_BUFFER_START |
1910 (2 << 6));
1911 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1913 ADVANCE_LP_RING();
1917 /* XXX breadcrumb */
1918 return 0;
1921 /* Throttle our rendering by waiting until the ring has completed our requests
1922 * emitted over 20 msec ago.
1924 * This should get us reasonable parallelism between CPU and GPU but also
1925 * relatively low latency when blocking on a particular request to finish.
1927 static int
1928 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
1930 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1931 int ret = 0;
1932 uint32_t seqno;
1934 mutex_lock(&dev->struct_mutex);
1935 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
1936 i915_file_priv->mm.last_gem_throttle_seqno =
1937 i915_file_priv->mm.last_gem_seqno;
1938 if (seqno)
1939 ret = i915_wait_request(dev, seqno);
1940 mutex_unlock(&dev->struct_mutex);
1941 return ret;
1945 i915_gem_execbuffer(struct drm_device *dev, void *data,
1946 struct drm_file *file_priv)
1948 drm_i915_private_t *dev_priv = dev->dev_private;
1949 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1950 struct drm_i915_gem_execbuffer *args = data;
1951 struct drm_i915_gem_exec_object *exec_list = NULL;
1952 struct drm_gem_object **object_list = NULL;
1953 struct drm_gem_object *batch_obj;
1954 int ret, i, pinned = 0;
1955 uint64_t exec_offset;
1956 uint32_t seqno, flush_domains;
1958 #if WATCH_EXEC
1959 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1960 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1961 #endif
1963 if (args->buffer_count < 1) {
1964 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1965 return -EINVAL;
1967 /* Copy in the exec list from userland */
1968 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
1969 DRM_MEM_DRIVER);
1970 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
1971 DRM_MEM_DRIVER);
1972 if (exec_list == NULL || object_list == NULL) {
1973 DRM_ERROR("Failed to allocate exec or object list "
1974 "for %d buffers\n",
1975 args->buffer_count);
1976 ret = -ENOMEM;
1977 goto pre_mutex_err;
1979 ret = copy_from_user(exec_list,
1980 (struct drm_i915_relocation_entry __user *)
1981 (uintptr_t) args->buffers_ptr,
1982 sizeof(*exec_list) * args->buffer_count);
1983 if (ret != 0) {
1984 DRM_ERROR("copy %d exec entries failed %d\n",
1985 args->buffer_count, ret);
1986 goto pre_mutex_err;
1989 mutex_lock(&dev->struct_mutex);
1991 i915_verify_inactive(dev, __FILE__, __LINE__);
1993 if (dev_priv->mm.wedged) {
1994 DRM_ERROR("Execbuf while wedged\n");
1995 mutex_unlock(&dev->struct_mutex);
1996 return -EIO;
1999 if (dev_priv->mm.suspended) {
2000 DRM_ERROR("Execbuf while VT-switched.\n");
2001 mutex_unlock(&dev->struct_mutex);
2002 return -EBUSY;
2005 /* Zero the gloabl flush/invalidate flags. These
2006 * will be modified as each object is bound to the
2007 * gtt
2009 dev->invalidate_domains = 0;
2010 dev->flush_domains = 0;
2012 /* Look up object handles and perform the relocations */
2013 for (i = 0; i < args->buffer_count; i++) {
2014 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2015 exec_list[i].handle);
2016 if (object_list[i] == NULL) {
2017 DRM_ERROR("Invalid object handle %d at index %d\n",
2018 exec_list[i].handle, i);
2019 ret = -EBADF;
2020 goto err;
2023 object_list[i]->pending_read_domains = 0;
2024 object_list[i]->pending_write_domain = 0;
2025 ret = i915_gem_object_pin_and_relocate(object_list[i],
2026 file_priv,
2027 &exec_list[i]);
2028 if (ret) {
2029 DRM_ERROR("object bind and relocate failed %d\n", ret);
2030 goto err;
2032 pinned = i + 1;
2035 /* Set the pending read domains for the batch buffer to COMMAND */
2036 batch_obj = object_list[args->buffer_count-1];
