2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
49 #include <asm/tlbflush.h>
50 #include <asm/div64.h>
54 * Array of node states.
56 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
57 [N_POSSIBLE
] = NODE_MASK_ALL
,
58 [N_ONLINE
] = { { [0] = 1UL } },
60 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
62 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
64 [N_CPU
] = { { [0] = 1UL } },
67 EXPORT_SYMBOL(node_states
);
69 unsigned long totalram_pages __read_mostly
;
70 unsigned long totalreserve_pages __read_mostly
;
72 int percpu_pagelist_fraction
;
74 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
75 int pageblock_order __read_mostly
;
78 static void __free_pages_ok(struct page
*page
, unsigned int order
);
81 * results with 256, 32 in the lowmem_reserve sysctl:
82 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
83 * 1G machine -> (16M dma, 784M normal, 224M high)
84 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
85 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
86 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 * TBD: should special case ZONE_DMA32 machines here - in those we normally
89 * don't need any ZONE_NORMAL reservation
91 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
92 #ifdef CONFIG_ZONE_DMA
95 #ifdef CONFIG_ZONE_DMA32
104 EXPORT_SYMBOL(totalram_pages
);
106 static char * const zone_names
[MAX_NR_ZONES
] = {
107 #ifdef CONFIG_ZONE_DMA
110 #ifdef CONFIG_ZONE_DMA32
114 #ifdef CONFIG_HIGHMEM
120 int min_free_kbytes
= 1024;
122 unsigned long __meminitdata nr_kernel_pages
;
123 unsigned long __meminitdata nr_all_pages
;
124 static unsigned long __meminitdata dma_reserve
;
126 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
129 * ranges of memory (RAM) that may be registered with add_active_range().
130 * Ranges passed to add_active_range() will be merged if possible
131 * so the number of times add_active_range() can be called is
132 * related to the number of nodes and the number of holes
134 #ifdef CONFIG_MAX_ACTIVE_REGIONS
135 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
136 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #if MAX_NUMNODES >= 32
139 /* If there can be many nodes, allow up to 50 holes per node */
140 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 /* By default, allow up to 256 distinct regions */
143 #define MAX_ACTIVE_REGIONS 256
147 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
148 static int __meminitdata nr_nodemap_entries
;
149 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
150 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
151 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
152 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
153 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
154 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
155 unsigned long __initdata required_kernelcore
;
156 static unsigned long __initdata required_movablecore
;
157 unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 EXPORT_SYMBOL(movable_zone
);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
166 EXPORT_SYMBOL(nr_node_ids
);
169 int page_group_by_mobility_disabled __read_mostly
;
171 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
173 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
174 PB_migrate
, PB_migrate_end
);
177 #ifdef CONFIG_DEBUG_VM
178 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
182 unsigned long pfn
= page_to_pfn(page
);
185 seq
= zone_span_seqbegin(zone
);
186 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
188 else if (pfn
< zone
->zone_start_pfn
)
190 } while (zone_span_seqretry(zone
, seq
));
195 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
197 if (!pfn_valid_within(page_to_pfn(page
)))
199 if (zone
!= page_zone(page
))
205 * Temporary debugging check for pages not lying within a given zone.
207 static int bad_range(struct zone
*zone
, struct page
*page
)
209 if (page_outside_zone_boundaries(zone
, page
))
211 if (!page_is_consistent(zone
, page
))
217 static inline int bad_range(struct zone
*zone
, struct page
*page
)
223 static void bad_page(struct page
*page
)
225 void *pc
= page_get_page_cgroup(page
);
227 printk(KERN_EMERG
"Bad page state in process '%s'\n" KERN_EMERG
228 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
229 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
230 (unsigned long)page
->flags
, page
->mapping
,
231 page_mapcount(page
), page_count(page
));
233 printk(KERN_EMERG
"cgroup:%p\n", pc
);
234 page_reset_bad_cgroup(page
);
236 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
237 KERN_EMERG
"Backtrace:\n");
239 page
->flags
&= ~(1 << PG_lru
|
249 set_page_count(page
, 0);
250 reset_page_mapcount(page
);
251 page
->mapping
= NULL
;
252 add_taint(TAINT_BAD_PAGE
);
256 * Higher-order pages are called "compound pages". They are structured thusly:
258 * The first PAGE_SIZE page is called the "head page".
260 * The remaining PAGE_SIZE pages are called "tail pages".
262 * All pages have PG_compound set. All pages have their ->private pointing at
263 * the head page (even the head page has this).
265 * The first tail page's ->lru.next holds the address of the compound page's
266 * put_page() function. Its ->lru.prev holds the order of allocation.
267 * This usage means that zero-order pages may not be compound.
270 static void free_compound_page(struct page
*page
)
272 __free_pages_ok(page
, compound_order(page
));
275 static void prep_compound_page(struct page
*page
, unsigned long order
)
278 int nr_pages
= 1 << order
;
280 set_compound_page_dtor(page
, free_compound_page
);
281 set_compound_order(page
, order
);
283 for (i
= 1; i
< nr_pages
; i
++) {
284 struct page
*p
= page
+ i
;
287 p
->first_page
= page
;
291 static void destroy_compound_page(struct page
*page
, unsigned long order
)
294 int nr_pages
= 1 << order
;
296 if (unlikely(compound_order(page
) != order
))
299 if (unlikely(!PageHead(page
)))
301 __ClearPageHead(page
);
302 for (i
= 1; i
< nr_pages
; i
++) {
303 struct page
*p
= page
+ i
;
305 if (unlikely(!PageTail(p
) |
306 (p
->first_page
!= page
)))
312 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
317 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
318 * and __GFP_HIGHMEM from hard or soft interrupt context.
320 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
321 for (i
= 0; i
< (1 << order
); i
++)
322 clear_highpage(page
+ i
);
325 static inline void set_page_order(struct page
*page
, int order
)
327 set_page_private(page
, order
);
328 __SetPageBuddy(page
);
331 static inline void rmv_page_order(struct page
*page
)
333 __ClearPageBuddy(page
);
334 set_page_private(page
, 0);
338 * Locate the struct page for both the matching buddy in our
339 * pair (buddy1) and the combined O(n+1) page they form (page).
341 * 1) Any buddy B1 will have an order O twin B2 which satisfies
342 * the following equation:
344 * For example, if the starting buddy (buddy2) is #8 its order
346 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
348 * 2) Any buddy B will have an order O+1 parent P which
349 * satisfies the following equation:
352 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
354 static inline struct page
*
355 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
357 unsigned long buddy_idx
= page_idx
^ (1 << order
);
359 return page
+ (buddy_idx
- page_idx
);
362 static inline unsigned long
363 __find_combined_index(unsigned long page_idx
, unsigned int order
)
365 return (page_idx
& ~(1 << order
));
369 * This function checks whether a page is free && is the buddy
370 * we can do coalesce a page and its buddy if
371 * (a) the buddy is not in a hole &&
372 * (b) the buddy is in the buddy system &&
373 * (c) a page and its buddy have the same order &&
374 * (d) a page and its buddy are in the same zone.
376 * For recording whether a page is in the buddy system, we use PG_buddy.
377 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
379 * For recording page's order, we use page_private(page).
381 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
384 if (!pfn_valid_within(page_to_pfn(buddy
)))
387 if (page_zone_id(page
) != page_zone_id(buddy
))
390 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
391 BUG_ON(page_count(buddy
) != 0);
398 * Freeing function for a buddy system allocator.
400 * The concept of a buddy system is to maintain direct-mapped table
401 * (containing bit values) for memory blocks of various "orders".
402 * The bottom level table contains the map for the smallest allocatable
403 * units of memory (here, pages), and each level above it describes
404 * pairs of units from the levels below, hence, "buddies".
405 * At a high level, all that happens here is marking the table entry
406 * at the bottom level available, and propagating the changes upward
407 * as necessary, plus some accounting needed to play nicely with other
408 * parts of the VM system.
409 * At each level, we keep a list of pages, which are heads of continuous
410 * free pages of length of (1 << order) and marked with PG_buddy. Page's
411 * order is recorded in page_private(page) field.
412 * So when we are allocating or freeing one, we can derive the state of the
413 * other. That is, if we allocate a small block, and both were
414 * free, the remainder of the region must be split into blocks.
415 * If a block is freed, and its buddy is also free, then this
416 * triggers coalescing into a block of larger size.
421 static inline void __free_one_page(struct page
*page
,
422 struct zone
*zone
, unsigned int order
)
424 unsigned long page_idx
;
425 int order_size
= 1 << order
;
426 int migratetype
= get_pageblock_migratetype(page
);
428 if (unlikely(PageCompound(page
)))
429 destroy_compound_page(page
, order
);
431 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
433 VM_BUG_ON(page_idx
& (order_size
- 1));
434 VM_BUG_ON(bad_range(zone
, page
));
436 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
437 while (order
< MAX_ORDER
-1) {
438 unsigned long combined_idx
;
441 buddy
= __page_find_buddy(page
, page_idx
, order
);
442 if (!page_is_buddy(page
, buddy
, order
))
443 break; /* Move the buddy up one level. */
445 list_del(&buddy
->lru
);
446 zone
->free_area
[order
].nr_free
--;
447 rmv_page_order(buddy
);
448 combined_idx
= __find_combined_index(page_idx
, order
);
449 page
= page
+ (combined_idx
- page_idx
);
450 page_idx
= combined_idx
;
453 set_page_order(page
, order
);
455 &zone
->free_area
[order
].free_list
[migratetype
]);
456 zone
->free_area
[order
].nr_free
++;
459 static inline int free_pages_check(struct page
*page
)
461 if (unlikely(page_mapcount(page
) |
462 (page
->mapping
!= NULL
) |
463 (page_get_page_cgroup(page
) != NULL
) |
464 (page_count(page
) != 0) |
477 __ClearPageDirty(page
);
479 * For now, we report if PG_reserved was found set, but do not
480 * clear it, and do not free the page. But we shall soon need
481 * to do more, for when the ZERO_PAGE count wraps negative.
483 return PageReserved(page
);
487 * Frees a list of pages.
488 * Assumes all pages on list are in same zone, and of same order.
489 * count is the number of pages to free.
491 * If the zone was previously in an "all pages pinned" state then look to
492 * see if this freeing clears that state.
494 * And clear the zone's pages_scanned counter, to hold off the "all pages are
495 * pinned" detection logic.
497 static void free_pages_bulk(struct zone
*zone
, int count
,
498 struct list_head
*list
, int order
)
500 spin_lock(&zone
->lock
);
501 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
502 zone
->pages_scanned
= 0;
506 VM_BUG_ON(list_empty(list
));
507 page
= list_entry(list
->prev
, struct page
, lru
);
508 /* have to delete it as __free_one_page list manipulates */
509 list_del(&page
->lru
);
510 __free_one_page(page
, zone
, order
);
512 spin_unlock(&zone
->lock
);
515 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
517 spin_lock(&zone
->lock
);
518 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
519 zone
->pages_scanned
= 0;
520 __free_one_page(page
, zone
, order
);
521 spin_unlock(&zone
->lock
);
524 static void __free_pages_ok(struct page
*page
, unsigned int order
)
530 for (i
= 0 ; i
< (1 << order
) ; ++i
)
531 reserved
+= free_pages_check(page
+ i
);
535 if (!PageHighMem(page
))
536 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
537 arch_free_page(page
, order
);
538 kernel_map_pages(page
, 1 << order
, 0);
540 local_irq_save(flags
);
541 __count_vm_events(PGFREE
, 1 << order
);
542 free_one_page(page_zone(page
), page
, order
);
543 local_irq_restore(flags
);
547 * permit the bootmem allocator to evade page validation on high-order frees
549 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
552 __ClearPageReserved(page
);
553 set_page_count(page
, 0);
554 set_page_refcounted(page
);
560 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
561 struct page
*p
= &page
[loop
];
563 if (loop
+ 1 < BITS_PER_LONG
)
565 __ClearPageReserved(p
);
566 set_page_count(p
, 0);
569 set_page_refcounted(page
);
570 __free_pages(page
, order
);
576 * The order of subdivision here is critical for the IO subsystem.
577 * Please do not alter this order without good reasons and regression
578 * testing. Specifically, as large blocks of memory are subdivided,
579 * the order in which smaller blocks are delivered depends on the order
580 * they're subdivided in this function. This is the primary factor
581 * influencing the order in which pages are delivered to the IO
582 * subsystem according to empirical testing, and this is also justified
583 * by considering the behavior of a buddy system containing a single
584 * large block of memory acted on by a series of small allocations.
585 * This behavior is a critical factor in sglist merging's success.
589 static inline void expand(struct zone
*zone
, struct page
*page
,
590 int low
, int high
, struct free_area
*area
,
593 unsigned long size
= 1 << high
;
599 VM_BUG_ON(bad_range(zone
, &page
[size
]));
600 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
602 set_page_order(&page
[size
], high
);
607 * This page is about to be returned from the page allocator
609 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
611 if (unlikely(page_mapcount(page
) |
612 (page
->mapping
!= NULL
) |
613 (page_get_page_cgroup(page
) != NULL
) |
614 (page_count(page
) != 0) |
629 * For now, we report if PG_reserved was found set, but do not
630 * clear it, and do not allocate the page: as a safety net.
