1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
72 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74 #define AUDIT_NAMES 20
76 /* Indicates that audit should log the full pathname. */
77 #define AUDIT_NAME_FULL -1
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
82 /* number of audit rules */
85 /* determines whether we collect data for signals sent */
88 struct audit_cap_data
{
89 kernel_cap_t permitted
;
90 kernel_cap_t inheritable
;
92 unsigned int fE
; /* effective bit of a file capability */
93 kernel_cap_t effective
; /* effective set of a process */
97 /* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
104 int name_len
; /* number of name's characters to log */
105 unsigned name_put
; /* call __putname() for this name */
113 struct audit_cap_data fcap
;
114 unsigned int fcap_ver
;
117 struct audit_aux_data
{
118 struct audit_aux_data
*next
;
122 #define AUDIT_AUX_IPCPERM 0
124 /* Number of target pids per aux struct. */
125 #define AUDIT_AUX_PIDS 16
127 struct audit_aux_data_mq_open
{
128 struct audit_aux_data d
;
134 struct audit_aux_data_mq_sendrecv
{
135 struct audit_aux_data d
;
138 unsigned int msg_prio
;
139 struct timespec abs_timeout
;
142 struct audit_aux_data_mq_notify
{
143 struct audit_aux_data d
;
145 struct sigevent notification
;
148 struct audit_aux_data_mq_getsetattr
{
149 struct audit_aux_data d
;
151 struct mq_attr mqstat
;
154 struct audit_aux_data_ipcctl
{
155 struct audit_aux_data d
;
157 unsigned long qbytes
;
164 struct audit_aux_data_execve
{
165 struct audit_aux_data d
;
168 struct mm_struct
*mm
;
171 struct audit_aux_data_socketcall
{
172 struct audit_aux_data d
;
174 unsigned long args
[0];
177 struct audit_aux_data_sockaddr
{
178 struct audit_aux_data d
;
183 struct audit_aux_data_fd_pair
{
184 struct audit_aux_data d
;
188 struct audit_aux_data_pids
{
189 struct audit_aux_data d
;
190 pid_t target_pid
[AUDIT_AUX_PIDS
];
191 uid_t target_auid
[AUDIT_AUX_PIDS
];
192 uid_t target_uid
[AUDIT_AUX_PIDS
];
193 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
194 u32 target_sid
[AUDIT_AUX_PIDS
];
195 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
199 struct audit_aux_data_bprm_fcaps
{
200 struct audit_aux_data d
;
201 struct audit_cap_data fcap
;
202 unsigned int fcap_ver
;
203 struct audit_cap_data old_pcap
;
204 struct audit_cap_data new_pcap
;
207 struct audit_aux_data_capset
{
208 struct audit_aux_data d
;
210 struct audit_cap_data cap
;
213 struct audit_tree_refs
{
214 struct audit_tree_refs
*next
;
215 struct audit_chunk
*c
[31];
218 /* The per-task audit context. */
219 struct audit_context
{
220 int dummy
; /* must be the first element */
221 int in_syscall
; /* 1 if task is in a syscall */
222 enum audit_state state
;
223 unsigned int serial
; /* serial number for record */
224 struct timespec ctime
; /* time of syscall entry */
225 int major
; /* syscall number */
226 unsigned long argv
[4]; /* syscall arguments */
227 int return_valid
; /* return code is valid */
228 long return_code
;/* syscall return code */
229 int auditable
; /* 1 if record should be written */
231 struct audit_names names
[AUDIT_NAMES
];
232 char * filterkey
; /* key for rule that triggered record */
234 struct audit_context
*previous
; /* For nested syscalls */
235 struct audit_aux_data
*aux
;
236 struct audit_aux_data
*aux_pids
;
238 /* Save things to print about task_struct */
240 uid_t uid
, euid
, suid
, fsuid
;
241 gid_t gid
, egid
, sgid
, fsgid
;
242 unsigned long personality
;
248 unsigned int target_sessionid
;
250 char target_comm
[TASK_COMM_LEN
];
252 struct audit_tree_refs
*trees
, *first_trees
;
261 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
262 static inline int open_arg(int flags
, int mask
)
264 int n
= ACC_MODE(flags
);
265 if (flags
& (O_TRUNC
| O_CREAT
))
266 n
|= AUDIT_PERM_WRITE
;
270 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
277 switch (audit_classify_syscall(ctx
->arch
, n
)) {
279 if ((mask
& AUDIT_PERM_WRITE
) &&
280 audit_match_class(AUDIT_CLASS_WRITE
, n
))
282 if ((mask
& AUDIT_PERM_READ
) &&
283 audit_match_class(AUDIT_CLASS_READ
, n
))
285 if ((mask
& AUDIT_PERM_ATTR
) &&
286 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
289 case 1: /* 32bit on biarch */
290 if ((mask
& AUDIT_PERM_WRITE
) &&
291 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
293 if ((mask
& AUDIT_PERM_READ
) &&
294 audit_match_class(AUDIT_CLASS_READ_32
, n
))
296 if ((mask
& AUDIT_PERM_ATTR
) &&
297 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
301 return mask
& ACC_MODE(ctx
->argv
[1]);
303 return mask
& ACC_MODE(ctx
->argv
[2]);
304 case 4: /* socketcall */
305 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
307 return mask
& AUDIT_PERM_EXEC
;
313 static int audit_match_filetype(struct audit_context
*ctx
, int which
)
315 unsigned index
= which
& ~S_IFMT
;
316 mode_t mode
= which
& S_IFMT
;
321 if (index
>= ctx
->name_count
)
323 if (ctx
->names
[index
].ino
== -1)
325 if ((ctx
->names
[index
].mode
^ mode
) & S_IFMT
)
331 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
332 * ->first_trees points to its beginning, ->trees - to the current end of data.
333 * ->tree_count is the number of free entries in array pointed to by ->trees.
334 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
335 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
336 * it's going to remain 1-element for almost any setup) until we free context itself.
337 * References in it _are_ dropped - at the same time we free/drop aux stuff.
