PCI hotplug: fix get_##name return value problem
[linux-2.6/mini2440.git] / mm / vmalloc.c
blob712ae47af0bf5f23a4b32ea0497dd2f6e8272085
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/seq_file.h>
19 #include <linux/debugobjects.h>
20 #include <linux/vmalloc.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
27 #include <asm/atomic.h>
28 #include <asm/uaccess.h>
29 #include <asm/tlbflush.h>
32 /*** Page table manipulation functions ***/
34 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
36 pte_t *pte;
38 pte = pte_offset_kernel(pmd, addr);
39 do {
40 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
41 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
42 } while (pte++, addr += PAGE_SIZE, addr != end);
45 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
47 pmd_t *pmd;
48 unsigned long next;
50 pmd = pmd_offset(pud, addr);
51 do {
52 next = pmd_addr_end(addr, end);
53 if (pmd_none_or_clear_bad(pmd))
54 continue;
55 vunmap_pte_range(pmd, addr, next);
56 } while (pmd++, addr = next, addr != end);
59 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
61 pud_t *pud;
62 unsigned long next;
64 pud = pud_offset(pgd, addr);
65 do {
66 next = pud_addr_end(addr, end);
67 if (pud_none_or_clear_bad(pud))
68 continue;
69 vunmap_pmd_range(pud, addr, next);
70 } while (pud++, addr = next, addr != end);
73 static void vunmap_page_range(unsigned long addr, unsigned long end)
75 pgd_t *pgd;
76 unsigned long next;
78 BUG_ON(addr >= end);
79 pgd = pgd_offset_k(addr);
80 flush_cache_vunmap(addr, end);
81 do {
82 next = pgd_addr_end(addr, end);
83 if (pgd_none_or_clear_bad(pgd))
84 continue;
85 vunmap_pud_range(pgd, addr, next);
86 } while (pgd++, addr = next, addr != end);
89 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
90 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92 pte_t *pte;
95 * nr is a running index into the array which helps higher level
96 * callers keep track of where we're up to.
99 pte = pte_alloc_kernel(pmd, addr);
100 if (!pte)
101 return -ENOMEM;
102 do {
103 struct page *page = pages[*nr];
105 if (WARN_ON(!pte_none(*pte)))
106 return -EBUSY;
107 if (WARN_ON(!page))
108 return -ENOMEM;
109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
110 (*nr)++;
111 } while (pte++, addr += PAGE_SIZE, addr != end);
112 return 0;
115 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118 pmd_t *pmd;
119 unsigned long next;
121 pmd = pmd_alloc(&init_mm, pud, addr);
122 if (!pmd)
123 return -ENOMEM;
124 do {
125 next = pmd_addr_end(addr, end);
126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
127 return -ENOMEM;
128 } while (pmd++, addr = next, addr != end);
129 return 0;
132 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135 pud_t *pud;
136 unsigned long next;
138 pud = pud_alloc(&init_mm, pgd, addr);
139 if (!pud)
140 return -ENOMEM;
141 do {
142 next = pud_addr_end(addr, end);
143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
144 return -ENOMEM;
145 } while (pud++, addr = next, addr != end);
146 return 0;
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 static int vmap_page_range(unsigned long addr, unsigned long end,
156 pgprot_t prot, struct page **pages)
158 pgd_t *pgd;
159 unsigned long next;
160 int err = 0;
161 int nr = 0;
163 BUG_ON(addr >= end);
164 pgd = pgd_offset_k(addr);
165 do {
166 next = pgd_addr_end(addr, end);
167 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
168 if (err)
169 break;
170 } while (pgd++, addr = next, addr != end);
171 flush_cache_vmap(addr, end);
173 if (unlikely(err))
174 return err;
175 return nr;
179 * Walk a vmap address to the struct page it maps.
181 struct page *vmalloc_to_page(const void *vmalloc_addr)
183 unsigned long addr = (unsigned long) vmalloc_addr;
184 struct page *page = NULL;
185 pgd_t *pgd = pgd_offset_k(addr);
188 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
189 * architectures that do not vmalloc module space
191 VIRTUAL_BUG_ON(!is_vmalloc_addr(vmalloc_addr) &&
192 !is_module_address(addr));
194 if (!pgd_none(*pgd)) {
195 pud_t *pud = pud_offset(pgd, addr);
196 if (!pud_none(*pud)) {
197 pmd_t *pmd = pmd_offset(pud, addr);
198 if (!pmd_none(*pmd)) {
199 pte_t *ptep, pte;
201 ptep = pte_offset_map(pmd, addr);
202 pte = *ptep;
203 if (pte_present(pte))
204 page = pte_page(pte);
205 pte_unmap(ptep);
209 return page;
211 EXPORT_SYMBOL(vmalloc_to_page);
214 * Map a vmalloc()-space virtual address to the physical page frame number.