2037 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2038 batch_obj->pending_write_domain = 0;
2040 i915_verify_inactive(dev, __FILE__, __LINE__);
2042 for (i = 0; i < args->buffer_count; i++) {
2043 struct drm_gem_object *obj = object_list[i];
2045 /* Compute new gpu domains and update invalidate/flushing */
2046 i915_gem_object_set_to_gpu_domain(obj,
2047 obj->pending_read_domains,
2048 obj->pending_write_domain);
2051 i915_verify_inactive(dev, __FILE__, __LINE__);
2053 /* Flush/invalidate caches and chipset buffer */
2054 flush_domains = i915_gem_dev_set_domain(dev);
2056 i915_verify_inactive(dev, __FILE__, __LINE__);
2058 #if WATCH_COHERENCY
2059 for (i = 0; i < args->buffer_count; i++) {
2060 i915_gem_object_check_coherency(object_list[i],
2061 exec_list[i].handle);
2063 #endif
2065 exec_offset = exec_list[args->buffer_count - 1].offset;
2067 #if WATCH_EXEC
2068 i915_gem_dump_object(object_list[args->buffer_count - 1],
2069 args->batch_len,
2070 __func__,
2071 ~0);
2072 #endif
2074 (void)i915_add_request(dev, flush_domains);
2076 /* Exec the batchbuffer */
2077 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2078 if (ret) {
2079 DRM_ERROR("dispatch failed %d\n", ret);
2080 goto err;
2084 * Ensure that the commands in the batch buffer are
2085 * finished before the interrupt fires
2087 flush_domains = i915_retire_commands(dev);
2089 i915_verify_inactive(dev, __FILE__, __LINE__);
2092 * Get a seqno representing the execution of the current buffer,
2093 * which we can wait on. We would like to mitigate these interrupts,
2094 * likely by only creating seqnos occasionally (so that we have
2095 * *some* interrupts representing completion of buffers that we can
2096 * wait on when trying to clear up gtt space).
2098 seqno = i915_add_request(dev, flush_domains);
2099 BUG_ON(seqno == 0);
2100 i915_file_priv->mm.last_gem_seqno = seqno;
2101 for (i = 0; i < args->buffer_count; i++) {
2102 struct drm_gem_object *obj = object_list[i];
2104 i915_gem_object_move_to_active(obj, seqno);
2105 #if WATCH_LRU
2106 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2107 #endif
2109 #if WATCH_LRU
2110 i915_dump_lru(dev, __func__);
2111 #endif
2113 i915_verify_inactive(dev, __FILE__, __LINE__);
2115 /* Copy the new buffer offsets back to the user's exec list. */
2116 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2117 (uintptr_t) args->buffers_ptr,
2118 exec_list,
2119 sizeof(*exec_list) * args->buffer_count);
2120 if (ret)
2121 DRM_ERROR("failed to copy %d exec entries "
2122 "back to user (%d)\n",
2123 args->buffer_count, ret);
2124 err:
2125 if (object_list != NULL) {
2126 for (i = 0; i < pinned; i++)
2127 i915_gem_object_unpin(object_list[i]);
2129 for (i = 0; i < args->buffer_count; i++)
2130 drm_gem_object_unreference(object_list[i]);
2132 mutex_unlock(&dev->struct_mutex);
2134 pre_mutex_err:
2135 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2136 DRM_MEM_DRIVER);
2137 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2138 DRM_MEM_DRIVER);
2140 return ret;
2144 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2146 struct drm_device *dev = obj->dev;
2147 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2148 int ret;
2150 i915_verify_inactive(dev, __FILE__, __LINE__);
2151 if (obj_priv->gtt_space == NULL) {
2152 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2153 if (ret != 0) {
2154 DRM_ERROR("Failure to bind: %d", ret);
2155 return ret;
2158 obj_priv->pin_count++;
2160 /* If the object is not active and not pending a flush,
2161 * remove it from the inactive list
2163 if (obj_priv->pin_count == 1) {
2164 atomic_inc(&dev->pin_count);
2165 atomic_add(obj->size, &dev->pin_memory);
2166 if (!obj_priv->active &&
2167 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2168 I915_GEM_DOMAIN_GTT)) == 0 &&
