x86: voluntary leave_mm before entering ACPI C3
[linux-2.6/mini2440.git] / arch / x86 / kernel / smp_64.c
blob2fd74b06db67093cc3b7789534f30d81b6912346
1 /*
2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 * (c) 2002,2003 Andi Kleen, SuSE Labs.
8 * This code is released under the GNU General Public License version 2 or
9 * later.
12 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/spinlock.h>
17 #include <linux/smp.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mc146818rtc.h>
20 #include <linux/interrupt.h>
22 #include <asm/mtrr.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mach_apic.h>
26 #include <asm/mmu_context.h>
27 #include <asm/proto.h>
28 #include <asm/apicdef.h>
29 #include <asm/idle.h>
32 * Smarter SMP flushing macros.
33 * c/o Linus Torvalds.
35 * These mean you can really definitely utterly forget about
36 * writing to user space from interrupts. (Its not allowed anyway).
38 * Optimizations Manfred Spraul <manfred@colorfullife.com>
40 * More scalable flush, from Andi Kleen
42 * To avoid global state use 8 different call vectors.
43 * Each CPU uses a specific vector to trigger flushes on other
44 * CPUs. Depending on the received vector the target CPUs look into
45 * the right per cpu variable for the flush data.
47 * With more than 8 CPUs they are hashed to the 8 available
48 * vectors. The limited global vector space forces us to this right now.
49 * In future when interrupts are split into per CPU domains this could be
50 * fixed, at the cost of triggering multiple IPIs in some cases.
53 union smp_flush_state {
54 struct {
55 cpumask_t flush_cpumask;
56 struct mm_struct *flush_mm;
57 unsigned long flush_va;
58 spinlock_t tlbstate_lock;
60 char pad[SMP_CACHE_BYTES];
61 } ____cacheline_aligned;
63 /* State is put into the per CPU data section, but padded
64 to a full cache line because other CPUs can access it and we don't
65 want false sharing in the per cpu data segment. */
66 static DEFINE_PER_CPU(union smp_flush_state, flush_state);
69 * We cannot call mmdrop() because we are in interrupt context,
70 * instead update mm->cpu_vm_mask.
72 void leave_mm(int cpu)
74 if (read_pda(mmu_state) == TLBSTATE_OK)
75 BUG();
76 cpu_clear(cpu, read_pda(active_mm)->cpu_vm_mask);
77 load_cr3(swapper_pg_dir);
79 EXPORT_SYMBOL_GPL(leave_mm);
83 * The flush IPI assumes that a thread switch happens in this order:
84 * [cpu0: the cpu that switches]
85 * 1) switch_mm() either 1a) or 1b)
86 * 1a) thread switch to a different mm
87 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
88 * Stop ipi delivery for the old mm. This is not synchronized with
89 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
90 * for the wrong mm, and in the worst case we perform a superfluous
91 * tlb flush.
92 * 1a2) set cpu mmu_state to TLBSTATE_OK
93 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
94 * was in lazy tlb mode.
95 * 1a3) update cpu active_mm
96 * Now cpu0 accepts tlb flushes for the new mm.
97 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
98 * Now the other cpus will send tlb flush ipis.
99 * 1a4) change cr3.
100 * 1b) thread switch without mm change
101 * cpu active_mm is correct, cpu0 already handles
102 * flush ipis.
103 * 1b1) set cpu mmu_state to TLBSTATE_OK
104 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
105 * Atomically set the bit [other cpus will start sending flush ipis],
106 * and test the bit.
107 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
108 * 2) switch %%esp, ie current
110 * The interrupt must handle 2 special cases:
111 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
112 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
113 * runs in kernel space, the cpu could load tlb entries for user space
114 * pages.
116 * The good news is that cpu mmu_state is local to each cpu, no
117 * write/read ordering problems.
121 * TLB flush IPI:
123 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
124 * 2) Leave the mm if we are in the lazy tlb mode.
126 * Interrupts are disabled.
129 asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
131 int cpu;
132 int sender;
133 union smp_flush_state *f;
135 cpu = smp_processor_id();
137 * orig_rax contains the negated interrupt vector.
138 * Use that to determine where the sender put the data.
