2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/kthread.h>
49 #include <linux/raid/bitmap.h>
50 #include <linux/async_tx.h>
56 #define NR_STRIPES 256
57 #define STRIPE_SIZE PAGE_SIZE
58 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
59 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
60 #define IO_THRESHOLD 1
61 #define BYPASS_THRESHOLD 1
62 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
63 #define HASH_MASK (NR_HASH - 1)
65 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
67 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
68 * order without overlap. There may be several bio's per stripe+device, and
69 * a bio could span several devices.
70 * When walking this list for a particular stripe+device, we must never proceed
71 * beyond a bio that extends past this device, as the next bio might no longer
73 * This macro is used to determine the 'next' bio in the list, given the sector
74 * of the current stripe+device
76 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
78 * The following can be used to debug the driver
80 #define RAID5_PARANOIA 1
81 #if RAID5_PARANOIA && defined(CONFIG_SMP)
82 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
84 # define CHECK_DEVLOCK()
92 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
94 #if !RAID6_USE_EMPTY_ZERO_PAGE
95 /* In .bss so it's zeroed */
96 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
100 * We maintain a biased count of active stripes in the bottom 16 bits of
101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 static inline int raid5_bi_phys_segments(struct bio
*bio
)
105 return bio
->bi_phys_segments
& 0xffff;
108 static inline int raid5_bi_hw_segments(struct bio
*bio
)
110 return (bio
->bi_phys_segments
>> 16) & 0xffff;
113 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
115 --bio
->bi_phys_segments
;
116 return raid5_bi_phys_segments(bio
);
119 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
121 unsigned short val
= raid5_bi_hw_segments(bio
);
124 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
128 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
130 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) || (cnt
<< 16);
133 static inline int raid6_next_disk(int disk
, int raid_disks
)
136 return (disk
< raid_disks
) ? disk
: 0;
139 static void return_io(struct bio
*return_bi
)
141 struct bio
*bi
= return_bi
;
144 return_bi
= bi
->bi_next
;
152 static void print_raid5_conf (raid5_conf_t
*conf
);
154 static int stripe_operations_active(struct stripe_head
*sh
)
156 return sh
->check_state
|| sh
->reconstruct_state
||
157 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
158 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
161 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
163 if (atomic_dec_and_test(&sh
->count
)) {
164 BUG_ON(!list_empty(&sh
->lru
));
165 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
166 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
167 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
168 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
169 blk_plug_device(conf
->mddev
->queue
);
170 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
171 sh
->bm_seq
- conf
->seq_write
> 0) {
172 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
173 blk_plug_device(conf
->mddev
->queue
);
175 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
176 list_add_tail(&sh
->lru
, &conf
->handle_list
);
178 md_wakeup_thread(conf
->mddev
->thread
);
180 BUG_ON(stripe_operations_active(sh
));
181 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
182 atomic_dec(&conf
->preread_active_stripes
);
183 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
184 md_wakeup_thread(conf
->mddev
->thread
);
186 atomic_dec(&conf
->active_stripes
);
187 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
188 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
189 wake_up(&conf
->wait_for_stripe
);
190 if (conf
->retry_read_aligned
)
191 md_wakeup_thread(conf
->mddev
->thread
);
196 static void release_stripe(struct stripe_head
*sh
)
198 raid5_conf_t
*conf
= sh
->raid_conf
;
201 spin_lock_irqsave(&conf
->device_lock
, flags
);
202 __release_stripe(conf
, sh
);
203 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
206 static inline void remove_hash(struct stripe_head
*sh
)
208 pr_debug("remove_hash(), stripe %llu\n",
209 (unsigned long long)sh
->sector
);
211 hlist_del_init(&sh
->hash
);
214 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
216 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
218 pr_debug("insert_hash(), stripe %llu\n",
219 (unsigned long long)sh
->sector
);
222 hlist_add_head(&sh
->hash
, hp
);
226 /* find an idle stripe, make sure it is unhashed, and return it. */
227 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
229 struct stripe_head
*sh
= NULL
;
230 struct list_head
*first
;
233 if (list_empty(&conf
->inactive_list
))
235 first
= conf
->inactive_list
.next
;
236 sh
= list_entry(first
, struct stripe_head
, lru
);
237 list_del_init(first
);
239 atomic_inc(&conf
->active_stripes
);
244 static void shrink_buffers(struct stripe_head
*sh
, int num
)
249 for (i
=0; i
<num
; i
++) {
253 sh
->dev
[i
].page
= NULL
;
258 static int grow_buffers(struct stripe_head
*sh
, int num
)
262 for (i
=0; i
<num
; i
++) {
265 if (!(page
= alloc_page(GFP_KERNEL
))) {
268 sh
->dev
[i
].page
= page
;
273 static void raid5_build_block(struct stripe_head
*sh
, int i
);
275 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int pd_idx
, int disks
)
277 raid5_conf_t
*conf
= sh
->raid_conf
;
280 BUG_ON(atomic_read(&sh
->count
) != 0);
281 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
282 BUG_ON(stripe_operations_active(sh
));
285 pr_debug("init_stripe called, stripe %llu\n",
286 (unsigned long long)sh
->sector
);
296 for (i
= sh
->disks
; i
--; ) {
297 struct r5dev
*dev
= &sh
->dev
[i
];
299 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
300 test_bit(R5_LOCKED
, &dev
->flags
)) {
301 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
302 (unsigned long long)sh
->sector
, i
, dev
->toread
,
303 dev
->read
, dev
->towrite
, dev
->written
,
304 test_bit(R5_LOCKED
, &dev
->flags
));
308 raid5_build_block(sh
, i
);
310 insert_hash(conf
, sh
);
313 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
)
315 struct stripe_head
*sh
;
316 struct hlist_node
*hn
;
319 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
320 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
321 if (sh
->sector
== sector
&& sh
->disks
== disks
)
323 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
327 static void unplug_slaves(mddev_t
*mddev
);
328 static void raid5_unplug_device(struct request_queue
*q
);
330 static struct stripe_head
*get_active_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
,
331 int pd_idx
, int noblock
)
333 struct stripe_head
*sh
;
335 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
337 spin_lock_irq(&conf
->device_lock
);
340 wait_event_lock_irq(conf
->wait_for_stripe
,
342 conf
->device_lock
, /* nothing */);
343 sh
= __find_stripe(conf
, sector
, disks
);
345 if (!conf
->inactive_blocked
)
346 sh
= get_free_stripe(conf
);
347 if (noblock
&& sh
== NULL
)
350 conf
->inactive_blocked
= 1;
351 wait_event_lock_irq(conf
->wait_for_stripe
,
352 !list_empty(&conf
->inactive_list
) &&
353 (atomic_read(&conf
->active_stripes
)
354 < (conf
->max_nr_stripes
*3/4)
355 || !conf
->inactive_blocked
),
357 raid5_unplug_device(conf
->mddev
->queue
)
359 conf
->inactive_blocked
= 0;
361 init_stripe(sh
, sector
, pd_idx
, disks
);
363 if (atomic_read(&sh
->count
)) {
364 BUG_ON(!list_empty(&sh
->lru
));
366 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
367 atomic_inc(&conf
->active_stripes
);
368 if (list_empty(&sh
->lru
) &&
369 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
371 list_del_init(&sh
->lru
);
374 } while (sh
== NULL
);
377 atomic_inc(&sh
->count
);
379 spin_unlock_irq(&conf
->device_lock
);
384 raid5_end_read_request(struct bio
*bi
, int error
);
386 raid5_end_write_request(struct bio
*bi
, int error
);
388 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
390 raid5_conf_t
*conf
= sh
->raid_conf
;
391 int i
, disks
= sh
->disks
;
395 for (i
= disks
; i
--; ) {
399 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
401 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
406 bi
= &sh
->dev
[i
].req
;
410 bi
->bi_end_io
= raid5_end_write_request
;
412 bi
->bi_end_io
= raid5_end_read_request
;
415 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
416 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
419 atomic_inc(&rdev
->nr_pending
);
423 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
424 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
426 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
428 bi
->bi_bdev
= rdev
->bdev
;
429 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
430 __func__
, (unsigned long long)sh
->sector
,
432 atomic_inc(&sh
->count
);
433 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
434 bi
->bi_flags
= 1 << BIO_UPTODATE
;
438 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
439 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
440 bi
->bi_io_vec
[0].bv_offset
= 0;
441 bi
->bi_size
= STRIPE_SIZE
;
444 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
445 atomic_add(STRIPE_SECTORS
,
446 &rdev
->corrected_errors
);
447 generic_make_request(bi
);
450 set_bit(STRIPE_DEGRADED
, &sh
->state
);
451 pr_debug("skip op %ld on disc %d for sector %llu\n",
452 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
453 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
454 set_bit(STRIPE_HANDLE
, &sh
->state
);
459 static struct dma_async_tx_descriptor
*
460 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
461 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
464 struct page
*bio_page
;
468 if (bio
->bi_sector
>= sector
)
469 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
471 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
472 bio_for_each_segment(bvl
, bio
, i
) {
473 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
477 if (page_offset
< 0) {
478 b_offset
= -page_offset
;
479 page_offset
+= b_offset
;
483 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
484 clen
= STRIPE_SIZE
- page_offset
;
489 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
490 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
492 tx
= async_memcpy(page
, bio_page
, page_offset
,
497 tx
= async_memcpy(bio_page
, page
, b_offset
,
502 if (clen
< len
) /* hit end of page */
510 static void ops_complete_biofill(void *stripe_head_ref
)
512 struct stripe_head
*sh
= stripe_head_ref
;
513 struct bio
*return_bi
= NULL
;
514 raid5_conf_t
*conf
= sh
->raid_conf
;
517 pr_debug("%s: stripe %llu\n", __func__
,
518 (unsigned long long)sh
->sector
);
520 /* clear completed biofills */
521 spin_lock_irq(&conf
->device_lock
);
522 for (i
= sh
->disks
; i
--; ) {
523 struct r5dev
*dev
= &sh
->dev
[i
];
525 /* acknowledge completion of a biofill operation */
526 /* and check if we need to reply to a read request,
527 * new R5_Wantfill requests are held off until
528 * !STRIPE_BIOFILL_RUN
530 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
531 struct bio
*rbi
, *rbi2
;
536 while (rbi
&& rbi
->bi_sector
<
537 dev
->sector
+ STRIPE_SECTORS
) {
538 rbi2
= r5_next_bio(rbi
, dev
->sector
);
539 if (!raid5_dec_bi_phys_segments(rbi
)) {
540 rbi
->bi_next
= return_bi
;
547 spin_unlock_irq(&conf
->device_lock
);
548 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
550 return_io(return_bi
);
552 set_bit(STRIPE_HANDLE
, &sh
->state
);
556 static void ops_run_biofill(struct stripe_head
*sh
)
558 struct dma_async_tx_descriptor
*tx
= NULL
;
559 raid5_conf_t
*conf
= sh
->raid_conf
;
562 pr_debug("%s: stripe %llu\n", __func__
,
563 (unsigned long long)sh
->sector
);
565 for (i
= sh
->disks
; i
--; ) {
566 struct r5dev
*dev
= &sh
->dev
[i
];
567 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
569 spin_lock_irq(&conf
->device_lock
);
570 dev
->read
= rbi
= dev
->toread
;
572 spin_unlock_irq(&conf
->device_lock
);
573 while (rbi
&& rbi
->bi_sector
<
574 dev
->sector
+ STRIPE_SECTORS
) {
575 tx
= async_copy_data(0, rbi
, dev
->page
,
577 rbi
= r5_next_bio(rbi
, dev
->sector
);
582 atomic_inc(&sh
->count
);
583 async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
584 ops_complete_biofill
, sh
);
587 static void ops_complete_compute5(void *stripe_head_ref
)
589 struct stripe_head
*sh
= stripe_head_ref
;
590 int target
= sh
->ops
.target
;
591 struct r5dev
*tgt
= &sh
->dev
[target
];
593 pr_debug("%s: stripe %llu\n", __func__
,
594 (unsigned long long)sh
->sector
);
596 set_bit(R5_UPTODATE
, &tgt
->flags
);
597 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
598 clear_bit(R5_Wantcompute
, &tgt
->flags
);
599 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
600 if (sh
->check_state
== check_state_compute_run
)
601 sh
->check_state
= check_state_compute_result
;
602 set_bit(STRIPE_HANDLE
, &sh
->state
);
606 static struct dma_async_tx_descriptor
*ops_run_compute5(struct stripe_head
*sh
)
608 /* kernel stack size limits the total number of disks */
609 int disks
= sh
->disks
;
610 struct page
*xor_srcs
[disks
];
611 int target
= sh
->ops
.target
;
612 struct r5dev
*tgt
= &sh
->dev
[target
];
613 struct page
*xor_dest
= tgt
->page
;
615 struct dma_async_tx_descriptor
*tx
;
618 pr_debug("%s: stripe %llu block: %d\n",
619 __func__
, (unsigned long long)sh
->sector
, target
);
620 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
622 for (i
= disks
; i
--; )
624 xor_srcs
[count
++] = sh
->dev
[i
].page
;
626 atomic_inc(&sh
->count
);
628 if (unlikely(count
== 1))
629 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
630 0, NULL
, ops_complete_compute5
, sh
);
632 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
633 ASYNC_TX_XOR_ZERO_DST
, NULL
,
634 ops_complete_compute5
, sh
);
639 static void ops_complete_prexor(void *stripe_head_ref
)
641 struct stripe_head
*sh
= stripe_head_ref
;
643 pr_debug("%s: stripe %llu\n", __func__
,
644 (unsigned long long)sh
->sector
);
647 static struct dma_async_tx_descriptor
*
648 ops_run_prexor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
650 /* kernel stack size limits the total number of disks */
651 int disks
= sh
->disks
;
652 struct page
*xor_srcs
[disks
];
653 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
655 /* existing parity data subtracted */
656 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
658 pr_debug("%s: stripe %llu\n", __func__
,
659 (unsigned long long)sh
->sector
);
661 for (i
= disks
; i
--; ) {
662 struct r5dev
*dev
= &sh
->dev
[i
];
663 /* Only process blocks that are known to be uptodate */
664 if (test_bit(R5_Wantdrain
, &dev
->flags
))
665 xor_srcs
[count
++] = dev
->page
;
668 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
669 ASYNC_TX_DEP_ACK
| ASYNC_TX_XOR_DROP_DST
, tx
,
670 ops_complete_prexor
, sh
);
675 static struct dma_async_tx_descriptor
*
676 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
678 int disks
= sh
->disks
;
681 pr_debug("%s: stripe %llu\n", __func__
,
682 (unsigned long long)sh
->sector
);
684 for (i
= disks
; i
--; ) {
685 struct r5dev
*dev
= &sh
->dev