340 #ifdef CONFIG_AUDIT_TREE
341 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
343 struct audit_tree_refs
*p
= ctx
->trees
;
344 int left
= ctx
->tree_count
;
346 p
->c
[--left
] = chunk
;
347 ctx
->tree_count
= left
;
356 ctx
->tree_count
= 30;
362 static int grow_tree_refs(struct audit_context
*ctx
)
364 struct audit_tree_refs
*p
= ctx
->trees
;
365 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
371 p
->next
= ctx
->trees
;
373 ctx
->first_trees
= ctx
->trees
;
374 ctx
->tree_count
= 31;
379 static void unroll_tree_refs(struct audit_context
*ctx
,
380 struct audit_tree_refs
*p
, int count
)
382 #ifdef CONFIG_AUDIT_TREE
383 struct audit_tree_refs
*q
;
386 /* we started with empty chain */
387 p
= ctx
->first_trees
;
389 /* if the very first allocation has failed, nothing to do */
394 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
396 audit_put_chunk(q
->c
[n
]);
400 while (n
-- > ctx
->tree_count
) {
401 audit_put_chunk(q
->c
[n
]);
405 ctx
->tree_count
= count
;
409 static void free_tree_refs(struct audit_context
*ctx
)
411 struct audit_tree_refs
*p
, *q
;
412 for (p
= ctx
->first_trees
; p
; p
= q
) {
418 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
420 #ifdef CONFIG_AUDIT_TREE
421 struct audit_tree_refs
*p
;
426 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
427 for (n
= 0; n
< 31; n
++)
428 if (audit_tree_match(p
->c
[n
], tree
))
433 for (n
= ctx
->tree_count
; n
< 31; n
++)
434 if (audit_tree_match(p
->c
[n
], tree
))
441 /* Determine if any context name data matches a rule's watch data */
442 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
444 static int audit_filter_rules(struct task_struct
*tsk
,
445 struct audit_krule
*rule
,
446 struct audit_context
*ctx
,
447 struct audit_names
*name
,
448 enum audit_state
*state
)
450 const struct cred
*cred
= get_task_cred(tsk
);
451 int i
, j
, need_sid
= 1;
454 for (i
= 0; i
< rule
->field_count
; i
++) {
455 struct audit_field
*f
= &rule
->fields
[i
];
460 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
465 ctx
->ppid
= sys_getppid();
466 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
470 result
= audit_comparator(cred
->uid
, f
->op
, f
->val
);
473 result
= audit_comparator(cred
->euid
, f
->op
, f
->val
);
476 result
= audit_comparator(cred
->suid
, f
->op
, f
->val
);
479 result
= audit_comparator(cred
->fsuid
, f
->op
, f
->val
);
482 result
= audit_comparator(cred
->gid
, f
->op
, f
->val
);
485 result
= audit_comparator(cred
->egid
, f
->op
, f
->val
);
488 result
= audit_comparator(cred
->sgid
, f
->op
, f
->val
);
491 result
= audit_comparator(cred
->fsgid
, f
->op
, f
->val
);
494 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
498 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
502 if (ctx
&& ctx
->return_valid
)
503 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
506 if (ctx
&& ctx
->return_valid
) {
508 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
510 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
515 result
= audit_comparator(MAJOR(name
->dev
),
518 for (j
= 0; j
< ctx
->name_count
; j
++) {
519 if (audit_comparator(MAJOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
528 result
= audit_comparator(MINOR(name
->dev
),
531 for (j
= 0; j
< ctx
->name_count
; j
++) {
532 if (audit_comparator(MINOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
541 result
= (name
->ino
== f
->val
);
543 for (j
= 0; j
< ctx
->name_count
; j
++) {
544 if (audit_comparator(ctx
->names
[j
].ino
, f
->op
, f
->val
)) {
552 if (name
&& rule
->watch
->ino
!= (unsigned long)-1)
553 result
= (name
->dev
== rule
->watch
->dev
&&
554 name
->ino
== rule
->watch
->ino
);
558 result
= match_tree_refs(ctx
, rule
->tree
);
563 result
= audit_comparator(tsk
->loginuid
, f
->op
, f
->val
);
565 case AUDIT_SUBJ_USER
:
566 case AUDIT_SUBJ_ROLE
:
567 case AUDIT_SUBJ_TYPE
:
570 /* NOTE: this may return negative values indicating
571 a temporary error. We simply treat this as a
572 match for now to avoid losing information that
573 may be wanted. An error message will also be
577 security_task_getsecid(tsk
, &sid
);
580 result
= security_audit_rule_match(sid
, f
->type
,
589 case AUDIT_OBJ_LEV_LOW
:
590 case AUDIT_OBJ_LEV_HIGH
:
591 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
594 /* Find files that match */
596 result
= security_audit_rule_match(
597 name
->osid
, f
->type
, f
->op
,
600 for (j
= 0; j
< ctx
->name_count
; j
++) {
601 if (security_audit_rule_match(
610 /* Find ipc objects that match */
612 struct audit_aux_data
*aux
;
613 for (aux
= ctx
->aux
; aux
;
615 if (aux
->type
== AUDIT_IPC
) {
616 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
617 if (security_audit_rule_match(axi
->osid
, f
->type
, f
->op
, f
->lsm_rule
, ctx
)) {
631 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
633 case AUDIT_FILTERKEY
:
634 /* ignore this field for filtering */
638 result
= audit_match_perm(ctx
, f
->val
);
641 result
= audit_match_filetype(ctx
, f
->val
);
650 if (rule
->filterkey
&& ctx
)
651 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
652 switch (rule
->action
) {
653 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
654 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
660 /* At process creation time, we can determine if system-call auditing is
661 * completely disabled for this task. Since we only have the task
662 * structure at this point, we can only check uid and gid.
664 static enum audit_state
audit_filter_task(struct task_struct
*tsk
)
666 struct audit_entry
*e
;
667 enum audit_state state
;
670 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
671 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
, &state
)) {
677 return AUDIT_BUILD_CONTEXT
;
680 /* At syscall entry and exit time, this filter is called if the
681 * audit_state is not low enough that auditing cannot take place, but is
682 * also not high enough that we already know we have to write an audit
683 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
685 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
686 struct audit_context
*ctx
,
687 struct list_head
*list
)
689 struct audit_entry
*e
;
690 enum audit_state state
;
692 if (audit_pid
&& tsk
->tgid
== audit_pid
)
693 return AUDIT_DISABLED
;
696 if (!list_empty(list
)) {
697 int word
= AUDIT_WORD(ctx
->major
);
698 int bit
= AUDIT_BIT(ctx
->major
);
700 list_for_each_entry_rcu(e
, list
, list
) {
701 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
702 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
710 return AUDIT_BUILD_CONTEXT
;
713 /* At syscall exit time, this filter is called if any audit_names[] have been
714 * collected during syscall processing. We only check rules in sublists at hash
715 * buckets applicable to the inode numbers in audit_names[].
716 * Regarding audit_state, same rules apply as for audit_filter_syscall().
718 enum audit_state
audit_filter_inodes(struct task_struct
*tsk
,
719 struct audit_context
*ctx
)
722 struct audit_entry
*e
;
723 enum audit_state state
;
725 if (audit_pid
&& tsk
->tgid
== audit_pid
)
726 return AUDIT_DISABLED
;
729 for (i
= 0; i
< ctx
->name_count
; i
++) {
730 int word
= AUDIT_WORD(ctx
->major
);
731 int bit
= AUDIT_BIT(ctx
->major
);
732 struct audit_names
*n
= &ctx
->names
[i
];
733 int h
= audit_hash_ino((u32
)n
->ino
);
734 struct list_head
*list
= &audit_inode_hash
[h
];
736 if (list_empty(list
))
739 list_for_each_entry_rcu(e
, list
, list
) {
740 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
741 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
)) {
748 return AUDIT_BUILD_CONTEXT
;
751 void audit_set_auditable(struct audit_context
*ctx
)
756 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
760 struct audit_context
*context
= tsk
->audit_context
;
762 if (likely(!context
))
764 context
->return_valid
= return_valid
;
767 * we need to fix up the return code in the audit logs if the actual
768 * return codes are later going to be fixed up by the arch specific
771 * This is actually a test for:
772 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
773 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
775 * but is faster than a bunch of ||
777 if (unlikely(return_code
<= -ERESTARTSYS
) &&
778 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
779 (return_code
!= -ENOIOCTLCMD
))
780 context
->return_code
= -EINTR
;
782 context
->return_code
= return_code
;
784 if (context
->in_syscall
&& !context
->dummy
&& !context
->auditable
) {
785 enum audit_state state
;
787 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
788 if (state
== AUDIT_RECORD_CONTEXT