140 sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
141 f = &per_cpu(flush_state, sender);
143 if (!cpu_isset(cpu, f->flush_cpumask))
144 goto out;
146 * This was a BUG() but until someone can quote me the
147 * line from the intel manual that guarantees an IPI to
148 * multiple CPUs is retried _only_ on the erroring CPUs
149 * its staying as a return
151 * BUG();
154 if (f->flush_mm == read_pda(active_mm)) {
155 if (read_pda(mmu_state) == TLBSTATE_OK) {
156 if (f->flush_va == TLB_FLUSH_ALL)
157 local_flush_tlb();
158 else
159 __flush_tlb_one(f->flush_va);
160 } else
161 leave_mm(cpu);
163 out:
164 ack_APIC_irq();
165 cpu_clear(cpu, f->flush_cpumask);
166 add_pda(irq_tlb_count, 1);
169 void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
170 unsigned long va)
172 int sender;
173 union smp_flush_state *f;
174 cpumask_t cpumask = *cpumaskp;
176 /* Caller has disabled preemption */
177 sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
178 f = &per_cpu(flush_state, sender);
181 * Could avoid this lock when
182 * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
183 * probably not worth checking this for a cache-hot lock.
185 spin_lock(&f->tlbstate_lock);
187 f->flush_mm = mm;
188 f->flush_va = va;
189 cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask);
192 * We have to send the IPI only to
193 * CPUs affected.
195 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender);
197 while (!cpus_empty(f->flush_cpumask))
198 cpu_relax();
200 f->flush_mm = NULL;
201 f->flush_va = 0;
202 spin_unlock(&f->tlbstate_lock);
205 int __cpuinit init_smp_flush(void)
207 int i;
209 for_each_cpu_mask(i, cpu_possible_map) {
210 spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock);
212 return 0;
214 core_initcall(init_smp_flush);
216 void flush_tlb_current_task(void)
218 struct mm_struct *mm = current->mm;
219 cpumask_t cpu_mask;
221 preempt_disable();
222 cpu_mask = mm->cpu_vm_mask;
223 cpu_clear(smp_processor_id(), cpu_mask);
225 local_flush_tlb();
226 if (!cpus_empty(cpu_mask))
227 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
228 preempt_enable();
231 void flush_tlb_mm (struct mm_struct * mm)
233 cpumask_t cpu_mask;
235 preempt_disable();
236 cpu_mask = mm->cpu_vm_mask;
237 cpu_clear(smp_processor_id(), cpu_mask);
239 if (current->active_mm == mm) {
240 if (current->mm)
241 local_flush_tlb();
242 else
243 leave_mm(smp_processor_id());
245 if (!cpus_empty(cpu_mask))
246 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
248 preempt_enable();
251 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
253 struct mm_struct *mm = vma->vm_mm;
254 cpumask_t cpu_mask;
256 preempt_disable();
257 cpu_mask = mm->cpu_vm_mask;
258 cpu_clear(smp_processor_id(), cpu_mask);
260 if (current->active_mm == mm) {
261 if(current->mm)
262 __flush_tlb_one(va);
263 else
264 leave_mm(smp_processor_id());
267 if (!cpus_empty(cpu_mask))
268 flush_tlb_others(cpu_mask, mm, va);
270 preempt_enable();
273 static void do_flush_tlb_all(void* info)
275 unsigned long cpu = smp_processor_id();
277 __flush_tlb_all();
278 if (read_pda(mmu_state) == TLBSTATE_LAZY)
279 leave_mm(cpu);
282 void flush_tlb_all(void)
284 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
288 * this function sends a 'reschedule' IPI to another CPU.
289 * it goes straight through and wastes no time serializing
290 * anything. Worst case is that we lose a reschedule ...
293 void smp_send_reschedule(int cpu)
295 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
299 * Structure and data for smp_call_function(). This is designed to minimise
300 * static memory requirements. It also looks cleaner.
302 static DEFINE_SPINLOCK(call_lock);
304 struct call_data_struct {
305 void (*func) (void *info);
306 void *info;
307 atomic_t started;
308 atomic_t finished;
309 int wait;
312 static struct call_data_struct * call_data;
314 void lock_ipi_call_lock(void)
316 spin_lock_irq(&call_lock);
319 void unlock_ipi_call_lock(void)
321 spin_unlock_irq(&call_lock);
325 * this function sends a 'generic call function' IPI to all other CPU
326 * of the system defined in the mask.
328 static int __smp_call_function_mask(cpumask_t mask,
329 void (*func)(void *), void *info,
330 int wait)
332 struct call_data_struct data;
333 cpumask_t allbutself;
334 int cpus;
336 allbutself = cpu_online_map;
337 cpu_clear(smp_processor_id(), allbutself);
339 cpus_and(mask, mask, allbutself);
340 cpus = cpus_weight(mask);
342 if (!cpus)
343 return 0;
345 data.func = func;
346 data.info = info;
347 atomic_set(&data.started, 0);
348 data.wait = wait;
349 if (wait)
350 atomic_set(&data.finished, 0);
352 call_data = &data;
353 wmb();
355 /* Send a message to other CPUs */
356 if (cpus_equal(mask, allbutself))
357 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
358 else
359 send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
361 /* Wait for response */
362 while (atomic_read(&data.started) != cpus)
363 cpu_relax();
365 if (!wait)
366 return 0;
368 while (atomic_read(&data.finished) != cpus)
369 cpu_relax();
371 return 0;
374 * smp_call_function_mask(): Run a function on a set of other CPUs.