[i
];
688 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
691 spin_lock(&sh
->lock
);
692 chosen
= dev
->towrite
;
694 BUG_ON(dev
->written
);
695 wbi
= dev
->written
= chosen
;
696 spin_unlock(&sh
->lock
);
698 while (wbi
&& wbi
->bi_sector
<
699 dev
->sector
+ STRIPE_SECTORS
) {
700 tx
= async_copy_data(1, wbi
, dev
->page
,
702 wbi
= r5_next_bio(wbi
, dev
->sector
);
710 static void ops_complete_postxor(void *stripe_head_ref
)
712 struct stripe_head
*sh
= stripe_head_ref
;
713 int disks
= sh
->disks
, i
, pd_idx
= sh
->pd_idx
;
715 pr_debug("%s: stripe %llu\n", __func__
,
716 (unsigned long long)sh
->sector
);
718 for (i
= disks
; i
--; ) {
719 struct r5dev
*dev
= &sh
->dev
[i
];
720 if (dev
->written
|| i
== pd_idx
)
721 set_bit(R5_UPTODATE
, &dev
->flags
);
724 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
725 sh
->reconstruct_state
= reconstruct_state_drain_result
;
726 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
727 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
729 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
730 sh
->reconstruct_state
= reconstruct_state_result
;
733 set_bit(STRIPE_HANDLE
, &sh
->state
);
738 ops_run_postxor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
740 /* kernel stack size limits the total number of disks */
741 int disks
= sh
->disks
;
742 struct page
*xor_srcs
[disks
];
744 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
745 struct page
*xor_dest
;
749 pr_debug("%s: stripe %llu\n", __func__
,
750 (unsigned long long)sh
->sector
);
752 /* check if prexor is active which means only process blocks
753 * that are part of a read-modify-write (written)
755 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
757 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
758 for (i
= disks
; i
--; ) {
759 struct r5dev
*dev
= &sh
->dev
[i
];
761 xor_srcs
[count
++] = dev
->page
;
764 xor_dest
= sh
->dev
[pd_idx
].page
;
765 for (i
= disks
; i
--; ) {
766 struct r5dev
*dev
= &sh
->dev
[i
];
768 xor_srcs
[count
++] = dev
->page
;
772 /* 1/ if we prexor'd then the dest is reused as a source
773 * 2/ if we did not prexor then we are redoing the parity
774 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
775 * for the synchronous xor case
777 flags
= ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
|
778 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
780 atomic_inc(&sh
->count
);
782 if (unlikely(count
== 1)) {
783 flags
&= ~(ASYNC_TX_XOR_DROP_DST
| ASYNC_TX_XOR_ZERO_DST
);
784 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
785 flags
, tx
, ops_complete_postxor
, sh
);
787 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
788 flags
, tx
, ops_complete_postxor
, sh
);
791 static void ops_complete_check(void *stripe_head_ref
)
793 struct stripe_head
*sh
= stripe_head_ref
;
795 pr_debug("%s: stripe %llu\n", __func__
,
796 (unsigned long long)sh
->sector
);
798 sh
->check_state
= check_state_check_result
;
799 set_bit(STRIPE_HANDLE
, &sh
->state
);
803 static void ops_run_check(struct stripe_head
*sh
)
805 /* kernel stack size limits the total number of disks */
806 int disks
= sh
->disks
;
807 struct page
*xor_srcs
[disks
];
808 struct dma_async_tx_descriptor
*tx
;
810 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
811 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
813 pr_debug("%s: stripe %llu\n", __func__
,
814 (unsigned long long)sh
->sector
);
816 for (i
= disks
; i
--; ) {
817 struct r5dev
*dev
= &sh
->dev
[i
];
819 xor_srcs
[count
++] = dev
->page
;
822 tx
= async_xor_zero_sum(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
823 &sh
->ops
.zero_sum_result
, 0, NULL
, NULL
, NULL
);
825 atomic_inc(&sh
->count
);
826 tx
= async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
827 ops_complete_check
, sh
);
830 static void raid5_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
832 int overlap_clear
= 0, i
, disks
= sh
->disks
;
833 struct dma_async_tx_descriptor
*tx
= NULL
;
835 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
840 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
841 tx
= ops_run_compute5(sh
);
842 /* terminate the chain if postxor is not set to be run */
843 if (tx
&& !test_bit(STRIPE_OP_POSTXOR
, &ops_request
))
847 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
848 tx
= ops_run_prexor(sh
, tx
);
850 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
851 tx
= ops_run_biodrain(sh
, tx
);
855 if (test_bit(STRIPE_OP_POSTXOR
, &ops_request
))
856 ops_run_postxor(sh
, tx
);
858 if (test_bit(STRIPE_OP_CHECK
, &ops_request
))
862 for (i
= disks
; i
--; ) {
863 struct r5dev
*dev
= &sh
->dev
[i
];
864 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
865 wake_up(&sh
->raid_conf
->wait_for_overlap
);
869 static int grow_one_stripe(raid5_conf_t
*conf
)
871 struct stripe_head
*sh
;
872 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
875 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
876 sh
->raid_conf
= conf
;
877 spin_lock_init(&sh
->lock
);
879 if (grow_buffers(sh
, conf
->raid_disks
)) {
880 shrink_buffers(sh
, conf
->raid_disks
);
881 kmem_cache_free(conf
->slab_cache
, sh
);
884 sh
->disks
= conf
->raid_disks
;
885 /* we just created an active stripe so... */
886 atomic_set(&sh
->count
, 1);
887 atomic_inc(&conf
->active_stripes
);
888 INIT_LIST_HEAD(&sh
->lru
);
893 static int grow_stripes(raid5_conf_t
*conf
, int num
)
895 struct kmem_cache
*sc
;
896 int devs
= conf
->raid_disks
;
898 sprintf(conf
->cache_name
[0], "raid5-%s", mdname(conf
->mddev
));
899 sprintf(conf
->cache_name
[1], "raid5-%s-alt", mdname(conf
->mddev
));
900 conf
->active_name
= 0;
901 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
902 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
906 conf
->slab_cache
= sc
;
907 conf
->pool_size
= devs
;
909 if (!grow_one_stripe(conf
))
914 #ifdef CONFIG_MD_RAID5_RESHAPE
915 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
917 /* Make all the stripes able to hold 'newsize' devices.
918 * New slots in each stripe get 'page' set to a new page.
920 * This happens in stages:
921 * 1/ create a new kmem_cache and allocate the required number of
923 * 2/ gather all the old stripe_heads and tranfer the pages across
924 * to the new stripe_heads. This will have the side effect of
925 * freezing the array as once all stripe_heads have been collected,
926 * no IO will be possible. Old stripe heads are freed once their
927 * pages have been transferred over, and the old kmem_cache is
928 * freed when all stripes are done.
929 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
930 * we simple return a failre status - no need to clean anything up.
931 * 4/ allocate new pages for the new slots in the new stripe_heads.
932 * If this fails, we don't bother trying the shrink the
933 * stripe_heads down again, we just leave them as they are.
934 * As each stripe_head is processed the new one is released into
937 * Once step2 is started, we cannot afford to wait for a write,
938 * so we use GFP_NOIO allocations.
940 struct stripe_head
*osh
, *nsh
;
941 LIST_HEAD(newstripes
);
942 struct disk_info
*ndisks
;
944 struct kmem_cache
*sc
;
947 if (newsize
<= conf
->pool_size
)
948 return 0; /* never bother to shrink */
950 err
= md_allow_write(conf
->mddev
);
955 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
956 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
961 for (i
= conf
->max_nr_stripes
; i
; i
--) {
962 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
966 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
968 nsh
->raid_conf
= conf
;
969 spin_lock_init(&nsh
->lock
);
971 list_add(&nsh
->lru
, &newstripes
);
974 /* didn't get enough, give up */
975 while (!list_empty(&newstripes
)) {
976 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
978 kmem_cache_free(sc
, nsh
);
980 kmem_cache_destroy(sc
);
983 /* Step 2 - Must use GFP_NOIO now.
984 * OK, we have enough stripes, start collecting inactive
985 * stripes and copying them over
987 list_for_each_entry(nsh
, &newstripes
, lru
) {
988 spin_lock_irq(&conf
->device_lock
);
989 wait_event_lock_irq(conf
->wait_for_stripe
,
990 !list_empty(&conf
->inactive_list
),
992 unplug_slaves(conf
->mddev
)
994 osh
= get_free_stripe(conf
);
995 spin_unlock_irq(&conf
->device_lock
);
996 atomic_set(&nsh
->count
, 1);
997 for(i
=0; i
<conf
->pool_size
; i
++)
998 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
999 for( ; i
<newsize
; i
++)
1000 nsh
->dev
[i
].page
= NULL
;
1001 kmem_cache_free(conf
->slab_cache
, osh
);
1003 kmem_cache_destroy(conf
->slab_cache
);
1006 * At this point, we are holding all the stripes so the array
1007 * is completely stalled, so now is a good time to resize
1010 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1012 for (i
=0; i
<conf
->raid_disks
; i
++)
1013 ndisks
[i
] = conf
->disks
[i
];
1015 conf
->disks
= ndisks
;
1019 /* Step 4, return new stripes to service */
1020 while(!list_empty(&newstripes
)) {
1021 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1022 list_del_init(&nsh
->lru
);
1023 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1024 if (nsh
->dev
[i
].page
== NULL
) {
1025 struct page
*p
= alloc_page(GFP_NOIO
);
1026 nsh
->dev
[i
].page
= p
;
1030 release_stripe(nsh
);
1032 /* critical section pass, GFP_NOIO no longer needed */
1034 conf
->slab_cache
= sc
;
1035 conf
->active_name
= 1-conf
->active_name
;
1036 conf
->pool_size
= newsize
;
1041 static int drop_one_stripe(raid5_conf_t
*conf
)
1043 struct stripe_head
*sh
;
1045 spin_lock_irq(&conf
->device_lock
);
1046 sh
= get_free_stripe(conf
);
1047 spin_unlock_irq(&conf
->device_lock
);
1050 BUG_ON(atomic_read(&sh
->count
));
1051 shrink_buffers(sh
, conf
->pool_size
);
1052 kmem_cache_free(conf
->slab_cache
, sh
);
1053 atomic_dec(&conf
->active_stripes
);
1057 static void shrink_stripes(raid5_conf_t
*conf
)
1059 while (drop_one_stripe(conf
))
1062 if (conf
->slab_cache
)
1063 kmem_cache_destroy(conf
->slab_cache
);
1064 conf
->slab_cache
= NULL
;
1067 static void raid5_end_read_request(struct bio
* bi
, int error
)
1069 struct stripe_head
*sh
= bi
->bi_private
;
1070 raid5_conf_t
*conf
= sh
->raid_conf
;
1071 int disks
= sh
->disks
, i
;
1072 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1073 char b
[BDEVNAME_SIZE
];
1077 for (i
=0 ; i
<disks
; i
++)
1078 if (bi
== &sh
->dev
[i
].req
)
1081 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1082 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1090 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1091 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1092 rdev
= conf
->disks
[i
].rdev
;
1093 printk_rl(KERN_INFO
"raid5:%s: read error corrected"
1094 " (%lu sectors at %llu on %s)\n",
1095 mdname(conf
->mddev
), STRIPE_SECTORS
,
1096 (unsigned long long)(sh
->sector
1097 + rdev
->data_offset
),
1098 bdevname(rdev
->bdev
, b
));
1099 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1100 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1102 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1103 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1105 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1107 rdev
= conf
->disks
[i
].rdev
;
1109 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1110 atomic_inc(&rdev
->read_errors
);
1111 if (conf
->mddev
->degraded
)
1112 printk_rl(KERN_WARNING
1113 "raid5:%s: read error not correctable "
1114 "(sector %llu on %s).\n",
1115 mdname(conf
->mddev
),
1116 (unsigned long long)(sh
->sector
1117 + rdev
->data_offset
),
1119 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1121 printk_rl(KERN_WARNING
1122 "raid5:%s: read error NOT corrected!! "
1123 "(sector %llu on %s).\n",
1124 mdname(conf
->mddev
),
1125 (unsigned long long)(sh
->sector
1126 + rdev
->data_offset
),
1128 else if (atomic_read(&rdev
->read_errors
)
1129 > conf
->max_nr_stripes
)
1131 "raid5:%s: Too many read errors, failing device %s.\n",
1132 mdname(conf
->mddev
), bdn
);
1136 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1138 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1139 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1140 md_error(conf
->mddev
, rdev
);
1143 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1144 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1145 set_bit(STRIPE_HANDLE
, &sh
->state
);
1149 static void raid5_end_write_request(struct bio
*bi
, int error
)
1151 struct stripe_head
*sh
= bi
->bi_private
;
1152 raid5_conf_t
*conf
= sh
->raid_conf
;
1153 int disks
= sh
->disks
, i
;
1154 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1156 for (i
=0 ; i
<disks
; i
++)
1157 if (bi
== &sh
->dev
[i
].req
)
1160 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1161 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1169 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1171 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1173 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1174 set_bit(STRIPE_HANDLE
, &sh
->state
);
1179 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
1181 static void raid5_build_block(struct stripe_head
*sh
, int i
)
1183 struct r5dev
*dev
= &sh
->dev
[i
];
1185 bio_init(&dev
->req
);
1186 dev
->req
.bi_io_vec
= &dev
->vec
;
1188 dev
->req
.bi_max_vecs
++;
1189 dev
->vec
.bv_page
= dev
->page
;
1190 dev
->vec
.bv_len
= STRIPE_SIZE
;
1191 dev
->vec
.bv_offset
= 0;
1193 dev
->req
.bi_sector
= sh
->sector
;
1194 dev
->req
.bi_private
= sh
;
1197 dev
->sector
= compute_blocknr(sh
, i
);
1200 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1202 char b
[BDEVNAME_SIZE
];
1203 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1204 pr_debug("raid5: error called\n");
1206 if (!test_bit(Faulty
, &rdev
->flags
)) {
1207 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1208 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1209 unsigned long flags
;
1210 spin_lock_irqsave(&conf
->device_lock
, flags
);
1212 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1214 * if recovery was running, make sure it aborts.
1216 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1218 set_bit(Faulty
, &rdev
->flags
);
1220 "raid5: Disk failure on %s, disabling device.\n"
1221 "raid5: Operation continuing on %d devices.\n",
1222 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1227 * Input: a 'big' sector number,
1228 * Output: index of the data and parity disk, and the sector # in them.
1230 static sector_t
raid5_compute_sector(sector_t r_sector
, unsigned int raid_disks
,
1231 unsigned int data_disks
, unsigned int * dd_idx
,
1232 unsigned int * pd_idx
, raid5_conf_t
*conf
)
1235 unsigned long chunk_number
;
1236 unsigned int chunk_offset
;
1237 sector_t new_sector
;
1238 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1240 /* First compute the information on this sector */
1243 * Compute the chunk number and the sector offset inside the chunk
1245 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1246 chunk_number
= r_sector
;
1247 BUG_ON(r_sector
!= chunk_number
);
1250 * Compute the stripe number
1252 stripe
= chunk_number
/ data_disks
;
1255 * Compute the data disk and parity disk indexes inside the stripe
1257 *dd_idx
= chunk_number
% data_disks
;
1260 * Select the parity disk based on the user selected algorithm.
