gianfar: Don't reset TBI<->SerDes link if it's already up
[linux-2.6/mini2440.git] / drivers / md / dm-crypt.c
blobce26c84af064339f196a0a2eb62b0c55866408b2
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2008 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <asm/atomic.h>
22 #include <linux/scatterlist.h>
23 #include <asm/page.h>
24 #include <asm/unaligned.h>
26 #include <linux/device-mapper.h>
28 #define DM_MSG_PREFIX "crypt"
29 #define MESG_STR(x) x, sizeof(x)
32 * context holding the current state of a multi-part conversion
34 struct convert_context {
35 struct completion restart;
36 struct bio *bio_in;
37 struct bio *bio_out;
38 unsigned int offset_in;
39 unsigned int offset_out;
40 unsigned int idx_in;
41 unsigned int idx_out;
42 sector_t sector;
43 atomic_t pending;
47 * per bio private data
49 struct dm_crypt_io {
50 struct dm_target *target;
51 struct bio *base_bio;
52 struct work_struct work;
54 struct convert_context ctx;
56 atomic_t pending;
57 int error;
58 sector_t sector;
59 struct dm_crypt_io *base_io;
62 struct dm_crypt_request {
63 struct scatterlist sg_in;
64 struct scatterlist sg_out;
67 struct crypt_config;
69 struct crypt_iv_operations {
70 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
71 const char *opts);
72 void (*dtr)(struct crypt_config *cc);
73 const char *(*status)(struct crypt_config *cc);
74 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
78 * Crypt: maps a linear range of a block device
79 * and encrypts / decrypts at the same time.
81 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
82 struct crypt_config {
83 struct dm_dev *dev;
84 sector_t start;
87 * pool for per bio private data, crypto requests and
88 * encryption requeusts/buffer pages
90 mempool_t *io_pool;
91 mempool_t *req_pool;
92 mempool_t *page_pool;
93 struct bio_set *bs;
95 struct workqueue_struct *io_queue;
96 struct workqueue_struct *crypt_queue;
99 * crypto related data
101 struct crypt_iv_operations *iv_gen_ops;
102 char *iv_mode;
103 union {
104 struct crypto_cipher *essiv_tfm;
105 int benbi_shift;
106 } iv_gen_private;
107 sector_t iv_offset;
108 unsigned int iv_size;
111 * Layout of each crypto request:
113 * struct ablkcipher_request
114 * context
115 * padding
116 * struct dm_crypt_request
117 * padding
118 * IV
120 * The padding is added so that dm_crypt_request and the IV are
121 * correctly aligned.
123 unsigned int dmreq_start;
124 struct ablkcipher_request *req;
126 char cipher[CRYPTO_MAX_ALG_NAME];
127 char chainmode[CRYPTO_MAX_ALG_NAME];
128 struct crypto_ablkcipher *tfm;
129 unsigned long flags;
130 unsigned int key_size;
131 u8 key[0];
134 #define MIN_IOS 16
135 #define MIN_POOL_PAGES 32
136 #define MIN_BIO_PAGES 8
138 static struct kmem_cache *_crypt_io_pool;
140 static void clone_init(struct dm_crypt_io *, struct bio *);
141 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
144 * Different IV generation algorithms:
146 * plain: the initial vector is the 32-bit little-endian version of the sector
147 * number, padded with zeros if necessary.
149 * essiv: "encrypted sector|salt initial vector", the sector number is
150 * encrypted with the bulk cipher using a salt as key. The salt
151 * should be derived from the bulk cipher's key via hashing.
153 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
154 * (needed for LRW-32-AES and possible other narrow block modes)
156 * null: the initial vector is always zero. Provides compatibility with
157 * obsolete loop_fish2 devices. Do not use for new devices.