) {
789 context
->auditable
= 1;
793 state
= audit_filter_inodes(tsk
, context
);
794 if (state
== AUDIT_RECORD_CONTEXT
)
795 context
->auditable
= 1;
801 tsk
->audit_context
= NULL
;
805 static inline void audit_free_names(struct audit_context
*context
)
810 if (context
->auditable
811 ||context
->put_count
+ context
->ino_count
!= context
->name_count
) {
812 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
813 " name_count=%d put_count=%d"
814 " ino_count=%d [NOT freeing]\n",
816 context
->serial
, context
->major
, context
->in_syscall
,
817 context
->name_count
, context
->put_count
,
819 for (i
= 0; i
< context
->name_count
; i
++) {
820 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
821 context
->names
[i
].name
,
822 context
->names
[i
].name
?: "(null)");
829 context
->put_count
= 0;
830 context
->ino_count
= 0;
833 for (i
= 0; i
< context
->name_count
; i
++) {
834 if (context
->names
[i
].name
&& context
->names
[i
].name_put
)
835 __putname(context
->names
[i
].name
);
837 context
->name_count
= 0;
838 path_put(&context
->pwd
);
839 context
->pwd
.dentry
= NULL
;
840 context
->pwd
.mnt
= NULL
;
843 static inline void audit_free_aux(struct audit_context
*context
)
845 struct audit_aux_data
*aux
;
847 while ((aux
= context
->aux
)) {
848 context
->aux
= aux
->next
;
851 while ((aux
= context
->aux_pids
)) {
852 context
->aux_pids
= aux
->next
;
857 static inline void audit_zero_context(struct audit_context
*context
,
858 enum audit_state state
)
860 memset(context
, 0, sizeof(*context
));
861 context
->state
= state
;
864 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
866 struct audit_context
*context
;
868 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
870 audit_zero_context(context
, state
);
875 * audit_alloc - allocate an audit context block for a task
878 * Filter on the task information and allocate a per-task audit context
879 * if necessary. Doing so turns on system call auditing for the
880 * specified task. This is called from copy_process, so no lock is
883 int audit_alloc(struct task_struct
*tsk
)
885 struct audit_context
*context
;
886 enum audit_state state
;
888 if (likely(!audit_ever_enabled
))
889 return 0; /* Return if not auditing. */
891 state
= audit_filter_task(tsk
);
892 if (likely(state
== AUDIT_DISABLED
))
895 if (!(context
= audit_alloc_context(state
))) {
896 audit_log_lost("out of memory in audit_alloc");
900 tsk
->audit_context
= context
;
901 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
905 static inline void audit_free_context(struct audit_context
*context
)
907 struct audit_context
*previous
;
911 previous
= context
->previous
;
912 if (previous
|| (count
&& count
< 10)) {
914 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
915 " freeing multiple contexts (%d)\n",
916 context
->serial
, context
->major
,
917 context
->name_count
, count
);
919 audit_free_names(context
);
920 unroll_tree_refs(context
, NULL
, 0);
921 free_tree_refs(context
);
922 audit_free_aux(context
);
923 kfree(context
->filterkey
);
928 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
931 void audit_log_task_context(struct audit_buffer
*ab
)
938 security_task_getsecid(current
, &sid
);
942 error
= security_secid_to_secctx(sid
, &ctx
, &len
);
944 if (error
!= -EINVAL
)
949 audit_log_format(ab
, " subj=%s", ctx
);
950 security_release_secctx(ctx
, len
);
954 audit_panic("error in audit_log_task_context");
958 EXPORT_SYMBOL(audit_log_task_context
);
960 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
962 char name
[sizeof(tsk
->comm
)];
963 struct mm_struct
*mm
= tsk
->mm
;
964 struct vm_area_struct
*vma
;
968 get_task_comm(name
, tsk
);
969 audit_log_format(ab
, " comm=");
970 audit_log_untrustedstring(ab
, name
);
973 down_read(&mm
->mmap_sem
);
976 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
978 audit_log_d_path(ab
, "exe=",
979 &vma
->vm_file
->f_path
);
984 up_read(&mm
->mmap_sem
);
986 audit_log_task_context(ab
);
989 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
990 uid_t auid
, uid_t uid
, unsigned int sessionid
,
993 struct audit_buffer
*ab
;
998 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
1002 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
, auid
,
1004 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
1005 audit_log_format(ab
, " obj=(none)");
1008 audit_log_format(ab
, " obj=%s", ctx
);
1009 security_release_secctx(ctx
, len
);
1011 audit_log_format(ab
, " ocomm=");
1012 audit_log_untrustedstring(ab
, comm
);
1019 * to_send and len_sent accounting are very loose estimates. We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundry)
1023 * why snprintf? an int is up to 12 digits long. if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message. In one 7500 byte message we can log up to
1026 * about 1000 min size arguments. That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1029 static int audit_log_single_execve_arg(struct audit_context
*context
,
1030 struct audit_buffer
**ab
,
1033 const char __user
*p
,
1036 char arg_num_len_buf
[12];
1037 const char __user
*tmp_p
= p
;
1038 /* how many digits are in arg_num? 3 is the length of a=\n */
1039 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 3;
1040 size_t len
, len_left
, to_send
;
1041 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1042 unsigned int i
, has_cntl
= 0, too_long
= 0;
1045 /* strnlen_user includes the null we don't want to send */
1046 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1049 * We just created this mm, if we can't find the strings
1050 * we just copied into it something is _very_ wrong. Similar
1051 * for strings that are too long, we should not have created
1054 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1056 send_sig(SIGKILL
, current
, 0);
1060 /* walk the whole argument looking for non-ascii chars */
1062 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1063 to_send
= MAX_EXECVE_AUDIT_LEN
;
1066 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1068 * There is no reason for this copy to be short. We just
1069 * copied them here, and the mm hasn't been exposed to user-
1074 send_sig(SIGKILL
, current
, 0);
1077 buf
[to_send
] = '\0';
1078 has_cntl
= audit_string_contains_control(buf
, to_send
);
1081 * hex messages get logged as 2 bytes, so we can only
1082 * send half as much in each message
1084 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1087 len_left
-= to_send
;
1089 } while (len_left
> 0);
1093 if (len
> max_execve_audit_len
)
1096 /* rewalk the argument actually logging the message */
1097 for (i
= 0; len_left
> 0; i
++) {
1100 if (len_left
> max_execve_audit_len
)
1101 to_send
= max_execve_audit_len
;
1105 /* do we have space left to send this argument in this ab? */
1106 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1108 room_left
-= (to_send
* 2);
1110 room_left
-= to_send
;
1111 if (room_left
< 0) {
1114 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1120 * first record needs to say how long the original string was
1121 * so we can be sure nothing was lost.
1123 if ((i
== 0) && (too_long
))
1124 audit_log_format(*ab
, "a%d_len=%zu ", arg_num
,
1125 has_cntl
? 2*len
: len
);
1128 * normally arguments are small enough to fit and we already
1129 * filled buf above when we checked for control characters
1130 * so don't bother with another copy_from_user
1132 if (len
>= max_execve_audit_len
)
1133 ret
= copy_from_user(buf
, p
, to_send
);
1138 send_sig(SIGKILL
, current
, 0);
1141 buf
[to_send
] = '\0';
1143 /* actually log it */
1144 audit_log_format(*ab
, "a%d", arg_num
);
1146 audit_log_format(*ab
, "[%d]", i
);
1147 audit_log_format(*ab
, "=");
1149 audit_log_n_hex(*ab
, buf
, to_send
);
1151 audit_log_format(*ab
, "\"%s\"", buf
);
1152 audit_log_format(*ab
, "\n");
1155 len_left
-= to_send
;
1156 *len_sent
+= arg_num_len
;
1158 *len_sent
+= to_send
* 2;
1160 *len_sent
+= to_send
;
1162 /* include the null we didn't log */
1166 static void audit_log_execve_info(struct audit_context
*context
,
1167 struct audit_buffer
**ab
,
1168 struct audit_aux_data_execve
*axi
)
1171 size_t len
, len_sent
= 0;
1172 const char __user
*p
;
1175 if (axi
->mm
!= current
->mm
)
1176 return; /* execve failed, no additional info */
1178 p
= (const char __user
*)axi
->mm
->arg_start
;
1180 audit_log_format(*ab
, "argc=%d ", axi
->argc
);
1183 * we need some kernel buffer to hold the userspace args. Just
1184 * allocate one big one rather than allocating one of the right size
1185 * for every single argument inside audit_log_single_execve_arg()
1186 * should be <8k allocation so should be pretty safe.