1262 switch(conf
->level
) {
1264 *pd_idx
= data_disks
;
1267 switch (conf
->algorithm
) {
1268 case ALGORITHM_LEFT_ASYMMETRIC
:
1269 *pd_idx
= data_disks
- stripe
% raid_disks
;
1270 if (*dd_idx
>= *pd_idx
)
1273 case ALGORITHM_RIGHT_ASYMMETRIC
:
1274 *pd_idx
= stripe
% raid_disks
;
1275 if (*dd_idx
>= *pd_idx
)
1278 case ALGORITHM_LEFT_SYMMETRIC
:
1279 *pd_idx
= data_disks
- stripe
% raid_disks
;
1280 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1282 case ALGORITHM_RIGHT_SYMMETRIC
:
1283 *pd_idx
= stripe
% raid_disks
;
1284 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1287 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1293 /**** FIX THIS ****/
1294 switch (conf
->algorithm
) {
1295 case ALGORITHM_LEFT_ASYMMETRIC
:
1296 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1297 if (*pd_idx
== raid_disks
-1)
1298 (*dd_idx
)++; /* Q D D D P */
1299 else if (*dd_idx
>= *pd_idx
)
1300 (*dd_idx
) += 2; /* D D P Q D */
1302 case ALGORITHM_RIGHT_ASYMMETRIC
:
1303 *pd_idx
= stripe
% raid_disks
;
1304 if (*pd_idx
== raid_disks
-1)
1305 (*dd_idx
)++; /* Q D D D P */
1306 else if (*dd_idx
>= *pd_idx
)
1307 (*dd_idx
) += 2; /* D D P Q D */
1309 case ALGORITHM_LEFT_SYMMETRIC
:
1310 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1311 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1313 case ALGORITHM_RIGHT_SYMMETRIC
:
1314 *pd_idx
= stripe
% raid_disks
;
1315 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1318 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1325 * Finally, compute the new sector number
1327 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1332 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
1334 raid5_conf_t
*conf
= sh
->raid_conf
;
1335 int raid_disks
= sh
->disks
;
1336 int data_disks
= raid_disks
- conf
->max_degraded
;
1337 sector_t new_sector
= sh
->sector
, check
;
1338 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1341 int chunk_number
, dummy1
, dummy2
, dd_idx
= i
;
1345 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1346 stripe
= new_sector
;
1347 BUG_ON(new_sector
!= stripe
);
1349 if (i
== sh
->pd_idx
)
1351 switch(conf
->level
) {
1354 switch (conf
->algorithm
) {
1355 case ALGORITHM_LEFT_ASYMMETRIC
:
1356 case ALGORITHM_RIGHT_ASYMMETRIC
:
1360 case ALGORITHM_LEFT_SYMMETRIC
:
1361 case ALGORITHM_RIGHT_SYMMETRIC
:
1364 i
-= (sh
->pd_idx
+ 1);
1367 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1372 if (i
== raid6_next_disk(sh
->pd_idx
, raid_disks
))
1373 return 0; /* It is the Q disk */
1374 switch (conf
->algorithm
) {
1375 case ALGORITHM_LEFT_ASYMMETRIC
:
1376 case ALGORITHM_RIGHT_ASYMMETRIC
:
1377 if (sh
->pd_idx
== raid_disks
-1)
1378 i
--; /* Q D D D P */
1379 else if (i
> sh
->pd_idx
)
1380 i
-= 2; /* D D P Q D */
1382 case ALGORITHM_LEFT_SYMMETRIC
:
1383 case ALGORITHM_RIGHT_SYMMETRIC
:
1384 if (sh
->pd_idx
== raid_disks
-1)
1385 i
--; /* Q D D D P */
1390 i
-= (sh
->pd_idx
+ 2);
1394 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1400 chunk_number
= stripe
* data_disks
+ i
;
1401 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
1403 check
= raid5_compute_sector(r_sector
, raid_disks
, data_disks
, &dummy1
, &dummy2
, conf
);
1404 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| dummy2
!= sh
->pd_idx
) {
1405 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1414 * Copy data between a page in the stripe cache, and one or more bion
1415 * The page could align with the middle of the bio, or there could be
1416 * several bion, each with several bio_vecs, which cover part of the page
1417 * Multiple bion are linked together on bi_next. There may be extras
1418 * at the end of this list. We ignore them.
1420 static void copy_data(int frombio
, struct bio
*bio
,
1424 char *pa
= page_address(page
);
1425 struct bio_vec
*bvl
;
1429 if (bio
->bi_sector
>= sector
)
1430 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
1432 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
1433 bio_for_each_segment(bvl
, bio
, i
) {
1434 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
1438 if (page_offset
< 0) {
1439 b_offset
= -page_offset
;
1440 page_offset
+= b_offset
;
1444 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1445 clen
= STRIPE_SIZE
- page_offset
;
1449 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
1451 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
1453 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
1454 __bio_kunmap_atomic(ba
, KM_USER0
);
1456 if (clen
< len
) /* hit end of page */
1462 #define check_xor() do { \
1463 if (count == MAX_XOR_BLOCKS) { \
1464 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1469 static void compute_parity6(struct stripe_head
*sh
, int method
)
1471 raid6_conf_t
*conf
= sh
->raid_conf
;
1472 int i
, pd_idx
= sh
->pd_idx
, qd_idx
, d0_idx
, disks
= sh
->disks
, count
;
1474 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1477 qd_idx
= raid6_next_disk(pd_idx
, disks
);
1478 d0_idx
= raid6_next_disk(qd_idx
, disks
);
1480 pr_debug("compute_parity, stripe %llu, method %d\n",
1481 (unsigned long long)sh
->sector
, method
);
1484 case READ_MODIFY_WRITE
:
1485 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1486 case RECONSTRUCT_WRITE
:
1487 for (i
= disks
; i
-- ;)
1488 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1489 chosen
= sh
->dev
[i
].towrite
;
1490 sh
->dev
[i
].towrite
= NULL
;
1492 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1493 wake_up(&conf
->wait_for_overlap
);
1495 BUG_ON(sh
->dev
[i
].written
);
1496 sh
->dev
[i
].written
= chosen
;
1500 BUG(); /* Not implemented yet */
1503 for (i
= disks
; i
--;)
1504 if (sh
->dev
[i
].written
) {
1505 sector_t sector
= sh
->dev
[i
].sector
;
1506 struct bio
*wbi
= sh
->dev
[i
].written
;
1507 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1508 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1509 wbi
= r5_next_bio(wbi
, sector
);
1512 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1513 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1517 // case RECONSTRUCT_WRITE:
1518 // case CHECK_PARITY:
1519 // case UPDATE_PARITY:
1520 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1521 /* FIX: Is this ordering of drives even remotely optimal? */
1525 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1526 if (count
<= disks
-2 && !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1527 printk("block %d/%d not uptodate on parity calc\n", i
,count
);
1528 i
= raid6_next_disk(i
, disks
);
1529 } while ( i
!= d0_idx
);
1533 raid6_call
.gen_syndrome(disks
, STRIPE_SIZE
, ptrs
);
1536 case RECONSTRUCT_WRITE
:
1537 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1538 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1539 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1540 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1543 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1544 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1550 /* Compute one missing block */
1551 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1553 int i
, count
, disks
= sh
->disks
;
1554 void *ptr
[MAX_XOR_BLOCKS
], *dest
, *p
;
1555 int pd_idx
= sh
->pd_idx
;
1556 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1558 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1559 (unsigned long long)sh
->sector
, dd_idx
);
1561 if ( dd_idx
== qd_idx
) {
1562 /* We're actually computing the Q drive */
1563 compute_parity6(sh
, UPDATE_PARITY
);
1565 dest
= page_address(sh
->dev
[dd_idx
].page
);
1566 if (!nozero
) memset(dest
, 0, STRIPE_SIZE
);
1568 for (i
= disks
; i
--; ) {
1569 if (i
== dd_idx
|| i
== qd_idx
)
1571 p
= page_address(sh
->dev
[i
].page
);
1572 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1575 printk("compute_block() %d, stripe %llu, %d"
1576 " not present\n", dd_idx
,
1577 (unsigned long long)sh
->sector
, i
);
1582 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1583 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1584 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1588 /* Compute two missing blocks */
1589 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1591 int i
, count
, disks
= sh
->disks
;
1592 int pd_idx
= sh
->pd_idx
;
1593 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1594 int d0_idx
= raid6_next_disk(qd_idx
, disks
);
1597 /* faila and failb are disk numbers relative to d0_idx */
1598 /* pd_idx become disks-2 and qd_idx become disks-1 */
1599 faila
= (dd_idx1
< d0_idx
) ? dd_idx1
+(disks
-d0_idx
) : dd_idx1
-d0_idx
;
1600 failb
= (dd_idx2
< d0_idx
) ? dd_idx2
+(disks
-d0_idx
) : dd_idx2
-d0_idx
;
1602 BUG_ON(faila
== failb
);
1603 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1605 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1606 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
, faila
, failb
);
1608 if ( failb
== disks
-1 ) {
1609 /* Q disk is one of the missing disks */
1610 if ( faila
== disks
-2 ) {
1611 /* Missing P+Q, just recompute */
1612 compute_parity6(sh
, UPDATE_PARITY
);
1615 /* We're missing D+Q; recompute D from P */
1616 compute_block_1(sh
, (dd_idx1
== qd_idx
) ? dd_idx2
: dd_idx1
, 0);
1617 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1622 /* We're missing D+P or D+D; build pointer table */
1624 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1630 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1631 i
= raid6_next_disk(i
, disks
);
1632 if (i
!= dd_idx1
&& i
!= dd_idx2
&&
1633 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1634 printk("compute_2 with missing block %d/%d\n", count
, i
);
1635 } while ( i
!= d0_idx
);
1637 if ( failb
== disks
-2 ) {
1638 /* We're missing D+P. */
1639 raid6_datap_recov(disks
, STRIPE_SIZE
, faila
, ptrs
);
1641 /* We're missing D+D. */
1642 raid6_2data_recov(disks
, STRIPE_SIZE
, faila
, failb
, ptrs
);
1645 /* Both the above update both missing blocks */
1646 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1647 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1652 schedule_reconstruction5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
1653 int rcw
, int expand
)
1655 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1658 /* if we are not expanding this is a proper write request, and
1659 * there will be bios with new data to be drained into the
1663 sh
->reconstruct_state
= reconstruct_state_drain_run
;
1664 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1666 sh
->reconstruct_state
= reconstruct_state_run
;
1668 set_bit(STRIPE_OP_POSTXOR
, &s
->ops_request
);
1670 for (i
= disks
; i
--; ) {
1671 struct r5dev
*dev
= &sh
->dev
[i
];
1674 set_bit(R5_LOCKED
, &dev
->flags
);
1675 set_bit(R5_Wantdrain
, &dev
->flags
);
1677 clear_bit(R5_UPTODATE
, &dev
->flags
);
1681 if (s
->locked
+ 1 == disks
)
1682 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
1683 atomic_inc(&sh
->raid_conf
->pending_full_writes
);
1685 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
1686 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
1688 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
1689 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
1690 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1691 set_bit(STRIPE_OP_POSTXOR
, &s
->ops_request
);
1693 for (i
= disks
; i
--; ) {
1694 struct r5dev
*dev
= &sh
->dev
[i
];
1699 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
1700 test_bit(R5_Wantcompute
, &dev
->flags
))) {
1701 set_bit(R5_Wantdrain
, &dev
->flags
);
1702 set_bit(R5_LOCKED
, &dev
->flags
);
1703 clear_bit(R5_UPTODATE
, &dev
->flags
);
1709 /* keep the parity disk locked while asynchronous operations
1712 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1713 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1716 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1717 __func__
, (unsigned long long)sh
->sector
,
1718 s
->locked
, s
->ops_request
);
1722 * Each stripe/dev can have one or more bion attached.
1723 * toread/towrite point to the first in a chain.
1724 * The bi_next chain must be in order.
1726 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1729 raid5_conf_t
*conf
= sh
->raid_conf
;
1732 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1733 (unsigned long long)bi
->bi_sector
,
1734 (unsigned long long)sh
->sector
);
1737 spin_lock(&sh
->lock
);
1738 spin_lock_irq(&conf
->device_lock
);
1740 bip
= &sh
->dev
[dd_idx
].towrite
;
1741 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1744 bip
= &sh
->dev
[dd_idx
].toread
;
1745 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1746 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1748 bip
= & (*bip
)->bi_next
;
1750 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1753 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1757 bi
->bi_phys_segments
++;
1758 spin_unlock_irq(&conf
->device_lock
);
1759 spin_unlock(&sh
->lock
);
1761 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1762 (unsigned long long)bi
->bi_sector
,
1763 (unsigned long long)sh
->sector
, dd_idx
);
1765 if (conf
->mddev
->bitmap
&& firstwrite
) {
1766 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1768 sh
->bm_seq
= conf
->seq_flush
+1;
1769 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1773 /* check if page is covered */
1774 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1775 for (bi
=sh
->dev
[dd_idx
].towrite
;
1776 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1777 bi
&& bi
->bi_sector
<= sector
;
1778 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1779 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1780 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1782 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1783 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1788 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1789 spin_unlock_irq(&conf
->device_lock
);
1790 spin_unlock(&sh
->lock
);
1794 static void end_reshape(raid5_conf_t
*conf
);
1796 static int page_is_zero(struct page
*p
)
1798 char *a
= page_address(p
);
1799 return ((*(u32
*)a
) == 0 &&
1800 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1803 static int stripe_to_pdidx(sector_t stripe
, raid5_conf_t
*conf
, int disks
)
1805 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1807 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
1809 raid5_compute_sector(stripe
* (disks
- conf
->max_degraded
)
1810 *sectors_per_chunk
+ chunk_offset
,
1811 disks
, disks
- conf
->max_degraded
,
1812 &dd_idx
, &pd_idx
, conf
);
1817 handle_failed_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
,
1818 struct stripe_head_state
*s
, int disks
,
1819 struct bio
**return_bi
)
1822 for (i
= disks
; i
--; ) {
1826 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1829 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1830 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
1831 /* multiple read failures in one stripe */
1832 md_error(conf
->mddev
, rdev
);
1835 spin_lock_irq(&conf
->device_lock
);
1836 /* fail all writes first */
1837 bi
= sh
->dev
[i
].towrite
;
1838 sh
->dev
[i
].towrite
= NULL
;
1844 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1845 wake_up(&conf
->wait_for_overlap
);
1847 while (bi
&& bi
->bi_sector
<
1848 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1849 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1850 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1851 if (!raid5_dec_bi_phys_segments(bi
)) {
1852 md_write_end(conf
->mddev
);
1853 bi
->bi_next
= *return_bi
;
1858 /* and fail all 'written' */
1859 bi
= sh
->dev
[i
].written
;
1860 sh
->dev
[i
].written
= NULL
;
1861 if (bi
) bitmap_end
= 1;
1862 while (bi
&& bi
->bi_sector
<
1863 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1864 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1865 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1866 if (!raid5_dec_bi_phys_segments(bi
)) {
1867 md_write_end(conf
->mddev
);
1868 bi
->bi_next
= *return_bi
;
1874 /* fail any reads if this device is non-operational and
1875 * the data has not reached the cache yet.
1877 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
1878 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
1879 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
1880 bi
= sh
->dev
[i
].toread
;
1881 sh
->dev
[i
].toread
= NULL
;
1882 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1883 wake_up(&conf
->wait_for_overlap
);
1884 if (bi
) s
->to_read
--;
1885 while (bi
&& bi
->bi_sector
<
1886 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1887 struct bio
*nextbi
=
1888 r5_next_bio(bi
, sh
->dev
[i
].sector
);
1889 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1890 if (!raid5_dec_bi_phys_segments(bi
)) {
1891 bi
->bi_next
= *return_bi
;
1897 spin_unlock_irq(&conf
->device_lock
);
1899 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1900 STRIPE_SECTORS
, 0, 0);
1903 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
1904 if (atomic_dec_and_test(&conf
->pending_full_writes
))
1905 md_wakeup_thread(conf
->mddev
->thread
);
1908 /* fetch_block5 - checks the given member device to see if its data needs
1909 * to be read or computed to satisfy a request.