159 * plumb: unimplemented, see:
160 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
163 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
165 memset(iv, 0, cc->iv_size);
166 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
168 return 0;
171 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
172 const char *opts)
174 struct crypto_cipher *essiv_tfm;
175 struct crypto_hash *hash_tfm;
176 struct hash_desc desc;
177 struct scatterlist sg;
178 unsigned int saltsize;
179 u8 *salt;
180 int err;
182 if (opts == NULL) {
183 ti->error = "Digest algorithm missing for ESSIV mode";
184 return -EINVAL;
187 /* Hash the cipher key with the given hash algorithm */
188 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
189 if (IS_ERR(hash_tfm)) {
190 ti->error = "Error initializing ESSIV hash";
191 return PTR_ERR(hash_tfm);
194 saltsize = crypto_hash_digestsize(hash_tfm);
195 salt = kmalloc(saltsize, GFP_KERNEL);
196 if (salt == NULL) {
197 ti->error = "Error kmallocing salt storage in ESSIV";
198 crypto_free_hash(hash_tfm);
199 return -ENOMEM;
202 sg_init_one(&sg, cc->key, cc->key_size);
203 desc.tfm = hash_tfm;
204 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
205 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
206 crypto_free_hash(hash_tfm);
208 if (err) {
209 ti->error = "Error calculating hash in ESSIV";
210 kfree(salt);
211 return err;
214 /* Setup the essiv_tfm with the given salt */
215 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
216 if (IS_ERR(essiv_tfm)) {
217 ti->error = "Error allocating crypto tfm for ESSIV";
218 kfree(salt);
219 return PTR_ERR(essiv_tfm);
221 if (crypto_cipher_blocksize(essiv_tfm) !=
222 crypto_ablkcipher_ivsize(cc->tfm)) {
223 ti->error = "Block size of ESSIV cipher does "
224 "not match IV size of block cipher";
225 crypto_free_cipher(essiv_tfm);
226 kfree(salt);
227 return -EINVAL;
229 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
230 if (err) {
231 ti->error = "Failed to set key for ESSIV cipher";
232 crypto_free_cipher(essiv_tfm);
233 kfree(salt);
234 return err;
236 kfree(salt);
238 cc->iv_gen_private.essiv_tfm = essiv_tfm;
239 return 0;
242 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
244 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
245 cc->iv_gen_private.essiv_tfm = NULL;
248 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
250 memset(iv, 0, cc->iv_size);
251 *(u64 *)iv = cpu_to_le64(sector);
252 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
253 return 0;
256 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
257 const char *opts)
259 unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
260 int log = ilog2(bs);
262 /* we need to calculate how far we must shift the sector count
263 * to get the cipher block count, we use this shift in _gen */
265 if (1 << log != bs) {
266 ti->error = "cypher blocksize is not a power of 2";
267 return -EINVAL;
270 if (log > 9) {
271 ti->error = "cypher blocksize is > 512";
272 return -EINVAL;
275 cc->iv_gen_private.benbi_shift = 9 - log;
277 return 0;
280 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
284 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
286 __be64 val;
288 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
290 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
291 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
293 return 0;
296 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
298 memset(iv, 0, cc->iv_size);
300 return 0;
303 static struct crypt_iv_operations crypt_iv_plain_ops = {
304 .generator = crypt_iv_plain_gen
307 static struct crypt_iv_operations crypt_iv_essiv_ops = {
308 .ctr = crypt_iv_essiv_ctr,
309 .dtr = crypt_iv_essiv_dtr,
310 .generator = crypt_iv_essiv_gen
313 static struct crypt_iv_operations crypt_iv_benbi_ops = {
314 .ctr = crypt_iv_benbi_ctr,
315 .dtr = crypt_iv_benbi_dtr,
316 .generator = crypt_iv_benbi_gen
319 static struct crypt_iv_operations crypt_iv_null_ops = {
320 .generator = crypt_iv_null_gen
323 static void crypt_convert_init(struct crypt_config *cc,
324 struct convert_context *ctx,
325 struct bio *bio_out, struct bio *bio_in,
326 sector_t sector)
328 ctx->bio_in = bio_in;
329 ctx->bio_out = bio_out;
330 ctx->offset_in = 0;
331 ctx->offset_out = 0;
332 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
333 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
334 ctx->sector = sector + cc->iv_offset;
335 init_completion(&ctx->restart);
338 static int crypt_convert_block(struct crypt_config *cc,
339 struct convert_context *ctx,
340 struct ablkcipher_request *req)
342 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
343 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
344 struct dm_crypt_request *dmreq;
345 u8 *iv;