1188 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1190 audit_panic("out of memory for argv string\n");
1194 for (i
= 0; i
< axi
->argc
; i
++) {
1195 len
= audit_log_single_execve_arg(context
, ab
, i
,
1204 static void audit_log_cap(struct audit_buffer
*ab
, char *prefix
, kernel_cap_t
*cap
)
1208 audit_log_format(ab
, " %s=", prefix
);
1209 CAP_FOR_EACH_U32(i
) {
1210 audit_log_format(ab
, "%08x", cap
->cap
[(_KERNEL_CAPABILITY_U32S
-1) - i
]);
1214 static void audit_log_fcaps(struct audit_buffer
*ab
, struct audit_names
*name
)
1216 kernel_cap_t
*perm
= &name
->fcap
.permitted
;
1217 kernel_cap_t
*inh
= &name
->fcap
.inheritable
;
1220 if (!cap_isclear(*perm
)) {
1221 audit_log_cap(ab
, "cap_fp", perm
);
1224 if (!cap_isclear(*inh
)) {
1225 audit_log_cap(ab
, "cap_fi", inh
);
1230 audit_log_format(ab
, " cap_fe=%d cap_fver=%x", name
->fcap
.fE
, name
->fcap_ver
);
1233 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1235 const struct cred
*cred
;
1236 int i
, call_panic
= 0;
1237 struct audit_buffer
*ab
;
1238 struct audit_aux_data
*aux
;
1241 /* tsk == current */
1242 context
->pid
= tsk
->pid
;
1244 context
->ppid
= sys_getppid();
1245 cred
= current_cred();
1246 context
->uid
= cred
->uid
;
1247 context
->gid
= cred
->gid
;
1248 context
->euid
= cred
->euid
;
1249 context
->suid
= cred
->suid
;
1250 context
->fsuid
= cred
->fsuid
;
1251 context
->egid
= cred
->egid
;
1252 context
->sgid
= cred
->sgid
;
1253 context
->fsgid
= cred
->fsgid
;
1254 context
->personality
= tsk
->personality
;
1256 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1258 return; /* audit_panic has been called */
1259 audit_log_format(ab
, "arch=%x syscall=%d",
1260 context
->arch
, context
->major
);
1261 if (context
->personality
!= PER_LINUX
)
1262 audit_log_format(ab
, " per=%lx", context
->personality
);
1263 if (context
->return_valid
)
1264 audit_log_format(ab
, " success=%s exit=%ld",
1265 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1266 context
->return_code
);
1268 spin_lock_irq(&tsk
->sighand
->siglock
);
1269 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1270 tty
= tsk
->signal
->tty
->name
;
1273 spin_unlock_irq(&tsk
->sighand
->siglock
);
1275 audit_log_format(ab
,
1276 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1277 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1278 " euid=%u suid=%u fsuid=%u"
1279 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1284 context
->name_count
,
1290 context
->euid
, context
->suid
, context
->fsuid
,
1291 context
->egid
, context
->sgid
, context
->fsgid
, tty
,
1295 audit_log_task_info(ab
, tsk
);
1296 if (context
->filterkey
) {
1297 audit_log_format(ab
, " key=");
1298 audit_log_untrustedstring(ab
, context
->filterkey
);
1300 audit_log_format(ab
, " key=(null)");
1303 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1305 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1307 continue; /* audit_panic has been called */
1309 switch (aux
->type
) {
1310 case AUDIT_MQ_OPEN
: {
1311 struct audit_aux_data_mq_open
*axi
= (void *)aux
;
1312 audit_log_format(ab
,
1313 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1314 "mq_msgsize=%ld mq_curmsgs=%ld",
1315 axi
->oflag
, axi
->mode
, axi
->attr
.mq_flags
,
1316 axi
->attr
.mq_maxmsg
, axi
->attr
.mq_msgsize
,
1317 axi
->attr
.mq_curmsgs
);
1320 case AUDIT_MQ_SENDRECV
: {
1321 struct audit_aux_data_mq_sendrecv
*axi
= (void *)aux
;
1322 audit_log_format(ab
,
1323 "mqdes=%d msg_len=%zd msg_prio=%u "
1324 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1325 axi
->mqdes
, axi
->msg_len
, axi
->msg_prio
,
1326 axi
->abs_timeout
.tv_sec
, axi
->abs_timeout
.tv_nsec
);
1329 case AUDIT_MQ_NOTIFY
: {
1330 struct audit_aux_data_mq_notify
*axi
= (void *)aux
;
1331 audit_log_format(ab
,
1332 "mqdes=%d sigev_signo=%d",
1334 axi
->notification
.sigev_signo
);
1337 case AUDIT_MQ_GETSETATTR
: {
1338 struct audit_aux_data_mq_getsetattr
*axi
= (void *)aux
;
1339 audit_log_format(ab
,
1340 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1343 axi
->mqstat
.mq_flags
, axi
->mqstat
.mq_maxmsg
,
1344 axi
->mqstat
.mq_msgsize
, axi
->mqstat
.mq_curmsgs
);
1348 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1349 audit_log_format(ab
,
1350 "ouid=%u ogid=%u mode=%#o",
1351 axi
->uid
, axi
->gid
, axi
->mode
);
1352 if (axi
->osid
!= 0) {
1355 if (security_secid_to_secctx(
1356 axi
->osid
, &ctx
, &len
)) {
1357 audit_log_format(ab
, " osid=%u",
1361 audit_log_format(ab
, " obj=%s", ctx
);
1362 security_release_secctx(ctx
, len
);
1367 case AUDIT_IPC_SET_PERM
: {
1368 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1369 audit_log_format(ab
,
1370 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1371 axi
->qbytes
, axi
->uid
, axi
->gid
, axi
->mode
);
1374 case AUDIT_EXECVE
: {
1375 struct audit_aux_data_execve
*axi
= (void *)aux
;
1376 audit_log_execve_info(context
, &ab
, axi
);
1379 case AUDIT_SOCKETCALL
: {
1380 struct audit_aux_data_socketcall
*axs
= (void *)aux
;
1381 audit_log_format(ab
, "nargs=%d", axs
->nargs
);
1382 for (i
=0; i
<axs
->nargs
; i
++)
1383 audit_log_format(ab
, " a%d=%lx", i
, axs
->args
[i
]);
1386 case AUDIT_SOCKADDR
: {
1387 struct audit_aux_data_sockaddr
*axs
= (void *)aux
;
1389 audit_log_format(ab
, "saddr=");
1390 audit_log_n_hex(ab
, axs
->a
, axs
->len
);
1393 case AUDIT_FD_PAIR
: {
1394 struct audit_aux_data_fd_pair
*axs
= (void *)aux
;
1395 audit_log_format(ab
, "fd0=%d fd1=%d", axs
->fd
[0], axs
->fd
[1]);
1398 case AUDIT_BPRM_FCAPS
: {
1399 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1400 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1401 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1402 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1403 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1404 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1405 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1406 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1407 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1408 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1409 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1412 case AUDIT_CAPSET
: {
1413 struct audit_aux_data_capset
*axs
= (void *)aux
;
1414 audit_log_format(ab
, "pid=%d", axs
->pid
);
1415 audit_log_cap(ab
, "cap_pi", &axs
->cap
.inheritable
);
1416 audit_log_cap(ab
, "cap_pp", &axs
->cap
.permitted
);
1417 audit_log_cap(ab
, "cap_pe", &axs
->cap
.effective
);
1424 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1425 struct audit_aux_data_pids
*axs
= (void *)aux
;
1427 for (i
= 0; i
< axs
->pid_count
; i
++)
1428 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1429 axs
->target_auid
[i
],
1431 axs
->target_sessionid
[i
],
1433 axs
->target_comm
[i
]))
1437 if (context
->target_pid
&&
1438 audit_log_pid_context(context
, context
->target_pid
,
1439 context
->target_auid
, context
->target_uid
,
1440 context
->target_sessionid
,
1441 context
->target_sid
, context
->target_comm
))
1444 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1445 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1447 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1451 for (i
= 0; i
< context
->name_count
; i
++) {
1452 struct audit_names
*n
= &context
->names
[i
];
1454 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1456 continue; /* audit_panic has been called */
1458 audit_log_format(ab
, "item=%d", i
);
1461 switch(n
->name_len
) {
1462 case AUDIT_NAME_FULL
:
1463 /* log the full path */
1464 audit_log_format(ab
, " name=");
1465 audit_log_untrustedstring(ab
, n
->name
);
1468 /* name was specified as a relative path and the
1469 * directory component is the cwd */
1470 audit_log_d_path(ab
, " name=", &context
->pwd
);
1473 /* log the name's directory component */
1474 audit_log_format(ab
, " name=");
1475 audit_log_n_untrustedstring(ab
, n
->name
,
1479 audit_log_format(ab
, " name=(null)");
1481 if (n
->ino
!= (unsigned long)-1) {
1482 audit_log_format(ab
, " inode=%lu"
1483 " dev=%02x:%02x mode=%#o"
1484 " ouid=%u ogid=%u rdev=%02x:%02x",
1497 if (security_secid_to_secctx(
1498 n
->osid
, &ctx
, &len
)) {
1499 audit_log_format(ab
, " osid=%u", n
->osid
);
1502 audit_log_format(ab
, " obj=%s", ctx
);
1503 security_release_secctx(ctx
, len
);
1507 audit_log_fcaps(ab
, n
);
1512 /* Send end of event record to help user space know we are finished */
1513 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1517 audit_panic("error converting sid to string");
1521 * audit_free - free a per-task audit context
1522 * @tsk: task whose audit context block to free
1524 * Called from copy_process and do_exit
1526 void audit_free(struct task_struct
*tsk
)
1528 struct audit_context
*context
;
1530 context
= audit_get_context(tsk
, 0, 0);
1531 if (likely(!context
))
1534 /* Check for system calls that do not go through the exit
1535 * function (e.g., exit_group), then free context block.