632 if (PageReserved(page
))
635 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_reclaim
|
636 1 << PG_referenced
| 1 << PG_arch_1
|
637 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
638 set_page_private(page
, 0);
639 set_page_refcounted(page
);
641 arch_alloc_page(page
, order
);
642 kernel_map_pages(page
, 1 << order
, 1);
644 if (gfp_flags
& __GFP_ZERO
)
645 prep_zero_page(page
, order
, gfp_flags
);
647 if (order
&& (gfp_flags
& __GFP_COMP
))
648 prep_compound_page(page
, order
);
654 * Go through the free lists for the given migratetype and remove
655 * the smallest available page from the freelists
657 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
660 unsigned int current_order
;
661 struct free_area
* area
;
664 /* Find a page of the appropriate size in the preferred list */
665 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
666 area
= &(zone
->free_area
[current_order
]);
667 if (list_empty(&area
->free_list
[migratetype
]))
670 page
= list_entry(area
->free_list
[migratetype
].next
,
672 list_del(&page
->lru
);
673 rmv_page_order(page
);
675 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
676 expand(zone
, page
, order
, current_order
, area
, migratetype
);
685 * This array describes the order lists are fallen back to when
686 * the free lists for the desirable migrate type are depleted
688 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
689 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
690 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
691 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
692 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
696 * Move the free pages in a range to the free lists of the requested type.
697 * Note that start_page and end_pages are not aligned on a pageblock
698 * boundary. If alignment is required, use move_freepages_block()
700 int move_freepages(struct zone
*zone
,
701 struct page
*start_page
, struct page
*end_page
,
708 #ifndef CONFIG_HOLES_IN_ZONE
710 * page_zone is not safe to call in this context when
711 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
712 * anyway as we check zone boundaries in move_freepages_block().
713 * Remove at a later date when no bug reports exist related to
714 * grouping pages by mobility
716 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
719 for (page
= start_page
; page
<= end_page
;) {
720 if (!pfn_valid_within(page_to_pfn(page
))) {
725 if (!PageBuddy(page
)) {
730 order
= page_order(page
);
731 list_del(&page
->lru
);
733 &zone
->free_area
[order
].free_list
[migratetype
]);
735 pages_moved
+= 1 << order
;
741 int move_freepages_block(struct zone
*zone
, struct page
*page
, int migratetype
)
743 unsigned long start_pfn
, end_pfn
;
744 struct page
*start_page
, *end_page
;
746 start_pfn
= page_to_pfn(page
);
747 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
748 start_page
= pfn_to_page(start_pfn
);
749 end_page
= start_page
+ pageblock_nr_pages
- 1;
750 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
752 /* Do not cross zone boundaries */
753 if (start_pfn
< zone
->zone_start_pfn
)
755 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
758 return move_freepages(zone
, start_page
, end_page
, migratetype
);
761 /* Remove an element from the buddy allocator from the fallback list */
762 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
763 int start_migratetype
)
765 struct free_area
* area
;
770 /* Find the largest possible block of pages in the other list */
771 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
773 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
774 migratetype
= fallbacks
[start_migratetype
][i
];
776 /* MIGRATE_RESERVE handled later if necessary */
777 if (migratetype
== MIGRATE_RESERVE
)
780 area
= &(zone
->free_area
[current_order
]);
781 if (list_empty(&area
->free_list
[migratetype
]))
784 page
= list_entry(area
->free_list
[migratetype
].next
,
789 * If breaking a large block of pages, move all free
790 * pages to the preferred allocation list. If falling
791 * back for a reclaimable kernel allocation, be more
792 * agressive about taking ownership of free pages
794 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
795 start_migratetype
== MIGRATE_RECLAIMABLE
) {
797 pages
= move_freepages_block(zone
, page
,
800 /* Claim the whole block if over half of it is free */
801 if (pages
>= (1 << (pageblock_order
-1)))
802 set_pageblock_migratetype(page
,
805 migratetype
= start_migratetype
;
808 /* Remove the page from the freelists */
809 list_del(&page
->lru
);
810 rmv_page_order(page
);
811 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
814 if (current_order
== pageblock_order
)
815 set_pageblock_migratetype(page
,
818 expand(zone
, page
, order
, current_order
, area
, migratetype
);
823 /* Use MIGRATE_RESERVE rather than fail an allocation */
824 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
828 * Do the hard work of removing an element from the buddy allocator.
829 * Call me with the zone->lock already held.
831 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
836 page
= __rmqueue_smallest(zone
, order
, migratetype
);
839 page
= __rmqueue_fallback(zone
, order
, migratetype
);
845 * Obtain a specified number of elements from the buddy allocator, all under
846 * a single hold of the lock, for efficiency. Add them to the supplied list.
847 * Returns the number of new pages which were placed at *list.
849 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
850 unsigned long count
, struct list_head
*list
,
855 spin_lock(&zone
->lock
);
856 for (i
= 0; i
< count
; ++i
) {
857 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
858 if (unlikely(page
== NULL
))
862 * Split buddy pages returned by expand() are received here
863 * in physical page order. The page is added to the callers and
864 * list and the list head then moves forward. From the callers
865 * perspective, the linked list is ordered by page number in
866 * some conditions. This is useful for IO devices that can
867 * merge IO requests if the physical pages are ordered
870 list_add(&page
->lru
, list
);
871 set_page_private(page
, migratetype
);
874 spin_unlock(&zone
->lock
);
880 * Called from the vmstat counter updater to drain pagesets of this
881 * currently executing processor on remote nodes after they have
884 * Note that this function must be called with the thread pinned to
885 * a single processor.
887 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
892 local_irq_save(flags
);
893 if (pcp
->count
>= pcp
->batch
)
894 to_drain
= pcp
->batch
;
896 to_drain
= pcp
->count
;
897 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
898 pcp
->count
-= to_drain
;
899 local_irq_restore(flags
);
904 * Drain pages of the indicated processor.
906 * The processor must either be the current processor and the
907 * thread pinned to the current processor or a processor that
910 static void drain_pages(unsigned int cpu
)
915 for_each_zone(zone
) {
916 struct per_cpu_pageset
*pset
;
917 struct per_cpu_pages
*pcp
;
919 if (!populated_zone(zone
))
922 pset
= zone_pcp(zone
, cpu
);
925 local_irq_save(flags
);
926 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
928 local_irq_restore(flags
);
933 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
935 void drain_local_pages(void *arg
)
937 drain_pages(smp_processor_id());
941 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
943 void drain_all_pages(void)
945 on_each_cpu(drain_local_pages
, NULL
, 0, 1);
948 #ifdef CONFIG_HIBERNATION
950 void mark_free_pages(struct zone
*zone
)
952 unsigned long pfn
, max_zone_pfn
;
955 struct list_head
*curr
;
957 if (!zone
->spanned_pages
)
960 spin_lock_irqsave(&zone
->lock
, flags
);
962 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
963 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
964 if (pfn_valid(pfn
)) {
965 struct page
*page
= pfn_to_page(pfn
);
967 if (!swsusp_page_is_forbidden(page
))
968 swsusp_unset_page_free(page
);
971 for_each_migratetype_order(order
, t
) {
972 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
975 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
976 for (i
= 0; i
< (1UL << order
); i
++)
977 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
980 spin_unlock_irqrestore(&zone
->lock
, flags
);
982 #endif /* CONFIG_PM */
985 * Free a 0-order page
987 static void free_hot_cold_page(struct page
*page
, int cold
)
989 struct zone
*zone
= page_zone(page
);
990 struct per_cpu_pages
*pcp
;
994 page
->mapping
= NULL
;
995 if (free_pages_check(page
))
998 if (!PageHighMem(page
))
999 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1000 arch_free_page(page
, 0);
1001 kernel_map_pages(page
, 1, 0);
1003 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
1004 local_irq_save(flags
);
1005 __count_vm_event(PGFREE
);
1007 list_add_tail(&page
->lru
, &pcp
->list
);
1009 list_add(&page
->lru
, &pcp
->list
);
1010 set_page_private(page
, get_pageblock_migratetype(page
));
1012 if (pcp
->count
>= pcp
->high
) {
1013 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1014 pcp
->count
-= pcp
->batch
;
1016 local_irq_restore(flags
);
1020 void free_hot_page(struct page
*page
)
1022 free_hot_cold_page(page
, 0);
1025 void free_cold_page(struct page
*page
)
1027 free_hot_cold_page(page
, 1);
1031 * split_page takes a non-compound higher-order page, and splits it into
1032 * n (1<<order) sub-pages: page[0..n]
1033 * Each sub-page must be freed individually.
1035 * Note: this is probably too low level an operation for use in drivers.
1036 * Please consult with lkml before using this in your driver.
1038 void split_page(struct page
*page
, unsigned int order
)
1042 VM_BUG_ON(PageCompound(page
));
1043 VM_BUG_ON(!page_count(page
));
1044 for (i
= 1; i
< (1 << order
); i
++)
1045 set_page_refcounted(page
+ i
);
1049 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1050 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1053 static struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1054 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1056 unsigned long flags
;
1058 int cold
= !!(gfp_flags
& __GFP_COLD
);
1060 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1064 if (likely(order
== 0)) {
1065 struct per_cpu_pages
*pcp
;
1067 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1068 local_irq_save(flags
);
1070 pcp
->count
= rmqueue_bulk(zone
, 0,
1071 pcp
->batch
, &pcp
->list
, migratetype
);
1072 if (unlikely(!pcp
->count
))
1076 /* Find a page of the appropriate migrate type */
1078 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1079 if (page_private(page
) == migratetype
)
1082 list_for_each_entry(page
, &pcp
->list
, lru
)
1083 if (page_private(page
) == migratetype
)
1087 /* Allocate more to the pcp list if necessary */
1088 if (unlikely(&page
->lru
== &pcp
->list
)) {
1089 pcp
->count
+= rmqueue_bulk(zone
, 0,
1090 pcp
->batch
, &pcp
->list
, migratetype
);
1091 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1094 list_del(&page
->lru
);
1097 spin_lock_irqsave(&zone
->lock
, flags
);
1098 page
= __rmqueue(zone
, order
, migratetype
);
1099 spin_unlock(&zone
->lock
);
1104 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1105 zone_statistics(preferred_zone
, zone
);
1106 local_irq_restore(flags
);
1109 VM_BUG_ON(bad_range(zone
, page
));
1110 if (prep_new_page(page
, order
, gfp_flags
))
1115 local_irq_restore(flags
);
1120 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1121 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1122 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1123 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1124 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1125 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1126 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1128 #ifdef CONFIG_FAIL_PAGE_ALLOC
1130 static struct fail_page_alloc_attr
{
1131 struct fault_attr attr
;
1133 u32 ignore_gfp_highmem
;
1134 u32 ignore_gfp_wait
;
1137 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1139 struct dentry
*ignore_gfp_highmem_file
;
1140 struct dentry
*ignore_gfp_wait_file
;
1141 struct dentry
*min_order_file
;
1143 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1145 } fail_page_alloc
= {
1146 .attr
= FAULT_ATTR_INITIALIZER
,
1147 .ignore_gfp_wait
= 1,
1148 .ignore_gfp_highmem
= 1,
1152 static int __init
setup_fail_page_alloc(char *str
)
1154 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1156 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1158 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1160 if (order
< fail_page_alloc
.min_order
)
1162 if (gfp_mask
& __GFP_NOFAIL
)
1164 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1166 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1169 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1172 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1174 static int __init
fail_page_alloc_debugfs(void)
1176 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1180 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1184 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1186 fail_page_alloc
.ignore_gfp_wait_file
=
1187 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1188 &fail_page_alloc
.ignore_gfp_wait
);
1190 fail_page_alloc
.ignore_gfp_highmem_file
=
1191 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1192 &fail_page_alloc
.ignore_gfp_highmem
);
1193 fail_page_alloc
.min_order_file
=
1194 debugfs_create_u32("min-order", mode
, dir
,
1195 &fail_page_alloc
.min_order
);
1197 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1198 !fail_page_alloc
.ignore_gfp_highmem_file
||
1199 !fail_page_alloc
.min_order_file
) {
1201 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1202 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1203 debugfs_remove(fail_page_alloc
.min_order_file
);
1204 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1210 late_initcall(fail_page_alloc_debugfs
);
1212 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1214 #else /* CONFIG_FAIL_PAGE_ALLOC */
1216 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1221 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1224 * Return 1 if free pages are above 'mark'. This takes into account the order
1225 * of the allocation.