346 int r = 0;
348 dmreq = (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
349 iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
350 crypto_ablkcipher_alignmask(cc->tfm) + 1);
352 sg_init_table(&dmreq->sg_in, 1);
353 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
354 bv_in->bv_offset + ctx->offset_in);
356 sg_init_table(&dmreq->sg_out, 1);
357 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
358 bv_out->bv_offset + ctx->offset_out);
360 ctx->offset_in += 1 << SECTOR_SHIFT;
361 if (ctx->offset_in >= bv_in->bv_len) {
362 ctx->offset_in = 0;
363 ctx->idx_in++;
366 ctx->offset_out += 1 << SECTOR_SHIFT;
367 if (ctx->offset_out >= bv_out->bv_len) {
368 ctx->offset_out = 0;
369 ctx->idx_out++;
372 if (cc->iv_gen_ops) {
373 r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
374 if (r < 0)
375 return r;
378 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
379 1 << SECTOR_SHIFT, iv);
381 if (bio_data_dir(ctx->bio_in) == WRITE)
382 r = crypto_ablkcipher_encrypt(req);
383 else
384 r = crypto_ablkcipher_decrypt(req);
386 return r;
389 static void kcryptd_async_done(struct crypto_async_request *async_req,
390 int error);
391 static void crypt_alloc_req(struct crypt_config *cc,
392 struct convert_context *ctx)
394 if (!cc->req)
395 cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
396 ablkcipher_request_set_tfm(cc->req, cc->tfm);
397 ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
398 CRYPTO_TFM_REQ_MAY_SLEEP,
399 kcryptd_async_done, ctx);
403 * Encrypt / decrypt data from one bio to another one (can be the same one)
405 static int crypt_convert(struct crypt_config *cc,
406 struct convert_context *ctx)
408 int r;
410 atomic_set(&ctx->pending, 1);
412 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
413 ctx->idx_out < ctx->bio_out->bi_vcnt) {
415 crypt_alloc_req(cc, ctx);
417 atomic_inc(&ctx->pending);
419 r = crypt_convert_block(cc, ctx, cc->req);
421 switch (r) {
422 /* async */
423 case -EBUSY:
424 wait_for_completion(&ctx->restart);
425 INIT_COMPLETION(ctx->restart);
426 /* fall through*/
427 case -EINPROGRESS:
428 cc->req = NULL;
429 ctx->sector++;
430 continue;
432 /* sync */
433 case 0:
434 atomic_dec(&ctx->pending);
435 ctx->sector++;
436 cond_resched();
437 continue;
439 /* error */
440 default:
441 atomic_dec(&ctx->pending);
442 return r;
446 return 0;
449 static void dm_crypt_bio_destructor(struct bio *bio)
451 struct dm_crypt_io *io = bio->bi_private;
452 struct crypt_config *cc = io->target->private;
454 bio_free(bio, cc->bs);
458 * Generate a new unfragmented bio with the given size
459 * This should never violate the device limitations
460 * May return a smaller bio when running out of pages, indicated by
461 * *out_of_pages set to 1.
463 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
464 unsigned *out_of_pages)
466 struct crypt_config *cc = io->target->private;
467 struct bio *clone;
468 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
469 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
470 unsigned i, len;
471 struct page *page;
473 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
474 if (!clone)
475 return NULL;
477 clone_init(io, clone);
478 *out_of_pages = 0;
480 for (i = 0; i < nr_iovecs; i++) {
481 page = mempool_alloc(cc->page_pool, gfp_mask);
482 if (!page) {
483 *out_of_pages = 1;
484 break;
488 * if additional pages cannot be allocated without waiting,
489 * return a partially allocated bio, the caller will then try
490 * to allocate additional bios while submitting this partial bio
492 if (i == (MIN_BIO_PAGES - 1))
493 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
495 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
497 if (!bio_add_page(clone, page, len, 0)) {
498 mempool_free(page, cc->page_pool);
499 break;
502 size -= len;
505 if (!clone->bi_size) {
506 bio_put(clone);
507 return NULL;
510 return clone;
513 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
515 unsigned int i;
516 struct bio_vec *bv;
518 for (i = 0; i < clone->bi_vcnt; i++) {
519 bv = bio_iovec_idx(clone, i);
520 BUG_ON(!bv->bv_page);
521 mempool_free(bv->bv_page, cc->page_pool);
522 bv->bv_page = NULL;
526 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
527 struct bio *bio, sector_t sector)
529 struct crypt_config *cc = ti->private;
530 struct dm_crypt_io *io;
532 io = mempool_alloc(cc->io_pool, GFP_NOIO);
533 io->target = ti;
534 io->base_bio = bio;
535 io->sector = sector;
536 io->error = 0;
537 io->base_io = NULL;
538 atomic_set(&io->pending, 0);
540 return io;
543 static void crypt_inc_pending(struct dm_crypt_io *io)
545 atomic_inc(&io->pending);
549 * One of the bios was finished. Check for completion of
550 * the whole request and correctly clean up the buffer.