1536 * We use GFP_ATOMIC here because we might be doing this
1537 * in the context of the idle thread */
1538 /* that can happen only if we are called from do_exit() */
1539 if (context
->in_syscall
&& context
->auditable
)
1540 audit_log_exit(context
, tsk
);
1542 audit_free_context(context
);
1546 * audit_syscall_entry - fill in an audit record at syscall entry
1547 * @arch: architecture type
1548 * @major: major syscall type (function)
1549 * @a1: additional syscall register 1
1550 * @a2: additional syscall register 2
1551 * @a3: additional syscall register 3
1552 * @a4: additional syscall register 4
1554 * Fill in audit context at syscall entry. This only happens if the
1555 * audit context was created when the task was created and the state or
1556 * filters demand the audit context be built. If the state from the
1557 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1558 * then the record will be written at syscall exit time (otherwise, it
1559 * will only be written if another part of the kernel requests that it
1562 void audit_syscall_entry(int arch
, int major
,
1563 unsigned long a1
, unsigned long a2
,
1564 unsigned long a3
, unsigned long a4
)
1566 struct task_struct
*tsk
= current
;
1567 struct audit_context
*context
= tsk
->audit_context
;
1568 enum audit_state state
;
1570 if (unlikely(!context
))
1574 * This happens only on certain architectures that make system
1575 * calls in kernel_thread via the entry.S interface, instead of
1576 * with direct calls. (If you are porting to a new
1577 * architecture, hitting this condition can indicate that you
1578 * got the _exit/_leave calls backward in entry.S.)
1582 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1584 * This also happens with vm86 emulation in a non-nested manner
1585 * (entries without exits), so this case must be caught.
1587 if (context
->in_syscall
) {
1588 struct audit_context
*newctx
;
1592 "audit(:%d) pid=%d in syscall=%d;"
1593 " entering syscall=%d\n",
1594 context
->serial
, tsk
->pid
, context
->major
, major
);
1596 newctx
= audit_alloc_context(context
->state
);
1598 newctx
->previous
= context
;
1600 tsk
->audit_context
= newctx
;
1602 /* If we can't alloc a new context, the best we
1603 * can do is to leak memory (any pending putname
1604 * will be lost). The only other alternative is
1605 * to abandon auditing. */
1606 audit_zero_context(context
, context
->state
);
1609 BUG_ON(context
->in_syscall
|| context
->name_count
);
1614 context
->arch
= arch
;
1615 context
->major
= major
;
1616 context
->argv
[0] = a1
;
1617 context
->argv
[1] = a2
;
1618 context
->argv
[2] = a3
;
1619 context
->argv
[3] = a4
;
1621 state
= context
->state
;
1622 context
->dummy
= !audit_n_rules
;
1623 if (!context
->dummy
&& (state
== AUDIT_SETUP_CONTEXT
|| state
== AUDIT_BUILD_CONTEXT
))
1624 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1625 if (likely(state
== AUDIT_DISABLED
))
1628 context
->serial
= 0;
1629 context
->ctime
= CURRENT_TIME
;
1630 context
->in_syscall
= 1;
1631 context
->auditable
= !!(state
== AUDIT_RECORD_CONTEXT
);
1635 void audit_finish_fork(struct task_struct
*child
)
1637 struct audit_context
*ctx
= current
->audit_context
;
1638 struct audit_context
*p
= child
->audit_context
;
1639 if (!p
|| !ctx
|| !ctx
->auditable
)
1641 p
->arch
= ctx
->arch
;
1642 p
->major
= ctx
->major
;
1643 memcpy(p
->argv
, ctx
->argv
, sizeof(ctx
->argv
));
1644 p
->ctime
= ctx
->ctime
;
1645 p
->dummy
= ctx
->dummy
;
1646 p
->auditable
= ctx
->auditable
;
1647 p
->in_syscall
= ctx
->in_syscall
;
1648 p
->filterkey
= kstrdup(ctx
->filterkey
, GFP_KERNEL
);
1649 p
->ppid
= current
->pid
;
1653 * audit_syscall_exit - deallocate audit context after a system call
1654 * @valid: success/failure flag
1655 * @return_code: syscall return value
1657 * Tear down after system call. If the audit context has been marked as
1658 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1659 * filtering, or because some other part of the kernel write an audit
1660 * message), then write out the syscall information. In call cases,
1661 * free the names stored from getname().
1663 void audit_syscall_exit(int valid
, long return_code
)
1665 struct task_struct
*tsk
= current
;
1666 struct audit_context
*context
;
1668 context
= audit_get_context(tsk
, valid
, return_code
);
1670 if (likely(!context
))
1673 if (context
->in_syscall
&& context
->auditable
)
1674 audit_log_exit(context
, tsk
);
1676 context
->in_syscall
= 0;
1677 context
->auditable
= 0;
1679 if (context
->previous
) {
1680 struct audit_context
*new_context
= context
->previous
;
1681 context
->previous
= NULL
;
1682 audit_free_context(context
);
1683 tsk
->audit_context
= new_context
;
1685 audit_free_names(context
);
1686 unroll_tree_refs(context
, NULL
, 0);
1687 audit_free_aux(context
);
1688 context
->aux
= NULL
;
1689 context
->aux_pids
= NULL
;
1690 context
->target_pid
= 0;
1691 context
->target_sid
= 0;
1692 kfree(context
->filterkey
);
1693 context
->filterkey
= NULL
;
1694 tsk
->audit_context
= context
;
1698 static inline void handle_one(const struct inode
*inode
)
1700 #ifdef CONFIG_AUDIT_TREE
1701 struct audit_context
*context
;
1702 struct audit_tree_refs
*p
;
1703 struct audit_chunk
*chunk
;
1705 if (likely(list_empty(&inode
->inotify_watches
)))
1707 context
= current
->audit_context
;
1709 count
= context
->tree_count
;
1711 chunk
= audit_tree_lookup(inode
);
1715 if (likely(put_tree_ref(context
, chunk
)))
1717 if (unlikely(!grow_tree_refs(context
))) {
1718 printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
1719 audit_set_auditable(context
);
1720 audit_put_chunk(chunk
);
1721 unroll_tree_refs(context
, p
, count
);
1724 put_tree_ref(context
, chunk
);
1728 static void handle_path(const struct dentry
*dentry
)
1730 #ifdef CONFIG_AUDIT_TREE
1731 struct audit_context
*context
;
1732 struct audit_tree_refs
*p
;
1733 const struct dentry
*d
, *parent
;
1734 struct audit_chunk
*drop
;
1738 context
= current
->audit_context
;
1740 count
= context
->tree_count
;
1745 seq
= read_seqbegin(&rename_lock
);
1747 struct inode
*inode
= d
->d_inode
;
1748 if (inode
&& unlikely(!list_empty(&inode
->inotify_watches
))) {
1749 struct audit_chunk
*chunk
;
1750 chunk
= audit_tree_lookup(inode
);
1752 if (unlikely(!put_tree_ref(context
, chunk
))) {
1758 parent
= d
->d_parent
;
1763 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1766 /* just a race with rename */
1767 unroll_tree_refs(context
, p
, count
);
1770 audit_put_chunk(drop
);
1771 if (grow_tree_refs(context
)) {
1772 /* OK, got more space */
1773 unroll_tree_refs(context
, p
, count
);
1778 "out of memory, audit has lost a tree reference\n");
1779 unroll_tree_refs(context
, p
, count
);
1780 audit_set_auditable(context
);
1788 * audit_getname - add a name to the list
1789 * @name: name to add
1791 * Add a name to the list of audit names for this context.