216 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
218 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
220 EXPORT_SYMBOL(vmalloc_to_pfn);
223 /*** Global kva allocator ***/
225 #define VM_LAZY_FREE 0x01
226 #define VM_LAZY_FREEING 0x02
227 #define VM_VM_AREA 0x04
229 struct vmap_area {
230 unsigned long va_start;
231 unsigned long va_end;
232 unsigned long flags;
233 struct rb_node rb_node; /* address sorted rbtree */
234 struct list_head list; /* address sorted list */
235 struct list_head purge_list; /* "lazy purge" list */
236 void *private;
237 struct rcu_head rcu_head;
240 static DEFINE_SPINLOCK(vmap_area_lock);
241 static struct rb_root vmap_area_root = RB_ROOT;
242 static LIST_HEAD(vmap_area_list);
244 static struct vmap_area *__find_vmap_area(unsigned long addr)
246 struct rb_node *n = vmap_area_root.rb_node;
248 while (n) {
249 struct vmap_area *va;
251 va = rb_entry(n, struct vmap_area, rb_node);
252 if (addr < va->va_start)
253 n = n->rb_left;
254 else if (addr > va->va_start)
255 n = n->rb_right;
256 else
257 return va;
260 return NULL;
263 static void __insert_vmap_area(struct vmap_area *va)
265 struct rb_node **p = &vmap_area_root.rb_node;
266 struct rb_node *parent = NULL;
267 struct rb_node *tmp;
269 while (*p) {
270 struct vmap_area *tmp;
272 parent = *p;
273 tmp = rb_entry(parent, struct vmap_area, rb_node);
274 if (va->va_start < tmp->va_end)
275 p = &(*p)->rb_left;
276 else if (va->va_end > tmp->va_start)
277 p = &(*p)->rb_right;
278 else
279 BUG();
282 rb_link_node(&va->rb_node, parent, p);
283 rb_insert_color(&va->rb_node, &vmap_area_root);
285 /* address-sort this list so it is usable like the vmlist */
286 tmp = rb_prev(&va->rb_node);
287 if (tmp) {
288 struct vmap_area *prev;
289 prev = rb_entry(tmp, struct vmap_area, rb_node);
290 list_add_rcu(&va->list, &prev->list);
291 } else
292 list_add_rcu(&va->list, &vmap_area_list);
295 static void purge_vmap_area_lazy(void);
298 * Allocate a region of KVA of the specified size and alignment, within the
299 * vstart and vend.
301 static struct vmap_area *alloc_vmap_area(unsigned long size,
302 unsigned long align,
303 unsigned long vstart, unsigned long vend,
304 int node, gfp_t gfp_mask)
306 struct vmap_area *va;
307 struct rb_node *n;
308 unsigned long addr;
309 int purged = 0;
311 BUG_ON(size & ~PAGE_MASK);
313 addr = ALIGN(vstart, align);
315 va = kmalloc_node(sizeof(struct vmap_area),
316 gfp_mask & GFP_RECLAIM_MASK, node);
317 if (unlikely(!va))
318 return ERR_PTR(-ENOMEM);
320 retry:
321 spin_lock(&vmap_area_lock);
322 /* XXX: could have a last_hole cache */
323 n = vmap_area_root.rb_node;
324 if (n) {
325 struct vmap_area *first = NULL;
327 do {
328 struct vmap_area *tmp;
329 tmp = rb_entry(n, struct vmap_area, rb_node);
330 if (tmp->va_end >= addr) {
331 if (!first && tmp->va_start < addr + size)
332 first = tmp;
333 n = n->rb_left;
334 } else {
335 first = tmp;
336 n = n->rb_right;
338 } while (n);
340 if (!first)
341 goto found;
343 if (first->va_end < addr) {
344 n = rb_next(&first->rb_node);
345 if (n)
346 first = rb_entry(n, struct vmap_area, rb_node);
347 else
348 goto found;
351 while (addr + size >= first->va_start && addr + size <= vend) {
352 addr = ALIGN(first->va_end + PAGE_SIZE, align);
354 n = rb_next(&first->rb_node);
355 if (n)
356 first = rb_entry(n, struct vmap_area, rb_node);
357 else
358 goto found;
361 found:
362 if (addr + size > vend) {
363 spin_unlock(&vmap_area_lock);
364 if (!purged) {
365 purge_vmap_area_lazy();
366 purged = 1;
367 goto retry;
369 if (printk_ratelimit())
370 printk(KERN_WARNING "vmap allocation failed: "
371 "use vmalloc=<size> to increase size.\n");
372 return ERR_PTR(-EBUSY);
375 BUG_ON(addr & (align-1));
377 va->va_start = addr;
378 va->va_end = addr + size;
379 va->flags = 0;
380 __insert_vmap_area(va);
381 spin_unlock(&vmap_area_lock);
383 return va;
386 static void rcu_free_va(struct rcu_head *head)
388 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
390 kfree(va);
393 static void __free_vmap_area(struct vmap_area *va)
395 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
396 rb_erase(&va->rb_node, &vmap_area_root);
397 RB_CLEAR_NODE(&va->rb_node);
398 list_del_rcu(&va->list);
400 call_rcu(&va->rcu_head, rcu_free_va);
404 * Free a region of KVA allocated by alloc_vmap_area
406 static void free_vmap_area(struct vmap_area *va)
408 spin_lock(&vmap_area_lock);
409 __free_vmap_area(va);
410 spin_unlock(&vmap_area_lock);
414 * Clear the pagetable entries of a given vmap_area
416 static void unmap_vmap_area(struct vmap_area *va)
418 vunmap_page_range(va->va_start, va->va_end);
422 * lazy_max_pages is the maximum amount of virtual address space we gather up
423 * before attempting to purge with a TLB flush.