551 * If base_io is set, wait for the last fragment to complete.
553 static void crypt_dec_pending(struct dm_crypt_io *io)
555 struct crypt_config *cc = io->target->private;
557 if (!atomic_dec_and_test(&io->pending))
558 return;
560 if (likely(!io->base_io))
561 bio_endio(io->base_bio, io->error);
562 else {
563 if (io->error && !io->base_io->error)
564 io->base_io->error = io->error;
565 crypt_dec_pending(io->base_io);
568 mempool_free(io, cc->io_pool);
572 * kcryptd/kcryptd_io:
574 * Needed because it would be very unwise to do decryption in an
575 * interrupt context.
577 * kcryptd performs the actual encryption or decryption.
579 * kcryptd_io performs the IO submission.
581 * They must be separated as otherwise the final stages could be
582 * starved by new requests which can block in the first stages due
583 * to memory allocation.
585 static void crypt_endio(struct bio *clone, int error)
587 struct dm_crypt_io *io = clone->bi_private;
588 struct crypt_config *cc = io->target->private;
589 unsigned rw = bio_data_dir(clone);
591 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
592 error = -EIO;
595 * free the processed pages
597 if (rw == WRITE)
598 crypt_free_buffer_pages(cc, clone);
600 bio_put(clone);
602 if (rw == READ && !error) {
603 kcryptd_queue_crypt(io);
604 return;
607 if (unlikely(error))
608 io->error = error;
610 crypt_dec_pending(io);
613 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
615 struct crypt_config *cc = io->target->private;
617 clone->bi_private = io;
618 clone->bi_end_io = crypt_endio;
619 clone->bi_bdev = cc->dev->bdev;
620 clone->bi_rw = io->base_bio->bi_rw;
621 clone->bi_destructor = dm_crypt_bio_destructor;
624 static void kcryptd_io_read(struct dm_crypt_io *io)
626 struct crypt_config *cc = io->target->private;
627 struct bio *base_bio = io->base_bio;
628 struct bio *clone;
630 crypt_inc_pending(io);
633 * The block layer might modify the bvec array, so always
634 * copy the required bvecs because we need the original
635 * one in order to decrypt the whole bio data *afterwards*.
637 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
638 if (unlikely(!clone)) {
639 io->error = -ENOMEM;
640 crypt_dec_pending(io);
641 return;
644 clone_init(io, clone);
645 clone->bi_idx = 0;
646 clone->bi_vcnt = bio_segments(base_bio);
647 clone->bi_size = base_bio->bi_size;
648 clone->bi_sector = cc->start + io->sector;
649 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
650 sizeof(struct bio_vec) * clone->bi_vcnt);
652 generic_make_request(clone);
655 static void kcryptd_io_write(struct dm_crypt_io *io)
657 struct bio *clone = io->ctx.bio_out;
658 generic_make_request(clone);
661 static void kcryptd_io(struct work_struct *work)
663 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
665 if (bio_data_dir(io->base_bio) == READ)
666 kcryptd_io_read(io);
667 else
668 kcryptd_io_write(io);
671 static void kcryptd_queue_io(struct dm_crypt_io *io)
673 struct crypt_config *cc = io->target->private;
675 INIT_WORK(&io->work, kcryptd_io);
676 queue_work(cc->io_queue, &io->work);
679 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
680 int error, int async)
682 struct bio *clone = io->ctx.bio_out;
683 struct crypt_config *cc = io->target->private;
685 if (unlikely(error < 0)) {
686 crypt_free_buffer_pages(cc, clone);
687 bio_put(clone);
688 io->error = -EIO;
689 crypt_dec_pending(io);
690 return;
693 /* crypt_convert should have filled the clone bio */
694 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
696 clone->bi_sector = cc->start + io->sector;
698 if (async)
699 kcryptd_queue_io(io);
700 else
701 generic_make_request(clone);
704 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
706 struct crypt_config *cc = io->target->private;
707 struct bio *clone;
708 struct dm_crypt_io *new_io;
709 int crypt_finished;
710 unsigned out_of_pages = 0;
711 unsigned remaining = io->base_bio->bi_size;
712 sector_t sector = io->sector;
713 int r;
716 * Prevent io from disappearing until this function completes.