1792 * Called from fs/namei.c:getname().
1794 void __audit_getname(const char *name
)
1796 struct audit_context
*context
= current
->audit_context
;
1798 if (IS_ERR(name
) || !name
)
1801 if (!context
->in_syscall
) {
1802 #if AUDIT_DEBUG == 2
1803 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1804 __FILE__
, __LINE__
, context
->serial
, name
);
1809 BUG_ON(context
->name_count
>= AUDIT_NAMES
);
1810 context
->names
[context
->name_count
].name
= name
;
1811 context
->names
[context
->name_count
].name_len
= AUDIT_NAME_FULL
;
1812 context
->names
[context
->name_count
].name_put
= 1;
1813 context
->names
[context
->name_count
].ino
= (unsigned long)-1;
1814 context
->names
[context
->name_count
].osid
= 0;
1815 ++context
->name_count
;
1816 if (!context
->pwd
.dentry
) {
1817 read_lock(¤t
->fs
->lock
);
1818 context
->pwd
= current
->fs
->pwd
;
1819 path_get(¤t
->fs
->pwd
);
1820 read_unlock(¤t
->fs
->lock
);
1825 /* audit_putname - intercept a putname request
1826 * @name: name to intercept and delay for putname
1828 * If we have stored the name from getname in the audit context,
1829 * then we delay the putname until syscall exit.
1830 * Called from include/linux/fs.h:putname().
1832 void audit_putname(const char *name
)
1834 struct audit_context
*context
= current
->audit_context
;
1837 if (!context
->in_syscall
) {
1838 #if AUDIT_DEBUG == 2
1839 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
1840 __FILE__
, __LINE__
, context
->serial
, name
);
1841 if (context
->name_count
) {
1843 for (i
= 0; i
< context
->name_count
; i
++)
1844 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
1845 context
->names
[i
].name
,
1846 context
->names
[i
].name
?: "(null)");
1853 ++context
->put_count
;
1854 if (context
->put_count
> context
->name_count
) {
1855 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1856 " in_syscall=%d putname(%p) name_count=%d"
1859 context
->serial
, context
->major
,
1860 context
->in_syscall
, name
, context
->name_count
,
1861 context
->put_count
);
1868 static int audit_inc_name_count(struct audit_context
*context
,
1869 const struct inode
*inode
)
1871 if (context
->name_count
>= AUDIT_NAMES
) {
1873 printk(KERN_DEBUG
"name_count maxed, losing inode data: "
1874 "dev=%02x:%02x, inode=%lu\n",
1875 MAJOR(inode
->i_sb
->s_dev
),
1876 MINOR(inode
->i_sb
->s_dev
),
1880 printk(KERN_DEBUG
"name_count maxed, losing inode data\n");
1883 context
->name_count
++;
1885 context
->ino_count
++;
1891 static inline int audit_copy_fcaps(struct audit_names
*name
, const struct dentry
*dentry
)
1893 struct cpu_vfs_cap_data caps
;
1896 memset(&name
->fcap
.permitted
, 0, sizeof(kernel_cap_t
));
1897 memset(&name
->fcap
.inheritable
, 0, sizeof(kernel_cap_t
));
1904 rc
= get_vfs_caps_from_disk(dentry
, &caps
);
1908 name
->fcap
.permitted
= caps
.permitted
;
1909 name
->fcap
.inheritable
= caps
.inheritable
;
1910 name
->fcap
.fE
= !!(caps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
1911 name
->fcap_ver
= (caps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
1917 /* Copy inode data into an audit_names. */
1918 static void audit_copy_inode(struct audit_names
*name
, const struct dentry
*dentry
,
1919 const struct inode
*inode
)
1921 name
->ino
= inode
->i_ino
;
1922 name
->dev
= inode
->i_sb
->s_dev
;
1923 name
->mode
= inode
->i_mode
;
1924 name
->uid
= inode
->i_uid
;
1925 name
->gid
= inode
->i_gid
;
1926 name
->rdev
= inode
->i_rdev
;
1927 security_inode_getsecid(inode
, &name
->osid
);
1928 audit_copy_fcaps(name
, dentry
);
1932 * audit_inode - store the inode and device from a lookup
1933 * @name: name being audited
1934 * @dentry: dentry being audited
1936 * Called from fs/namei.c:path_lookup().
1938 void __audit_inode(const char *name
, const struct dentry
*dentry
)
1941 struct audit_context
*context
= current
->audit_context
;
1942 const struct inode
*inode
= dentry
->d_inode
;
1944 if (!context
->in_syscall
)
1946 if (context
->name_count
1947 && context
->names
[context
->name_count
-1].name
1948 && context
->names
[context
->name_count
-1].name
== name
)
1949 idx
= context
->name_count
- 1;
1950 else if (context
->name_count
> 1
1951 && context
->names
[context
->name_count
-2].name
1952 && context
->names
[context
->name_count
-2].name
== name
)
1953 idx
= context
->name_count
- 2;
1955 /* FIXME: how much do we care about inodes that have no
1956 * associated name? */
1957 if (audit_inc_name_count(context
, inode
))
1959 idx
= context
->name_count
- 1;
1960 context
->names
[idx
].name
= NULL
;
1962 handle_path(dentry
);
1963 audit_copy_inode(&context
->names
[idx
], dentry
, inode
);
1967 * audit_inode_child - collect inode info for created/removed objects
1968 * @dname: inode's dentry name
1969 * @dentry: dentry being audited
1970 * @parent: inode of dentry parent
1972 * For syscalls that create or remove filesystem objects, audit_inode
1973 * can only collect information for the filesystem object's parent.
1974 * This call updates the audit context with the child's information.
1975 * Syscalls that create a new filesystem object must be hooked after
1976 * the object is created. Syscalls that remove a filesystem object
1977 * must be hooked prior, in order to capture the target inode during
1978 * unsuccessful attempts.
1980 void __audit_inode_child(const char *dname
, const struct dentry
*dentry
,
1981 const struct inode
*parent
)
1984 struct audit_context
*context
= current
->audit_context
;
1985 const char *found_parent
= NULL
, *found_child
= NULL
;
1986 const struct inode
*inode
= dentry
->d_inode
;
1989 if (!context
->in_syscall
)
1994 /* determine matching parent */
1998 /* parent is more likely, look for it first */
1999 for (idx
= 0; idx
< context
->name_count
; idx
++) {
2000 struct audit_names
*n
= &context
->names
[idx
];
2005 if (n
->ino
== parent
->i_ino
&&
2006 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
2007 n
->name_len
= dirlen
; /* update parent data in place */
2008 found_parent
= n
->name
;
2013 /* no matching parent, look for matching child */
2014 for (idx
= 0; idx
< context
->name_count
; idx
++) {
2015 struct audit_names
*n
= &context
->names
[idx
];
2020 /* strcmp() is the more likely scenario */
2021 if (!strcmp(dname
, n
->name
) ||
2022 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
2024 audit_copy_inode(n
, NULL
, inode
);
2026 n
->ino
= (unsigned long)-1;
2027 found_child
= n
->name
;
2033 if (!found_parent
) {
2034 if (audit_inc_name_count(context
, parent
))
2036 idx
= context
->name_count
- 1;
2037 context
->names
[idx
].name
= NULL
;
2038 audit_copy_inode(&context
->names
[idx
], NULL
, parent
);
2042 if (audit_inc_name_count(context
, inode
))
2044 idx
= context
->name_count
- 1;
2046 /* Re-use the name belonging to the slot for a matching parent
2047 * directory. All names for this context are relinquished in
2048 * audit_free_names() */
2050 context
->names
[idx
].name
= found_parent
;
2051 context
->names
[idx
].name_len
= AUDIT_NAME_FULL
;
2052 /* don't call __putname() */
2053 context
->names
[idx
].name_put
= 0;
2055 context
->names
[idx
].name
= NULL
;
2059 audit_copy_inode(&context
->names
[idx
], NULL
, inode
);
2061 context
->names
[idx
].ino
= (unsigned long)-1;
2064 EXPORT_SYMBOL_GPL(__audit_inode_child
);
2067 * auditsc_get_stamp - get local copies of audit_context values
2068 * @ctx: audit_context for the task
2069 * @t: timespec to store time recorded in the audit_context
2070 * @serial: serial value that is recorded in the audit_context
2072 * Also sets the context as auditable.