2169 !list_empty(&obj_priv->list))
2170 list_del_init(&obj_priv->list);
2172 i915_verify_inactive(dev, __FILE__, __LINE__);
2174 return 0;
2177 void
2178 i915_gem_object_unpin(struct drm_gem_object *obj)
2180 struct drm_device *dev = obj->dev;
2181 drm_i915_private_t *dev_priv = dev->dev_private;
2182 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2184 i915_verify_inactive(dev, __FILE__, __LINE__);
2185 obj_priv->pin_count--;
2186 BUG_ON(obj_priv->pin_count < 0);
2187 BUG_ON(obj_priv->gtt_space == NULL);
2189 /* If the object is no longer pinned, and is
2190 * neither active nor being flushed, then stick it on
2191 * the inactive list
2193 if (obj_priv->pin_count == 0) {
2194 if (!obj_priv->active &&
2195 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2196 I915_GEM_DOMAIN_GTT)) == 0)
2197 list_move_tail(&obj_priv->list,
2198 &dev_priv->mm.inactive_list);
2199 atomic_dec(&dev->pin_count);
2200 atomic_sub(obj->size, &dev->pin_memory);
2202 i915_verify_inactive(dev, __FILE__, __LINE__);
2206 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2207 struct drm_file *file_priv)
2209 struct drm_i915_gem_pin *args = data;
2210 struct drm_gem_object *obj;
2211 struct drm_i915_gem_object *obj_priv;
2212 int ret;
2214 mutex_lock(&dev->struct_mutex);
2216 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2217 if (obj == NULL) {
2218 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2219 args->handle);
2220 mutex_unlock(&dev->struct_mutex);
2221 return -EBADF;
2223 obj_priv = obj->driver_private;
2225 ret = i915_gem_object_pin(obj, args->alignment);
2226 if (ret != 0) {
2227 drm_gem_object_unreference(obj);
2228 mutex_unlock(&dev->struct_mutex);
2229 return ret;
2232 /* XXX - flush the CPU caches for pinned objects
2233 * as the X server doesn't manage domains yet
2235 i915_gem_object_flush_cpu_write_domain(obj);
2236 args->offset = obj_priv->gtt_offset;
2237 drm_gem_object_unreference(obj);
2238 mutex_unlock(&dev->struct_mutex);
2240 return 0;
2244 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2245 struct drm_file *file_priv)
2247 struct drm_i915_gem_pin *args = data;
2248 struct drm_gem_object *obj;
2250 mutex_lock(&dev->struct_mutex);
2252 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2253 if (obj == NULL) {
2254 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2255 args->handle);
2256 mutex_unlock(&dev->struct_mutex);
2257 return -EBADF;
2260 i915_gem_object_unpin(obj);
2262 drm_gem_object_unreference(obj);
2263 mutex_unlock(&dev->struct_mutex);
2264 return 0;
2268 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2269 struct drm_file *file_priv)
2271 struct drm_i915_gem_busy *args = data;
2272 struct drm_gem_object *obj;
2273 struct drm_i915_gem_object *obj_priv;
2275 mutex_lock(&dev->struct_mutex);
2276 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2277 if (obj == NULL) {
2278 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2279 args->handle);
2280 mutex_unlock(&dev->struct_mutex);
2281 return -EBADF;
2284 obj_priv = obj->driver_private;
2285 args->busy = obj_priv->active;
2287 drm_gem_object_unreference(obj);
2288 mutex_unlock(&dev->struct_mutex);
2289 return 0;
2293 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2294 struct drm_file *file_priv)
2296 return i915_gem_ring_throttle(dev, file_priv);
2299 int i915_gem_init_object(struct drm_gem_object *obj)
2301 struct drm_i915_gem_object *obj_priv;
2303 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2304 if (obj_priv == NULL)
2305 return -ENOMEM;
2308 * We've just allocated pages from the kernel,
2309 * so they've just been written by the CPU with
2310 * zeros. They'll need to be clflushed before we
2311 * use them with the GPU.