718 crypt_inc_pending(io);
719 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
722 * The allocated buffers can be smaller than the whole bio,
723 * so repeat the whole process until all the data can be handled.
725 while (remaining) {
726 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
727 if (unlikely(!clone)) {
728 io->error = -ENOMEM;
729 break;
732 io->ctx.bio_out = clone;
733 io->ctx.idx_out = 0;
735 remaining -= clone->bi_size;
736 sector += bio_sectors(clone);
738 crypt_inc_pending(io);
739 r = crypt_convert(cc, &io->ctx);
740 crypt_finished = atomic_dec_and_test(&io->ctx.pending);
742 /* Encryption was already finished, submit io now */
743 if (crypt_finished) {
744 kcryptd_crypt_write_io_submit(io, r, 0);
747 * If there was an error, do not try next fragments.
748 * For async, error is processed in async handler.
750 if (unlikely(r < 0))
751 break;
753 io->sector = sector;
757 * Out of memory -> run queues
758 * But don't wait if split was due to the io size restriction
760 if (unlikely(out_of_pages))
761 congestion_wait(WRITE, HZ/100);
764 * With async crypto it is unsafe to share the crypto context
765 * between fragments, so switch to a new dm_crypt_io structure.
767 if (unlikely(!crypt_finished && remaining)) {
768 new_io = crypt_io_alloc(io->target, io->base_bio,
769 sector);
770 crypt_inc_pending(new_io);
771 crypt_convert_init(cc, &new_io->ctx, NULL,
772 io->base_bio, sector);
773 new_io->ctx.idx_in = io->ctx.idx_in;
774 new_io->ctx.offset_in = io->ctx.offset_in;
777 * Fragments after the first use the base_io
778 * pending count.
780 if (!io->base_io)
781 new_io->base_io = io;
782 else {
783 new_io->base_io = io->base_io;
784 crypt_inc_pending(io->base_io);
785 crypt_dec_pending(io);
788 io = new_io;
792 crypt_dec_pending(io);
795 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
797 if (unlikely(error < 0))
798 io->error = -EIO;
800 crypt_dec_pending(io);
803 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
805 struct crypt_config *cc = io->target->private;
806 int r = 0;
808 crypt_inc_pending(io);
810 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
811 io->sector);
813 r = crypt_convert(cc, &io->ctx);
815 if (atomic_dec_and_test(&io->ctx.pending))
816 kcryptd_crypt_read_done(io, r);
818 crypt_dec_pending(io);
821 static void kcryptd_async_done(struct crypto_async_request *async_req,
822 int error)
824 struct convert_context *ctx = async_req->data;
825 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
826 struct crypt_config *cc = io->target->private;
828 if (error == -EINPROGRESS) {
829 complete(&ctx->restart);
830 return;
833 mempool_free(ablkcipher_request_cast(async_req), cc->req_pool);
835 if (!atomic_dec_and_test(&ctx->pending))
836 return;
838 if (bio_data_dir(io->base_bio) == READ)
839 kcryptd_crypt_read_done(io, error);
840 else
841 kcryptd_crypt_write_io_submit(io, error, 1);
844 static void kcryptd_crypt(struct work_struct *work)
846 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
848 if (bio_data_dir(io->base_bio) == READ)
849 kcryptd_crypt_read_convert(io);
850 else
851 kcryptd_crypt_write_convert(io);
854 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
856 struct crypt_config *cc = io->target->private;
858 INIT_WORK(&io->work, kcryptd_crypt);
859 queue_work(cc->crypt_queue, &io->work);
863 * Decode key from its hex representation
865 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
867 char buffer[3];
868 char *endp;
869 unsigned int i;
871 buffer[2] = '\0';
873 for (i = 0; i < size; i++) {
874 buffer[0] = *hex++;
875 buffer[1] = *hex++;
877 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
879 if (endp != &buffer[2])
880 return -EINVAL;
883 if (*hex != '\0')
884 return -EINVAL;
886 return 0;