425 * There is a tradeoff here: a larger number will cover more kernel page tables
426 * and take slightly longer to purge, but it will linearly reduce the number of
427 * global TLB flushes that must be performed. It would seem natural to scale
428 * this number up linearly with the number of CPUs (because vmapping activity
429 * could also scale linearly with the number of CPUs), however it is likely
430 * that in practice, workloads might be constrained in other ways that mean
431 * vmap activity will not scale linearly with CPUs. Also, I want to be
432 * conservative and not introduce a big latency on huge systems, so go with
433 * a less aggressive log scale. It will still be an improvement over the old
434 * code, and it will be simple to change the scale factor if we find that it
435 * becomes a problem on bigger systems.
437 static unsigned long lazy_max_pages(void)
439 unsigned int log;
441 log = fls(num_online_cpus());
443 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
446 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
449 * Purges all lazily-freed vmap areas.
451 * If sync is 0 then don't purge if there is already a purge in progress.
452 * If force_flush is 1, then flush kernel TLBs between *start and *end even
453 * if we found no lazy vmap areas to unmap (callers can use this to optimise
454 * their own TLB flushing).
455 * Returns with *start = min(*start, lowest purged address)
456 * *end = max(*end, highest purged address)
458 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
459 int sync, int force_flush)
461 static DEFINE_SPINLOCK(purge_lock);
462 LIST_HEAD(valist);
463 struct vmap_area *va;
464 int nr = 0;
467 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
468 * should not expect such behaviour. This just simplifies locking for
469 * the case that isn't actually used at the moment anyway.
471 if (!sync && !force_flush) {
472 if (!spin_trylock(&purge_lock))
473 return;
474 } else
475 spin_lock(&purge_lock);
477 rcu_read_lock();
478 list_for_each_entry_rcu(va, &vmap_area_list, list) {
479 if (va->flags & VM_LAZY_FREE) {
480 if (va->va_start < *start)
481 *start = va->va_start;
482 if (va->va_end > *end)
483 *end = va->va_end;
484 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
485 unmap_vmap_area(va);
486 list_add_tail(&va->purge_list, &valist);
487 va->flags |= VM_LAZY_FREEING;
488 va->flags &= ~VM_LAZY_FREE;
491 rcu_read_unlock();
493 if (nr) {
494 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
495 atomic_sub(nr, &vmap_lazy_nr);
498 if (nr || force_flush)
499 flush_tlb_kernel_range(*start, *end);
501 if (nr) {
502 spin_lock(&vmap_area_lock);
503 list_for_each_entry(va, &valist, purge_list)
504 __free_vmap_area(va);
505 spin_unlock(&vmap_area_lock);
507 spin_unlock(&purge_lock);
511 * Kick off a purge of the outstanding lazy areas.
513 static void purge_vmap_area_lazy(void)
515 unsigned long start = ULONG_MAX, end = 0;
517 __purge_vmap_area_lazy(&start, &end, 0, 0);
521 * Free and unmap a vmap area
523 static void free_unmap_vmap_area(struct vmap_area *va)
525 va->flags |= VM_LAZY_FREE;
526 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
527 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
528 purge_vmap_area_lazy();
531 static struct vmap_area *find_vmap_area(unsigned long addr)
533 struct vmap_area *va;
535 spin_lock(&vmap_area_lock);
536 va = __find_vmap_area(addr);
537 spin_unlock(&vmap_area_lock);
539 return va;
542 static void free_unmap_vmap_area_addr(unsigned long addr)
544 struct vmap_area *va;
546 va = find_vmap_area(addr);
547 BUG_ON(!va);
548 free_unmap_vmap_area(va);
552 /*** Per cpu kva allocator ***/
555 * vmap space is limited especially on 32 bit architectures. Ensure there is
556 * room for at least 16 percpu vmap blocks per CPU.