1227 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1228 int classzone_idx
, int alloc_flags
)
1230 /* free_pages my go negative - that's OK */
1232 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1235 if (alloc_flags
& ALLOC_HIGH
)
1237 if (alloc_flags
& ALLOC_HARDER
)
1240 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1242 for (o
= 0; o
< order
; o
++) {
1243 /* At the next order, this order's pages become unavailable */
1244 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1246 /* Require fewer higher order pages to be free */
1249 if (free_pages
<= min
)
1257 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1258 * skip over zones that are not allowed by the cpuset, or that have
1259 * been recently (in last second) found to be nearly full. See further
1260 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1261 * that have to skip over a lot of full or unallowed zones.
1263 * If the zonelist cache is present in the passed in zonelist, then
1264 * returns a pointer to the allowed node mask (either the current
1265 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1267 * If the zonelist cache is not available for this zonelist, does
1268 * nothing and returns NULL.
1270 * If the fullzones BITMAP in the zonelist cache is stale (more than
1271 * a second since last zap'd) then we zap it out (clear its bits.)
1273 * We hold off even calling zlc_setup, until after we've checked the
1274 * first zone in the zonelist, on the theory that most allocations will
1275 * be satisfied from that first zone, so best to examine that zone as
1276 * quickly as we can.
1278 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1280 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1281 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1283 zlc
= zonelist
->zlcache_ptr
;
1287 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1288 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1289 zlc
->last_full_zap
= jiffies
;
1292 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1293 &cpuset_current_mems_allowed
:
1294 &node_states
[N_HIGH_MEMORY
];
1295 return allowednodes
;
1299 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1300 * if it is worth looking at further for free memory:
1301 * 1) Check that the zone isn't thought to be full (doesn't have its
1302 * bit set in the zonelist_cache fullzones BITMAP).
1303 * 2) Check that the zones node (obtained from the zonelist_cache
1304 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1305 * Return true (non-zero) if zone is worth looking at further, or
1306 * else return false (zero) if it is not.
1308 * This check -ignores- the distinction between various watermarks,
1309 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1310 * found to be full for any variation of these watermarks, it will
1311 * be considered full for up to one second by all requests, unless
1312 * we are so low on memory on all allowed nodes that we are forced
1313 * into the second scan of the zonelist.
1315 * In the second scan we ignore this zonelist cache and exactly
1316 * apply the watermarks to all zones, even it is slower to do so.
1317 * We are low on memory in the second scan, and should leave no stone
1318 * unturned looking for a free page.
1320 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1321 nodemask_t
*allowednodes
)
1323 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1324 int i
; /* index of *z in zonelist zones */
1325 int n
; /* node that zone *z is on */
1327 zlc
= zonelist
->zlcache_ptr
;
1331 i
= z
- zonelist
->_zonerefs
;
1334 /* This zone is worth trying if it is allowed but not full */
1335 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1339 * Given 'z' scanning a zonelist, set the corresponding bit in
1340 * zlc->fullzones, so that subsequent attempts to allocate a page
1341 * from that zone don't waste time re-examining it.
1343 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1345 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1346 int i
; /* index of *z in zonelist zones */
1348 zlc
= zonelist
->zlcache_ptr
;
1352 i
= z
- zonelist
->_zonerefs
;
1354 set_bit(i
, zlc
->fullzones
);
1357 #else /* CONFIG_NUMA */
1359 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1364 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1365 nodemask_t
*allowednodes
)
1370 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1373 #endif /* CONFIG_NUMA */
1376 * get_page_from_freelist goes through the zonelist trying to allocate
1379 static struct page
*
1380 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1381 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
)
1384 struct page
*page
= NULL
;
1386 struct zone
*zone
, *preferred_zone
;
1387 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1388 int zlc_active
= 0; /* set if using zonelist_cache */
1389 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1391 (void)first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
,
1393 classzone_idx
= zone_idx(preferred_zone
);
1397 * Scan zonelist, looking for a zone with enough free.
1398 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1400 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1401 high_zoneidx
, nodemask
) {
1402 if (NUMA_BUILD
&& zlc_active
&&
1403 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1405 if ((alloc_flags
& ALLOC_CPUSET
) &&
1406 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1409 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1411 if (alloc_flags
& ALLOC_WMARK_MIN
)
1412 mark
= zone
->pages_min
;
1413 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1414 mark
= zone
->pages_low
;
1416 mark
= zone
->pages_high
;
1417 if (!zone_watermark_ok(zone
, order
, mark
,
1418 classzone_idx
, alloc_flags
)) {
1419 if (!zone_reclaim_mode
||
1420 !zone_reclaim(zone
, gfp_mask
, order
))
1421 goto this_zone_full
;
1425 page
= buffered_rmqueue(preferred_zone
, zone
, order
, gfp_mask
);
1430 zlc_mark_zone_full(zonelist
, z
);
1432 if (NUMA_BUILD
&& !did_zlc_setup
) {
1433 /* we do zlc_setup after the first zone is tried */
1434 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1440 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1441 /* Disable zlc cache for second zonelist scan */
1449 * This is the 'heart' of the zoned buddy allocator.
1451 static struct page
*
1452 __alloc_pages_internal(gfp_t gfp_mask
, unsigned int order
,
1453 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1455 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1456 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1460 struct reclaim_state reclaim_state
;
1461 struct task_struct
*p
= current
;
1464 int did_some_progress
;
1466 might_sleep_if(wait
);
1468 if (should_fail_alloc_page(gfp_mask
, order
))
1472 z
= zonelist
->_zonerefs
; /* the list of zones suitable for gfp_mask */
1474 if (unlikely(!z
->zone
)) {
1476 * Happens if we have an empty zonelist as a result of
1477 * GFP_THISNODE being used on a memoryless node
1482 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1483 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1488 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1489 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1490 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1491 * using a larger set of nodes after it has established that the
1492 * allowed per node queues are empty and that nodes are
1495 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1498 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1499 wakeup_kswapd(zone
, order
);
1502 * OK, we're below the kswapd watermark and have kicked background
1503 * reclaim. Now things get more complex, so set up alloc_flags according
1504 * to how we want to proceed.
1506 * The caller may dip into page reserves a bit more if the caller
1507 * cannot run direct reclaim, or if the caller has realtime scheduling
1508 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1509 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1511 alloc_flags
= ALLOC_WMARK_MIN
;
1512 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1513 alloc_flags
|= ALLOC_HARDER
;
1514 if (gfp_mask
& __GFP_HIGH
)
1515 alloc_flags
|= ALLOC_HIGH
;
1517 alloc_flags
|= ALLOC_CPUSET
;
1520 * Go through the zonelist again. Let __GFP_HIGH and allocations
1521 * coming from realtime tasks go deeper into reserves.
1523 * This is the last chance, in general, before the goto nopage.
1524 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1525 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1527 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1528 high_zoneidx
, alloc_flags
);
1532 /* This allocation should allow future memory freeing. */
1535 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1536 && !in_interrupt()) {
1537 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1539 /* go through the zonelist yet again, ignoring mins */
1540 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1541 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
);
1544 if (gfp_mask
& __GFP_NOFAIL
) {
1545 congestion_wait(WRITE
, HZ
/50);
1552 /* Atomic allocations - we can't balance anything */
1558 /* We now go into synchronous reclaim */
1559 cpuset_memory_pressure_bump();
1560 p
->flags
|= PF_MEMALLOC
;
1561 reclaim_state
.reclaimed_slab
= 0;
1562 p
->reclaim_state
= &reclaim_state
;
1564 did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
);
1566 p
->reclaim_state
= NULL
;
1567 p
->flags
&= ~PF_MEMALLOC
;
1574 if (likely(did_some_progress
)) {
1575 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1576 zonelist
, high_zoneidx
, alloc_flags
);
1579 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1580 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1581 schedule_timeout_uninterruptible(1);
1586 * Go through the zonelist yet one more time, keep
1587 * very high watermark here, this is only to catch
1588 * a parallel oom killing, we must fail if we're still
1589 * under heavy pressure.
1591 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1592 order
, zonelist
, high_zoneidx
,
1593 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1595 clear_zonelist_oom(zonelist
, gfp_mask
);
1599 /* The OOM killer will not help higher order allocs so fail */
1600 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1601 clear_zonelist_oom(zonelist
, gfp_mask
);
1605 out_of_memory(zonelist
, gfp_mask
, order
);
1606 clear_zonelist_oom(zonelist
, gfp_mask
);
1611 * Don't let big-order allocations loop unless the caller explicitly
1612 * requests that. Wait for some write requests to complete then retry.
1614 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1615 * <= 3, but that may not be true in other implementations.
1618 if (!(gfp_mask
& __GFP_NORETRY
)) {
1619 if ((order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
1620 (gfp_mask
& __GFP_REPEAT
))
1622 if (gfp_mask
& __GFP_NOFAIL
)
1626 congestion_wait(WRITE
, HZ
/50);
1631 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1632 printk(KERN_WARNING
"%s: page allocation failure."
1633 " order:%d, mode:0x%x\n",
1634 p
->comm
, order
, gfp_mask
);
1643 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1644 struct zonelist
*zonelist
)
1646 return __alloc_pages_internal(gfp_mask
, order
, zonelist
, NULL
);
1650 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
1651 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1653 return __alloc_pages_internal(gfp_mask
, order
, zonelist
, nodemask
);
1656 EXPORT_SYMBOL(__alloc_pages
);
1659 * Common helper functions.
1661 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1664 page
= alloc_pages(gfp_mask
, order
);
1667 return (unsigned long) page_address(page
);
1670 EXPORT_SYMBOL(__get_free_pages
);
1672 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1677 * get_zeroed_page() returns a 32-bit address, which cannot represent
1680 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1682 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1684 return (unsigned long) page_address(page
);
1688 EXPORT_SYMBOL(get_zeroed_page
);
1690 void __pagevec_free(struct pagevec
*pvec
)
1692 int i
= pagevec_count(pvec
);
1695 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1698 void __free_pages(struct page
*page
, unsigned int order
)
1700 if (put_page_testzero(page
)) {
1702 free_hot_page(page
);
1704 __free_pages_ok(page
, order
);
1708 EXPORT_SYMBOL(__free_pages
);
1710 void free_pages(unsigned long addr
, unsigned int order
)
1713 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1714 __free_pages(virt_to_page((void *)addr
), order
);
1718 EXPORT_SYMBOL(free_pages
);
1720 static unsigned int nr_free_zone_pages(int offset
)
1725 /* Just pick one node, since fallback list is circular */
1726 unsigned int sum
= 0;
1728 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
1730 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
1731 unsigned long size
= zone
->present_pages
;
1732 unsigned long high
= zone
->pages_high
;
1741 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1743 unsigned int nr_free_buffer_pages(void)
1745 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1747 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1750 * Amount of free RAM allocatable within all zones
1752 unsigned int nr_free_pagecache_pages(void)
1754 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1757 static inline void show_node(struct zone
*zone
)
1760 printk("Node %d ", zone_to_nid(zone
));
1763 void si_meminfo(struct sysinfo
*val
)
1765 val
->totalram
= totalram_pages
;
1767 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1768 val
->bufferram
= nr_blockdev_pages();
1769 val
->totalhigh
= totalhigh_pages
;
1770 val
->freehigh
= nr_free_highpages();
1771 val
->mem_unit
= PAGE_SIZE
;
1774 EXPORT_SYMBOL(si_meminfo
);
1777 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1779 pg_data_t
*pgdat
= NODE_DATA(nid
);
1781 val
->totalram
= pgdat
->node_present_pages
;
1782 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1783 #ifdef CONFIG_HIGHMEM
1784 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1785 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1791 val
->mem_unit
= PAGE_SIZE
;
1795 #define K(x) ((x) << (PAGE_SHIFT-10))
1798 * Show free area list (used inside shift_scroll-lock stuff)
1799 * We also calculate the percentage fragmentation. We do this by counting the
1800 * memory on each free list with the exception of the first item on the list.