890 * Encode key into its hex representation
892 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
894 unsigned int i;
896 for (i = 0; i < size; i++) {
897 sprintf(hex, "%02x", *key);
898 hex += 2;
899 key++;
903 static int crypt_set_key(struct crypt_config *cc, char *key)
905 unsigned key_size = strlen(key) >> 1;
907 if (cc->key_size && cc->key_size != key_size)
908 return -EINVAL;
910 cc->key_size = key_size; /* initial settings */
912 if ((!key_size && strcmp(key, "-")) ||
913 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
914 return -EINVAL;
916 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
918 return 0;
921 static int crypt_wipe_key(struct crypt_config *cc)
923 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
924 memset(&cc->key, 0, cc->key_size * sizeof(u8));
925 return 0;
929 * Construct an encryption mapping:
930 * <cipher> <key> <iv_offset> <dev_path> <start>
932 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
934 struct crypt_config *cc;
935 struct crypto_ablkcipher *tfm;
936 char *tmp;
937 char *cipher;
938 char *chainmode;
939 char *ivmode;
940 char *ivopts;
941 unsigned int key_size;
942 unsigned long long tmpll;
944 if (argc != 5) {
945 ti->error = "Not enough arguments";
946 return -EINVAL;
949 tmp = argv[0];
950 cipher = strsep(&tmp, "-");
951 chainmode = strsep(&tmp, "-");
952 ivopts = strsep(&tmp, "-");
953 ivmode = strsep(&ivopts, ":");
955 if (tmp)
956 DMWARN("Unexpected additional cipher options");
958 key_size = strlen(argv[1]) >> 1;
960 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
961 if (cc == NULL) {
962 ti->error =
963 "Cannot allocate transparent encryption context";
964 return -ENOMEM;
967 if (crypt_set_key(cc, argv[1])) {
968 ti->error = "Error decoding key";
969 goto bad_cipher;
972 /* Compatiblity mode for old dm-crypt cipher strings */
973 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
974 chainmode = "cbc";
975 ivmode = "plain";
978 if (strcmp(chainmode, "ecb") && !ivmode) {
979 ti->error = "This chaining mode requires an IV mechanism";
980 goto bad_cipher;
983 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
984 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
985 ti->error = "Chain mode + cipher name is too long";
986 goto bad_cipher;
989 tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
990 if (IS_ERR(tfm)) {
991 ti->error = "Error allocating crypto tfm";
992 goto bad_cipher;
995 strcpy(cc->cipher, cipher);
996 strcpy(cc->chainmode, chainmode);
997 cc->tfm = tfm;
1000 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
1001 * See comments at iv code
1004 if (ivmode == NULL)
1005 cc->iv_gen_ops = NULL;
1006 else if (strcmp(ivmode, "plain") == 0)
1007 cc->iv_gen_ops = &crypt_iv_plain_ops;
1008 else if (strcmp(ivmode, "essiv") == 0)
1009 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1010 else if (strcmp(ivmode, "benbi") == 0)
1011 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1012 else if (strcmp(ivmode, "null") == 0)
1013 cc->iv_gen_ops = &crypt_iv_null_ops;
1014 else {
1015 ti->error = "Invalid IV mode";
1016 goto bad_ivmode;
1019 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
1020 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
1021 goto bad_ivmode;
1023 cc->iv_size = crypto_ablkcipher_ivsize(tfm);
1024 if (cc->iv_size)
1025 /* at least a 64 bit sector number should fit in our buffer */
1026 cc->iv_size = max(cc->iv_size,
1027 (unsigned int)(sizeof(u64) / sizeof(u8)));
1028 else {
1029 if (cc->iv_gen_ops) {
1030 DMWARN("Selected cipher does not support IVs");
1031 if (cc->iv_gen_ops->dtr)
1032 cc->iv_gen_ops->dtr(cc);
1033 cc->iv_gen_ops = NULL;
1037 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1038 if (!cc->io_pool) {