559 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
560 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
561 * instead (we just need a rough idea)
563 #if BITS_PER_LONG == 32
564 #define VMALLOC_SPACE (128UL*1024*1024)
565 #else
566 #define VMALLOC_SPACE (128UL*1024*1024*1024)
567 #endif
569 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
570 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
571 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
572 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
573 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
574 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
575 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
576 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
577 VMALLOC_PAGES / NR_CPUS / 16))
579 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
581 struct vmap_block_queue {
582 spinlock_t lock;
583 struct list_head free;
584 struct list_head dirty;
585 unsigned int nr_dirty;
588 struct vmap_block {
589 spinlock_t lock;
590 struct vmap_area *va;
591 struct vmap_block_queue *vbq;
592 unsigned long free, dirty;
593 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
594 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
595 union {
596 struct {
597 struct list_head free_list;
598 struct list_head dirty_list;
600 struct rcu_head rcu_head;
604 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
605 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
608 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
609 * in the free path. Could get rid of this if we change the API to return a
610 * "cookie" from alloc, to be passed to free. But no big deal yet.
612 static DEFINE_SPINLOCK(vmap_block_tree_lock);
613 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
616 * We should probably have a fallback mechanism to allocate virtual memory
617 * out of partially filled vmap blocks. However vmap block sizing should be
618 * fairly reasonable according to the vmalloc size, so it shouldn't be a
619 * big problem.
622 static unsigned long addr_to_vb_idx(unsigned long addr)
624 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
625 addr /= VMAP_BLOCK_SIZE;
626 return addr;
629 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
631 struct vmap_block_queue *vbq;
632 struct vmap_block *vb;
633 struct vmap_area *va;
634 unsigned long vb_idx;
635 int node, err;
637 node = numa_node_id();
639 vb = kmalloc_node(sizeof(struct vmap_block),
640 gfp_mask & GFP_RECLAIM_MASK, node);
641 if (unlikely(!vb))
642 return ERR_PTR(-ENOMEM);
644 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
645 VMALLOC_START, VMALLOC_END,
646 node, gfp_mask);
647 if (unlikely(IS_ERR(va))) {
648 kfree(vb);
649 return ERR_PTR(PTR_ERR(va));
652 err = radix_tree_preload(gfp_mask);
653 if (unlikely(err)) {
654 kfree(vb);
655 free_vmap_area(va);
656 return ERR_PTR(err);
659 spin_lock_init(&vb->lock);
660 vb->va = va;
661 vb->free = VMAP_BBMAP_BITS;
662 vb->dirty = 0;
663 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
664 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
665 INIT_LIST_HEAD(&vb->free_list);
666 INIT_LIST_HEAD(&vb->dirty_list);
668 vb_idx = addr_to_vb_idx(va->va_start);
669 spin_lock(&vmap_block_tree_lock);
670 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
671 spin_unlock(&vmap_block_tree_lock);
672 BUG_ON(err);
673 radix_tree_preload_end();
675 vbq = &get_cpu_var(vmap_block_queue);
676 vb->vbq = vbq;
677 spin_lock(&vbq->lock);
678 list_add(&vb->free_list, &vbq->free);
679 spin_unlock(&vbq->lock);
680 put_cpu_var(vmap_cpu_blocks);
682 return vb;
685 static void rcu_free_vb(struct rcu_head *head)
687 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
689 kfree(vb);
692 static void free_vmap_block(struct vmap_block *vb)
694 struct vmap_block *tmp;
695 unsigned long vb_idx;
697 spin_lock(&vb->vbq->lock);
698 if (!list_empty(&vb->free_list))
699 list_del(&vb->free_list);
700 if (!list_empty(&vb->dirty_list))
701 list_del(&vb->dirty_list);
702 spin_unlock(&vb->vbq->lock);
704 vb_idx = addr_to_vb_idx(vb->va->va_start);
705 spin_lock(&vmap_block_tree_lock);
706 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
707 spin_unlock(&vmap_block_tree_lock);
708 BUG_ON(tmp != vb);
710 free_unmap_vmap_area(vb->va);
711 call_rcu(&vb->rcu_head, rcu_free_vb);
714 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
716 struct vmap_block_queue *vbq;
717 struct vmap_block *vb;
718 unsigned long addr = 0;