1802 void show_free_areas(void)
1807 for_each_zone(zone
) {
1808 if (!populated_zone(zone
))
1812 printk("%s per-cpu:\n", zone
->name
);
1814 for_each_online_cpu(cpu
) {
1815 struct per_cpu_pageset
*pageset
;
1817 pageset
= zone_pcp(zone
, cpu
);
1819 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1820 cpu
, pageset
->pcp
.high
,
1821 pageset
->pcp
.batch
, pageset
->pcp
.count
);
1825 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1826 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1827 global_page_state(NR_ACTIVE
),
1828 global_page_state(NR_INACTIVE
),
1829 global_page_state(NR_FILE_DIRTY
),
1830 global_page_state(NR_WRITEBACK
),
1831 global_page_state(NR_UNSTABLE_NFS
),
1832 global_page_state(NR_FREE_PAGES
),
1833 global_page_state(NR_SLAB_RECLAIMABLE
) +
1834 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1835 global_page_state(NR_FILE_MAPPED
),
1836 global_page_state(NR_PAGETABLE
),
1837 global_page_state(NR_BOUNCE
));
1839 for_each_zone(zone
) {
1842 if (!populated_zone(zone
))
1854 " pages_scanned:%lu"
1855 " all_unreclaimable? %s"
1858 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1861 K(zone
->pages_high
),
1862 K(zone_page_state(zone
, NR_ACTIVE
)),
1863 K(zone_page_state(zone
, NR_INACTIVE
)),
1864 K(zone
->present_pages
),
1865 zone
->pages_scanned
,
1866 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
1868 printk("lowmem_reserve[]:");
1869 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1870 printk(" %lu", zone
->lowmem_reserve
[i
]);
1874 for_each_zone(zone
) {
1875 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1877 if (!populated_zone(zone
))
1881 printk("%s: ", zone
->name
);
1883 spin_lock_irqsave(&zone
->lock
, flags
);
1884 for (order
= 0; order
< MAX_ORDER
; order
++) {
1885 nr
[order
] = zone
->free_area
[order
].nr_free
;
1886 total
+= nr
[order
] << order
;
1888 spin_unlock_irqrestore(&zone
->lock
, flags
);
1889 for (order
= 0; order
< MAX_ORDER
; order
++)
1890 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1891 printk("= %lukB\n", K(total
));
1894 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
1896 show_swap_cache_info();
1899 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
1901 zoneref
->zone
= zone
;
1902 zoneref
->zone_idx
= zone_idx(zone
);
1906 * Builds allocation fallback zone lists.
1908 * Add all populated zones of a node to the zonelist.
1910 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1911 int nr_zones
, enum zone_type zone_type
)
1915 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1920 zone
= pgdat
->node_zones
+ zone_type
;
1921 if (populated_zone(zone
)) {
1922 zoneref_set_zone(zone
,
1923 &zonelist
->_zonerefs
[nr_zones
++]);
1924 check_highest_zone(zone_type
);
1927 } while (zone_type
);
1934 * 0 = automatic detection of better ordering.
1935 * 1 = order by ([node] distance, -zonetype)
1936 * 2 = order by (-zonetype, [node] distance)
1938 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1939 * the same zonelist. So only NUMA can configure this param.
1941 #define ZONELIST_ORDER_DEFAULT 0
1942 #define ZONELIST_ORDER_NODE 1
1943 #define ZONELIST_ORDER_ZONE 2
1945 /* zonelist order in the kernel.
1946 * set_zonelist_order() will set this to NODE or ZONE.
1948 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1949 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1953 /* The value user specified ....changed by config */
1954 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1955 /* string for sysctl */
1956 #define NUMA_ZONELIST_ORDER_LEN 16
1957 char numa_zonelist_order
[16] = "default";
1960 * interface for configure zonelist ordering.
1961 * command line option "numa_zonelist_order"
1962 * = "[dD]efault - default, automatic configuration.
1963 * = "[nN]ode - order by node locality, then by zone within node
1964 * = "[zZ]one - order by zone, then by locality within zone
1967 static int __parse_numa_zonelist_order(char *s
)
1969 if (*s
== 'd' || *s
== 'D') {
1970 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1971 } else if (*s
== 'n' || *s
== 'N') {
1972 user_zonelist_order
= ZONELIST_ORDER_NODE
;
1973 } else if (*s
== 'z' || *s
== 'Z') {
1974 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
1977 "Ignoring invalid numa_zonelist_order value: "
1984 static __init
int setup_numa_zonelist_order(char *s
)
1987 return __parse_numa_zonelist_order(s
);
1990 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
1993 * sysctl handler for numa_zonelist_order
1995 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
1996 struct file
*file
, void __user
*buffer
, size_t *length
,
1999 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2003 strncpy(saved_string
, (char*)table
->data
,
2004 NUMA_ZONELIST_ORDER_LEN
);
2005 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2009 int oldval
= user_zonelist_order
;
2010 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2012 * bogus value. restore saved string
2014 strncpy((char*)table
->data
, saved_string
,
2015 NUMA_ZONELIST_ORDER_LEN
);
2016 user_zonelist_order
= oldval
;
2017 } else if (oldval
!= user_zonelist_order
)
2018 build_all_zonelists();
2024 #define MAX_NODE_LOAD (num_online_nodes())
2025 static int node_load
[MAX_NUMNODES
];
2028 * find_next_best_node - find the next node that should appear in a given node's fallback list
2029 * @node: node whose fallback list we're appending
2030 * @used_node_mask: nodemask_t of already used nodes
2032 * We use a number of factors to determine which is the next node that should
2033 * appear on a given node's fallback list. The node should not have appeared
2034 * already in @node's fallback list, and it should be the next closest node
2035 * according to the distance array (which contains arbitrary distance values
2036 * from each node to each node in the system), and should also prefer nodes
2037 * with no CPUs, since presumably they'll have very little allocation pressure
2038 * on them otherwise.
2039 * It returns -1 if no node is found.
2041 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2044 int min_val
= INT_MAX
;
2046 node_to_cpumask_ptr(tmp
, 0);
2048 /* Use the local node if we haven't already */
2049 if (!node_isset(node
, *used_node_mask
)) {
2050 node_set(node
, *used_node_mask
);
2054 for_each_node_state(n
, N_HIGH_MEMORY
) {
2056 /* Don't want a node to appear more than once */
2057 if (node_isset(n
, *used_node_mask
))
2060 /* Use the distance array to find the distance */
2061 val
= node_distance(node
, n
);
2063 /* Penalize nodes under us ("prefer the next node") */
2066 /* Give preference to headless and unused nodes */
2067 node_to_cpumask_ptr_next(tmp
, n
);
2068 if (!cpus_empty(*tmp
))
2069 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2071 /* Slight preference for less loaded node */
2072 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2073 val
+= node_load
[n
];
2075 if (val
< min_val
) {
2082 node_set(best_node
, *used_node_mask
);
2089 * Build zonelists ordered by node and zones within node.
2090 * This results in maximum locality--normal zone overflows into local
2091 * DMA zone, if any--but risks exhausting DMA zone.
2093 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2096 struct zonelist
*zonelist
;
2098 zonelist
= &pgdat
->node_zonelists
[0];
2099 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2101 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2103 zonelist
->_zonerefs
[j
].zone
= NULL
;
2104 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2108 * Build gfp_thisnode zonelists
2110 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2113 struct zonelist
*zonelist
;
2115 zonelist
= &pgdat
->node_zonelists
[1];
2116 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2117 zonelist
->_zonerefs
[j
].zone
= NULL
;
2118 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2122 * Build zonelists ordered by zone and nodes within zones.
2123 * This results in conserving DMA zone[s] until all Normal memory is
2124 * exhausted, but results in overflowing to remote node while memory
2125 * may still exist in local DMA zone.
2127 static int node_order
[MAX_NUMNODES
];
2129 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2132 int zone_type
; /* needs to be signed */
2134 struct zonelist
*zonelist
;
2136 zonelist
= &pgdat
->node_zonelists
[0];
2138 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2139 for (j
= 0; j
< nr_nodes
; j
++) {
2140 node
= node_order
[j
];
2141 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2142 if (populated_zone(z
)) {
2144 &zonelist
->_zonerefs
[pos
++]);
2145 check_highest_zone(zone_type
);
2149 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2150 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2153 static int default_zonelist_order(void)
2156 unsigned long low_kmem_size
,total_size
;
2160 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2161 * If they are really small and used heavily, the system can fall
2162 * into OOM very easily.
2163 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2165 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2168 for_each_online_node(nid
) {
2169 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2170 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2171 if (populated_zone(z
)) {
2172 if (zone_type
< ZONE_NORMAL
)
2173 low_kmem_size
+= z
->present_pages
;
2174 total_size
+= z
->present_pages
;
2178 if (!low_kmem_size
|| /* there are no DMA area. */
2179 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2180 return ZONELIST_ORDER_NODE
;
2182 * look into each node's config.
2183 * If there is a node whose DMA/DMA32 memory is very big area on
2184 * local memory, NODE_ORDER may be suitable.
2186 average_size
= total_size
/
2187 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2188 for_each_online_node(nid
) {
2191 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2192 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2193 if (populated_zone(z
)) {
2194 if (zone_type
< ZONE_NORMAL
)
2195 low_kmem_size
+= z
->present_pages
;
2196 total_size
+= z
->present_pages
;
2199 if (low_kmem_size
&&
2200 total_size
> average_size
&& /* ignore small node */
2201 low_kmem_size
> total_size
* 70/100)
2202 return ZONELIST_ORDER_NODE
;
2204 return ZONELIST_ORDER_ZONE
;
2207 static void set_zonelist_order(void)
2209 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2210 current_zonelist_order
= default_zonelist_order();
2212 current_zonelist_order
= user_zonelist_order
;
2215 static void build_zonelists(pg_data_t
*pgdat
)
2219 nodemask_t used_mask
;
2220 int local_node
, prev_node
;
2221 struct zonelist
*zonelist
;
2222 int order
= current_zonelist_order
;
2224 /* initialize zonelists */
2225 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2226 zonelist
= pgdat
->node_zonelists
+ i
;
2227 zonelist
->_zonerefs
[0].zone
= NULL
;
2228 zonelist
->_zonerefs
[0].zone_idx
= 0;
2231 /* NUMA-aware ordering of nodes */
2232 local_node
= pgdat
->node_id
;
2233 load
= num_online_nodes();
2234 prev_node
= local_node
;
2235 nodes_clear(used_mask
);
2237 memset(node_load
, 0, sizeof(node_load
));
2238 memset(node_order
, 0, sizeof(node_order
));
2241 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2242 int distance
= node_distance(local_node
, node
);
2245 * If another node is sufficiently far away then it is better
2246 * to reclaim pages in a zone before going off node.
2248 if (distance
> RECLAIM_DISTANCE
)
2249 zone_reclaim_mode
= 1;
2252 * We don't want to pressure a particular node.
2253 * So adding penalty to the first node in same
2254 * distance group to make it round-robin.
2256 if (distance
!= node_distance(local_node
, prev_node
))
2257 node_load
[node
] = load
;
2261 if (order
== ZONELIST_ORDER_NODE
)
2262 build_zonelists_in_node_order(pgdat
, node
);
2264 node_order
[j
++] = node
; /* remember order */
2267 if (order
== ZONELIST_ORDER_ZONE
) {
2268 /* calculate node order -- i.e., DMA last! */
2269 build_zonelists_in_zone_order(pgdat
, j
);
2272 build_thisnode_zonelists(pgdat
);
2275 /* Construct the zonelist performance cache - see further mmzone.h */
2276 static void build_zonelist_cache(pg_data_t
*pgdat
)
2278 struct zonelist
*zonelist
;
2279 struct zonelist_cache
*zlc
;
2282 zonelist
= &pgdat
->node_zonelists
[0];
2283 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2284 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2285 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2286 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2290 #else /* CONFIG_NUMA */
2292 static void set_zonelist_order(void)
2294 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2297 static void build_zonelists(pg_data_t
*pgdat
)
2299 int node
, local_node
;
2301 struct zonelist
*zonelist
;
2303 local_node
= pgdat
->node_id
;
2305 zonelist
= &pgdat
->node_zonelists
[0];
2306 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2309 * Now we build the zonelist so that it contains the zones
2310 * of all the other nodes.
2311 * We don't want to pressure a particular node, so when
2312 * building the zones for node N, we make sure that the
2313 * zones coming right after the local ones are those from
2314 * node N+1 (modulo N)
2316 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2317 if (!node_online(node
))
2319 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2322 for (node
= 0; node
< local_node
; node
++) {
2323 if (!node_online(node
))
2325 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2329 zonelist
->_zonerefs
[j
].zone
= NULL
;
2330 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2333 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2334 static void build_zonelist_cache(pg_data_t
*pgdat
)
2336 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2337 pgdat
->node_zonelists
[1].zlcache_ptr
= NULL
;
2340 #endif /* CONFIG_NUMA */
2342 /* return values int ....just for stop_machine_run() */
2343 static int __build_all_zonelists(void *dummy
)
2347 for_each_online_node(nid
) {
2348 pg_data_t
*pgdat
= NODE_DATA(nid
);
2350 build_zonelists(pgdat
);
2351 build_zonelist_cache(pgdat
);
2356 void build_all_zonelists(void)
2358 set_zonelist_order();
2360 if (system_state
== SYSTEM_BOOTING
) {
2361 __build_all_zonelists(NULL
);
2362 cpuset_init_current_mems_allowed();
2364 /* we have to stop all cpus to guarantee there is no user
2366 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
2367 /* cpuset refresh routine should be here */
2369 vm_total_pages
= nr_free_pagecache_pages();
2371 * Disable grouping by mobility if the number of pages in the
2372 * system is too low to allow the mechanism to work. It would be
2373 * more accurate, but expensive to check per-zone. This check is
2374 * made on memory-hotadd so a system can start with mobility
2375 * disabled and enable it later
2377 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2378 page_group_by_mobility_disabled
= 1;
2380 page_group_by_mobility_disabled
= 0;
2382 printk("Built %i zonelists in %s order, mobility grouping %s. "
2383 "Total pages: %ld\n",
2385 zonelist_order_name
[current_zonelist_order
],
2386 page_group_by_mobility_disabled
? "off" : "on",
2389 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2394 * Helper functions to size the waitqueue hash table.