2313 obj->write_domain = I915_GEM_DOMAIN_CPU;
2314 obj->read_domains = I915_GEM_DOMAIN_CPU;
2316 obj_priv->agp_type = AGP_USER_MEMORY;
2318 obj->driver_private = obj_priv;
2319 obj_priv->obj = obj;
2320 INIT_LIST_HEAD(&obj_priv->list);
2321 return 0;
2324 void i915_gem_free_object(struct drm_gem_object *obj)
2326 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2328 while (obj_priv->pin_count > 0)
2329 i915_gem_object_unpin(obj);
2331 i915_gem_object_unbind(obj);
2333 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2334 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2337 /** Unbinds all objects that are on the given buffer list. */
2338 static int
2339 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2341 struct drm_gem_object *obj;
2342 struct drm_i915_gem_object *obj_priv;
2343 int ret;
2345 while (!list_empty(head)) {
2346 obj_priv = list_first_entry(head,
2347 struct drm_i915_gem_object,
2348 list);
2349 obj = obj_priv->obj;
2351 if (obj_priv->pin_count != 0) {
2352 DRM_ERROR("Pinned object in unbind list\n");
2353 mutex_unlock(&dev->struct_mutex);
2354 return -EINVAL;
2357 ret = i915_gem_object_unbind(obj);
2358 if (ret != 0) {
2359 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2360 ret);
2361 mutex_unlock(&dev->struct_mutex);
2362 return ret;
2367 return 0;
2370 static int
2371 i915_gem_idle(struct drm_device *dev)
2373 drm_i915_private_t *dev_priv = dev->dev_private;
2374 uint32_t seqno, cur_seqno, last_seqno;
2375 int stuck, ret;
2377 mutex_lock(&dev->struct_mutex);
2379 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2380 mutex_unlock(&dev->struct_mutex);
2381 return 0;
2384 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2385 * We need to replace this with a semaphore, or something.
2387 dev_priv->mm.suspended = 1;
2389 /* Cancel the retire work handler, wait for it to finish if running
2391 mutex_unlock(&dev->struct_mutex);
2392 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2393 mutex_lock(&dev->struct_mutex);
2395 i915_kernel_lost_context(dev);
2397 /* Flush the GPU along with all non-CPU write domains
2399 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2400 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2401 seqno = i915_add_request(dev, ~(I915_GEM_DOMAIN_CPU |
2402 I915_GEM_DOMAIN_GTT));
2404 if (seqno == 0) {
2405 mutex_unlock(&dev->struct_mutex);
2406 return -ENOMEM;
2409 dev_priv->mm.waiting_gem_seqno = seqno;
2410 last_seqno = 0;
2411 stuck = 0;
2412 for (;;) {
2413 cur_seqno = i915_get_gem_seqno(dev);
2414 if (i915_seqno_passed(cur_seqno, seqno))
2415 break;
2416 if (last_seqno == cur_seqno) {
2417 if (stuck++ > 100) {
2418 DRM_ERROR("hardware wedged\n");
2419 dev_priv->mm.wedged = 1;
2420 DRM_WAKEUP(&dev_priv->irq_queue);
2421 break;
2424 msleep(10);
2425 last_seqno = cur_seqno;
2427 dev_priv->mm.waiting_gem_seqno = 0;
2429 i915_gem_retire_requests(dev);
2431 if (!dev_priv->mm.wedged) {
2432 /* Active and flushing should now be empty as we've
2433 * waited for a sequence higher than any pending execbuffer
2435 WARN_ON(!list_empty(&dev_priv->mm.active_list));
2436 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
2437 /* Request should now be empty as we've also waited
2438 * for the last request in the list
2440 WARN_ON(!list_empty(&dev_priv->mm.request_list));
2443 /* Empty the active and flushing lists to inactive. If there's
2444 * anything left at this point, it means that we're wedged and
2445 * nothing good's going to happen by leaving them there. So strip
2446 * the GPU domains and just stuff them onto inactive.