719 unsigned int order;
721 BUG_ON(size & ~PAGE_MASK);
722 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
723 order = get_order(size);
725 again:
726 rcu_read_lock();
727 vbq = &get_cpu_var(vmap_block_queue);
728 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
729 int i;
731 spin_lock(&vb->lock);
732 i = bitmap_find_free_region(vb->alloc_map,
733 VMAP_BBMAP_BITS, order);
735 if (i >= 0) {
736 addr = vb->va->va_start + (i << PAGE_SHIFT);
737 BUG_ON(addr_to_vb_idx(addr) !=
738 addr_to_vb_idx(vb->va->va_start));
739 vb->free -= 1UL << order;
740 if (vb->free == 0) {
741 spin_lock(&vbq->lock);
742 list_del_init(&vb->free_list);
743 spin_unlock(&vbq->lock);
745 spin_unlock(&vb->lock);
746 break;
748 spin_unlock(&vb->lock);
750 put_cpu_var(vmap_cpu_blocks);
751 rcu_read_unlock();
753 if (!addr) {
754 vb = new_vmap_block(gfp_mask);
755 if (IS_ERR(vb))
756 return vb;
757 goto again;
760 return (void *)addr;
763 static void vb_free(const void *addr, unsigned long size)
765 unsigned long offset;
766 unsigned long vb_idx;
767 unsigned int order;
768 struct vmap_block *vb;
770 BUG_ON(size & ~PAGE_MASK);
771 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
772 order = get_order(size);
774 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
776 vb_idx = addr_to_vb_idx((unsigned long)addr);
777 rcu_read_lock();
778 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
779 rcu_read_unlock();
780 BUG_ON(!vb);
782 spin_lock(&vb->lock);
783 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
784 if (!vb->dirty) {
785 spin_lock(&vb->vbq->lock);
786 list_add(&vb->dirty_list, &vb->vbq->dirty);
787 spin_unlock(&vb->vbq->lock);
789 vb->dirty += 1UL << order;
790 if (vb->dirty == VMAP_BBMAP_BITS) {
791 BUG_ON(vb->free || !list_empty(&vb->free_list));
792 spin_unlock(&vb->lock);
793 free_vmap_block(vb);
794 } else
795 spin_unlock(&vb->lock);
799 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
801 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
802 * to amortize TLB flushing overheads. What this means is that any page you
803 * have now, may, in a former life, have been mapped into kernel virtual
804 * address by the vmap layer and so there might be some CPUs with TLB entries
805 * still referencing that page (additional to the regular 1:1 kernel mapping).
807 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
808 * be sure that none of the pages we have control over will have any aliases
809 * from the vmap layer.
811 void vm_unmap_aliases(void)
813 unsigned long start = ULONG_MAX, end = 0;
814 int cpu;
815 int flush = 0;
817 for_each_possible_cpu(cpu) {
818 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
819 struct vmap_block *vb;
821 rcu_read_lock();
822 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
823 int i;
825 spin_lock(&vb->lock);
826 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
827 while (i < VMAP_BBMAP_BITS) {
828 unsigned long s, e;
829 int j;
830 j = find_next_zero_bit(vb->dirty_map,
831 VMAP_BBMAP_BITS, i);
833 s = vb->va->va_start + (i << PAGE_SHIFT);
834 e = vb->va->va_start + (j << PAGE_SHIFT);
835 vunmap_page_range(s, e);
836 flush = 1;
838 if (s < start)
839 start = s;
840 if (e > end)
841 end = e;
843 i = j;
844 i = find_next_bit(vb->dirty_map,
845 VMAP_BBMAP_BITS, i);
847 spin_unlock(&vb->lock);
849 rcu_read_unlock();
852 __purge_vmap_area_lazy(&start, &end, 1, flush);
854 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
857 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
858 * @mem: the pointer returned by vm_map_ram
859 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
861 void vm_unmap_ram(const void *mem, unsigned int count)
863 unsigned long size = count << PAGE_SHIFT;
864 unsigned long addr = (unsigned long)mem;
866 BUG_ON(!addr);
867 BUG_ON(addr < VMALLOC_START);
868 BUG_ON(addr > VMALLOC_END);
869 BUG_ON(addr & (PAGE_SIZE-1));
871 debug_check_no_locks_freed(mem, size);
873 if (likely(count <= VMAP_MAX_ALLOC))
874 vb_free(mem, size);
875 else
876 free_unmap_vmap_area_addr(addr);
878 EXPORT_SYMBOL(vm_unmap_ram);
881 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
882 * @pages: an array of pointers to the pages to be mapped
883 * @count: number of pages
884 * @node: prefer to allocate data structures on this node
885 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
886 * @returns: a pointer to the address that has been mapped, or NULL on failure
888 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