2395 * Essentially these want to choose hash table sizes sufficiently
2396 * large so that collisions trying to wait on pages are rare.
2397 * But in fact, the number of active page waitqueues on typical
2398 * systems is ridiculously low, less than 200. So this is even
2399 * conservative, even though it seems large.
2401 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2402 * waitqueues, i.e. the size of the waitq table given the number of pages.
2404 #define PAGES_PER_WAITQUEUE 256
2406 #ifndef CONFIG_MEMORY_HOTPLUG
2407 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2409 unsigned long size
= 1;
2411 pages
/= PAGES_PER_WAITQUEUE
;
2413 while (size
< pages
)
2417 * Once we have dozens or even hundreds of threads sleeping
2418 * on IO we've got bigger problems than wait queue collision.
2419 * Limit the size of the wait table to a reasonable size.
2421 size
= min(size
, 4096UL);
2423 return max(size
, 4UL);
2427 * A zone's size might be changed by hot-add, so it is not possible to determine
2428 * a suitable size for its wait_table. So we use the maximum size now.
2430 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2432 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2433 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2434 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2436 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2437 * or more by the traditional way. (See above). It equals:
2439 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2440 * ia64(16K page size) : = ( 8G + 4M)byte.
2441 * powerpc (64K page size) : = (32G +16M)byte.
2443 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2450 * This is an integer logarithm so that shifts can be used later
2451 * to extract the more random high bits from the multiplicative
2452 * hash function before the remainder is taken.
2454 static inline unsigned long wait_table_bits(unsigned long size
)
2459 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2462 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2463 * of blocks reserved is based on zone->pages_min. The memory within the
2464 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2465 * higher will lead to a bigger reserve which will get freed as contiguous
2466 * blocks as reclaim kicks in
2468 static void setup_zone_migrate_reserve(struct zone
*zone
)
2470 unsigned long start_pfn
, pfn
, end_pfn
;
2472 unsigned long reserve
, block_migratetype
;
2474 /* Get the start pfn, end pfn and the number of blocks to reserve */
2475 start_pfn
= zone
->zone_start_pfn
;
2476 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2477 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2480 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2481 if (!pfn_valid(pfn
))
2483 page
= pfn_to_page(pfn
);
2485 /* Blocks with reserved pages will never free, skip them. */
2486 if (PageReserved(page
))
2489 block_migratetype
= get_pageblock_migratetype(page
);
2491 /* If this block is reserved, account for it */
2492 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2497 /* Suitable for reserving if this block is movable */
2498 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2499 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2500 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2506 * If the reserve is met and this is a previous reserved block,
2509 if (block_migratetype
== MIGRATE_RESERVE
) {
2510 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2511 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2517 * Initially all pages are reserved - free ones are freed
2518 * up by free_all_bootmem() once the early boot process is
2519 * done. Non-atomic initialization, single-pass.
2521 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2522 unsigned long start_pfn
, enum memmap_context context
)
2525 unsigned long end_pfn
= start_pfn
+ size
;
2528 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2530 * There can be holes in boot-time mem_map[]s
2531 * handed to this function. They do not
2532 * exist on hotplugged memory.
2534 if (context
== MEMMAP_EARLY
) {
2535 if (!early_pfn_valid(pfn
))
2537 if (!early_pfn_in_nid(pfn
, nid
))
2540 page
= pfn_to_page(pfn
);
2541 set_page_links(page
, zone
, nid
, pfn
);
2542 init_page_count(page
);
2543 reset_page_mapcount(page
);
2544 SetPageReserved(page
);
2547 * Mark the block movable so that blocks are reserved for
2548 * movable at startup. This will force kernel allocations
2549 * to reserve their blocks rather than leaking throughout
2550 * the address space during boot when many long-lived
2551 * kernel allocations are made. Later some blocks near
2552 * the start are marked MIGRATE_RESERVE by
2553 * setup_zone_migrate_reserve()
2555 if ((pfn
& (pageblock_nr_pages
-1)))
2556 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2558 INIT_LIST_HEAD(&page
->lru
);
2559 #ifdef WANT_PAGE_VIRTUAL
2560 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2561 if (!is_highmem_idx(zone
))
2562 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2567 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2570 for_each_migratetype_order(order
, t
) {
2571 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2572 zone
->free_area
[order
].nr_free
= 0;
2576 #ifndef __HAVE_ARCH_MEMMAP_INIT
2577 #define memmap_init(size, nid, zone, start_pfn) \
2578 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2581 static int zone_batchsize(struct zone
*zone
)
2586 * The per-cpu-pages pools are set to around 1000th of the
2587 * size of the zone. But no more than 1/2 of a meg.
2589 * OK, so we don't know how big the cache is. So guess.
2591 batch
= zone
->present_pages
/ 1024;
2592 if (batch
* PAGE_SIZE
> 512 * 1024)
2593 batch
= (512 * 1024) / PAGE_SIZE
;
2594 batch
/= 4; /* We effectively *= 4 below */
2599 * Clamp the batch to a 2^n - 1 value. Having a power
2600 * of 2 value was found to be more likely to have
2601 * suboptimal cache aliasing properties in some cases.
2603 * For example if 2 tasks are alternately allocating
2604 * batches of pages, one task can end up with a lot
2605 * of pages of one half of the possible page colors
2606 * and the other with pages of the other colors.
2608 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2613 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2615 struct per_cpu_pages
*pcp
;
2617 memset(p
, 0, sizeof(*p
));
2621 pcp
->high
= 6 * batch
;
2622 pcp
->batch
= max(1UL, 1 * batch
);
2623 INIT_LIST_HEAD(&pcp
->list
);
2627 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2628 * to the value high for the pageset p.
2631 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2634 struct per_cpu_pages
*pcp
;
2638 pcp
->batch
= max(1UL, high
/4);
2639 if ((high
/4) > (PAGE_SHIFT
* 8))
2640 pcp
->batch
= PAGE_SHIFT
* 8;
2646 * Boot pageset table. One per cpu which is going to be used for all
2647 * zones and all nodes. The parameters will be set in such a way
2648 * that an item put on a list will immediately be handed over to
2649 * the buddy list. This is safe since pageset manipulation is done
2650 * with interrupts disabled.
2652 * Some NUMA counter updates may also be caught by the boot pagesets.
2654 * The boot_pagesets must be kept even after bootup is complete for
2655 * unused processors and/or zones. They do play a role for bootstrapping
2656 * hotplugged processors.
2658 * zoneinfo_show() and maybe other functions do
2659 * not check if the processor is online before following the pageset pointer.
2660 * Other parts of the kernel may not check if the zone is available.
2662 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2665 * Dynamically allocate memory for the
2666 * per cpu pageset array in struct zone.
2668 static int __cpuinit
process_zones(int cpu
)
2670 struct zone
*zone
, *dzone
;
2671 int node
= cpu_to_node(cpu
);
2673 node_set_state(node
, N_CPU
); /* this node has a cpu */
2675 for_each_zone(zone
) {
2677 if (!populated_zone(zone
))
2680 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2682 if (!zone_pcp(zone
, cpu
))
2685 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2687 if (percpu_pagelist_fraction
)
2688 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2689 (zone
->present_pages
/ percpu_pagelist_fraction
));
2694 for_each_zone(dzone
) {
2695 if (!populated_zone(dzone
))
2699 kfree(zone_pcp(dzone
, cpu
));
2700 zone_pcp(dzone
, cpu
) = NULL
;
2705 static inline void free_zone_pagesets(int cpu
)
2709 for_each_zone(zone
) {
2710 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2712 /* Free per_cpu_pageset if it is slab allocated */
2713 if (pset
!= &boot_pageset
[cpu
])
2715 zone_pcp(zone
, cpu
) = NULL
;
2719 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2720 unsigned long action
,
2723 int cpu
= (long)hcpu
;
2724 int ret
= NOTIFY_OK
;
2727 case CPU_UP_PREPARE
:
2728 case CPU_UP_PREPARE_FROZEN
:
2729 if (process_zones(cpu
))
2732 case CPU_UP_CANCELED
:
2733 case CPU_UP_CANCELED_FROZEN
:
2735 case CPU_DEAD_FROZEN
:
2736 free_zone_pagesets(cpu
);
2744 static struct notifier_block __cpuinitdata pageset_notifier
=
2745 { &pageset_cpuup_callback
, NULL
, 0 };
2747 void __init
setup_per_cpu_pageset(void)
2751 /* Initialize per_cpu_pageset for cpu 0.
2752 * A cpuup callback will do this for every cpu
2753 * as it comes online
2755 err
= process_zones(smp_processor_id());
2757 register_cpu_notifier(&pageset_notifier
);
2762 static noinline __init_refok
2763 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2766 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2770 * The per-page waitqueue mechanism uses hashed waitqueues
2773 zone
->wait_table_hash_nr_entries
=
2774 wait_table_hash_nr_entries(zone_size_pages
);
2775 zone
->wait_table_bits
=
2776 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2777 alloc_size
= zone
->wait_table_hash_nr_entries
2778 * sizeof(wait_queue_head_t
);
2780 if (system_state
== SYSTEM_BOOTING
) {
2781 zone
->wait_table
= (wait_queue_head_t
*)
2782 alloc_bootmem_node(pgdat
, alloc_size
);
2785 * This case means that a zone whose size was 0 gets new memory
2786 * via memory hot-add.
2787 * But it may be the case that a new node was hot-added. In
2788 * this case vmalloc() will not be able to use this new node's
2789 * memory - this wait_table must be initialized to use this new
2790 * node itself as well.
2791 * To use this new node's memory, further consideration will be
2794 zone
->wait_table
= vmalloc(alloc_size
);
2796 if (!zone
->wait_table
)
2799 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2800 init_waitqueue_head(zone
->wait_table
+ i
);
2805 static __meminit
void zone_pcp_init(struct zone
*zone
)
2808 unsigned long batch
= zone_batchsize(zone
);
2810 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2812 /* Early boot. Slab allocator not functional yet */
2813 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2814 setup_pageset(&boot_pageset
[cpu
],0);
2816 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2819 if (zone
->present_pages
)
2820 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2821 zone
->name
, zone
->present_pages
, batch
);
2824 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2825 unsigned long zone_start_pfn
,
2827 enum memmap_context context
)
2829 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2831 ret
= zone_wait_table_init(zone
, size
);
2834 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2836 zone
->zone_start_pfn
= zone_start_pfn
;
2838 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2840 zone_init_free_lists(zone
);
2845 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2847 * Basic iterator support. Return the first range of PFNs for a node
2848 * Note: nid == MAX_NUMNODES returns first region regardless of node
2850 static int __meminit
first_active_region_index_in_nid(int nid
)
2854 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2855 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2862 * Basic iterator support. Return the next active range of PFNs for a node
2863 * Note: nid == MAX_NUMNODES returns next region regardless of node
2865 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2867 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2868 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2874 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2876 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2877 * Architectures may implement their own version but if add_active_range()
2878 * was used and there are no special requirements, this is a convenient
2881 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2885 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2886 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2887 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2889 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2890 return early_node_map
[i
].nid
;
2895 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2897 /* Basic iterator support to walk early_node_map[] */
2898 #define for_each_active_range_index_in_nid(i, nid) \
2899 for (i = first_active_region_index_in_nid(nid); i != -1; \
2900 i = next_active_region_index_in_nid(i, nid))
2903 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2904 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2905 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2907 * If an architecture guarantees that all ranges registered with
2908 * add_active_ranges() contain no holes and may be freed, this
2909 * this function may be used instead of calling free_bootmem() manually.
2911 void __init
free_bootmem_with_active_regions(int nid
,
2912 unsigned long max_low_pfn
)
2916 for_each_active_range_index_in_nid(i
, nid
) {
2917 unsigned long size_pages
= 0;
2918 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2920 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2923 if (end_pfn
> max_low_pfn
)
2924 end_pfn
= max_low_pfn
;
2926 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2927 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2928 PFN_PHYS(early_node_map
[i
].start_pfn
),
2929 size_pages
<< PAGE_SHIFT
);
2934 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2935 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2937 * If an architecture guarantees that all ranges registered with
2938 * add_active_ranges() contain no holes and may be freed, this
2939 * function may be used instead of calling memory_present() manually.