2074 int auditsc_get_stamp(struct audit_context
*ctx
,
2075 struct timespec
*t
, unsigned int *serial
)
2077 if (!ctx
->in_syscall
)
2080 ctx
->serial
= audit_serial();
2081 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2082 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2083 *serial
= ctx
->serial
;
2088 /* global counter which is incremented every time something logs in */
2089 static atomic_t session_id
= ATOMIC_INIT(0);
2092 * audit_set_loginuid - set a task's audit_context loginuid
2093 * @task: task whose audit context is being modified
2094 * @loginuid: loginuid value
2098 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2100 int audit_set_loginuid(struct task_struct
*task
, uid_t loginuid
)
2102 unsigned int sessionid
= atomic_inc_return(&session_id
);
2103 struct audit_context
*context
= task
->audit_context
;
2105 if (context
&& context
->in_syscall
) {
2106 struct audit_buffer
*ab
;
2108 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
2110 audit_log_format(ab
, "login pid=%d uid=%u "
2111 "old auid=%u new auid=%u"
2112 " old ses=%u new ses=%u",
2113 task
->pid
, task_uid(task
),
2114 task
->loginuid
, loginuid
,
2115 task
->sessionid
, sessionid
);
2119 task
->sessionid
= sessionid
;
2120 task
->loginuid
= loginuid
;
2125 * __audit_mq_open - record audit data for a POSIX MQ open
2128 * @u_attr: queue attributes
2130 * Returns 0 for success or NULL context or < 0 on error.
2132 int __audit_mq_open(int oflag
, mode_t mode
, struct mq_attr __user
*u_attr
)
2134 struct audit_aux_data_mq_open
*ax
;
2135 struct audit_context
*context
= current
->audit_context
;
2140 if (likely(!context
))
2143 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2147 if (u_attr
!= NULL
) {
2148 if (copy_from_user(&ax
->attr
, u_attr
, sizeof(ax
->attr
))) {
2153 memset(&ax
->attr
, 0, sizeof(ax
->attr
));
2158 ax
->d
.type
= AUDIT_MQ_OPEN
;
2159 ax
->d
.next
= context
->aux
;
2160 context
->aux
= (void *)ax
;
2165 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2166 * @mqdes: MQ descriptor
2167 * @msg_len: Message length
2168 * @msg_prio: Message priority
2169 * @u_abs_timeout: Message timeout in absolute time
2171 * Returns 0 for success or NULL context or < 0 on error.
2173 int __audit_mq_timedsend(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2174 const struct timespec __user
*u_abs_timeout
)
2176 struct audit_aux_data_mq_sendrecv
*ax
;
2177 struct audit_context
*context
= current
->audit_context
;
2182 if (likely(!context
))
2185 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2189 if (u_abs_timeout
!= NULL
) {
2190 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2195 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2198 ax
->msg_len
= msg_len
;
2199 ax
->msg_prio
= msg_prio
;
2201 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2202 ax
->d
.next
= context
->aux
;
2203 context
->aux
= (void *)ax
;
2208 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2209 * @mqdes: MQ descriptor
2210 * @msg_len: Message length
2211 * @u_msg_prio: Message priority
2212 * @u_abs_timeout: Message timeout in absolute time
2214 * Returns 0 for success or NULL context or < 0 on error.
2216 int __audit_mq_timedreceive(mqd_t mqdes
, size_t msg_len
,
2217 unsigned int __user
*u_msg_prio
,
2218 const struct timespec __user
*u_abs_timeout
)
2220 struct audit_aux_data_mq_sendrecv
*ax
;
2221 struct audit_context
*context
= current
->audit_context
;
2226 if (likely(!context
))
2229 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2233 if (u_msg_prio
!= NULL
) {
2234 if (get_user(ax
->msg_prio
, u_msg_prio
)) {
2241 if (u_abs_timeout
!= NULL
) {
2242 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2247 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2250 ax
->msg_len
= msg_len
;
2252 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2253 ax
->d
.next
= context
->aux
;
2254 context
->aux
= (void *)ax
;
2259 * __audit_mq_notify - record audit data for a POSIX MQ notify
2260 * @mqdes: MQ descriptor
2261 * @u_notification: Notification event
2263 * Returns 0 for success or NULL context or < 0 on error.
2266 int __audit_mq_notify(mqd_t mqdes
, const struct sigevent __user
*u_notification
)
2268 struct audit_aux_data_mq_notify
*ax
;
2269 struct audit_context
*context
= current
->audit_context
;
2274 if (likely(!context
))
2277 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2281 if (u_notification
!= NULL
) {
2282 if (copy_from_user(&ax
->notification
, u_notification
, sizeof(ax
->notification
))) {
2287 memset(&ax
->notification
, 0, sizeof(ax
->notification
));
2291 ax
->d
.type
= AUDIT_MQ_NOTIFY
;
2292 ax
->d
.next
= context
->aux
;
2293 context
->aux
= (void *)ax
;
2298 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2299 * @mqdes: MQ descriptor
2302 * Returns 0 for success or NULL context or < 0 on error.
2304 int __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2306 struct audit_aux_data_mq_getsetattr
*ax
;
2307 struct audit_context
*context
= current
->audit_context
;
2312 if (likely(!context
))
2315 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2320 ax
->mqstat
= *mqstat
;
2322 ax
->d
.type
= AUDIT_MQ_GETSETATTR
;
2323 ax
->d
.next
= context
->aux
;
2324 context
->aux
= (void *)ax
;
2329 * audit_ipc_obj - record audit data for ipc object
2330 * @ipcp: ipc permissions
2332 * Returns 0 for success or NULL context or < 0 on error.
2334 int __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2336 struct audit_aux_data_ipcctl
*ax
;
2337 struct audit_context
*context
= current
->audit_context
;
2339 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2343 ax
->uid
= ipcp
->uid
;
2344 ax
->gid
= ipcp
->gid
;
2345 ax
->mode
= ipcp
->mode
;
2346 security_ipc_getsecid(ipcp
, &ax
->osid
);
2347 ax
->d
.type
= AUDIT_IPC
;
2348 ax
->d
.next
= context
->aux
;
2349 context
->aux
= (void *)ax
;
2354 * audit_ipc_set_perm - record audit data for new ipc permissions
2355 * @qbytes: msgq bytes
2356 * @uid: msgq user id
2357 * @gid: msgq group id
2358 * @mode: msgq mode (permissions)
2360 * Returns 0 for success or NULL context or < 0 on error.