890 unsigned long size = count << PAGE_SHIFT;
891 unsigned long addr;
892 void *mem;
894 if (likely(count <= VMAP_MAX_ALLOC)) {
895 mem = vb_alloc(size, GFP_KERNEL);
896 if (IS_ERR(mem))
897 return NULL;
898 addr = (unsigned long)mem;
899 } else {
900 struct vmap_area *va;
901 va = alloc_vmap_area(size, PAGE_SIZE,
902 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
903 if (IS_ERR(va))
904 return NULL;
906 addr = va->va_start;
907 mem = (void *)addr;
909 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
910 vm_unmap_ram(mem, count);
911 return NULL;
913 return mem;
915 EXPORT_SYMBOL(vm_map_ram);
917 void __init vmalloc_init(void)
919 int i;
921 for_each_possible_cpu(i) {
922 struct vmap_block_queue *vbq;
924 vbq = &per_cpu(vmap_block_queue, i);
925 spin_lock_init(&vbq->lock);
926 INIT_LIST_HEAD(&vbq->free);
927 INIT_LIST_HEAD(&vbq->dirty);
928 vbq->nr_dirty = 0;
932 void unmap_kernel_range(unsigned long addr, unsigned long size)
934 unsigned long end = addr + size;
935 vunmap_page_range(addr, end);
936 flush_tlb_kernel_range(addr, end);
939 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
941 unsigned long addr = (unsigned long)area->addr;
942 unsigned long end = addr + area->size - PAGE_SIZE;
943 int err;
945 err = vmap_page_range(addr, end, prot, *pages);
946 if (err > 0) {
947 *pages += err;
948 err = 0;
951 return err;
953 EXPORT_SYMBOL_GPL(map_vm_area);
955 /*** Old vmalloc interfaces ***/
956 DEFINE_RWLOCK(vmlist_lock);
957 struct vm_struct *vmlist;
959 static struct vm_struct *__get_vm_area_node(unsigned long size,
960 unsigned long flags, unsigned long start, unsigned long end,
961 int node, gfp_t gfp_mask, void *caller)
963 static struct vmap_area *va;
964 struct vm_struct *area;
965 struct vm_struct *tmp, **p;
966 unsigned long align = 1;
968 BUG_ON(in_interrupt());
969 if (flags & VM_IOREMAP) {
970 int bit = fls(size);
972 if (bit > IOREMAP_MAX_ORDER)
973 bit = IOREMAP_MAX_ORDER;
974 else if (bit < PAGE_SHIFT)
975 bit = PAGE_SHIFT;
977 align = 1ul << bit;
980 size = PAGE_ALIGN(size);
981 if (unlikely(!size))
982 return NULL;
984 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
985 if (unlikely(!area))
986 return NULL;
989 * We always allocate a guard page.
991 size += PAGE_SIZE;
993 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
994 if (IS_ERR(va)) {
995 kfree(area);
996 return NULL;
999 area->flags = flags;
1000 area->addr = (void *)va->va_start;
1001 area->size = size;
1002 area->pages = NULL;
1003 area->nr_pages = 0;
1004 area->phys_addr = 0;
1005 area->caller = caller;
1006 va->private = area;
1007 va->flags |= VM_VM_AREA;
1009 write_lock(&vmlist_lock);
1010 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1011 if (tmp->addr >= area->addr)
1012 break;
1014 area->next = *p;
1015 *p = area;
1016 write_unlock(&vmlist_lock);
1018 return area;
1021 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1022 unsigned long start, unsigned long end)
1024 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1025 __builtin_return_address(0));
1027 EXPORT_SYMBOL_GPL(__get_vm_area);
1030 * get_vm_area - reserve a contiguous kernel virtual area
1031 * @size: size of the area
1032 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1034 * Search an area of @size in the kernel virtual mapping area,
1035 * and reserved it for out purposes. Returns the area descriptor
1036 * on success or %NULL on failure.
1038 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1040 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1041 -1, GFP_KERNEL, __builtin_return_address(0));
1044 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1045 void *caller)
1047 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1048 -1, GFP_KERNEL, caller);
1051 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1052 int node, gfp_t gfp_mask)
1054 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1055 gfp_mask, __builtin_return_address(0));
1058 static struct vm_struct *find_vm_area(const void *addr)
1060 struct vmap_area *va;
1062 va = find_vmap_area((unsigned long)addr);
1063 if (va && va->flags & VM_VM_AREA)
1064 return va->private;
1066 return NULL;
1070 * remove_vm_area - find and remove a continuous kernel virtual area
1071 * @addr: base address
1073 * Search for the kernel VM area starting at @addr, and remove it.
1074 * This function returns the found VM area, but using it is NOT safe
1075 * on SMP machines, except for its size or flags.