1911 * Returns 1 when no more member devices need to be checked, otherwise returns
1912 * 0 to tell the loop in handle_stripe_fill5 to continue
1914 static int fetch_block5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
1915 int disk_idx
, int disks
)
1917 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
1918 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
1920 /* is the data in this block needed, and can we get it? */
1921 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1922 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1924 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1925 s
->syncing
|| s
->expanding
||
1927 (failed_dev
->toread
||
1928 (failed_dev
->towrite
&&
1929 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)))))) {
1930 /* We would like to get this block, possibly by computing it,
1931 * otherwise read it if the backing disk is insync
1933 if ((s
->uptodate
== disks
- 1) &&
1934 (s
->failed
&& disk_idx
== s
->failed_num
)) {
1935 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1936 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
1937 set_bit(R5_Wantcompute
, &dev
->flags
);
1938 sh
->ops
.target
= disk_idx
;
1940 /* Careful: from this point on 'uptodate' is in the eye
1941 * of raid5_run_ops which services 'compute' operations
1942 * before writes. R5_Wantcompute flags a block that will
1943 * be R5_UPTODATE by the time it is needed for a
1944 * subsequent operation.
1947 return 1; /* uptodate + compute == disks */
1948 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
1949 set_bit(R5_LOCKED
, &dev
->flags
);
1950 set_bit(R5_Wantread
, &dev
->flags
);
1952 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
1961 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
1963 static void handle_stripe_fill5(struct stripe_head
*sh
,
1964 struct stripe_head_state
*s
, int disks
)
1968 /* look for blocks to read/compute, skip this if a compute
1969 * is already in flight, or if the stripe contents are in the
1970 * midst of changing due to a write
1972 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
1973 !sh
->reconstruct_state
)
1974 for (i
= disks
; i
--; )
1975 if (fetch_block5(sh
, s
, i
, disks
))
1977 set_bit(STRIPE_HANDLE
, &sh
->state
);
1980 static void handle_stripe_fill6(struct stripe_head
*sh
,
1981 struct stripe_head_state
*s
, struct r6_state
*r6s
,
1985 for (i
= disks
; i
--; ) {
1986 struct r5dev
*dev
= &sh
->dev
[i
];
1987 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1988 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1989 (dev
->toread
|| (dev
->towrite
&&
1990 !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1991 s
->syncing
|| s
->expanding
||
1993 (sh
->dev
[r6s
->failed_num
[0]].toread
||
1996 (sh
->dev
[r6s
->failed_num
[1]].toread
||
1998 /* we would like to get this block, possibly
1999 * by computing it, but we might not be able to
2001 if ((s
->uptodate
== disks
- 1) &&
2002 (s
->failed
&& (i
== r6s
->failed_num
[0] ||
2003 i
== r6s
->failed_num
[1]))) {
2004 pr_debug("Computing stripe %llu block %d\n",
2005 (unsigned long long)sh
->sector
, i
);
2006 compute_block_1(sh
, i
, 0);
2008 } else if ( s
->uptodate
== disks
-2 && s
->failed
>= 2 ) {
2009 /* Computing 2-failure is *very* expensive; only
2010 * do it if failed >= 2
2013 for (other
= disks
; other
--; ) {
2016 if (!test_bit(R5_UPTODATE
,
2017 &sh
->dev
[other
].flags
))
2021 pr_debug("Computing stripe %llu blocks %d,%d\n",
2022 (unsigned long long)sh
->sector
,
2024 compute_block_2(sh
, i
, other
);
2026 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2027 set_bit(R5_LOCKED
, &dev
->flags
);
2028 set_bit(R5_Wantread
, &dev
->flags
);
2030 pr_debug("Reading block %d (sync=%d)\n",
2035 set_bit(STRIPE_HANDLE
, &sh
->state
);
2039 /* handle_stripe_clean_event
2040 * any written block on an uptodate or failed drive can be returned.
2041 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2042 * never LOCKED, so we don't need to test 'failed' directly.
2044 static void handle_stripe_clean_event(raid5_conf_t
*conf
,
2045 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2050 for (i
= disks
; i
--; )
2051 if (sh
->dev
[i
].written
) {
2053 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2054 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2055 /* We can return any write requests */
2056 struct bio
*wbi
, *wbi2
;
2058 pr_debug("Return write for disc %d\n", i
);
2059 spin_lock_irq(&conf
->device_lock
);
2061 dev
->written
= NULL
;
2062 while (wbi
&& wbi
->bi_sector
<
2063 dev
->sector
+ STRIPE_SECTORS
) {
2064 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2065 if (!raid5_dec_bi_phys_segments(wbi
)) {
2066 md_write_end(conf
->mddev
);
2067 wbi
->bi_next
= *return_bi
;
2072 if (dev
->towrite
== NULL
)
2074 spin_unlock_irq(&conf
->device_lock
);
2076 bitmap_endwrite(conf
->mddev
->bitmap
,
2079 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2084 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2085 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2086 md_wakeup_thread(conf
->mddev
->thread
);
2089 static void handle_stripe_dirtying5(raid5_conf_t
*conf
,
2090 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2092 int rmw
= 0, rcw
= 0, i
;
2093 for (i
= disks
; i
--; ) {
2094 /* would I have to read this buffer for read_modify_write */
2095 struct r5dev
*dev
= &sh
->dev
[i
];
2096 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2097 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2098 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2099 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2100 if (test_bit(R5_Insync
, &dev
->flags
))
2103 rmw
+= 2*disks
; /* cannot read it */
2105 /* Would I have to read this buffer for reconstruct_write */
2106 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2107 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2108 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2109 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2110 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2115 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2116 (unsigned long long)sh
->sector
, rmw
, rcw
);
2117 set_bit(STRIPE_HANDLE
, &sh
->state
);
2118 if (rmw
< rcw
&& rmw
> 0)
2119 /* prefer read-modify-write, but need to get some data */
2120 for (i
= disks
; i
--; ) {
2121 struct r5dev
*dev
= &sh
->dev
[i
];
2122 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2123 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2124 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2125 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2126 test_bit(R5_Insync
, &dev
->flags
)) {
2128 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2129 pr_debug("Read_old block "
2130 "%d for r-m-w\n", i
);
2131 set_bit(R5_LOCKED
, &dev
->flags
);
2132 set_bit(R5_Wantread
, &dev
->flags
);
2135 set_bit(STRIPE_DELAYED
, &sh
->state
);
2136 set_bit(STRIPE_HANDLE
, &sh
->state
);
2140 if (rcw
<= rmw
&& rcw
> 0)
2141 /* want reconstruct write, but need to get some data */
2142 for (i
= disks
; i
--; ) {
2143 struct r5dev
*dev
= &sh
->dev
[i
];
2144 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2146 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2147 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2148 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2149 test_bit(R5_Insync
, &dev
->flags
)) {
2151 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2152 pr_debug("Read_old block "
2153 "%d for Reconstruct\n", i
);
2154 set_bit(R5_LOCKED
, &dev
->flags
);
2155 set_bit(R5_Wantread
, &dev
->flags
);
2158 set_bit(STRIPE_DELAYED
, &sh
->state
);
2159 set_bit(STRIPE_HANDLE
, &sh
->state
);
2163 /* now if nothing is locked, and if we have enough data,
2164 * we can start a write request
2166 /* since handle_stripe can be called at any time we need to handle the
2167 * case where a compute block operation has been submitted and then a
2168 * subsequent call wants to start a write request. raid5_run_ops only
2169 * handles the case where compute block and postxor are requested
2170 * simultaneously. If this is not the case then new writes need to be
2171 * held off until the compute completes.
2173 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2174 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2175 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2176 schedule_reconstruction5(sh
, s
, rcw
== 0, 0);
2179 static void handle_stripe_dirtying6(raid5_conf_t
*conf
,
2180 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2181 struct r6_state
*r6s
, int disks
)
2183 int rcw
= 0, must_compute
= 0, pd_idx
= sh
->pd_idx
, i
;
2184 int qd_idx
= r6s
->qd_idx
;
2185 for (i
= disks
; i
--; ) {
2186 struct r5dev
*dev
= &sh
->dev
[i
];
2187 /* Would I have to read this buffer for reconstruct_write */
2188 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2189 && i
!= pd_idx
&& i
!= qd_idx
2190 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2192 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2193 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2195 pr_debug("raid6: must_compute: "
2196 "disk %d flags=%#lx\n", i
, dev
->flags
);
2201 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2202 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2203 set_bit(STRIPE_HANDLE
, &sh
->state
);
2206 /* want reconstruct write, but need to get some data */
2207 for (i
= disks
; i
--; ) {
2208 struct r5dev
*dev
= &sh
->dev
[i
];
2209 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2210 && !(s
->failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2211 && !test_bit(R5_LOCKED
, &dev
->flags
) &&
2212 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2213 test_bit(R5_Insync
, &dev
->flags
)) {
2215 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2216 pr_debug("Read_old stripe %llu "
2217 "block %d for Reconstruct\n",
2218 (unsigned long long)sh
->sector
, i
);
2219 set_bit(R5_LOCKED
, &dev
->flags
);
2220 set_bit(R5_Wantread
, &dev
->flags
);
2223 pr_debug("Request delayed stripe %llu "
2224 "block %d for Reconstruct\n",
2225 (unsigned long long)sh
->sector
, i
);
2226 set_bit(STRIPE_DELAYED
, &sh
->state
);
2227 set_bit(STRIPE_HANDLE
, &sh
->state
);
2231 /* now if nothing is locked, and if we have enough data, we can start a
2234 if (s
->locked
== 0 && rcw
== 0 &&
2235 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2236 if (must_compute
> 0) {
2237 /* We have failed blocks and need to compute them */
2238 switch (s
->failed
) {
2242 compute_block_1(sh
, r6s
->failed_num
[0], 0);
2245 compute_block_2(sh
, r6s
->failed_num
[0],
2246 r6s
->failed_num
[1]);
2248 default: /* This request should have been failed? */
2253 pr_debug("Computing parity for stripe %llu\n",
2254 (unsigned long long)sh
->sector
);
2255 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2256 /* now every locked buffer is ready to be written */
2257 for (i
= disks
; i
--; )
2258 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2259 pr_debug("Writing stripe %llu block %d\n",
2260 (unsigned long long)sh
->sector
, i
);
2262 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2264 if (s
->locked
== disks
)
2265 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2266 atomic_inc(&conf
->pending_full_writes
);
2267 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2268 set_bit(STRIPE_INSYNC
, &sh
->state
);
2270 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2271 atomic_dec(&conf
->preread_active_stripes
);
2272 if (atomic_read(&conf
->preread_active_stripes
) <
2274 md_wakeup_thread(conf
->mddev
->thread
);
2279 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2280 struct stripe_head_state
*s
, int disks
)
2282 struct r5dev
*dev
= NULL
;
2284 set_bit(STRIPE_HANDLE
, &sh
->state
);
2286 switch (sh
->check_state
) {
2287 case check_state_idle
:
2288 /* start a new check operation if there are no failures */
2289 if (s
->failed
== 0) {
2290 BUG_ON(s
->uptodate
!= disks
);
2291 sh
->check_state
= check_state_run
;
2292 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2293 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2297 dev
= &sh
->dev
[s
->failed_num
];
2299 case check_state_compute_result
:
2300 sh
->check_state
= check_state_idle
;
2302 dev
= &sh
->dev
[sh
->pd_idx
];
2304 /* check that a write has not made the stripe insync */
2305 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2308 /* either failed parity check, or recovery is happening */
2309 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2310 BUG_ON(s
->uptodate
!= disks
);
2312 set_bit(R5_LOCKED
, &dev
->flags
);
2314 set_bit(R5_Wantwrite
, &dev
->flags
);
2316 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2317 set_bit(STRIPE_INSYNC
, &sh
->state
);
2319 case check_state_run
:
2320 break; /* we will be called again upon completion */
2321 case check_state_check_result
:
2322 sh
->check_state
= check_state_idle
;
2324 /* if a failure occurred during the check operation, leave
2325 * STRIPE_INSYNC not set and let the stripe be handled again
2330 /* handle a successful check operation, if parity is correct
2331 * we are done. Otherwise update the mismatch count and repair
2332 * parity if !MD_RECOVERY_CHECK
2334 if (sh
->ops
.zero_sum_result
== 0)
2335 /* parity is correct (on disc,
2336 * not in buffer any more)
2338 set_bit(STRIPE_INSYNC
, &sh
->state
);
2340 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2341 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2342 /* don't try to repair!! */
2343 set_bit(STRIPE_INSYNC
, &sh
->state
);
2345 sh
->check_state
= check_state_compute_run
;
2346 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2347 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2348 set_bit(R5_Wantcompute
,
2349 &sh
->dev
[sh
->pd_idx
].flags
);
2350 sh
->ops
.target
= sh
->pd_idx
;
2355 case check_state_compute_run
:
2358 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2359 __func__
, sh
->check_state
,
2360 (unsigned long long) sh
->sector
);
2366 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2367 struct stripe_head_state
*s
,
2368 struct r6_state
*r6s
, struct page
*tmp_page
,
2371 int update_p
= 0, update_q
= 0;
2373 int pd_idx
= sh
->pd_idx
;
2374 int qd_idx
= r6s
->qd_idx
;
2376 set_bit(STRIPE_HANDLE
, &sh
->state
);
2378 BUG_ON(s
->failed
> 2);
2379 BUG_ON(s
->uptodate
< disks
);
2380 /* Want to check and possibly repair P and Q.
2381 * However there could be one 'failed' device, in which
2382 * case we can only check one of them, possibly using the
2383 * other to generate missing data
2386 /* If !tmp_page, we cannot do the calculations,
2387 * but as we have set STRIPE_HANDLE, we will soon be called
2388 * by stripe_handle with a tmp_page - just wait until then.
2391 if (s
->failed
== r6s
->q_failed
) {
2392 /* The only possible failed device holds 'Q', so it
2393 * makes sense to check P (If anything else were failed,
2394 * we would have used P to recreate it).
2396 compute_block_1(sh
, pd_idx
, 1);
2397 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2398 compute_block_1(sh
, pd_idx
, 0);
2402 if (!r6s
->q_failed
&& s
->failed
< 2) {
2403 /* q is not failed, and we didn't use it to generate
2404 * anything, so it makes sense to check it
2406 memcpy(page_address(tmp_page
),
2407 page_address(sh
->dev
[qd_idx
].page
),
2409 compute_parity6(sh
, UPDATE_PARITY
);
2410 if (memcmp(page_address(tmp_page
),
2411 page_address(sh
->dev
[qd_idx
].page
),
2412 STRIPE_SIZE
) != 0) {
2413 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2417 if (update_p
|| update_q
) {
2418 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2419 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2420 /* don't try to repair!! */
2421 update_p
= update_q
= 0;
2424 /* now write out any block on a failed drive,
2425 * or P or Q if they need it
2428 if (s
->failed
== 2) {
2429 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2431 set_bit(R5_LOCKED
, &dev
->flags
);
2432 set_bit(R5_Wantwrite
, &dev
->flags
);
2434 if (s
->failed
>= 1) {
2435 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2437 set_bit(R5_LOCKED
, &dev
->flags
);
2438 set_bit(R5_Wantwrite
, &dev
->flags
);
2442 dev
= &sh
->dev
[pd_idx
];
2444 set_bit(R5_LOCKED
, &dev
->flags
);
2445 set_bit(R5_Wantwrite
, &dev
->flags
);
2448 dev
= &sh
->dev
[qd_idx
];
2450 set_bit(R5_LOCKED
, &dev
->flags
);
2451 set_bit(R5_Wantwrite
, &dev
->flags
);
2453 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2455 set_bit(STRIPE_INSYNC
, &sh
->state
);
2459 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2460 struct r6_state
*r6s
)
2464 /* We have read all the blocks in this stripe and now we need to
2465 * copy some of them into a target stripe for expand.
