Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6
[linux-2.6/mini2440.git] / include / linux / seqlock.h
blob7bc5c7c12b541fc2b282180b8b4d458ba9ec8618
1 #ifndef __LINUX_SEQLOCK_H
2 #define __LINUX_SEQLOCK_H
3 /*
4 * Reader/writer consistent mechanism without starving writers. This type of
5 * lock for data where the reader wants a consitent set of information
6 * and is willing to retry if the information changes. Readers never
7 * block but they may have to retry if a writer is in
8 * progress. Writers do not wait for readers.
10 * This is not as cache friendly as brlock. Also, this will not work
11 * for data that contains pointers, because any writer could
12 * invalidate a pointer that a reader was following.
14 * Expected reader usage:
15 * do {
16 * seq = read_seqbegin(&foo);
17 * ...
18 * } while (read_seqretry(&foo, seq));
21 * On non-SMP the spin locks disappear but the writer still needs
22 * to increment the sequence variables because an interrupt routine could
23 * change the state of the data.
25 * Based on x86_64 vsyscall gettimeofday
26 * by Keith Owens and Andrea Arcangeli
29 #include <linux/spinlock.h>
30 #include <linux/preempt.h>
32 typedef struct {
33 unsigned sequence;
34 spinlock_t lock;
35 } seqlock_t;
38 * These macros triggered gcc-3.x compile-time problems. We think these are
39 * OK now. Be cautious.
41 #define SEQLOCK_UNLOCKED { 0, SPIN_LOCK_UNLOCKED }
42 #define seqlock_init(x) do { *(x) = (seqlock_t) SEQLOCK_UNLOCKED; } while (0)
45 /* Lock out other writers and update the count.
46 * Acts like a normal spin_lock/unlock.
47 * Don't need preempt_disable() because that is in the spin_lock already.
49 static inline void write_seqlock(seqlock_t *sl)
51 spin_lock(&sl->lock);
52 ++sl->sequence;
53 smp_wmb();
56 static inline void write_sequnlock(seqlock_t *sl)
58 smp_wmb();
59 sl->sequence++;
60 spin_unlock(&sl->lock);
63 static inline int write_tryseqlock(seqlock_t *sl)
65 int ret = spin_trylock(&sl->lock);
67 if (ret) {
68 ++sl->sequence;
69 smp_wmb();
71 return ret;
74 /* Start of read calculation -- fetch last complete writer token */
75 static __always_inline unsigned read_seqbegin(const seqlock_t *sl)
77 unsigned ret = sl->sequence;
78 smp_rmb();
79 return ret;
82 /* Test if reader processed invalid data.
83 * If initial values is odd,
84 * then writer had already started when section was entered
85 * If sequence value changed
86 * then writer changed data while in section
88 * Using xor saves one conditional branch.
90 static __always_inline int read_seqretry(const seqlock_t *sl, unsigned iv)
92 smp_rmb();
93 return (iv & 1) | (sl->sequence ^ iv);
98 * Version using sequence counter only.
99 * This can be used when code has its own mutex protecting the
100 * updating starting before the write_seqcountbeqin() and ending
101 * after the write_seqcount_end().
104 typedef struct seqcount {
105 unsigned sequence;
106 } seqcount_t;
108 #define SEQCNT_ZERO { 0 }
109 #define seqcount_init(x) do { *(x) = (seqcount_t) SEQCNT_ZERO; } while (0)
111 /* Start of read using pointer to a sequence counter only. */
112 static inline unsigned read_seqcount_begin(const seqcount_t *s)
114 unsigned ret = s->sequence;
115 smp_rmb();
116 return ret;
119 /* Test if reader processed invalid data.
120 * Equivalent to: iv is odd or sequence number has changed.
121 * (iv & 1) || (*s != iv)
122 * Using xor saves one conditional branch.
124 static inline int read_seqcount_retry(const seqcount_t *s, unsigned iv)
126 smp_rmb();
127 return (iv & 1) | (s->sequence ^ iv);
132 * Sequence counter only version assumes that callers are using their
133 * own mutexing.
135 static inline void write_seqcount_begin(seqcount_t *s)
137 s->sequence++;
138 smp_wmb();
141 static inline void write_seqcount_end(seqcount_t *s)
143 smp_wmb();
144 s->sequence++;
148 * Possible sw/hw IRQ protected versions of the interfaces.
150 #define write_seqlock_irqsave(lock, flags) \
151 do { local_irq_save(flags); write_seqlock(lock); } while (0)
152 #define write_seqlock_irq(lock) \
153 do { local_irq_disable(); write_seqlock(lock); } while (0)
154 #define write_seqlock_bh(lock) \
155 do { local_bh_disable(); write_seqlock(lock); } while (0)
157 #define write_sequnlock_irqrestore(lock, flags) \
158 do { write_sequnlock(lock); local_irq_restore(flags); } while(0)
159 #define write_sequnlock_irq(lock) \
160 do { write_sequnlock(lock); local_irq_enable(); } while(0)
161 #define write_sequnlock_bh(lock) \
162 do { write_sequnlock(lock); local_bh_enable(); } while(0)
164 #define read_seqbegin_irqsave(lock, flags) \
165 ({ local_irq_save(flags); read_seqbegin(lock); })
167 #define read_seqretry_irqrestore(lock, iv, flags) \
168 ({ \
169 int ret = read_seqretry(lock, iv); \
170 local_irq_restore(flags); \
171 ret; \
174 #endif /* __LINUX_SEQLOCK_H */