2448 while (!list_empty(&dev_priv->mm.active_list)) {
2449 struct drm_i915_gem_object *obj_priv;
2451 obj_priv = list_first_entry(&dev_priv->mm.active_list,
2452 struct drm_i915_gem_object,
2453 list);
2454 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
2455 i915_gem_object_move_to_inactive(obj_priv->obj);
2458 while (!list_empty(&dev_priv->mm.flushing_list)) {
2459 struct drm_i915_gem_object *obj_priv;
2461 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2462 struct drm_i915_gem_object,
2463 list);
2464 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
2465 i915_gem_object_move_to_inactive(obj_priv->obj);
2469 /* Move all inactive buffers out of the GTT. */
2470 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
2471 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
2472 if (ret) {
2473 mutex_unlock(&dev->struct_mutex);
2474 return ret;
2477 i915_gem_cleanup_ringbuffer(dev);
2478 mutex_unlock(&dev->struct_mutex);
2480 return 0;
2483 static int
2484 i915_gem_init_hws(struct drm_device *dev)
2486 drm_i915_private_t *dev_priv = dev->dev_private;
2487 struct drm_gem_object *obj;
2488 struct drm_i915_gem_object *obj_priv;
2489 int ret;
2491 /* If we need a physical address for the status page, it's already
2492 * initialized at driver load time.
2494 if (!I915_NEED_GFX_HWS(dev))
2495 return 0;
2497 obj = drm_gem_object_alloc(dev, 4096);
2498 if (obj == NULL) {
2499 DRM_ERROR("Failed to allocate status page\n");
2500 return -ENOMEM;
2502 obj_priv = obj->driver_private;
2503 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
2505 ret = i915_gem_object_pin(obj, 4096);
2506 if (ret != 0) {
2507 drm_gem_object_unreference(obj);
2508 return ret;
2511 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
2513 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
2514 if (dev_priv->hw_status_page == NULL) {
2515 DRM_ERROR("Failed to map status page.\n");
2516 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2517 drm_gem_object_unreference(obj);
2518 return -EINVAL;
2520 dev_priv->hws_obj = obj;
2521 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
2522 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
2523 I915_READ(HWS_PGA); /* posting read */
2524 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
2526 return 0;
2529 static int
2530 i915_gem_init_ringbuffer(struct drm_device *dev)
2532 drm_i915_private_t *dev_priv = dev->dev_private;
2533 struct drm_gem_object *obj;
2534 struct drm_i915_gem_object *obj_priv;
2535 int ret;
2536 u32 head;
2538 ret = i915_gem_init_hws(dev);
2539 if (ret != 0)
2540 return ret;
2542 obj = drm_gem_object_alloc(dev, 128 * 1024);
2543 if (obj == NULL) {
2544 DRM_ERROR("Failed to allocate ringbuffer\n");
2545 return -ENOMEM;
2547 obj_priv = obj->driver_private;
2549 ret = i915_gem_object_pin(obj, 4096);
2550 if (ret != 0) {
2551 drm_gem_object_unreference(obj);
2552 return ret;
2555 /* Set up the kernel mapping for the ring. */
2556 dev_priv->ring.Size = obj->size;
2557 dev_priv->ring.tail_mask = obj->size - 1;
2559 dev_priv->ring.map.offset = dev->agp->base + obj_priv->gtt_offset;
2560 dev_priv->ring.map.size = obj->size;
2561 dev_priv->ring.map.type = 0;
2562 dev_priv->ring.map.flags = 0;
2563 dev_priv->ring.map.mtrr = 0;
2565 drm_core_ioremap_wc(&dev_priv->ring.map, dev);
2566 if (dev_priv->ring.map.handle == NULL) {
2567 DRM_ERROR("Failed to map ringbuffer.\n");
2568 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2569 drm_gem_object_unreference(obj);
2570 return -EINVAL;
2572 dev_priv->ring.ring_obj = obj;
2573 dev_priv->ring.virtual_start = dev_priv->ring.map.handle;
2575 /* Stop the ring if it's running. */
2576 I915_WRITE(PRB0_CTL, 0);
2577 I915_WRITE(PRB0_TAIL, 0);
2578 I915_WRITE(PRB0_HEAD, 0);
2580 /* Initialize the ring. */
2581 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