2467 struct dma_async_tx_descriptor
*tx
= NULL
;
2468 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2469 for (i
= 0; i
< sh
->disks
; i
++)
2470 if (i
!= sh
->pd_idx
&& (!r6s
|| i
!= r6s
->qd_idx
)) {
2471 int dd_idx
, pd_idx
, j
;
2472 struct stripe_head
*sh2
;
2474 sector_t bn
= compute_blocknr(sh
, i
);
2475 sector_t s
= raid5_compute_sector(bn
, conf
->raid_disks
,
2477 conf
->max_degraded
, &dd_idx
,
2479 sh2
= get_active_stripe(conf
, s
, conf
->raid_disks
,
2482 /* so far only the early blocks of this stripe
2483 * have been requested. When later blocks
2484 * get requested, we will try again
2487 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2488 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2489 /* must have already done this block */
2490 release_stripe(sh2
);
2494 /* place all the copies on one channel */
2495 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2496 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2497 ASYNC_TX_DEP_ACK
, tx
, NULL
, NULL
);
2499 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2500 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2501 for (j
= 0; j
< conf
->raid_disks
; j
++)
2502 if (j
!= sh2
->pd_idx
&&
2503 (!r6s
|| j
!= raid6_next_disk(sh2
->pd_idx
,
2505 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2507 if (j
== conf
->raid_disks
) {
2508 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2509 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2511 release_stripe(sh2
);
2514 /* done submitting copies, wait for them to complete */
2517 dma_wait_for_async_tx(tx
);
2523 * handle_stripe - do things to a stripe.
2525 * We lock the stripe and then examine the state of various bits
2526 * to see what needs to be done.
2528 * return some read request which now have data
2529 * return some write requests which are safely on disc
2530 * schedule a read on some buffers
2531 * schedule a write of some buffers
2532 * return confirmation of parity correctness
2534 * buffers are taken off read_list or write_list, and bh_cache buffers
2535 * get BH_Lock set before the stripe lock is released.
2539 static bool handle_stripe5(struct stripe_head
*sh
)
2541 raid5_conf_t
*conf
= sh
->raid_conf
;
2542 int disks
= sh
->disks
, i
;
2543 struct bio
*return_bi
= NULL
;
2544 struct stripe_head_state s
;
2546 mdk_rdev_t
*blocked_rdev
= NULL
;
2549 memset(&s
, 0, sizeof(s
));
2550 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2551 "reconstruct:%d\n", (unsigned long long)sh
->sector
, sh
->state
,
2552 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->check_state
,
2553 sh
->reconstruct_state
);
2555 spin_lock(&sh
->lock
);
2556 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2557 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2559 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2560 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2561 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2563 /* Now to look around and see what can be done */
2565 for (i
=disks
; i
--; ) {
2567 struct r5dev
*dev
= &sh
->dev
[i
];
2568 clear_bit(R5_Insync
, &dev
->flags
);
2570 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2571 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2572 dev
->towrite
, dev
->written
);
2574 /* maybe we can request a biofill operation
2576 * new wantfill requests are only permitted while
2577 * ops_complete_biofill is guaranteed to be inactive
2579 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2580 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
2581 set_bit(R5_Wantfill
, &dev
->flags
);
2583 /* now count some things */
2584 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2585 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2586 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2588 if (test_bit(R5_Wantfill
, &dev
->flags
))
2590 else if (dev
->toread
)
2594 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2599 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2600 if (blocked_rdev
== NULL
&&
2601 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
2602 blocked_rdev
= rdev
;
2603 atomic_inc(&rdev
->nr_pending
);
2605 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2606 /* The ReadError flag will just be confusing now */
2607 clear_bit(R5_ReadError
, &dev
->flags
);
2608 clear_bit(R5_ReWrite
, &dev
->flags
);
2610 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2611 || test_bit(R5_ReadError
, &dev
->flags
)) {
2615 set_bit(R5_Insync
, &dev
->flags
);
2619 if (unlikely(blocked_rdev
)) {
2620 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
2621 s
.to_write
|| s
.written
) {
2622 set_bit(STRIPE_HANDLE
, &sh
->state
);
2625 /* There is nothing for the blocked_rdev to block */
2626 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
2627 blocked_rdev
= NULL
;
2630 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
2631 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
2632 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
2635 pr_debug("locked=%d uptodate=%d to_read=%d"
2636 " to_write=%d failed=%d failed_num=%d\n",
2637 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
2638 s
.failed
, s
.failed_num
);
2639 /* check if the array has lost two devices and, if so, some requests might
2642 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
2643 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
2644 if (s
.failed
> 1 && s
.syncing
) {
2645 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2646 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2650 /* might be able to return some write requests if the parity block
2651 * is safe, or on a failed drive
2653 dev
= &sh
->dev
[sh
->pd_idx
];
2655 ((test_bit(R5_Insync
, &dev
->flags
) &&
2656 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2657 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
2658 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
2659 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
2661 /* Now we might consider reading some blocks, either to check/generate
2662 * parity, or to satisfy requests
2663 * or to load a block that is being partially written.
2665 if (s
.to_read
|| s
.non_overwrite
||
2666 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
2667 handle_stripe_fill5(sh
, &s
, disks
);
2669 /* Now we check to see if any write operations have recently
2673 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
2675 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
2676 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
2677 sh
->reconstruct_state
= reconstruct_state_idle
;
2679 /* All the 'written' buffers and the parity block are ready to
2680 * be written back to disk
2682 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
2683 for (i
= disks
; i
--; ) {
2685 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
2686 (i
== sh
->pd_idx
|| dev
->written
)) {
2687 pr_debug("Writing block %d\n", i
);
2688 set_bit(R5_Wantwrite
, &dev
->flags
);
2691 if (!test_bit(R5_Insync
, &dev
->flags
) ||
2692 (i
== sh
->pd_idx
&& s
.failed
== 0))
2693 set_bit(STRIPE_INSYNC
, &sh
->state
);
2696 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2697 atomic_dec(&conf
->preread_active_stripes
);
2698 if (atomic_read(&conf
->preread_active_stripes
) <
2700 md_wakeup_thread(conf
->mddev
->thread
);
2704 /* Now to consider new write requests and what else, if anything
2705 * should be read. We do not handle new writes when:
2706 * 1/ A 'write' operation (copy+xor) is already in flight.
2707 * 2/ A 'check' operation is in flight, as it may clobber the parity
2710 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
2711 handle_stripe_dirtying5(conf
, sh
, &s
, disks
);
2713 /* maybe we need to check and possibly fix the parity for this stripe
2714 * Any reads will already have been scheduled, so we just see if enough
2715 * data is available. The parity check is held off while parity
2716 * dependent operations are in flight.
2718 if (sh
->check_state
||
2719 (s
.syncing
&& s
.locked
== 0 &&
2720 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
2721 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
2722 handle_parity_checks5(conf
, sh
, &s
, disks
);
2724 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2725 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2726 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2729 /* If the failed drive is just a ReadError, then we might need to progress
2730 * the repair/check process
2732 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
2733 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
2734 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
2735 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
2737 dev
= &sh
->dev
[s
.failed_num
];
2738 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2739 set_bit(R5_Wantwrite
, &dev
->flags
);
2740 set_bit(R5_ReWrite
, &dev
->flags
);
2741 set_bit(R5_LOCKED
, &dev
->flags
);
2744 /* let's read it back */
2745 set_bit(R5_Wantread
, &dev
->flags
);
2746 set_bit(R5_LOCKED
, &dev
->flags
);
2751 /* Finish reconstruct operations initiated by the expansion process */
2752 if (sh
->reconstruct_state
== reconstruct_state_result
) {
2753 sh
->reconstruct_state
= reconstruct_state_idle
;
2754 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
2755 for (i
= conf
->raid_disks
; i
--; ) {
2756 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2757 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2762 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
2763 !sh
->reconstruct_state
) {
2764 /* Need to write out all blocks after computing parity */
2765 sh
->disks
= conf
->raid_disks
;
2766 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
2768 schedule_reconstruction5(sh
, &s
, 1, 1);
2769 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
2770 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2771 atomic_dec(&conf
->reshape_stripes
);
2772 wake_up(&conf
->wait_for_overlap
);
2773 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
2776 if (s
.expanding
&& s
.locked
== 0 &&
2777 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
2778 handle_stripe_expansion(conf
, sh
, NULL
);
2781 spin_unlock(&sh
->lock
);
2783 /* wait for this device to become unblocked */
2784 if (unlikely(blocked_rdev
))
2785 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
2788 raid5_run_ops(sh
, s
.ops_request
);
2792 return_io(return_bi
);
2794 return blocked_rdev
== NULL
;
2797 static bool handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
2799 raid6_conf_t
*conf
= sh
->raid_conf
;
2800 int disks
= sh
->disks
;
2801 struct bio
*return_bi
= NULL
;
2802 int i
, pd_idx
= sh
->pd_idx
;
2803 struct stripe_head_state s
;
2804 struct r6_state r6s
;
2805 struct r5dev
*dev
, *pdev
, *qdev
;
2806 mdk_rdev_t
*blocked_rdev
= NULL
;
2808 r6s
.qd_idx
= raid6_next_disk(pd_idx
, disks
);
2809 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2810 "pd_idx=%d, qd_idx=%d\n",
2811 (unsigned long long)sh
->sector
, sh
->state
,
2812 atomic_read(&sh
->count
), pd_idx
, r6s
.qd_idx
);
2813 memset(&s
, 0, sizeof(s
));
2815 spin_lock(&sh
->lock
);
2816 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2817 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2819 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2820 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2821 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2822 /* Now to look around and see what can be done */
2825 for (i
=disks
; i
--; ) {
2828 clear_bit(R5_Insync
, &dev
->flags
);
2830 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2831 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
2832 /* maybe we can reply to a read */
2833 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
2834 struct bio
*rbi
, *rbi2
;
2835 pr_debug("Return read for disc %d\n", i
);
2836 spin_lock_irq(&conf
->device_lock
);
2839 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
2840 wake_up(&conf
->wait_for_overlap
);
2841 spin_unlock_irq(&conf
->device_lock
);
2842 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
2843 copy_data(0, rbi
, dev
->page
, dev
->sector
);
2844 rbi2
= r5_next_bio(rbi
, dev
->sector
);
2845 spin_lock_irq(&conf
->device_lock
);
2846 if (!raid5_dec_bi_phys_segments(rbi
)) {
2847 rbi
->bi_next
= return_bi
;
2850 spin_unlock_irq(&conf
->device_lock
);
2855 /* now count some things */
2856 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2857 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2864 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2869 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2870 if (blocked_rdev
== NULL
&&
2871 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
2872 blocked_rdev
= rdev
;
2873 atomic_inc(&rdev
->nr_pending
);
2875 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2876 /* The ReadError flag will just be confusing now */
2877 clear_bit(R5_ReadError
, &dev
->flags
);
2878 clear_bit(R5_ReWrite
, &dev
->flags
);
2880 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2881 || test_bit(R5_ReadError
, &dev
->flags
)) {
2883 r6s
.failed_num
[s
.failed
] = i
;
2886 set_bit(R5_Insync
, &dev
->flags
);
2890 if (unlikely(blocked_rdev
)) {
2891 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
2892 s
.to_write
|| s
.written
) {
2893 set_bit(STRIPE_HANDLE
, &sh
->state
);
2896 /* There is nothing for the blocked_rdev to block */
2897 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
2898 blocked_rdev
= NULL
;
2901 pr_debug("locked=%d uptodate=%d to_read=%d"
2902 " to_write=%d failed=%d failed_num=%d,%d\n",
2903 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
2904 r6s
.failed_num
[0], r6s
.failed_num
[1]);
2905 /* check if the array has lost >2 devices and, if so, some requests
2906 * might need to be failed
2908 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
2909 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
2910 if (s
.failed
> 2 && s
.syncing
) {
2911 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2912 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2917 * might be able to return some write requests if the parity blocks
2918 * are safe, or on a failed drive
2920 pdev
= &sh
->dev
[pd_idx
];
2921 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
2922 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
2923 qdev
= &sh
->dev
[r6s
.qd_idx
];
2924 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == r6s
.qd_idx
)
2925 || (s
.failed
>= 2 && r6s
.failed_num
[1] == r6s
.qd_idx
);
2928 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
2929 && !test_bit(R5_LOCKED
, &pdev
->flags
)
2930 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
2931 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
2932 && !test_bit(R5_LOCKED
, &qdev
->flags
)
2933 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
2934 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
2936 /* Now we might consider reading some blocks, either to check/generate
2937 * parity, or to satisfy requests
2938 * or to load a block that is being partially written.