1039 ti->error = "Cannot allocate crypt io mempool";
1040 goto bad_slab_pool;
1043 cc->dmreq_start = sizeof(struct ablkcipher_request);
1044 cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
1045 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1046 cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
1047 ~(crypto_tfm_ctx_alignment() - 1);
1049 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1050 sizeof(struct dm_crypt_request) + cc->iv_size);
1051 if (!cc->req_pool) {
1052 ti->error = "Cannot allocate crypt request mempool";
1053 goto bad_req_pool;
1055 cc->req = NULL;
1057 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1058 if (!cc->page_pool) {
1059 ti->error = "Cannot allocate page mempool";
1060 goto bad_page_pool;
1063 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
1064 if (!cc->bs) {
1065 ti->error = "Cannot allocate crypt bioset";
1066 goto bad_bs;
1069 if (crypto_ablkcipher_setkey(tfm, cc->key, key_size) < 0) {
1070 ti->error = "Error setting key";
1071 goto bad_device;
1074 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1075 ti->error = "Invalid iv_offset sector";
1076 goto bad_device;
1078 cc->iv_offset = tmpll;
1080 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1081 ti->error = "Invalid device sector";
1082 goto bad_device;
1084 cc->start = tmpll;
1086 if (dm_get_device(ti, argv[3], cc->start, ti->len,
1087 dm_table_get_mode(ti->table), &cc->dev)) {
1088 ti->error = "Device lookup failed";
1089 goto bad_device;
1092 if (ivmode && cc->iv_gen_ops) {
1093 if (ivopts)
1094 *(ivopts - 1) = ':';
1095 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
1096 if (!cc->iv_mode) {
1097 ti->error = "Error kmallocing iv_mode string";
1098 goto bad_ivmode_string;
1100 strcpy(cc->iv_mode, ivmode);
1101 } else
1102 cc->iv_mode = NULL;
1104 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1105 if (!cc->io_queue) {
1106 ti->error = "Couldn't create kcryptd io queue";
1107 goto bad_io_queue;
1110 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1111 if (!cc->crypt_queue) {
1112 ti->error = "Couldn't create kcryptd queue";
1113 goto bad_crypt_queue;
1116 ti->private = cc;
1117 return 0;
1119 bad_crypt_queue:
1120 destroy_workqueue(cc->io_queue);
1121 bad_io_queue:
1122 kfree(cc->iv_mode);
1123 bad_ivmode_string:
1124 dm_put_device(ti, cc->dev);
1125 bad_device:
1126 bioset_free(cc->bs);
1127 bad_bs:
1128 mempool_destroy(cc->page_pool);
1129 bad_page_pool:
1130 mempool_destroy(cc->req_pool);
1131 bad_req_pool:
1132 mempool_destroy(cc->io_pool);
1133 bad_slab_pool:
1134 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1135 cc->iv_gen_ops->dtr(cc);
1136 bad_ivmode:
1137 crypto_free_ablkcipher(tfm);
1138 bad_cipher:
1139 /* Must zero key material before freeing */
1140 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
1141 kfree(cc);
1142 return -EINVAL;
1145 static void crypt_dtr(struct dm_target *ti)
1147 struct crypt_config *cc = (struct crypt_config *) ti->private;
1149 destroy_workqueue(cc->io_queue);
1150 destroy_workqueue(cc->crypt_queue);
1152 if (cc->req)
1153 mempool_free(cc->req, cc->req_pool);
1155 bioset_free(cc->bs);
1156 mempool_destroy(cc->page_pool);
1157 mempool_destroy(cc->req_pool);
1158 mempool_destroy(cc->io_pool);
1160 kfree(cc->iv_mode);
1161 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1162 cc->iv_gen_ops->dtr(cc);
1163 crypto_free_ablkcipher(cc->tfm);
1164 dm_put_device(ti, cc->dev);
1166 /* Must zero key material before freeing */
1167 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
1168 kfree(cc);
1171 static int crypt_map(struct dm_target *ti, struct bio *bio,
1172 union map_info *map_context)
1174 struct dm_crypt_io *io;
1176 io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin);