2941 void __init
sparse_memory_present_with_active_regions(int nid
)
2945 for_each_active_range_index_in_nid(i
, nid
)
2946 memory_present(early_node_map
[i
].nid
,
2947 early_node_map
[i
].start_pfn
,
2948 early_node_map
[i
].end_pfn
);
2952 * push_node_boundaries - Push node boundaries to at least the requested boundary
2953 * @nid: The nid of the node to push the boundary for
2954 * @start_pfn: The start pfn of the node
2955 * @end_pfn: The end pfn of the node
2957 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2958 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2959 * be hotplugged even though no physical memory exists. This function allows
2960 * an arch to push out the node boundaries so mem_map is allocated that can
2963 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2964 void __init
push_node_boundaries(unsigned int nid
,
2965 unsigned long start_pfn
, unsigned long end_pfn
)
2967 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2968 nid
, start_pfn
, end_pfn
);
2970 /* Initialise the boundary for this node if necessary */
2971 if (node_boundary_end_pfn
[nid
] == 0)
2972 node_boundary_start_pfn
[nid
] = -1UL;
2974 /* Update the boundaries */
2975 if (node_boundary_start_pfn
[nid
] > start_pfn
)
2976 node_boundary_start_pfn
[nid
] = start_pfn
;
2977 if (node_boundary_end_pfn
[nid
] < end_pfn
)
2978 node_boundary_end_pfn
[nid
] = end_pfn
;
2981 /* If necessary, push the node boundary out for reserve hotadd */
2982 static void __meminit
account_node_boundary(unsigned int nid
,
2983 unsigned long *start_pfn
, unsigned long *end_pfn
)
2985 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
2986 nid
, *start_pfn
, *end_pfn
);
2988 /* Return if boundary information has not been provided */
2989 if (node_boundary_end_pfn
[nid
] == 0)
2992 /* Check the boundaries and update if necessary */
2993 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
2994 *start_pfn
= node_boundary_start_pfn
[nid
];
2995 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
2996 *end_pfn
= node_boundary_end_pfn
[nid
];
2999 void __init
push_node_boundaries(unsigned int nid
,
3000 unsigned long start_pfn
, unsigned long end_pfn
) {}
3002 static void __meminit
account_node_boundary(unsigned int nid
,
3003 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
3008 * get_pfn_range_for_nid - Return the start and end page frames for a node
3009 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3010 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3011 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3013 * It returns the start and end page frame of a node based on information
3014 * provided by an arch calling add_active_range(). If called for a node
3015 * with no available memory, a warning is printed and the start and end
3018 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3019 unsigned long *start_pfn
, unsigned long *end_pfn
)
3025 for_each_active_range_index_in_nid(i
, nid
) {
3026 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3027 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3030 if (*start_pfn
== -1UL)
3033 /* Push the node boundaries out if requested */
3034 account_node_boundary(nid
, start_pfn
, end_pfn
);
3038 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3039 * assumption is made that zones within a node are ordered in monotonic
3040 * increasing memory addresses so that the "highest" populated zone is used
3042 void __init
find_usable_zone_for_movable(void)
3045 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3046 if (zone_index
== ZONE_MOVABLE
)
3049 if (arch_zone_highest_possible_pfn
[zone_index
] >
3050 arch_zone_lowest_possible_pfn
[zone_index
])
3054 VM_BUG_ON(zone_index
== -1);
3055 movable_zone
= zone_index
;
3059 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3060 * because it is sized independant of architecture. Unlike the other zones,
3061 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3062 * in each node depending on the size of each node and how evenly kernelcore
3063 * is distributed. This helper function adjusts the zone ranges
3064 * provided by the architecture for a given node by using the end of the
3065 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3066 * zones within a node are in order of monotonic increases memory addresses
3068 void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3069 unsigned long zone_type
,
3070 unsigned long node_start_pfn
,
3071 unsigned long node_end_pfn
,
3072 unsigned long *zone_start_pfn
,
3073 unsigned long *zone_end_pfn
)
3075 /* Only adjust if ZONE_MOVABLE is on this node */
3076 if (zone_movable_pfn
[nid
]) {
3077 /* Size ZONE_MOVABLE */
3078 if (zone_type
== ZONE_MOVABLE
) {
3079 *zone_start_pfn
= zone_movable_pfn
[nid
];
3080 *zone_end_pfn
= min(node_end_pfn
,
3081 arch_zone_highest_possible_pfn
[movable_zone
]);
3083 /* Adjust for ZONE_MOVABLE starting within this range */
3084 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3085 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3086 *zone_end_pfn
= zone_movable_pfn
[nid
];
3088 /* Check if this whole range is within ZONE_MOVABLE */
3089 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3090 *zone_start_pfn
= *zone_end_pfn
;
3095 * Return the number of pages a zone spans in a node, including holes
3096 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3098 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3099 unsigned long zone_type
,
3100 unsigned long *ignored
)
3102 unsigned long node_start_pfn
, node_end_pfn
;
3103 unsigned long zone_start_pfn
, zone_end_pfn
;
3105 /* Get the start and end of the node and zone */
3106 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3107 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3108 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3109 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3110 node_start_pfn
, node_end_pfn
,
3111 &zone_start_pfn
, &zone_end_pfn
);
3113 /* Check that this node has pages within the zone's required range */
3114 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3117 /* Move the zone boundaries inside the node if necessary */
3118 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3119 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3121 /* Return the spanned pages */
3122 return zone_end_pfn
- zone_start_pfn
;
3126 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3127 * then all holes in the requested range will be accounted for.
3129 unsigned long __meminit
__absent_pages_in_range(int nid
,
3130 unsigned long range_start_pfn
,
3131 unsigned long range_end_pfn
)
3134 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3135 unsigned long start_pfn
;
3137 /* Find the end_pfn of the first active range of pfns in the node */
3138 i
= first_active_region_index_in_nid(nid
);
3142 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3144 /* Account for ranges before physical memory on this node */
3145 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3146 hole_pages
= prev_end_pfn
- range_start_pfn
;
3148 /* Find all holes for the zone within the node */
3149 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3151 /* No need to continue if prev_end_pfn is outside the zone */
3152 if (prev_end_pfn
>= range_end_pfn
)
3155 /* Make sure the end of the zone is not within the hole */
3156 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3157 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3159 /* Update the hole size cound and move on */
3160 if (start_pfn
> range_start_pfn
) {
3161 BUG_ON(prev_end_pfn
> start_pfn
);
3162 hole_pages
+= start_pfn
- prev_end_pfn
;
3164 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3167 /* Account for ranges past physical memory on this node */
3168 if (range_end_pfn
> prev_end_pfn
)
3169 hole_pages
+= range_end_pfn
-
3170 max(range_start_pfn
, prev_end_pfn
);
3176 * absent_pages_in_range - Return number of page frames in holes within a range
3177 * @start_pfn: The start PFN to start searching for holes
3178 * @end_pfn: The end PFN to stop searching for holes
3180 * It returns the number of pages frames in memory holes within a range.
3182 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3183 unsigned long end_pfn
)
3185 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3188 /* Return the number of page frames in holes in a zone on a node */
3189 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3190 unsigned long zone_type
,
3191 unsigned long *ignored
)
3193 unsigned long node_start_pfn
, node_end_pfn
;
3194 unsigned long zone_start_pfn
, zone_end_pfn
;
3196 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3197 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3199 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3202 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3203 node_start_pfn
, node_end_pfn
,
3204 &zone_start_pfn
, &zone_end_pfn
);
3205 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3209 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3210 unsigned long zone_type
,
3211 unsigned long *zones_size
)
3213 return zones_size
[zone_type
];
3216 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3217 unsigned long zone_type
,
3218 unsigned long *zholes_size
)
3223 return zholes_size
[zone_type
];
3228 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3229 unsigned long *zones_size
, unsigned long *zholes_size
)
3231 unsigned long realtotalpages
, totalpages
= 0;
3234 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3235 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3237 pgdat
->node_spanned_pages
= totalpages
;
3239 realtotalpages
= totalpages
;
3240 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3242 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3244 pgdat
->node_present_pages
= realtotalpages
;
3245 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3249 #ifndef CONFIG_SPARSEMEM
3251 * Calculate the size of the zone->blockflags rounded to an unsigned long
3252 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3253 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3254 * round what is now in bits to nearest long in bits, then return it in
3257 static unsigned long __init
usemap_size(unsigned long zonesize
)
3259 unsigned long usemapsize
;
3261 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3262 usemapsize
= usemapsize
>> pageblock_order
;
3263 usemapsize
*= NR_PAGEBLOCK_BITS
;
3264 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3266 return usemapsize
/ 8;
3269 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3270 struct zone
*zone
, unsigned long zonesize
)
3272 unsigned long usemapsize
= usemap_size(zonesize
);
3273 zone
->pageblock_flags
= NULL
;
3275 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3276 memset(zone
->pageblock_flags
, 0, usemapsize
);
3280 static void inline setup_usemap(struct pglist_data
*pgdat
,
3281 struct zone
*zone
, unsigned long zonesize
) {}
3282 #endif /* CONFIG_SPARSEMEM */
3284 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3286 /* Return a sensible default order for the pageblock size. */
3287 static inline int pageblock_default_order(void)
3289 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3290 return HUGETLB_PAGE_ORDER
;
3295 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3296 static inline void __init
set_pageblock_order(unsigned int order
)
3298 /* Check that pageblock_nr_pages has not already been setup */
3299 if (pageblock_order
)
3303 * Assume the largest contiguous order of interest is a huge page.
3304 * This value may be variable depending on boot parameters on IA64
3306 pageblock_order
= order
;
3308 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3311 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3312 * and pageblock_default_order() are unused as pageblock_order is set
3313 * at compile-time. See include/linux/pageblock-flags.h for the values of
3314 * pageblock_order based on the kernel config
3316 static inline int pageblock_default_order(unsigned int order
)
3320 #define set_pageblock_order(x) do {} while (0)
3322 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3325 * Set up the zone data structures:
3326 * - mark all pages reserved
3327 * - mark all memory queues empty
3328 * - clear the memory bitmaps
3330 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3331 unsigned long *zones_size
, unsigned long *zholes_size
)
3334 int nid
= pgdat
->node_id
;
3335 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3338 pgdat_resize_init(pgdat
);
3339 pgdat
->nr_zones
= 0;
3340 init_waitqueue_head(&pgdat
->kswapd_wait
);
3341 pgdat
->kswapd_max_order
= 0;
3343 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3344 struct zone
*zone
= pgdat
->node_zones
+ j
;
3345 unsigned long size
, realsize
, memmap_pages
;
3347 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3348 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3352 * Adjust realsize so that it accounts for how much memory
3353 * is used by this zone for memmap. This affects the watermark
3354 * and per-cpu initialisations
3356 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3357 if (realsize
>= memmap_pages
) {
3358 realsize
-= memmap_pages
;
3360 " %s zone: %lu pages used for memmap\n",
3361 zone_names
[j
], memmap_pages
);
3364 " %s zone: %lu pages exceeds realsize %lu\n",
3365 zone_names
[j
], memmap_pages
, realsize
);
3367 /* Account for reserved pages */
3368 if (j
== 0 && realsize
> dma_reserve
) {
3369 realsize
-= dma_reserve
;
3370 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3371 zone_names
[0], dma_reserve
);
3374 if (!is_highmem_idx(j
))
3375 nr_kernel_pages
+= realsize
;
3376 nr_all_pages
+= realsize
;
3378 zone
->spanned_pages
= size
;
3379 zone
->present_pages
= realsize
;
3382 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3384 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3386 zone
->name
= zone_names
[j
];
3387 spin_lock_init(&zone
->lock
);
3388 spin_lock_init(&zone
->lru_lock
);
3389 zone_seqlock_init(zone
);
3390 zone
->zone_pgdat
= pgdat
;
3392 zone
->prev_priority
= DEF_PRIORITY
;
3394 zone_pcp_init(zone
);
3395 INIT_LIST_HEAD(&zone
->active_list
);
3396 INIT_LIST_HEAD(&zone
->inactive_list
);
3397 zone
->nr_scan_active
= 0;
3398 zone
->nr_scan_inactive
= 0;
3399 zap_zone_vm_stats(zone
);
3404 set_pageblock_order(pageblock_default_order());
3405 setup_usemap(pgdat
, zone
, size
);
3406 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3407 size
, MEMMAP_EARLY
);
3409 zone_start_pfn
+= size
;
3413 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3415 /* Skip empty nodes */
3416 if (!pgdat
->node_spanned_pages
)
3419 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3420 /* ia64 gets its own node_mem_map, before this, without bootmem */
3421 if (!pgdat
->node_mem_map
) {
3422 unsigned long size
, start
, end
;
3426 * The zone's endpoints aren't required to be MAX_ORDER
3427 * aligned but the node_mem_map endpoints must be in order
3428 * for the buddy allocator to function correctly.
3430 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3431 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3432 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3433 size
= (end
- start
) * sizeof(struct page
);
3434 map
= alloc_remap(pgdat
->node_id
, size
);
3436 map
= alloc_bootmem_node(pgdat
, size
);
3437 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3439 #ifndef CONFIG_NEED_MULTIPLE_NODES
3441 * With no DISCONTIG, the global mem_map is just set as node 0's
3443 if (pgdat
== NODE_DATA(0)) {
3444 mem_map
= NODE_DATA(0)->node_mem_map
;
3445 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3446 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3447 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3448 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3451 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3454 void __paginginit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
3455 unsigned long *zones_size
, unsigned long node_start_pfn
,
3456 unsigned long *zholes_size
)
3458 pgdat
->node_id
= nid
;
3459 pgdat
->node_start_pfn
= node_start_pfn
;
3460 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3462 alloc_node_mem_map(pgdat
);
3464 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3467 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3469 #if MAX_NUMNODES > 1
3471 * Figure out the number of possible node ids.