2940 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
2941 (s
.syncing
&& (s
.uptodate
< disks
)) || s
.expanding
)
2942 handle_stripe_fill6(sh
, &s
, &r6s
, disks
);
2944 /* now to consider writing and what else, if anything should be read */
2946 handle_stripe_dirtying6(conf
, sh
, &s
, &r6s
, disks
);
2948 /* maybe we need to check and possibly fix the parity for this stripe
2949 * Any reads will already have been scheduled, so we just see if enough
2952 if (s
.syncing
&& s
.locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
))
2953 handle_parity_checks6(conf
, sh
, &s
, &r6s
, tmp_page
, disks
);
2955 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2956 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2957 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2960 /* If the failed drives are just a ReadError, then we might need
2961 * to progress the repair/check process
2963 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
2964 for (i
= 0; i
< s
.failed
; i
++) {
2965 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
2966 if (test_bit(R5_ReadError
, &dev
->flags
)
2967 && !test_bit(R5_LOCKED
, &dev
->flags
)
2968 && test_bit(R5_UPTODATE
, &dev
->flags
)
2970 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2971 set_bit(R5_Wantwrite
, &dev
->flags
);
2972 set_bit(R5_ReWrite
, &dev
->flags
);
2973 set_bit(R5_LOCKED
, &dev
->flags
);
2975 /* let's read it back */
2976 set_bit(R5_Wantread
, &dev
->flags
);
2977 set_bit(R5_LOCKED
, &dev
->flags
);
2982 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
2983 /* Need to write out all blocks after computing P&Q */
2984 sh
->disks
= conf
->raid_disks
;
2985 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
2987 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2988 for (i
= conf
->raid_disks
; i
-- ; ) {
2989 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2991 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2993 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
2994 } else if (s
.expanded
) {
2995 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2996 atomic_dec(&conf
->reshape_stripes
);
2997 wake_up(&conf
->wait_for_overlap
);
2998 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3001 if (s
.expanding
&& s
.locked
== 0 &&
3002 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3003 handle_stripe_expansion(conf
, sh
, &r6s
);
3006 spin_unlock(&sh
->lock
);
3008 /* wait for this device to become unblocked */
3009 if (unlikely(blocked_rdev
))
3010 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3014 return_io(return_bi
);
3016 return blocked_rdev
== NULL
;
3019 /* returns true if the stripe was handled */
3020 static bool handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
3022 if (sh
->raid_conf
->level
== 6)
3023 return handle_stripe6(sh
, tmp_page
);
3025 return handle_stripe5(sh
);
3030 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3032 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3033 while (!list_empty(&conf
->delayed_list
)) {
3034 struct list_head
*l
= conf
->delayed_list
.next
;
3035 struct stripe_head
*sh
;
3036 sh
= list_entry(l
, struct stripe_head
, lru
);
3038 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3039 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3040 atomic_inc(&conf
->preread_active_stripes
);
3041 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3044 blk_plug_device(conf
->mddev
->queue
);
3047 static void activate_bit_delay(raid5_conf_t
*conf
)
3049 /* device_lock is held */
3050 struct list_head head
;
3051 list_add(&head
, &conf
->bitmap_list
);
3052 list_del_init(&conf
->bitmap_list
);
3053 while (!list_empty(&head
)) {
3054 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3055 list_del_init(&sh
->lru
);
3056 atomic_inc(&sh
->count
);
3057 __release_stripe(conf
, sh
);
3061 static void unplug_slaves(mddev_t
*mddev
)
3063 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3067 for (i
=0; i
<mddev
->raid_disks
; i
++) {
3068 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3069 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3070 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3072 atomic_inc(&rdev
->nr_pending
);
3075 blk_unplug(r_queue
);
3077 rdev_dec_pending(rdev
, mddev
);
3084 static void raid5_unplug_device(struct request_queue
*q
)
3086 mddev_t
*mddev
= q
->queuedata
;
3087 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3088 unsigned long flags
;
3090 spin_lock_irqsave(&conf
->device_lock
, flags
);
3092 if (blk_remove_plug(q
)) {
3094 raid5_activate_delayed(conf
);
3096 md_wakeup_thread(mddev
->thread
);
3098 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3100 unplug_slaves(mddev
);
3103 static int raid5_congested(void *data
, int bits
)
3105 mddev_t
*mddev
= data
;
3106 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3108 /* No difference between reads and writes. Just check
3109 * how busy the stripe_cache is
3111 if (conf
->inactive_blocked
)
3115 if (list_empty_careful(&conf
->inactive_list
))
3121 /* We want read requests to align with chunks where possible,
3122 * but write requests don't need to.
3124 static int raid5_mergeable_bvec(struct request_queue
*q
,
3125 struct bvec_merge_data
*bvm
,
3126 struct bio_vec
*biovec
)
3128 mddev_t
*mddev
= q
->queuedata
;
3129 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3131 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3132 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3134 if ((bvm
->bi_rw
& 1) == WRITE
)
3135 return biovec
->bv_len
; /* always allow writes to be mergeable */
3137 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3138 if (max
< 0) max
= 0;
3139 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3140 return biovec
->bv_len
;
3146 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3148 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3149 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3150 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3152 return chunk_sectors
>=
3153 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3157 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3158 * later sampled by raid5d.
3160 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3162 unsigned long flags
;
3164 spin_lock_irqsave(&conf
->device_lock
, flags
);
3166 bi
->bi_next
= conf
->retry_read_aligned_list
;
3167 conf
->retry_read_aligned_list
= bi
;
3169 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3170 md_wakeup_thread(conf
->mddev
->thread
);
3174 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3178 bi
= conf
->retry_read_aligned
;
3180 conf
->retry_read_aligned
= NULL
;
3183 bi
= conf
->retry_read_aligned_list
;
3185 conf
->retry_read_aligned_list
= bi
->bi_next
;
3188 * this sets the active strip count to 1 and the processed
3189 * strip count to zero (upper 8 bits)
3191 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3199 * The "raid5_align_endio" should check if the read succeeded and if it
3200 * did, call bio_endio on the original bio (having bio_put the new bio
3202 * If the read failed..
3204 static void raid5_align_endio(struct bio
*bi
, int error
)
3206 struct bio
* raid_bi
= bi
->bi_private
;
3209 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3214 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3215 conf
= mddev_to_conf(mddev
);
3216 rdev
= (void*)raid_bi
->bi_next
;
3217 raid_bi
->bi_next
= NULL
;
3219 rdev_dec_pending(rdev
, conf
->mddev
);
3221 if (!error
&& uptodate
) {
3222 bio_endio(raid_bi
, 0);
3223 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3224 wake_up(&conf
->wait_for_stripe
);
3229 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3231 add_bio_to_retry(raid_bi
, conf
);
3234 static int bio_fits_rdev(struct bio
*bi
)
3236 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3238 if ((bi
->bi_size
>>9) > q
->max_sectors
)
3240 blk_recount_segments(q
, bi
);
3241 if (bi
->bi_phys_segments
> q
->max_phys_segments
)
3244 if (q
->merge_bvec_fn
)
3245 /* it's too hard to apply the merge_bvec_fn at this stage,
3254 static int chunk_aligned_read(struct request_queue
*q
, struct bio
* raid_bio
)
3256 mddev_t
*mddev
= q
->queuedata
;
3257 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3258 const unsigned int raid_disks
= conf
->raid_disks
;
3259 const unsigned int data_disks
= raid_disks
- conf
->max_degraded
;
3260 unsigned int dd_idx
, pd_idx
;
3261 struct bio
* align_bi
;
3264 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3265 pr_debug("chunk_aligned_read : non aligned\n");
3269 * use bio_clone to make a copy of the bio
3271 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3275 * set bi_end_io to a new function, and set bi_private to the
3278 align_bi
->bi_end_io
= raid5_align_endio
;
3279 align_bi
->bi_private
= raid_bio
;
3283 align_bi
->bi_sector
= raid5_compute_sector(raid_bio
->bi_sector
,
3291 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3292 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3293 atomic_inc(&rdev
->nr_pending
);
3295 raid_bio
->bi_next
= (void*)rdev
;
3296 align_bi
->bi_bdev
= rdev
->bdev
;
3297 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3298 align_bi
->bi_sector
+= rdev
->data_offset
;
3300 if (!bio_fits_rdev(align_bi
)) {
3301 /* too big in some way */
3303 rdev_dec_pending(rdev
, mddev
);
3307 spin_lock_irq(&conf
->device_lock
);
3308 wait_event_lock_irq(conf
->wait_for_stripe
,
3310 conf
->device_lock
, /* nothing */);
3311 atomic_inc(&conf
->active_aligned_reads
);
3312 spin_unlock_irq(&conf
->device_lock
);
3314 generic_make_request(align_bi
);
3323 /* __get_priority_stripe - get the next stripe to process
3325 * Full stripe writes are allowed to pass preread active stripes up until
3326 * the bypass_threshold is exceeded. In general the bypass_count
3327 * increments when the handle_list is handled before the hold_list; however, it
3328 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3329 * stripe with in flight i/o. The bypass_count will be reset when the
3330 * head of the hold_list has changed, i.e. the head was promoted to the
3333 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3335 struct stripe_head
*sh
;
3337 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3339 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3340 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3341 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3343 if (!list_empty(&conf
->handle_list
)) {
3344 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3346 if (list_empty(&conf
->hold_list
))
3347 conf
->bypass_count
= 0;
3348 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3349 if (conf
->hold_list
.next
== conf
->last_hold
)
3350 conf
->bypass_count
++;
3352 conf
->last_hold
= conf
->hold_list
.next
;
3353 conf
->bypass_count
-= conf
->bypass_threshold
;
3354 if (conf
->bypass_count
< 0)
3355 conf
->bypass_count
= 0;
3358 } else if (!list_empty(&conf
->hold_list
) &&
3359 ((conf
->bypass_threshold
&&
3360 conf
->bypass_count
> conf
->bypass_threshold
) ||
3361 atomic_read(&conf
->pending_full_writes
) == 0)) {
3362 sh
= list_entry(conf
->hold_list
.next
,
3364 conf
->bypass_count
-= conf
->bypass_threshold
;
3365 if (conf
->bypass_count
< 0)
3366 conf
->bypass_count
= 0;
3370 list_del_init(&sh
->lru
);
3371 atomic_inc(&sh
->count
);
3372 BUG_ON(atomic_read(&sh
->count
) != 1);
3376 static int make_request(struct request_queue
*q
, struct bio
* bi
)
3378 mddev_t
*mddev
= q
->queuedata
;
3379 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3380 unsigned int dd_idx
, pd_idx
;
3381 sector_t new_sector
;
3382 sector_t logical_sector
, last_sector
;
3383 struct stripe_head
*sh
;
3384 const int rw
= bio_data_dir(bi
);
3387 if (unlikely(bio_barrier(bi
))) {
3388 bio_endio(bi
, -EOPNOTSUPP
);
3392 md_write_start(mddev
, bi
);
3394 cpu
= part_stat_lock();
3395 part_stat_inc(cpu
, &mddev
->gendisk
->part0
, ios
[rw
]);
3396 part_stat_add(cpu
, &mddev
->gendisk
->part0
, sectors
[rw
],
3401 mddev
->reshape_position
== MaxSector
&&
3402 chunk_aligned_read(q
,bi
))
3405 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3406 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3408 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3410 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3412 int disks
, data_disks
;
3415 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3416 if (likely(conf
->expand_progress
== MaxSector
))
3417 disks
= conf
->raid_disks
;
3419 /* spinlock is needed as expand_progress may be
3420 * 64bit on a 32bit platform, and so it might be
3421 * possible to see a half-updated value
3422 * Ofcourse expand_progress could change after
3423 * the lock is dropped, so once we get a reference
3424 * to the stripe that we think it is, we will have
3427 spin_lock_irq(&conf
->device_lock
);
3428 disks
= conf
->raid_disks
;
3429 if (logical_sector
>= conf
->expand_progress
)
3430 disks
= conf
->previous_raid_disks
;
3432 if (logical_sector
>= conf
->expand_lo
) {
3433 spin_unlock_irq(&conf
->device_lock
);
3438 spin_unlock_irq(&conf
->device_lock
);
3440 data_disks
= disks
- conf
->max_degraded
;
3442 new_sector
= raid5_compute_sector(logical_sector
, disks
, data_disks
,
3443 &dd_idx
, &pd_idx
, conf
);
3444 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3445 (unsigned long long)new_sector
,
3446 (unsigned long long)logical_sector
);
3448 sh
= get_active_stripe(conf
, new_sector
, disks
, pd_idx
, (bi
->bi_rw
&RWA_MASK
));
3450 if (unlikely(conf
->expand_progress
!= MaxSector
)) {
3451 /* expansion might have moved on while waiting for a
3452 * stripe, so we must do the range check again.
3453 * Expansion could still move past after this
3454 * test, but as we are holding a reference to
3455 * 'sh', we know that if that happens,
3456 * STRIPE_EXPANDING will get set and the expansion
3457 * won't proceed until we finish with the stripe.
3460 spin_lock_irq(&conf
->device_lock
);
3461 if (logical_sector
< conf
->expand_progress
&&
3462 disks
== conf
->previous_raid_disks
)
3463 /* mismatch, need to try again */
3465 spin_unlock_irq(&conf
->device_lock
);
3471 /* FIXME what if we get a false positive because these
3472 * are being updated.
3474 if (logical_sector
>= mddev
->suspend_lo
&&
3475 logical_sector
< mddev
->suspend_hi
) {
3481 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3482 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3483 /* Stripe is busy expanding or
3484 * add failed due to overlap. Flush everything
3487 raid5_unplug_device(mddev
->queue
);
3492 finish_wait(&conf
->wait_for_overlap
, &w
);
3493 set_bit(STRIPE_HANDLE
, &sh
->state
);
3494 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3497 /* cannot get stripe for read-ahead, just give-up */
3498 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3499 finish_wait(&conf
->wait_for_overlap
, &w
);
3504 spin_lock_irq(&conf
->device_lock
);
3505 remaining
= raid5_dec_bi_phys_segments(bi
);
3506 spin_unlock_irq(&conf
->device_lock
);
3507 if (remaining
== 0) {
3510 md_write_end(mddev
);
3517 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
3519 /* reshaping is quite different to recovery/resync so it is
3520 * handled quite separately ... here.
3522 * On each call to sync_request, we gather one chunk worth of
3523 * destination stripes and flag them as expanding.
3524 * Then we find all the source stripes and request reads.
3525 * As the reads complete, handle_stripe will copy the data
3526 * into the destination stripe and release that stripe.
3528 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3529 struct stripe_head
*sh
;
3531 sector_t first_sector
, last_sector
;
3532 int raid_disks
= conf
->previous_raid_disks
;
3533 int data_disks
= raid_disks
- conf
->max_degraded
;
3534 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3537 sector_t writepos
, safepos
, gap
;
3539 if (sector_nr
== 0 &&
3540 conf
->expand_progress
!= 0) {
3541 /* restarting in the middle, skip the initial sectors */
3542 sector_nr
= conf
->expand_progress
;
3543 sector_div(sector_nr
, new_data_disks
);
3548 /* we update the metadata when there is more than 3Meg
3549 * in the block range (that is rather arbitrary, should
3550 * probably be time based) or when the data about to be
3551 * copied would over-write the source of the data at
3552 * the front of the range.
3553 * i.e. one new_stripe forward from expand_progress new_maps
3554 * to after where expand_lo old_maps to
3556 writepos
= conf
->expand_progress
+
3557 conf
->chunk_size
/512*(new_data_disks
);
3558 sector_div(writepos
, new_data_disks
);
3559 safepos
= conf
->expand_lo
;
3560 sector_div(safepos
, data_disks
);
3561 gap
= conf
->expand_progress
- conf
->expand_lo
;
3563 if (writepos
>= safepos
||
3564 gap
> (new_data_disks
)*3000*2 /*3Meg*/) {
3565 /* Cannot proceed until we've updated the superblock... */
3566 wait_event(conf
->wait_for_overlap
,
3567 atomic_read(&conf
->reshape_stripes
)==0);
3568 mddev
->reshape_position
= conf
->expand_progress
;
3569 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3570 md_wakeup_thread(mddev
->thread
);
3571 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3572 kthread_should_stop());
3573 spin_lock_irq(&conf
->device_lock
);
3574 conf
->expand_lo
= mddev
->reshape_position
;
3575 spin_unlock_irq(&conf
->device_lock
);
3576 wake_up(&conf
->wait_for_overlap
);
3579 for (i
=0; i
< conf
->chunk_size
/512; i
+= STRIPE_SECTORS
) {
3582 pd_idx
= stripe_to_pdidx(sector_nr
+i
, conf
, conf
->raid_disks
);
3583 sh
= get_active_stripe(conf
, sector_nr
+i
,
3584 conf
->raid_disks
, pd_idx
, 0);
3585 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3586 atomic_inc(&conf
->reshape_stripes
);
3587 /* If any of this stripe is beyond the end of the old
3588 * array, then we need to zero those blocks
3590 for (j
=sh
->disks
; j
--;) {
3592 if (j
== sh
->pd_idx
)
3594 if (conf
->level
== 6 &&
3595 j
== raid6_next_disk(sh
->pd_idx
, sh
->disks
))
3597 s
= compute_blocknr(sh
, j
);
3598 if (s
< mddev
->array_sectors
) {
3602 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
3603 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
3604 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
3607 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3608 set_bit(STRIPE_HANDLE
, &sh
->state
);
3612 spin_lock_irq(&conf
->device_lock
);
3613 conf
->expand_progress
= (sector_nr
+ i
) * new_data_disks
;
3614 spin_unlock_irq(&conf
->device_lock
);
3615 /* Ok, those stripe are ready. We can start scheduling
3616 * reads on the source stripes.