1077 struct vm_struct *remove_vm_area(const void *addr)
1079 struct vmap_area *va;
1081 va = find_vmap_area((unsigned long)addr);
1082 if (va && va->flags & VM_VM_AREA) {
1083 struct vm_struct *vm = va->private;
1084 struct vm_struct *tmp, **p;
1085 free_unmap_vmap_area(va);
1086 vm->size -= PAGE_SIZE;
1088 write_lock(&vmlist_lock);
1089 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1091 *p = tmp->next;
1092 write_unlock(&vmlist_lock);
1094 return vm;
1096 return NULL;
1099 static void __vunmap(const void *addr, int deallocate_pages)
1101 struct vm_struct *area;
1103 if (!addr)
1104 return;
1106 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1107 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1108 return;
1111 area = remove_vm_area(addr);
1112 if (unlikely(!area)) {
1113 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1114 addr);
1115 return;
1118 debug_check_no_locks_freed(addr, area->size);
1119 debug_check_no_obj_freed(addr, area->size);
1121 if (deallocate_pages) {
1122 int i;
1124 for (i = 0; i < area->nr_pages; i++) {
1125 struct page *page = area->pages[i];
1127 BUG_ON(!page);
1128 __free_page(page);
1131 if (area->flags & VM_VPAGES)
1132 vfree(area->pages);
1133 else
1134 kfree(area->pages);
1137 kfree(area);
1138 return;
1142 * vfree - release memory allocated by vmalloc()
1143 * @addr: memory base address
1145 * Free the virtually continuous memory area starting at @addr, as
1146 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1147 * NULL, no operation is performed.
1149 * Must not be called in interrupt context.
1151 void vfree(const void *addr)
1153 BUG_ON(in_interrupt());
1154 __vunmap(addr, 1);
1156 EXPORT_SYMBOL(vfree);
1159 * vunmap - release virtual mapping obtained by vmap()
1160 * @addr: memory base address
1162 * Free the virtually contiguous memory area starting at @addr,
1163 * which was created from the page array passed to vmap().
1165 * Must not be called in interrupt context.
1167 void vunmap(const void *addr)
1169 BUG_ON(in_interrupt());
1170 __vunmap(addr, 0);
1172 EXPORT_SYMBOL(vunmap);
1175 * vmap - map an array of pages into virtually contiguous space
1176 * @pages: array of page pointers
1177 * @count: number of pages to map
1178 * @flags: vm_area->flags
1179 * @prot: page protection for the mapping
1181 * Maps @count pages from @pages into contiguous kernel virtual
1182 * space.
1184 void *vmap(struct page **pages, unsigned int count,
1185 unsigned long flags, pgprot_t prot)
1187 struct vm_struct *area;
1189 if (count > num_physpages)
1190 return NULL;
1192 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1193 __builtin_return_address(0));
1194 if (!area)
1195 return NULL;
1197 if (map_vm_area(area, prot, &pages)) {
1198 vunmap(area->addr);
1199 return NULL;
1202 return area->addr;
1204 EXPORT_SYMBOL(vmap);
1206 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1207 int node, void *caller);
1208 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1209 pgprot_t prot, int node, void *caller)
1211 struct page **pages;
1212 unsigned int nr_pages, array_size, i;
1214 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1215 array_size = (nr_pages * sizeof(struct page *));
1217 area->nr_pages = nr_pages;
1218 /* Please note that the recursion is strictly bounded. */
1219 if (array_size > PAGE_SIZE) {
1220 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1221 PAGE_KERNEL, node, caller);
1222 area->flags |= VM_VPAGES;
1223 } else {
1224 pages = kmalloc_node(array_size,
1225 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1226 node);
1228 area->pages = pages;
1229 area->caller = caller;
1230 if (!area->pages) {
1231 remove_vm_area(area->addr);
1232 kfree(area);
1233 return NULL;
1236 for (i = 0; i < area->nr_pages; i++) {
1237 struct page *page;
1239 if (node < 0)
1240 page = alloc_page(gfp_mask);
1241 else
1242 page = alloc_pages_node(node, gfp_mask, 0);
1244 if (unlikely(!page)) {
1245 /* Successfully allocated i pages, free them in __vunmap() */
1246 area->nr_pages = i;
1247 goto fail;
1249 area->pages[i] = page;
1252 if (map_vm_area(area, prot, &pages))
1253 goto fail;
1254 return area->addr;
1256 fail:
1257 vfree(area->addr);
1258 return NULL;
1261 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1263 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1264 __builtin_return_address(0));
1268 * __vmalloc_node - allocate virtually contiguous memory
1269 * @size: allocation size
1270 * @gfp_mask: flags for the page level allocator
1271 * @prot: protection mask for the allocated pages
1272 * @node: node to use for allocation or -1
1273 * @caller: caller's return address
1275 * Allocate enough pages to cover @size from the page level
1276 * allocator with @gfp_mask flags. Map them into contiguous
1277 * kernel virtual space, using a pagetable protection of @prot.