3473 static void __init
setup_nr_node_ids(void)
3476 unsigned int highest
= 0;
3478 for_each_node_mask(node
, node_possible_map
)
3480 nr_node_ids
= highest
+ 1;
3483 static inline void setup_nr_node_ids(void)
3489 * add_active_range - Register a range of PFNs backed by physical memory
3490 * @nid: The node ID the range resides on
3491 * @start_pfn: The start PFN of the available physical memory
3492 * @end_pfn: The end PFN of the available physical memory
3494 * These ranges are stored in an early_node_map[] and later used by
3495 * free_area_init_nodes() to calculate zone sizes and holes. If the
3496 * range spans a memory hole, it is up to the architecture to ensure
3497 * the memory is not freed by the bootmem allocator. If possible
3498 * the range being registered will be merged with existing ranges.
3500 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3501 unsigned long end_pfn
)
3505 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
3506 "%d entries of %d used\n",
3507 nid
, start_pfn
, end_pfn
,
3508 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3510 /* Merge with existing active regions if possible */
3511 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3512 if (early_node_map
[i
].nid
!= nid
)
3515 /* Skip if an existing region covers this new one */
3516 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3517 end_pfn
<= early_node_map
[i
].end_pfn
)
3520 /* Merge forward if suitable */
3521 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3522 end_pfn
> early_node_map
[i
].end_pfn
) {
3523 early_node_map
[i
].end_pfn
= end_pfn
;
3527 /* Merge backward if suitable */
3528 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3529 end_pfn
>= early_node_map
[i
].start_pfn
) {
3530 early_node_map
[i
].start_pfn
= start_pfn
;
3535 /* Check that early_node_map is large enough */
3536 if (i
>= MAX_ACTIVE_REGIONS
) {
3537 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3538 MAX_ACTIVE_REGIONS
);
3542 early_node_map
[i
].nid
= nid
;
3543 early_node_map
[i
].start_pfn
= start_pfn
;
3544 early_node_map
[i
].end_pfn
= end_pfn
;
3545 nr_nodemap_entries
= i
+ 1;
3549 * shrink_active_range - Shrink an existing registered range of PFNs
3550 * @nid: The node id the range is on that should be shrunk
3551 * @old_end_pfn: The old end PFN of the range
3552 * @new_end_pfn: The new PFN of the range
3554 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3555 * The map is kept at the end physical page range that has already been
3556 * registered with add_active_range(). This function allows an arch to shrink
3557 * an existing registered range.
3559 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
3560 unsigned long new_end_pfn
)
3564 /* Find the old active region end and shrink */
3565 for_each_active_range_index_in_nid(i
, nid
)
3566 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
3567 early_node_map
[i
].end_pfn
= new_end_pfn
;
3573 * remove_all_active_ranges - Remove all currently registered regions
3575 * During discovery, it may be found that a table like SRAT is invalid
3576 * and an alternative discovery method must be used. This function removes
3577 * all currently registered regions.
3579 void __init
remove_all_active_ranges(void)
3581 memset(early_node_map
, 0, sizeof(early_node_map
));
3582 nr_nodemap_entries
= 0;
3583 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3584 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3585 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3586 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3589 /* Compare two active node_active_regions */
3590 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3592 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3593 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3595 /* Done this way to avoid overflows */
3596 if (arange
->start_pfn
> brange
->start_pfn
)
3598 if (arange
->start_pfn
< brange
->start_pfn
)
3604 /* sort the node_map by start_pfn */
3605 static void __init
sort_node_map(void)
3607 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3608 sizeof(struct node_active_region
),
3609 cmp_node_active_region
, NULL
);
3612 /* Find the lowest pfn for a node */
3613 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
3616 unsigned long min_pfn
= ULONG_MAX
;
3618 /* Assuming a sorted map, the first range found has the starting pfn */
3619 for_each_active_range_index_in_nid(i
, nid
)
3620 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3622 if (min_pfn
== ULONG_MAX
) {
3624 "Could not find start_pfn for node %lu\n", nid
);
3632 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3634 * It returns the minimum PFN based on information provided via
3635 * add_active_range().
3637 unsigned long __init
find_min_pfn_with_active_regions(void)
3639 return find_min_pfn_for_node(MAX_NUMNODES
);
3643 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3645 * It returns the maximum PFN based on information provided via
3646 * add_active_range().
3648 unsigned long __init
find_max_pfn_with_active_regions(void)
3651 unsigned long max_pfn
= 0;
3653 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3654 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
3660 * early_calculate_totalpages()
3661 * Sum pages in active regions for movable zone.
3662 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3664 static unsigned long __init
early_calculate_totalpages(void)
3667 unsigned long totalpages
= 0;
3669 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3670 unsigned long pages
= early_node_map
[i
].end_pfn
-
3671 early_node_map
[i
].start_pfn
;
3672 totalpages
+= pages
;
3674 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3680 * Find the PFN the Movable zone begins in each node. Kernel memory
3681 * is spread evenly between nodes as long as the nodes have enough
3682 * memory. When they don't, some nodes will have more kernelcore than
3685 void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3688 unsigned long usable_startpfn
;
3689 unsigned long kernelcore_node
, kernelcore_remaining
;
3690 unsigned long totalpages
= early_calculate_totalpages();
3691 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3694 * If movablecore was specified, calculate what size of
3695 * kernelcore that corresponds so that memory usable for
3696 * any allocation type is evenly spread. If both kernelcore
3697 * and movablecore are specified, then the value of kernelcore
3698 * will be used for required_kernelcore if it's greater than
3699 * what movablecore would have allowed.
3701 if (required_movablecore
) {
3702 unsigned long corepages
;
3705 * Round-up so that ZONE_MOVABLE is at least as large as what
3706 * was requested by the user
3708 required_movablecore
=
3709 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3710 corepages
= totalpages
- required_movablecore
;
3712 required_kernelcore
= max(required_kernelcore
, corepages
);
3715 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3716 if (!required_kernelcore
)
3719 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3720 find_usable_zone_for_movable();
3721 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3724 /* Spread kernelcore memory as evenly as possible throughout nodes */
3725 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3726 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3728 * Recalculate kernelcore_node if the division per node
3729 * now exceeds what is necessary to satisfy the requested
3730 * amount of memory for the kernel
3732 if (required_kernelcore
< kernelcore_node
)
3733 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3736 * As the map is walked, we track how much memory is usable
3737 * by the kernel using kernelcore_remaining. When it is
3738 * 0, the rest of the node is usable by ZONE_MOVABLE
3740 kernelcore_remaining
= kernelcore_node
;
3742 /* Go through each range of PFNs within this node */
3743 for_each_active_range_index_in_nid(i
, nid
) {
3744 unsigned long start_pfn
, end_pfn
;
3745 unsigned long size_pages
;
3747 start_pfn
= max(early_node_map
[i
].start_pfn
,
3748 zone_movable_pfn
[nid
]);
3749 end_pfn
= early_node_map
[i
].end_pfn
;
3750 if (start_pfn
>= end_pfn
)
3753 /* Account for what is only usable for kernelcore */
3754 if (start_pfn
< usable_startpfn
) {
3755 unsigned long kernel_pages
;
3756 kernel_pages
= min(end_pfn
, usable_startpfn
)
3759 kernelcore_remaining
-= min(kernel_pages
,
3760 kernelcore_remaining
);
3761 required_kernelcore
-= min(kernel_pages
,
3762 required_kernelcore
);
3764 /* Continue if range is now fully accounted */
3765 if (end_pfn
<= usable_startpfn
) {
3768 * Push zone_movable_pfn to the end so
3769 * that if we have to rebalance
3770 * kernelcore across nodes, we will
3771 * not double account here
3773 zone_movable_pfn
[nid
] = end_pfn
;
3776 start_pfn
= usable_startpfn
;
3780 * The usable PFN range for ZONE_MOVABLE is from
3781 * start_pfn->end_pfn. Calculate size_pages as the
3782 * number of pages used as kernelcore
3784 size_pages
= end_pfn
- start_pfn
;
3785 if (size_pages
> kernelcore_remaining
)
3786 size_pages
= kernelcore_remaining
;
3787 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3790 * Some kernelcore has been met, update counts and
3791 * break if the kernelcore for this node has been
3794 required_kernelcore
-= min(required_kernelcore
,
3796 kernelcore_remaining
-= size_pages
;
3797 if (!kernelcore_remaining
)
3803 * If there is still required_kernelcore, we do another pass with one
3804 * less node in the count. This will push zone_movable_pfn[nid] further
3805 * along on the nodes that still have memory until kernelcore is
3809 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3812 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3813 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3814 zone_movable_pfn
[nid
] =
3815 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3818 /* Any regular memory on that node ? */
3819 static void check_for_regular_memory(pg_data_t
*pgdat
)
3821 #ifdef CONFIG_HIGHMEM
3822 enum zone_type zone_type
;
3824 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3825 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3826 if (zone
->present_pages
)
3827 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3833 * free_area_init_nodes - Initialise all pg_data_t and zone data
3834 * @max_zone_pfn: an array of max PFNs for each zone
3836 * This will call free_area_init_node() for each active node in the system.
3837 * Using the page ranges provided by add_active_range(), the size of each
3838 * zone in each node and their holes is calculated. If the maximum PFN
3839 * between two adjacent zones match, it is assumed that the zone is empty.
3840 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3841 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3842 * starts where the previous one ended. For example, ZONE_DMA32 starts
3843 * at arch_max_dma_pfn.
3845 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3850 /* Sort early_node_map as initialisation assumes it is sorted */
3853 /* Record where the zone boundaries are */
3854 memset(arch_zone_lowest_possible_pfn
, 0,
3855 sizeof(arch_zone_lowest_possible_pfn
));
3856 memset(arch_zone_highest_possible_pfn
, 0,
3857 sizeof(arch_zone_highest_possible_pfn
));
3858 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3859 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3860 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3861 if (i
== ZONE_MOVABLE
)
3863 arch_zone_lowest_possible_pfn
[i
] =
3864 arch_zone_highest_possible_pfn
[i
-1];
3865 arch_zone_highest_possible_pfn
[i
] =
3866 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3868 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3869 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3871 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3872 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3873 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3875 /* Print out the zone ranges */
3876 printk("Zone PFN ranges:\n");
3877 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3878 if (i
== ZONE_MOVABLE
)
3880 printk(" %-8s %8lu -> %8lu\n",
3882 arch_zone_lowest_possible_pfn
[i
],
3883 arch_zone_highest_possible_pfn
[i
]);
3886 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3887 printk("Movable zone start PFN for each node\n");
3888 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3889 if (zone_movable_pfn
[i
])
3890 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3893 /* Print out the early_node_map[] */
3894 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3895 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3896 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
3897 early_node_map
[i
].start_pfn
,
3898 early_node_map
[i
].end_pfn
);
3900 /* Initialise every node */
3901 setup_nr_node_ids();
3902 for_each_online_node(nid
) {
3903 pg_data_t
*pgdat
= NODE_DATA(nid
);
3904 free_area_init_node(nid
, pgdat
, NULL
,
3905 find_min_pfn_for_node(nid
), NULL
);
3907 /* Any memory on that node */
3908 if (pgdat
->node_present_pages
)
3909 node_set_state(nid
, N_HIGH_MEMORY
);
3910 check_for_regular_memory(pgdat
);
3914 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
3916 unsigned long long coremem
;
3920 coremem
= memparse(p
, &p
);
3921 *core
= coremem
>> PAGE_SHIFT
;
3923 /* Paranoid check that UL is enough for the coremem value */
3924 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
3930 * kernelcore=size sets the amount of memory for use for allocations that
3931 * cannot be reclaimed or migrated.
3933 static int __init
cmdline_parse_kernelcore(char *p
)
3935 return cmdline_parse_core(p
, &required_kernelcore
);
3939 * movablecore=size sets the amount of memory for use for allocations that
3940 * can be reclaimed or migrated.
3942 static int __init
cmdline_parse_movablecore(char *p
)
3944 return cmdline_parse_core(p
, &required_movablecore
);
3947 early_param("kernelcore", cmdline_parse_kernelcore
);
3948 early_param("movablecore", cmdline_parse_movablecore
);
3950 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3953 * set_dma_reserve - set the specified number of pages reserved in the first zone
3954 * @new_dma_reserve: The number of pages to mark reserved
3956 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3957 * In the DMA zone, a significant percentage may be consumed by kernel image
3958 * and other unfreeable allocations which can skew the watermarks badly. This
3959 * function may optionally be used to account for unfreeable pages in the
3960 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3961 * smaller per-cpu batchsize.