3617 * The source stripes are determined by mapping the first and last
3618 * block on the destination stripes.
3621 raid5_compute_sector(sector_nr
*(new_data_disks
),
3622 raid_disks
, data_disks
,
3623 &dd_idx
, &pd_idx
, conf
);
3625 raid5_compute_sector((sector_nr
+conf
->chunk_size
/512)
3626 *(new_data_disks
) -1,
3627 raid_disks
, data_disks
,
3628 &dd_idx
, &pd_idx
, conf
);
3629 if (last_sector
>= (mddev
->size
<<1))
3630 last_sector
= (mddev
->size
<<1)-1;
3631 while (first_sector
<= last_sector
) {
3632 pd_idx
= stripe_to_pdidx(first_sector
, conf
,
3633 conf
->previous_raid_disks
);
3634 sh
= get_active_stripe(conf
, first_sector
,
3635 conf
->previous_raid_disks
, pd_idx
, 0);
3636 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3637 set_bit(STRIPE_HANDLE
, &sh
->state
);
3639 first_sector
+= STRIPE_SECTORS
;
3641 /* If this takes us to the resync_max point where we have to pause,
3642 * then we need to write out the superblock.
3644 sector_nr
+= conf
->chunk_size
>>9;
3645 if (sector_nr
>= mddev
->resync_max
) {
3646 /* Cannot proceed until we've updated the superblock... */
3647 wait_event(conf
->wait_for_overlap
,
3648 atomic_read(&conf
->reshape_stripes
) == 0);
3649 mddev
->reshape_position
= conf
->expand_progress
;
3650 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3651 md_wakeup_thread(mddev
->thread
);
3652 wait_event(mddev
->sb_wait
,
3653 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
3654 || kthread_should_stop());
3655 spin_lock_irq(&conf
->device_lock
);
3656 conf
->expand_lo
= mddev
->reshape_position
;
3657 spin_unlock_irq(&conf
->device_lock
);
3658 wake_up(&conf
->wait_for_overlap
);
3660 return conf
->chunk_size
>>9;
3663 /* FIXME go_faster isn't used */
3664 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
3666 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3667 struct stripe_head
*sh
;
3669 int raid_disks
= conf
->raid_disks
;
3670 sector_t max_sector
= mddev
->size
<< 1;
3672 int still_degraded
= 0;
3675 if (sector_nr
>= max_sector
) {
3676 /* just being told to finish up .. nothing much to do */
3677 unplug_slaves(mddev
);
3678 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
3683 if (mddev
->curr_resync
< max_sector
) /* aborted */
3684 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3686 else /* completed sync */
3688 bitmap_close_sync(mddev
->bitmap
);
3693 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3694 return reshape_request(mddev
, sector_nr
, skipped
);
3696 /* No need to check resync_max as we never do more than one
3697 * stripe, and as resync_max will always be on a chunk boundary,
3698 * if the check in md_do_sync didn't fire, there is no chance
3699 * of overstepping resync_max here
3702 /* if there is too many failed drives and we are trying
3703 * to resync, then assert that we are finished, because there is
3704 * nothing we can do.
3706 if (mddev
->degraded
>= conf
->max_degraded
&&
3707 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3708 sector_t rv
= (mddev
->size
<< 1) - sector_nr
;
3712 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
3713 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
3714 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
3715 /* we can skip this block, and probably more */
3716 sync_blocks
/= STRIPE_SECTORS
;
3718 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
3722 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
3724 pd_idx
= stripe_to_pdidx(sector_nr
, conf
, raid_disks
);
3725 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 1);
3727 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 0);
3728 /* make sure we don't swamp the stripe cache if someone else
3729 * is trying to get access
3731 schedule_timeout_uninterruptible(1);
3733 /* Need to check if array will still be degraded after recovery/resync
3734 * We don't need to check the 'failed' flag as when that gets set,
3737 for (i
=0; i
<mddev
->raid_disks
; i
++)
3738 if (conf
->disks
[i
].rdev
== NULL
)
3741 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
3743 spin_lock(&sh
->lock
);
3744 set_bit(STRIPE_SYNCING
, &sh
->state
);
3745 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3746 spin_unlock(&sh
->lock
);
3748 /* wait for any blocked device to be handled */
3749 while(unlikely(!handle_stripe(sh
, NULL
)))
3753 return STRIPE_SECTORS
;
3756 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
3758 /* We may not be able to submit a whole bio at once as there
3759 * may not be enough stripe_heads available.
3760 * We cannot pre-allocate enough stripe_heads as we may need
3761 * more than exist in the cache (if we allow ever large chunks).
3762 * So we do one stripe head at a time and record in
3763 * ->bi_hw_segments how many have been done.
3765 * We *know* that this entire raid_bio is in one chunk, so
3766 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3768 struct stripe_head
*sh
;
3770 sector_t sector
, logical_sector
, last_sector
;
3775 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3776 sector
= raid5_compute_sector( logical_sector
,
3778 conf
->raid_disks
- conf
->max_degraded
,
3782 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
3784 for (; logical_sector
< last_sector
;
3785 logical_sector
+= STRIPE_SECTORS
,
3786 sector
+= STRIPE_SECTORS
,
3789 if (scnt
< raid5_bi_hw_segments(raid_bio
))
3790 /* already done this stripe */
3793 sh
= get_active_stripe(conf
, sector
, conf
->raid_disks
, pd_idx
, 1);
3796 /* failed to get a stripe - must wait */
3797 raid5_set_bi_hw_segments(raid_bio
, scnt
);
3798 conf
->retry_read_aligned
= raid_bio
;
3802 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
3803 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
3805 raid5_set_bi_hw_segments(raid_bio
, scnt
);
3806 conf
->retry_read_aligned
= raid_bio
;
3810 handle_stripe(sh
, NULL
);
3814 spin_lock_irq(&conf
->device_lock
);
3815 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
3816 spin_unlock_irq(&conf
->device_lock
);
3818 bio_endio(raid_bio
, 0);
3819 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3820 wake_up(&conf
->wait_for_stripe
);
3827 * This is our raid5 kernel thread.
3829 * We scan the hash table for stripes which can be handled now.
3830 * During the scan, completed stripes are saved for us by the interrupt
3831 * handler, so that they will not have to wait for our next wakeup.
3833 static void raid5d(mddev_t
*mddev
)
3835 struct stripe_head
*sh
;
3836 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3839 pr_debug("+++ raid5d active\n");
3841 md_check_recovery(mddev
);
3844 spin_lock_irq(&conf
->device_lock
);
3848 if (conf
->seq_flush
!= conf
->seq_write
) {
3849 int seq
= conf
->seq_flush
;
3850 spin_unlock_irq(&conf
->device_lock
);
3851 bitmap_unplug(mddev
->bitmap
);
3852 spin_lock_irq(&conf
->device_lock
);
3853 conf
->seq_write
= seq
;
3854 activate_bit_delay(conf
);
3857 while ((bio
= remove_bio_from_retry(conf
))) {
3859 spin_unlock_irq(&conf
->device_lock
);
3860 ok
= retry_aligned_read(conf
, bio
);
3861 spin_lock_irq(&conf
->device_lock
);
3867 sh
= __get_priority_stripe(conf
);
3871 spin_unlock_irq(&conf
->device_lock
);
3874 handle_stripe(sh
, conf
->spare_page
);
3877 spin_lock_irq(&conf
->device_lock
);
3879 pr_debug("%d stripes handled\n", handled
);
3881 spin_unlock_irq(&conf
->device_lock
);
3883 async_tx_issue_pending_all();
3884 unplug_slaves(mddev
);
3886 pr_debug("--- raid5d inactive\n");
3890 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
3892 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3894 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
3900 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
3902 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3906 if (len
>= PAGE_SIZE
)
3911 if (strict_strtoul(page
, 10, &new))
3913 if (new <= 16 || new > 32768)
3915 while (new < conf
->max_nr_stripes
) {
3916 if (drop_one_stripe(conf
))
3917 conf
->max_nr_stripes
--;
3921 err
= md_allow_write(mddev
);
3924 while (new > conf
->max_nr_stripes
) {
3925 if (grow_one_stripe(conf
))
3926 conf
->max_nr_stripes
++;
3932 static struct md_sysfs_entry
3933 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
3934 raid5_show_stripe_cache_size
,
3935 raid5_store_stripe_cache_size
);
3938 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
3940 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3942 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
3948 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
3950 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3952 if (len
>= PAGE_SIZE
)
3957 if (strict_strtoul(page
, 10, &new))
3959 if (new > conf
->max_nr_stripes
)
3961 conf
->bypass_threshold
= new;
3965 static struct md_sysfs_entry
3966 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
3968 raid5_show_preread_threshold
,
3969 raid5_store_preread_threshold
);
3972 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
3974 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3976 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
3981 static struct md_sysfs_entry
3982 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
3984 static struct attribute
*raid5_attrs
[] = {
3985 &raid5_stripecache_size
.attr
,
3986 &raid5_stripecache_active
.attr
,
3987 &raid5_preread_bypass_threshold
.attr
,
3990 static struct attribute_group raid5_attrs_group
= {
3992 .attrs
= raid5_attrs
,
3995 static int run(mddev_t
*mddev
)
3998 int raid_disk
, memory
;
4000 struct disk_info
*disk
;
4001 struct list_head
*tmp
;
4002 int working_disks
= 0;
4004 if (mddev
->level
!= 5 && mddev
->level
!= 4 && mddev
->level
!= 6) {
4005 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
4006 mdname(mddev
), mddev
->level
);
4010 if (mddev
->chunk_size
< PAGE_SIZE
) {
4011 printk(KERN_ERR
"md/raid5: chunk_size must be at least "
4012 "PAGE_SIZE but %d < %ld\n",
4013 mddev
->chunk_size
, PAGE_SIZE
);
4017 if (mddev
->reshape_position
!= MaxSector
) {
4018 /* Check that we can continue the reshape.
4019 * Currently only disks can change, it must
4020 * increase, and we must be past the point where
4021 * a stripe over-writes itself
4023 sector_t here_new
, here_old
;
4025 int max_degraded
= (mddev
->level
== 5 ? 1 : 2);
4027 if (mddev
->new_level
!= mddev
->level
||
4028 mddev
->new_layout
!= mddev
->layout
||
4029 mddev
->new_chunk
!= mddev
->chunk_size
) {
4030 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4031 "required - aborting.\n",
4035 if (mddev
->delta_disks
<= 0) {
4036 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4037 "(reduce disks) required - aborting.\n",
4041 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4042 /* reshape_position must be on a new-stripe boundary, and one
4043 * further up in new geometry must map after here in old
4046 here_new
= mddev
->reshape_position
;
4047 if (sector_div(here_new
, (mddev
->chunk_size
>>9)*
4048 (mddev
->raid_disks
- max_degraded
))) {
4049 printk(KERN_ERR
"raid5: reshape_position not "
4050 "on a stripe boundary\n");
4053 /* here_new is the stripe we will write to */
4054 here_old
= mddev
->reshape_position
;
4055 sector_div(here_old
, (mddev
->chunk_size
>>9)*
4056 (old_disks
-max_degraded
));
4057 /* here_old is the first stripe that we might need to read
4059 if (here_new
>= here_old
) {
4060 /* Reading from the same stripe as writing to - bad */
4061 printk(KERN_ERR
"raid5: reshape_position too early for "
4062 "auto-recovery - aborting.\n");
4065 printk(KERN_INFO
"raid5: reshape will continue\n");
4066 /* OK, we should be able to continue; */
4070 mddev
->private = kzalloc(sizeof (raid5_conf_t
), GFP_KERNEL
);
4071 if ((conf
= mddev
->private) == NULL
)
4073 if (mddev
->reshape_position
== MaxSector
) {
4074 conf
->previous_raid_disks
= conf
->raid_disks
= mddev
->raid_disks
;
4076 conf
->raid_disks
= mddev
->raid_disks
;
4077 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4080 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
4085 conf
->mddev
= mddev
;
4087 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4090 if (mddev
->level
== 6) {
4091 conf
->spare_page
= alloc_page(GFP_KERNEL
);
4092 if (!conf
->spare_page
)
4095 spin_lock_init(&conf
->device_lock
);
4096 mddev
->queue
->queue_lock
= &conf
->device_lock
;
4097 init_waitqueue_head(&conf
->wait_for_stripe
);
4098 init_waitqueue_head(&conf
->wait_for_overlap
);
4099 INIT_LIST_HEAD(&conf
->handle_list
);
4100 INIT_LIST_HEAD(&conf
->hold_list
);
4101 INIT_LIST_HEAD(&conf
->delayed_list
);
4102 INIT_LIST_HEAD(&conf
->bitmap_list
);
4103 INIT_LIST_HEAD(&conf
->inactive_list
);
4104 atomic_set(&conf
->active_stripes
, 0);
4105 atomic_set(&conf
->preread_active_stripes
, 0);
4106 atomic_set(&conf
->active_aligned_reads
, 0);
4107 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4109 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4111 rdev_for_each(rdev
, tmp
, mddev
) {
4112 raid_disk
= rdev
->raid_disk
;
4113 if (raid_disk
>= conf
->raid_disks
4116 disk
= conf
->disks
+ raid_disk
;
4120 if (test_bit(In_sync
, &rdev
->flags
)) {
4121 char b
[BDEVNAME_SIZE
];
4122 printk(KERN_INFO
"raid5: device %s operational as raid"
4123 " disk %d\n", bdevname(rdev
->bdev
,b
),
4127 /* Cannot rely on bitmap to complete recovery */
4132 * 0 for a fully functional array, 1 or 2 for a degraded array.