2582 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2584 /* G45 ring initialization fails to reset head to zero */
2585 if (head != 0) {
2586 DRM_ERROR("Ring head not reset to zero "
2587 "ctl %08x head %08x tail %08x start %08x\n",
2588 I915_READ(PRB0_CTL),
2589 I915_READ(PRB0_HEAD),
2590 I915_READ(PRB0_TAIL),
2591 I915_READ(PRB0_START));
2592 I915_WRITE(PRB0_HEAD, 0);
2594 DRM_ERROR("Ring head forced to zero "
2595 "ctl %08x head %08x tail %08x start %08x\n",
2596 I915_READ(PRB0_CTL),
2597 I915_READ(PRB0_HEAD),
2598 I915_READ(PRB0_TAIL),
2599 I915_READ(PRB0_START));
2602 I915_WRITE(PRB0_CTL,
2603 ((obj->size - 4096) & RING_NR_PAGES) |
2604 RING_NO_REPORT |
2605 RING_VALID);
2607 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2609 /* If the head is still not zero, the ring is dead */
2610 if (head != 0) {
2611 DRM_ERROR("Ring initialization failed "
2612 "ctl %08x head %08x tail %08x start %08x\n",
2613 I915_READ(PRB0_CTL),
2614 I915_READ(PRB0_HEAD),
2615 I915_READ(PRB0_TAIL),
2616 I915_READ(PRB0_START));
2617 return -EIO;
2620 /* Update our cache of the ring state */
2621 i915_kernel_lost_context(dev);
2623 return 0;
2626 static void
2627 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
2629 drm_i915_private_t *dev_priv = dev->dev_private;
2631 if (dev_priv->ring.ring_obj == NULL)
2632 return;
2634 drm_core_ioremapfree(&dev_priv->ring.map, dev);
2636 i915_gem_object_unpin(dev_priv->ring.ring_obj);
2637 drm_gem_object_unreference(dev_priv->ring.ring_obj);
2638 dev_priv->ring.ring_obj = NULL;
2639 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2641 if (dev_priv->hws_obj != NULL) {
2642 struct drm_gem_object *obj = dev_priv->hws_obj;
2643 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2645 kunmap(obj_priv->page_list[0]);
2646 i915_gem_object_unpin(obj);
2647 drm_gem_object_unreference(obj);
2648 dev_priv->hws_obj = NULL;
2649 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2650 dev_priv->hw_status_page = NULL;
2652 /* Write high address into HWS_PGA when disabling. */
2653 I915_WRITE(HWS_PGA, 0x1ffff000);
2658 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
2659 struct drm_file *file_priv)
2661 drm_i915_private_t *dev_priv = dev->dev_private;
2662 int ret;
2664 if (dev_priv->mm.wedged) {
2665 DRM_ERROR("Reenabling wedged hardware, good luck\n");
2666 dev_priv->mm.wedged = 0;
2669 ret = i915_gem_init_ringbuffer(dev);
2670 if (ret != 0)
2671 return ret;
2673 dev_priv->mm.gtt_mapping = io_mapping_create_wc(dev->agp->base,
2674 dev->agp->agp_info.aper_size
2675 * 1024 * 1024);
2677 mutex_lock(&dev->struct_mutex);
2678 BUG_ON(!list_empty(&dev_priv->mm.active_list));
2679 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2680 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
2681 BUG_ON(!list_empty(&dev_priv->mm.request_list));
2682 dev_priv->mm.suspended = 0;
2683 mutex_unlock(&dev->struct_mutex);
2685 drm_irq_install(dev);
2687 return 0;
2691 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
2692 struct drm_file *file_priv)
2694 drm_i915_private_t *dev_priv = dev->dev_private;
2695 int ret;
2697 ret = i915_gem_idle(dev);
2698 drm_irq_uninstall(dev);
2700 io_mapping_free(dev_priv->mm.gtt_mapping);
2701 return ret;
2704 void
2705 i915_gem_lastclose(struct drm_device *dev)
2707 int ret;
2709 ret = i915_gem_idle(dev);
2710 if (ret)
2711 DRM_ERROR("failed to idle hardware: %d\n", ret);
2714 void
2715 i915_gem_load(struct drm_device *dev)
2717 drm_i915_private_t *dev_priv = dev->dev_private;
2719 INIT_LIST_HEAD(&dev_priv->mm.active_list);
2720 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
2721 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
2722 INIT_LIST_HEAD(&dev_priv->mm.request_list);
2723 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
2724 i915_gem_retire_work_handler);
2725 dev_priv->mm.next_gem_seqno = 1;
2727 i915_gem_detect_bit_6_swizzle(dev);