2362 int __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, mode_t mode
)
2364 struct audit_aux_data_ipcctl
*ax
;
2365 struct audit_context
*context
= current
->audit_context
;
2367 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2371 ax
->qbytes
= qbytes
;
2376 ax
->d
.type
= AUDIT_IPC_SET_PERM
;
2377 ax
->d
.next
= context
->aux
;
2378 context
->aux
= (void *)ax
;
2382 int audit_bprm(struct linux_binprm
*bprm
)
2384 struct audit_aux_data_execve
*ax
;
2385 struct audit_context
*context
= current
->audit_context
;
2387 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
2390 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2394 ax
->argc
= bprm
->argc
;
2395 ax
->envc
= bprm
->envc
;
2397 ax
->d
.type
= AUDIT_EXECVE
;
2398 ax
->d
.next
= context
->aux
;
2399 context
->aux
= (void *)ax
;
2405 * audit_socketcall - record audit data for sys_socketcall
2406 * @nargs: number of args
2409 * Returns 0 for success or NULL context or < 0 on error.
2411 int audit_socketcall(int nargs
, unsigned long *args
)
2413 struct audit_aux_data_socketcall
*ax
;
2414 struct audit_context
*context
= current
->audit_context
;
2416 if (likely(!context
|| context
->dummy
))
2419 ax
= kmalloc(sizeof(*ax
) + nargs
* sizeof(unsigned long), GFP_KERNEL
);
2424 memcpy(ax
->args
, args
, nargs
* sizeof(unsigned long));
2426 ax
->d
.type
= AUDIT_SOCKETCALL
;
2427 ax
->d
.next
= context
->aux
;
2428 context
->aux
= (void *)ax
;
2433 * __audit_fd_pair - record audit data for pipe and socketpair
2434 * @fd1: the first file descriptor
2435 * @fd2: the second file descriptor
2437 * Returns 0 for success or NULL context or < 0 on error.
2439 int __audit_fd_pair(int fd1
, int fd2
)
2441 struct audit_context
*context
= current
->audit_context
;
2442 struct audit_aux_data_fd_pair
*ax
;
2444 if (likely(!context
)) {
2448 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2456 ax
->d
.type
= AUDIT_FD_PAIR
;
2457 ax
->d
.next
= context
->aux
;
2458 context
->aux
= (void *)ax
;
2463 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2464 * @len: data length in user space
2465 * @a: data address in kernel space
2467 * Returns 0 for success or NULL context or < 0 on error.
2469 int audit_sockaddr(int len
, void *a
)
2471 struct audit_aux_data_sockaddr
*ax
;
2472 struct audit_context
*context
= current
->audit_context
;
2474 if (likely(!context
|| context
->dummy
))
2477 ax
= kmalloc(sizeof(*ax
) + len
, GFP_KERNEL
);
2482 memcpy(ax
->a
, a
, len
);
2484 ax
->d
.type
= AUDIT_SOCKADDR
;
2485 ax
->d
.next
= context
->aux
;
2486 context
->aux
= (void *)ax
;
2490 void __audit_ptrace(struct task_struct
*t
)
2492 struct audit_context
*context
= current
->audit_context
;
2494 context
->target_pid
= t
->pid
;
2495 context
->target_auid
= audit_get_loginuid(t
);
2496 context
->target_uid
= task_uid(t
);
2497 context
->target_sessionid
= audit_get_sessionid(t
);
2498 security_task_getsecid(t
, &context
->target_sid
);
2499 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2503 * audit_signal_info - record signal info for shutting down audit subsystem
2504 * @sig: signal value
2505 * @t: task being signaled
2507 * If the audit subsystem is being terminated, record the task (pid)
2508 * and uid that is doing that.
2510 int __audit_signal_info(int sig
, struct task_struct
*t
)
2512 struct audit_aux_data_pids
*axp
;
2513 struct task_struct
*tsk
= current
;
2514 struct audit_context
*ctx
= tsk
->audit_context
;
2515 uid_t uid
= current_uid(), t_uid
= task_uid(t
);
2517 if (audit_pid
&& t
->tgid
== audit_pid
) {
2518 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2519 audit_sig_pid
= tsk
->pid
;
2520 if (tsk
->loginuid
!= -1)
2521 audit_sig_uid
= tsk
->loginuid
;
2523 audit_sig_uid
= uid
;
2524 security_task_getsecid(tsk
, &audit_sig_sid
);
2526 if (!audit_signals
|| audit_dummy_context())
2530 /* optimize the common case by putting first signal recipient directly
2531 * in audit_context */
2532 if (!ctx
->target_pid
) {
2533 ctx
->target_pid
= t
->tgid
;
2534 ctx
->target_auid
= audit_get_loginuid(t
);
2535 ctx
->target_uid
= t_uid
;
2536 ctx
->target_sessionid
= audit_get_sessionid(t
);
2537 security_task_getsecid(t
, &ctx
->target_sid
);
2538 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2542 axp
= (void *)ctx
->aux_pids
;
2543 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2544 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2548 axp
->d
.type
= AUDIT_OBJ_PID
;
2549 axp
->d
.next
= ctx
->aux_pids
;
2550 ctx
->aux_pids
= (void *)axp
;
2552 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2554 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2555 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2556 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2557 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2558 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2559 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2566 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2567 * @bprm: pointer to the bprm being processed
2568 * @new: the proposed new credentials
2569 * @old: the old credentials
2571 * Simply check if the proc already has the caps given by the file and if not
2572 * store the priv escalation info for later auditing at the end of the syscall
2576 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2577 const struct cred
*new, const struct cred
*old
)
2579 struct audit_aux_data_bprm_fcaps
*ax
;
2580 struct audit_context
*context
= current
->audit_context
;
2581 struct cpu_vfs_cap_data vcaps
;
2582 struct dentry
*dentry
;
2584 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2588 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2589 ax
->d
.next
= context
->aux
;
2590 context
->aux
= (void *)ax
;
2592 dentry
= dget(bprm
->file
->f_dentry
);
2593 get_vfs_caps_from_disk(dentry
, &vcaps
);
2596 ax
->fcap
.permitted
= vcaps
.permitted
;
2597 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2598 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2599 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2601 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2602 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2603 ax
->old_pcap
.effective
= old
->cap_effective
;
2605 ax
->new_pcap
.permitted
= new->cap_permitted
;
2606 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2607 ax
->new_pcap
.effective
= new->cap_effective
;
2612 * __audit_log_capset - store information about the arguments to the capset syscall
2613 * @pid: target pid of the capset call
2614 * @new: the new credentials
2615 * @old: the old (current) credentials
2617 * Record the aguments userspace sent to sys_capset for later printing by the
2618 * audit system if applicable
2620 int __audit_log_capset(pid_t pid
,
2621 const struct cred
*new, const struct cred
*old
)
2623 struct audit_aux_data_capset
*ax
;
2624 struct audit_context
*context
= current
->audit_context
;
2626 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
2629 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2633 ax
->d
.type
= AUDIT_CAPSET
;
2634 ax
->d
.next
= context
->aux
;
2635 context
->aux
= (void *)ax
;
2638 ax
->cap
.effective
= new->cap_effective
;
2639 ax
->cap
.inheritable
= new->cap_effective
;
2640 ax
->cap
.permitted
= new->cap_permitted
;
2646 * audit_core_dumps - record information about processes that end abnormally
2647 * @signr: signal value
2649 * If a process ends with a core dump, something fishy is going on and we
2650 * should record the event for investigation.
2652 void audit_core_dumps(long signr
)
2654 struct audit_buffer
*ab
;
2656 uid_t auid
= audit_get_loginuid(current
), uid
;
2658 unsigned int sessionid
= audit_get_sessionid(current
);
2663 if (signr
== SIGQUIT
) /* don't care for those */
2666 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2667 current_uid_gid(&uid
, &gid
);
2668 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2669 auid
, uid
, gid
, sessionid
);
2670 security_task_getsecid(current
, &sid
);
2675 if (security_secid_to_secctx(sid
, &ctx
, &len
))
2676 audit_log_format(ab
, " ssid=%u", sid
);
2678 audit_log_format(ab
, " subj=%s", ctx
);
2679 security_release_secctx(ctx
, len
);
2682 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2683 audit_log_untrustedstring(ab
, current
->comm
);
2684 audit_log_format(ab
, " sig=%ld", signr
);