4134 mddev
->degraded
= conf
->raid_disks
- working_disks
;
4135 conf
->mddev
= mddev
;
4136 conf
->chunk_size
= mddev
->chunk_size
;
4137 conf
->level
= mddev
->level
;
4138 if (conf
->level
== 6)
4139 conf
->max_degraded
= 2;
4141 conf
->max_degraded
= 1;
4142 conf
->algorithm
= mddev
->layout
;
4143 conf
->max_nr_stripes
= NR_STRIPES
;
4144 conf
->expand_progress
= mddev
->reshape_position
;
4146 /* device size must be a multiple of chunk size */
4147 mddev
->size
&= ~(mddev
->chunk_size
/1024 -1);
4148 mddev
->resync_max_sectors
= mddev
->size
<< 1;
4150 if (conf
->level
== 6 && conf
->raid_disks
< 4) {
4151 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4152 mdname(mddev
), conf
->raid_disks
);
4155 if (!conf
->chunk_size
|| conf
->chunk_size
% 4) {
4156 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4157 conf
->chunk_size
, mdname(mddev
));
4160 if (conf
->algorithm
> ALGORITHM_RIGHT_SYMMETRIC
) {
4162 "raid5: unsupported parity algorithm %d for %s\n",
4163 conf
->algorithm
, mdname(mddev
));
4166 if (mddev
->degraded
> conf
->max_degraded
) {
4167 printk(KERN_ERR
"raid5: not enough operational devices for %s"
4168 " (%d/%d failed)\n",
4169 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4173 if (mddev
->degraded
> 0 &&
4174 mddev
->recovery_cp
!= MaxSector
) {
4175 if (mddev
->ok_start_degraded
)
4177 "raid5: starting dirty degraded array: %s"
4178 "- data corruption possible.\n",
4182 "raid5: cannot start dirty degraded array for %s\n",
4189 mddev
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
4190 if (!mddev
->thread
) {
4192 "raid5: couldn't allocate thread for %s\n",
4197 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4198 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4199 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4201 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4202 shrink_stripes(conf
);
4203 md_unregister_thread(mddev
->thread
);
4206 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4207 memory
, mdname(mddev
));
4209 if (mddev
->degraded
== 0)
4210 printk("raid5: raid level %d set %s active with %d out of %d"
4211 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
4212 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4215 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
4216 " out of %d devices, algorithm %d\n", conf
->level
,
4217 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
4218 mddev
->raid_disks
, conf
->algorithm
);
4220 print_raid5_conf(conf
);
4222 if (conf
->expand_progress
!= MaxSector
) {
4223 printk("...ok start reshape thread\n");
4224 conf
->expand_lo
= conf
->expand_progress
;
4225 atomic_set(&conf
->reshape_stripes
, 0);
4226 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4227 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4228 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4229 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4230 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4234 /* read-ahead size must cover two whole stripes, which is
4235 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4238 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4239 int stripe
= data_disks
*
4240 (mddev
->chunk_size
/ PAGE_SIZE
);
4241 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4242 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4245 /* Ok, everything is just fine now */
4246 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4248 "raid5: failed to create sysfs attributes for %s\n",
4251 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
4252 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4253 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4255 mddev
->array_sectors
= 2 * mddev
->size
* (conf
->previous_raid_disks
-
4256 conf
->max_degraded
);
4258 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4263 print_raid5_conf(conf
);
4264 safe_put_page(conf
->spare_page
);
4266 kfree(conf
->stripe_hashtbl
);
4269 mddev
->private = NULL
;
4270 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
4276 static int stop(mddev_t
*mddev
)
4278 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4280 md_unregister_thread(mddev
->thread
);
4281 mddev
->thread
= NULL
;
4282 shrink_stripes(conf
);
4283 kfree(conf
->stripe_hashtbl
);
4284 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4285 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
4286 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
4289 mddev
->private = NULL
;
4294 static void print_sh(struct seq_file
*seq
, struct stripe_head
*sh
)
4298 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
4299 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
4300 seq_printf(seq
, "sh %llu, count %d.\n",
4301 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
4302 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
4303 for (i
= 0; i
< sh
->disks
; i
++) {
4304 seq_printf(seq
, "(cache%d: %p %ld) ",
4305 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
4307 seq_printf(seq
, "\n");
4310 static void printall(struct seq_file
*seq
, raid5_conf_t
*conf
)
4312 struct stripe_head
*sh
;
4313 struct hlist_node
*hn
;
4316 spin_lock_irq(&conf
->device_lock
);
4317 for (i
= 0; i
< NR_HASH
; i
++) {
4318 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
4319 if (sh
->raid_conf
!= conf
)
4324 spin_unlock_irq(&conf
->device_lock
);
4328 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
4330 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4333 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
4334 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
4335 for (i
= 0; i
< conf
->raid_disks
; i
++)
4336 seq_printf (seq
, "%s",
4337 conf
->disks
[i
].rdev
&&
4338 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
4339 seq_printf (seq
, "]");
4341 seq_printf (seq
, "\n");
4342 printall(seq
, conf
);
4346 static void print_raid5_conf (raid5_conf_t
*conf
)
4349 struct disk_info
*tmp
;
4351 printk("RAID5 conf printout:\n");
4353 printk("(conf==NULL)\n");
4356 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
4357 conf
->raid_disks
- conf
->mddev
->degraded
);
4359 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4360 char b
[BDEVNAME_SIZE
];
4361 tmp
= conf
->disks
+ i
;
4363 printk(" disk %d, o:%d, dev:%s\n",
4364 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
4365 bdevname(tmp
->rdev
->bdev
,b
));
4369 static int raid5_spare_active(mddev_t
*mddev
)
4372 raid5_conf_t
*conf
= mddev
->private;
4373 struct disk_info
*tmp
;
4375 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4376 tmp
= conf
->disks
+ i
;
4378 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
4379 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
4380 unsigned long flags
;
4381 spin_lock_irqsave(&conf
->device_lock
, flags
);
4383 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4386 print_raid5_conf(conf
);
4390 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
4392 raid5_conf_t
*conf
= mddev
->private;
4395 struct disk_info
*p
= conf
->disks
+ number
;
4397 print_raid5_conf(conf
);
4400 if (test_bit(In_sync
, &rdev
->flags
) ||
4401 atomic_read(&rdev
->nr_pending
)) {
4405 /* Only remove non-faulty devices if recovery
4408 if (!test_bit(Faulty
, &rdev
->flags
) &&
4409 mddev
->degraded
<= conf
->max_degraded
) {
4415 if (atomic_read(&rdev
->nr_pending
)) {
4416 /* lost the race, try later */
4423 print_raid5_conf(conf
);
4427 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
4429 raid5_conf_t
*conf
= mddev
->private;
4432 struct disk_info
*p
;
4434 int last
= conf
->raid_disks
- 1;
4436 if (mddev
->degraded
> conf
->max_degraded
)
4437 /* no point adding a device */
4440 if (rdev
->raid_disk
>= 0)
4441 first
= last
= rdev
->raid_disk
;
4444 * find the disk ... but prefer rdev->saved_raid_disk
4447 if (rdev
->saved_raid_disk
>= 0 &&
4448 rdev
->saved_raid_disk
>= first
&&
4449 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
4450 disk
= rdev
->saved_raid_disk
;
4453 for ( ; disk
<= last
; disk
++)
4454 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
4455 clear_bit(In_sync
, &rdev
->flags
);
4456 rdev
->raid_disk
= disk
;
4458 if (rdev
->saved_raid_disk
!= disk
)
4460 rcu_assign_pointer(p
->rdev
, rdev
);
4463 print_raid5_conf(conf
);
4467 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
4469 /* no resync is happening, and there is enough space
4470 * on all devices, so we can resize.
4471 * We need to make sure resync covers any new space.
4472 * If the array is shrinking we should possibly wait until
4473 * any io in the removed space completes, but it hardly seems
4476 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4478 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
4479 mddev
->array_sectors
= sectors
* (mddev
->raid_disks
4480 - conf
->max_degraded
);
4481 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4483 if (sectors
/2 > mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
4484 mddev
->recovery_cp
= mddev
->size
<< 1;
4485 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4487 mddev
->size
= sectors
/2;
4488 mddev
->resync_max_sectors
= sectors
;
4492 #ifdef CONFIG_MD_RAID5_RESHAPE
4493 static int raid5_check_reshape(mddev_t
*mddev
)
4495 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4498 if (mddev
->delta_disks
< 0 ||
4499 mddev
->new_level
!= mddev
->level
)
4500 return -EINVAL
; /* Cannot shrink array or change level yet */
4501 if (mddev
->delta_disks
== 0)
4502 return 0; /* nothing to do */
4504 /* Cannot grow a bitmap yet */
4507 /* Can only proceed if there are plenty of stripe_heads.
4508 * We need a minimum of one full stripe,, and for sensible progress
4509 * it is best to have about 4 times that.
4510 * If we require 4 times, then the default 256 4K stripe_heads will
4511 * allow for chunk sizes up to 256K, which is probably OK.
4512 * If the chunk size is greater, user-space should request more
4513 * stripe_heads first.
4515 if ((mddev
->chunk_size
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
||
4516 (mddev
->new_chunk
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
) {
4517 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
4518 (mddev
->chunk_size
/ STRIPE_SIZE
)*4);
4522 err
= resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
4526 if (mddev
->degraded
> conf
->max_degraded
)
4528 /* looks like we might be able to manage this */
4532 static int raid5_start_reshape(mddev_t
*mddev
)
4534 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4536 struct list_head
*rtmp
;
4538 int added_devices
= 0;
4539 unsigned long flags
;
4541 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4544 rdev_for_each(rdev
, rtmp
, mddev
)
4545 if (rdev
->raid_disk
< 0 &&
4546 !test_bit(Faulty
, &rdev
->flags
))
4549 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
4550 /* Not enough devices even to make a degraded array
4555 atomic_set(&conf
->reshape_stripes
, 0);
4556 spin_lock_irq(&conf
->device_lock
);
4557 conf
->previous_raid_disks
= conf
->raid_disks
;
4558 conf
->raid_disks
+= mddev
->delta_disks
;
4559 conf
->expand_progress
= 0;
4560 conf
->expand_lo
= 0;
4561 spin_unlock_irq(&conf
->device_lock
);
4563 /* Add some new drives, as many as will fit.
4564 * We know there are enough to make the newly sized array work.
4566 rdev_for_each(rdev
, rtmp
, mddev
)
4567 if (rdev
->raid_disk
< 0 &&
4568 !test_bit(Faulty
, &rdev
->flags
)) {
4569 if (raid5_add_disk(mddev
, rdev
) == 0) {
4571 set_bit(In_sync
, &rdev
->flags
);
4573 rdev
->recovery_offset
= 0;
4574 sprintf(nm
, "rd%d", rdev
->raid_disk
);
4575 if (sysfs_create_link(&mddev
->kobj
,
4578 "raid5: failed to create "
4579 " link %s for %s\n",
4585 spin_lock_irqsave(&conf
->device_lock
, flags
);
4586 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
) - added_devices
;
4587 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4588 mddev
->raid_disks
= conf
->raid_disks
;
4589 mddev
->reshape_position
= 0;
4590 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4592 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4593 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4594 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4595 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4596 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4598 if (!mddev
->sync_thread
) {
4599 mddev
->recovery
= 0;
4600 spin_lock_irq(&conf
->device_lock
);
4601 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
4602 conf
->expand_progress
= MaxSector
;
4603 spin_unlock_irq(&conf
->device_lock
);
4606 md_wakeup_thread(mddev
->sync_thread
);
4607 md_new_event(mddev
);
4612 static void end_reshape(raid5_conf_t
*conf
)
4614 struct block_device
*bdev
;
4616 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
4617 conf
->mddev
->array_sectors
= 2 * conf
->mddev
->size
*
4618 (conf
->raid_disks
- conf
->max_degraded
);
4619 set_capacity(conf
->mddev
->gendisk
, conf
->mddev
->array_sectors
);
4620 conf
->mddev
->changed
= 1;
4622 bdev
= bdget_disk(conf
->mddev
->gendisk
, 0);
4624 mutex_lock(&bdev
->bd_inode
->i_mutex
);
4625 i_size_write(bdev
->bd_inode
,
4626 (loff_t
)conf
->mddev
->array_sectors
<< 9);
4627 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
4630 spin_lock_irq(&conf
->device_lock
);
4631 conf
->expand_progress
= MaxSector
;
4632 spin_unlock_irq(&conf
->device_lock
);
4633 conf
->mddev
->reshape_position
= MaxSector
;
4635 /* read-ahead size must cover two whole stripes, which is
4636 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4639 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4640 int stripe
= data_disks
*
4641 (conf
->mddev
->chunk_size
/ PAGE_SIZE
);
4642 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4643 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4648 static void raid5_quiesce(mddev_t
*mddev
, int state
)
4650 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4653 case 2: /* resume for a suspend */
4654 wake_up(&conf
->wait_for_overlap
);
4657 case 1: /* stop all writes */
4658 spin_lock_irq(&conf
->device_lock
);
4660 wait_event_lock_irq(conf
->wait_for_stripe
,
4661 atomic_read(&conf
->active_stripes
) == 0 &&
4662 atomic_read(&conf
->active_aligned_reads
) == 0,
4663 conf
->device_lock
, /* nothing */);
4664 spin_unlock_irq(&conf
->device_lock
);
4667 case 0: /* re-enable writes */
4668 spin_lock_irq(&conf
->device_lock
);
4670 wake_up(&conf
->wait_for_stripe
);
4671 wake_up(&conf
->wait_for_overlap
);
4672 spin_unlock_irq(&conf
->device_lock
);
4677 static struct mdk_personality raid6_personality
=
4681 .owner
= THIS_MODULE
,
4682 .make_request
= make_request
,
4686 .error_handler
= error
,
4687 .hot_add_disk
= raid5_add_disk
,
4688 .hot_remove_disk
= raid5_remove_disk
,
4689 .spare_active
= raid5_spare_active
,
4690 .sync_request
= sync_request
,
4691 .resize
= raid5_resize
,
4692 #ifdef CONFIG_MD_RAID5_RESHAPE
4693 .check_reshape
= raid5_check_reshape
,
4694 .start_reshape
= raid5_start_reshape
,
4696 .quiesce
= raid5_quiesce
,
4698 static struct mdk_personality raid5_personality
=
4702 .owner
= THIS_MODULE
,
4703 .make_request
= make_request
,
4707 .error_handler
= error
,
4708 .hot_add_disk
= raid5_add_disk
,
4709 .hot_remove_disk
= raid5_remove_disk
,
4710 .spare_active
= raid5_spare_active
,
4711 .sync_request
= sync_request
,
4712 .resize
= raid5_resize
,
4713 #ifdef CONFIG_MD_RAID5_RESHAPE
4714 .check_reshape
= raid5_check_reshape
,
4715 .start_reshape
= raid5_start_reshape
,
4717 .quiesce
= raid5_quiesce
,
4720 static struct mdk_personality raid4_personality
=
4724 .owner
= THIS_MODULE
,
4725 .make_request
= make_request
,
4729 .error_handler
= error
,
4730 .hot_add_disk
= raid5_add_disk
,
4731 .hot_remove_disk
= raid5_remove_disk
,
4732 .spare_active
= raid5_spare_active
,
4733 .sync_request
= sync_request
,
4734 .resize
= raid5_resize
,
4735 #ifdef CONFIG_MD_RAID5_RESHAPE
4736 .check_reshape
= raid5_check_reshape
,
4737 .start_reshape
= raid5_start_reshape
,
4739 .quiesce
= raid5_quiesce
,
4742 static int __init
raid5_init(void)
4746 e
= raid6_select_algo();
4749 register_md_personality(&raid6_personality
);
4750 register_md_personality(&raid5_personality
);
4751 register_md_personality(&raid4_personality
);
4755 static void raid5_exit(void)
4757 unregister_md_personality(&raid6_personality
);
4758 unregister_md_personality(&raid5_personality
);
4759 unregister_md_personality(&raid4_personality
);
4762 module_init(raid5_init
);
4763 module_exit(raid5_exit
);
4764 MODULE_LICENSE("GPL");
4765 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4766 MODULE_ALIAS("md-raid5");
4767 MODULE_ALIAS("md-raid4");
4768 MODULE_ALIAS("md-level-5");
4769 MODULE_ALIAS("md-level-4");
4770 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4771 MODULE_ALIAS("md-raid6");
4772 MODULE_ALIAS("md-level-6");
4774 /* This used to be two separate modules, they were: */
4775 MODULE_ALIAS("raid5");
4776 MODULE_ALIAS("raid6");