3963 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
3965 dma_reserve
= new_dma_reserve
;
3968 #ifndef CONFIG_NEED_MULTIPLE_NODES
3969 static bootmem_data_t contig_bootmem_data
;
3970 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
3972 EXPORT_SYMBOL(contig_page_data
);
3975 void __init
free_area_init(unsigned long *zones_size
)
3977 free_area_init_node(0, NODE_DATA(0), zones_size
,
3978 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
3981 static int page_alloc_cpu_notify(struct notifier_block
*self
,
3982 unsigned long action
, void *hcpu
)
3984 int cpu
= (unsigned long)hcpu
;
3986 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3990 * Spill the event counters of the dead processor
3991 * into the current processors event counters.
3992 * This artificially elevates the count of the current
3995 vm_events_fold_cpu(cpu
);
3998 * Zero the differential counters of the dead processor
3999 * so that the vm statistics are consistent.
4001 * This is only okay since the processor is dead and cannot
4002 * race with what we are doing.
4004 refresh_cpu_vm_stats(cpu
);
4009 void __init
page_alloc_init(void)
4011 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4015 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4016 * or min_free_kbytes changes.
4018 static void calculate_totalreserve_pages(void)
4020 struct pglist_data
*pgdat
;
4021 unsigned long reserve_pages
= 0;
4022 enum zone_type i
, j
;
4024 for_each_online_pgdat(pgdat
) {
4025 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4026 struct zone
*zone
= pgdat
->node_zones
+ i
;
4027 unsigned long max
= 0;
4029 /* Find valid and maximum lowmem_reserve in the zone */
4030 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4031 if (zone
->lowmem_reserve
[j
] > max
)
4032 max
= zone
->lowmem_reserve
[j
];
4035 /* we treat pages_high as reserved pages. */
4036 max
+= zone
->pages_high
;
4038 if (max
> zone
->present_pages
)
4039 max
= zone
->present_pages
;
4040 reserve_pages
+= max
;
4043 totalreserve_pages
= reserve_pages
;
4047 * setup_per_zone_lowmem_reserve - called whenever
4048 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4049 * has a correct pages reserved value, so an adequate number of
4050 * pages are left in the zone after a successful __alloc_pages().
4052 static void setup_per_zone_lowmem_reserve(void)
4054 struct pglist_data
*pgdat
;
4055 enum zone_type j
, idx
;
4057 for_each_online_pgdat(pgdat
) {
4058 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4059 struct zone
*zone
= pgdat
->node_zones
+ j
;
4060 unsigned long present_pages
= zone
->present_pages
;
4062 zone
->lowmem_reserve
[j
] = 0;
4066 struct zone
*lower_zone
;
4070 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4071 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4073 lower_zone
= pgdat
->node_zones
+ idx
;
4074 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4075 sysctl_lowmem_reserve_ratio
[idx
];
4076 present_pages
+= lower_zone
->present_pages
;
4081 /* update totalreserve_pages */
4082 calculate_totalreserve_pages();
4086 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4088 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4089 * with respect to min_free_kbytes.
4091 void setup_per_zone_pages_min(void)
4093 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4094 unsigned long lowmem_pages
= 0;
4096 unsigned long flags
;
4098 /* Calculate total number of !ZONE_HIGHMEM pages */
4099 for_each_zone(zone
) {
4100 if (!is_highmem(zone
))
4101 lowmem_pages
+= zone
->present_pages
;
4104 for_each_zone(zone
) {
4107 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4108 tmp
= (u64
)pages_min
* zone
->present_pages
;
4109 do_div(tmp
, lowmem_pages
);
4110 if (is_highmem(zone
)) {
4112 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4113 * need highmem pages, so cap pages_min to a small
4116 * The (pages_high-pages_low) and (pages_low-pages_min)
4117 * deltas controls asynch page reclaim, and so should
4118 * not be capped for highmem.
4122 min_pages
= zone
->present_pages
/ 1024;
4123 if (min_pages
< SWAP_CLUSTER_MAX
)
4124 min_pages
= SWAP_CLUSTER_MAX
;
4125 if (min_pages
> 128)
4127 zone
->pages_min
= min_pages
;
4130 * If it's a lowmem zone, reserve a number of pages
4131 * proportionate to the zone's size.
4133 zone
->pages_min
= tmp
;
4136 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4137 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4138 setup_zone_migrate_reserve(zone
);
4139 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4142 /* update totalreserve_pages */
4143 calculate_totalreserve_pages();
4147 * Initialise min_free_kbytes.
4149 * For small machines we want it small (128k min). For large machines
4150 * we want it large (64MB max). But it is not linear, because network
4151 * bandwidth does not increase linearly with machine size. We use
4153 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4154 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4170 static int __init
init_per_zone_pages_min(void)
4172 unsigned long lowmem_kbytes
;
4174 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4176 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4177 if (min_free_kbytes
< 128)
4178 min_free_kbytes
= 128;
4179 if (min_free_kbytes
> 65536)
4180 min_free_kbytes
= 65536;
4181 setup_per_zone_pages_min();
4182 setup_per_zone_lowmem_reserve();
4185 module_init(init_per_zone_pages_min
)
4188 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4189 * that we can call two helper functions whenever min_free_kbytes
4192 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4193 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4195 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4197 setup_per_zone_pages_min();
4202 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4203 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4208 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4213 zone
->min_unmapped_pages
= (zone
->present_pages
*
4214 sysctl_min_unmapped_ratio
) / 100;
4218 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4219 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4224 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4229 zone
->min_slab_pages
= (zone
->present_pages
*
4230 sysctl_min_slab_ratio
) / 100;
4236 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4237 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4238 * whenever sysctl_lowmem_reserve_ratio changes.
4240 * The reserve ratio obviously has absolutely no relation with the
4241 * pages_min watermarks. The lowmem reserve ratio can only make sense
4242 * if in function of the boot time zone sizes.
4244 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4245 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4247 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4248 setup_per_zone_lowmem_reserve();
4253 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4254 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4255 * can have before it gets flushed back to buddy allocator.
4258 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4259 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4265 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4266 if (!write
|| (ret
== -EINVAL
))
4268 for_each_zone(zone
) {
4269 for_each_online_cpu(cpu
) {
4271 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4272 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4278 int hashdist
= HASHDIST_DEFAULT
;
4281 static int __init
set_hashdist(char *str
)
4285 hashdist
= simple_strtoul(str
, &str
, 0);
4288 __setup("hashdist=", set_hashdist
);
4292 * allocate a large system hash table from bootmem
4293 * - it is assumed that the hash table must contain an exact power-of-2
4294 * quantity of entries
4295 * - limit is the number of hash buckets, not the total allocation size
4297 void *__init
alloc_large_system_hash(const char *tablename
,
4298 unsigned long bucketsize
,
4299 unsigned long numentries
,
4302 unsigned int *_hash_shift
,
4303 unsigned int *_hash_mask
,
4304 unsigned long limit
)
4306 unsigned long long max
= limit
;
4307 unsigned long log2qty
, size
;
4310 /* allow the kernel cmdline to have a say */
4312 /* round applicable memory size up to nearest megabyte */
4313 numentries
= nr_kernel_pages
;
4314 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4315 numentries
>>= 20 - PAGE_SHIFT
;
4316 numentries
<<= 20 - PAGE_SHIFT
;
4318 /* limit to 1 bucket per 2^scale bytes of low memory */
4319 if (scale
> PAGE_SHIFT
)
4320 numentries
>>= (scale
- PAGE_SHIFT
);
4322 numentries
<<= (PAGE_SHIFT
- scale
);
4324 /* Make sure we've got at least a 0-order allocation.. */
4325 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4326 numentries
= PAGE_SIZE
/ bucketsize
;
4328 numentries
= roundup_pow_of_two(numentries
);
4330 /* limit allocation size to 1/16 total memory by default */
4332 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4333 do_div(max
, bucketsize
);
4336 if (numentries
> max
)
4339 log2qty
= ilog2(numentries
);
4342 size
= bucketsize
<< log2qty
;
4343 if (flags
& HASH_EARLY
)
4344 table
= alloc_bootmem(size
);
4346 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4348 unsigned long order
;
4349 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
4351 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4353 * If bucketsize is not a power-of-two, we may free
4354 * some pages at the end of hash table.
4357 unsigned long alloc_end
= (unsigned long)table
+
4358 (PAGE_SIZE
<< order
);
4359 unsigned long used
= (unsigned long)table
+
4361 split_page(virt_to_page(table
), order
);
4362 while (used
< alloc_end
) {
4368 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4371 panic("Failed to allocate %s hash table\n", tablename
);
4373 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4376 ilog2(size
) - PAGE_SHIFT
,
4380 *_hash_shift
= log2qty
;
4382 *_hash_mask
= (1 << log2qty
) - 1;
4387 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4388 struct page
*pfn_to_page(unsigned long pfn
)
4390 return __pfn_to_page(pfn
);
4392 unsigned long page_to_pfn(struct page
*page
)
4394 return __page_to_pfn(page
);
4396 EXPORT_SYMBOL(pfn_to_page
);
4397 EXPORT_SYMBOL(page_to_pfn
);
4398 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4400 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4401 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4404 #ifdef CONFIG_SPARSEMEM
4405 return __pfn_to_section(pfn
)->pageblock_flags
;
4407 return zone
->pageblock_flags
;
4408 #endif /* CONFIG_SPARSEMEM */
4411 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4413 #ifdef CONFIG_SPARSEMEM
4414 pfn
&= (PAGES_PER_SECTION
-1);
4415 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4417 pfn
= pfn
- zone
->zone_start_pfn
;
4418 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4419 #endif /* CONFIG_SPARSEMEM */
4423 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4424 * @page: The page within the block of interest
4425 * @start_bitidx: The first bit of interest to retrieve
4426 * @end_bitidx: The last bit of interest
4427 * returns pageblock_bits flags
4429 unsigned long get_pageblock_flags_group(struct page
*page
,
4430 int start_bitidx
, int end_bitidx
)
4433 unsigned long *bitmap
;
4434 unsigned long pfn
, bitidx
;
4435 unsigned long flags
= 0;
4436 unsigned long value
= 1;
4438 zone
= page_zone(page
);
4439 pfn
= page_to_pfn(page
);
4440 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4441 bitidx
= pfn_to_bitidx(zone
, pfn
);
4443 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4444 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4451 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4452 * @page: The page within the block of interest
4453 * @start_bitidx: The first bit of interest
4454 * @end_bitidx: The last bit of interest
4455 * @flags: The flags to set
4457 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4458 int start_bitidx
, int end_bitidx
)
4461 unsigned long *bitmap
;
4462 unsigned long pfn
, bitidx
;
4463 unsigned long value
= 1;
4465 zone
= page_zone(page
);
4466 pfn
= page_to_pfn(page
);
4467 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4468 bitidx
= pfn_to_bitidx(zone
, pfn
);
4470 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4472 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4474 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4478 * This is designed as sub function...plz see page_isolation.c also.
4479 * set/clear page block's type to be ISOLATE.
4480 * page allocater never alloc memory from ISOLATE block.
4483 int set_migratetype_isolate(struct page
*page
)
4486 unsigned long flags
;
4489 zone
= page_zone(page
);
4490 spin_lock_irqsave(&zone
->lock
, flags
);
4492 * In future, more migrate types will be able to be isolation target.
4494 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4496 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4497 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4500 spin_unlock_irqrestore(&zone
->lock
, flags
);
4506 void unset_migratetype_isolate(struct page
*page
)
4509 unsigned long flags
;
4510 zone
= page_zone(page
);
4511 spin_lock_irqsave(&zone
->lock
, flags
);
4512 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4514 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4515 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4517 spin_unlock_irqrestore(&zone
->lock
, flags
);
4520 #ifdef CONFIG_MEMORY_HOTREMOVE
4522 * All pages in the range must be isolated before calling this.
4525 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4531 unsigned long flags
;
4532 /* find the first valid pfn */
4533 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4538 zone
= page_zone(pfn_to_page(pfn
));
4539 spin_lock_irqsave(&zone
->lock
, flags
);
4541 while (pfn
< end_pfn
) {
4542 if (!pfn_valid(pfn
)) {
4546 page
= pfn_to_page(pfn
);
4547 BUG_ON(page_count(page
));
4548 BUG_ON(!PageBuddy(page
));
4549 order
= page_order(page
);
4550 #ifdef CONFIG_DEBUG_VM
4551 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4552 pfn
, 1 << order
, end_pfn
);
4554 list_del(&page
->lru
);
4555 rmv_page_order(page
);
4556 zone
->free_area
[order
].nr_free
--;
4557 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4559 for (i
= 0; i
< (1 << order
); i
++)
4560 SetPageReserved((page
+i
));
4561 pfn
+= (1 << order
);
4563 spin_unlock_irqrestore(&zone
->lock
, flags
);