375 * @mask: The set of cpus to run on. Must not include the current cpu.
376 * @func: The function to run. This must be fast and non-blocking.
377 * @info: An arbitrary pointer to pass to the function.
378 * @wait: If true, wait (atomically) until function has completed on other CPUs.
380 * Returns 0 on success, else a negative status code.
382 * If @wait is true, then returns once @func has returned; otherwise
383 * it returns just before the target cpu calls @func.
385 * You must not call this function with disabled interrupts or from a
386 * hardware interrupt handler or from a bottom half handler.
388 int smp_call_function_mask(cpumask_t mask,
389 void (*func)(void *), void *info,
390 int wait)
392 int ret;
394 /* Can deadlock when called with interrupts disabled */
395 WARN_ON(irqs_disabled());
397 spin_lock(&call_lock);
398 ret = __smp_call_function_mask(mask, func, info, wait);
399 spin_unlock(&call_lock);
400 return ret;
402 EXPORT_SYMBOL(smp_call_function_mask);
405 * smp_call_function_single - Run a function on a specific CPU
406 * @func: The function to run. This must be fast and non-blocking.
407 * @info: An arbitrary pointer to pass to the function.
408 * @nonatomic: Currently unused.
409 * @wait: If true, wait until function has completed on other CPUs.
411 * Retrurns 0 on success, else a negative status code.
413 * Does not return until the remote CPU is nearly ready to execute <func>
414 * or is or has executed.
417 int smp_call_function_single (int cpu, void (*func) (void *info), void *info,
418 int nonatomic, int wait)
420 /* prevent preemption and reschedule on another processor */
421 int ret, me = get_cpu();
423 /* Can deadlock when called with interrupts disabled */
424 WARN_ON(irqs_disabled());
426 if (cpu == me) {
427 local_irq_disable();
428 func(info);
429 local_irq_enable();
430 put_cpu();
431 return 0;
434 ret = smp_call_function_mask(cpumask_of_cpu(cpu), func, info, wait);
436 put_cpu();
437 return ret;
439 EXPORT_SYMBOL(smp_call_function_single);
442 * smp_call_function - run a function on all other CPUs.
443 * @func: The function to run. This must be fast and non-blocking.
444 * @info: An arbitrary pointer to pass to the function.
445 * @nonatomic: currently unused.
446 * @wait: If true, wait (atomically) until function has completed on other
447 * CPUs.
449 * Returns 0 on success, else a negative status code. Does not return until
450 * remote CPUs are nearly ready to execute func or are or have executed.
452 * You must not call this function with disabled interrupts or from a
453 * hardware interrupt handler or from a bottom half handler.
454 * Actually there are a few legal cases, like panic.
456 int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
457 int wait)
459 return smp_call_function_mask(cpu_online_map, func, info, wait);
461 EXPORT_SYMBOL(smp_call_function);
463 static void stop_this_cpu(void *dummy)
465 local_irq_disable();
467 * Remove this CPU:
469 cpu_clear(smp_processor_id(), cpu_online_map);
470 disable_local_APIC();
471 for (;;)
472 halt();
475 void smp_send_stop(void)
477 int nolock;
478 unsigned long flags;
480 if (reboot_force)
481 return;
483 /* Don't deadlock on the call lock in panic */
484 nolock = !spin_trylock(&call_lock);
485 local_irq_save(flags);
486 __smp_call_function_mask(cpu_online_map, stop_this_cpu, NULL, 0);
487 if (!nolock)
488 spin_unlock(&call_lock);
489 disable_local_APIC();
490 local_irq_restore(flags);
494 * Reschedule call back. Nothing to do,
495 * all the work is done automatically when
496 * we return from the interrupt.
498 asmlinkage void smp_reschedule_interrupt(void)
500 ack_APIC_irq();
501 add_pda(irq_resched_count, 1);
504 asmlinkage void smp_call_function_interrupt(void)
506 void (*func) (void *info) = call_data->func;
507 void *info = call_data->info;
508 int wait = call_data->wait;
510 ack_APIC_irq();
512 * Notify initiating CPU that I've grabbed the data and am
513 * about to execute the function
515 mb();
516 atomic_inc(&call_data->started);
518 * At this point the info structure may be out of scope unless wait==1
520 exit_idle();
521 irq_enter();
522 (*func)(info);
523 add_pda(irq_call_count, 1);
524 irq_exit();
525 if (wait) {
526 mb();
527 atomic_inc(&call_data->finished);