1178 if (bio_data_dir(io->base_bio) == READ)
1179 kcryptd_queue_io(io);
1180 else
1181 kcryptd_queue_crypt(io);
1183 return DM_MAPIO_SUBMITTED;
1186 static int crypt_status(struct dm_target *ti, status_type_t type,
1187 char *result, unsigned int maxlen)
1189 struct crypt_config *cc = (struct crypt_config *) ti->private;
1190 unsigned int sz = 0;
1192 switch (type) {
1193 case STATUSTYPE_INFO:
1194 result[0] = '\0';
1195 break;
1197 case STATUSTYPE_TABLE:
1198 if (cc->iv_mode)
1199 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1200 cc->iv_mode);
1201 else
1202 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1204 if (cc->key_size > 0) {
1205 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1206 return -ENOMEM;
1208 crypt_encode_key(result + sz, cc->key, cc->key_size);
1209 sz += cc->key_size << 1;
1210 } else {
1211 if (sz >= maxlen)
1212 return -ENOMEM;
1213 result[sz++] = '-';
1216 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1217 cc->dev->name, (unsigned long long)cc->start);
1218 break;
1220 return 0;
1223 static void crypt_postsuspend(struct dm_target *ti)
1225 struct crypt_config *cc = ti->private;
1227 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1230 static int crypt_preresume(struct dm_target *ti)
1232 struct crypt_config *cc = ti->private;
1234 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1235 DMERR("aborting resume - crypt key is not set.");
1236 return -EAGAIN;
1239 return 0;
1242 static void crypt_resume(struct dm_target *ti)
1244 struct crypt_config *cc = ti->private;
1246 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1249 /* Message interface
1250 * key set <key>
1251 * key wipe
1253 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1255 struct crypt_config *cc = ti->private;
1257 if (argc < 2)
1258 goto error;
1260 if (!strnicmp(argv[0], MESG_STR("key"))) {
1261 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1262 DMWARN("not suspended during key manipulation.");
1263 return -EINVAL;
1265 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1266 return crypt_set_key(cc, argv[2]);
1267 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1268 return crypt_wipe_key(cc);
1271 error:
1272 DMWARN("unrecognised message received.");
1273 return -EINVAL;
1276 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1277 struct bio_vec *biovec, int max_size)
1279 struct crypt_config *cc = ti->private;
1280 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1282 if (!q->merge_bvec_fn)
1283 return max_size;
1285 bvm->bi_bdev = cc->dev->bdev;
1286 bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin;
1288 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1291 static struct target_type crypt_target = {
1292 .name = "crypt",
1293 .version= {1, 6, 0},
1294 .module = THIS_MODULE,
1295 .ctr = crypt_ctr,
1296 .dtr = crypt_dtr,
1297 .map = crypt_map,
1298 .status = crypt_status,
1299 .postsuspend = crypt_postsuspend,
1300 .preresume = crypt_preresume,
1301 .resume = crypt_resume,
1302 .message = crypt_message,
1303 .merge = crypt_merge,
1306 static int __init dm_crypt_init(void)
1308 int r;
1310 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1311 if (!_crypt_io_pool)
1312 return -ENOMEM;
1314 r = dm_register_target(&crypt_target);
1315 if (r < 0) {
1316 DMERR("register failed %d", r);
1317 kmem_cache_destroy(_crypt_io_pool);
1320 return r;
1323 static void __exit dm_crypt_exit(void)
1325 int r = dm_unregister_target(&crypt_target);
1327 if (r < 0)
1328 DMERR("unregister failed %d", r);
1330 kmem_cache_destroy(_crypt_io_pool);
1333 module_init(dm_crypt_init);
1334 module_exit(dm_crypt_exit);
1336 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1337 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1338 MODULE_LICENSE("GPL");