1279 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1280 int node, void *caller)
1282 struct vm_struct *area;
1284 size = PAGE_ALIGN(size);
1285 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1286 return NULL;
1288 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1289 node, gfp_mask, caller);
1291 if (!area)
1292 return NULL;
1294 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1297 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1299 return __vmalloc_node(size, gfp_mask, prot, -1,
1300 __builtin_return_address(0));
1302 EXPORT_SYMBOL(__vmalloc);
1305 * vmalloc - allocate virtually contiguous memory
1306 * @size: allocation size
1307 * Allocate enough pages to cover @size from the page level
1308 * allocator and map them into contiguous kernel virtual space.
1310 * For tight control over page level allocator and protection flags
1311 * use __vmalloc() instead.
1313 void *vmalloc(unsigned long size)
1315 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1316 -1, __builtin_return_address(0));
1318 EXPORT_SYMBOL(vmalloc);
1321 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1322 * @size: allocation size
1324 * The resulting memory area is zeroed so it can be mapped to userspace
1325 * without leaking data.
1327 void *vmalloc_user(unsigned long size)
1329 struct vm_struct *area;
1330 void *ret;
1332 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
1333 if (ret) {
1334 area = find_vm_area(ret);
1335 area->flags |= VM_USERMAP;
1337 return ret;
1339 EXPORT_SYMBOL(vmalloc_user);
1342 * vmalloc_node - allocate memory on a specific node
1343 * @size: allocation size
1344 * @node: numa node
1346 * Allocate enough pages to cover @size from the page level
1347 * allocator and map them into contiguous kernel virtual space.
1349 * For tight control over page level allocator and protection flags
1350 * use __vmalloc() instead.
1352 void *vmalloc_node(unsigned long size, int node)
1354 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1355 node, __builtin_return_address(0));
1357 EXPORT_SYMBOL(vmalloc_node);
1359 #ifndef PAGE_KERNEL_EXEC
1360 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1361 #endif
1364 * vmalloc_exec - allocate virtually contiguous, executable memory
1365 * @size: allocation size
1367 * Kernel-internal function to allocate enough pages to cover @size
1368 * the page level allocator and map them into contiguous and
1369 * executable kernel virtual space.
1371 * For tight control over page level allocator and protection flags
1372 * use __vmalloc() instead.
1375 void *vmalloc_exec(unsigned long size)
1377 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
1380 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1381 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1382 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1383 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1384 #else
1385 #define GFP_VMALLOC32 GFP_KERNEL
1386 #endif
1389 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1390 * @size: allocation size
1392 * Allocate enough 32bit PA addressable pages to cover @size from the
1393 * page level allocator and map them into contiguous kernel virtual space.
1395 void *vmalloc_32(unsigned long size)
1397 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
1399 EXPORT_SYMBOL(vmalloc_32);
1402 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1403 * @size: allocation size
1405 * The resulting memory area is 32bit addressable and zeroed so it can be
1406 * mapped to userspace without leaking data.
1408 void *vmalloc_32_user(unsigned long size)
1410 struct vm_struct *area;
1411 void *ret;
1413 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
1414 if (ret) {
1415 area = find_vm_area(ret);
1416 area->flags |= VM_USERMAP;
1418 return ret;
1420 EXPORT_SYMBOL(vmalloc_32_user);
1422 long vread(char *buf, char *addr, unsigned long count)
1424 struct vm_struct *tmp;
1425 char *vaddr, *buf_start = buf;
1426 unsigned long n;
1428 /* Don't allow overflow */
1429 if ((unsigned long) addr + count < count)
1430 count = -(unsigned long) addr;
1432 read_lock(&vmlist_lock);
1433 for (tmp = vmlist; tmp; tmp = tmp->next) {
1434 vaddr = (char *) tmp->addr;
1435 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1436 continue;
1437 while (addr < vaddr) {
1438 if (count == 0)
1439 goto finished;
1440 *buf = '\0';
1441 buf++;
1442 addr++;
1443 count--;
1445 n = vaddr + tmp->size - PAGE_SIZE - addr;
1446 do {
1447 if (count == 0)
1448 goto finished;
1449 *buf = *addr;
1450 buf++;
1451 addr++;
1452 count--;
1453 } while (--n > 0);
1455 finished:
1456 read_unlock(&vmlist_lock);
1457 return buf - buf_start;
1460 long vwrite(char *buf, char *addr, unsigned long count)
1462 struct vm_struct *tmp;
1463 char *vaddr, *buf_start = buf;
1464 unsigned long n;
1466 /* Don't allow overflow */
1467 if ((unsigned long) addr + count < count)
1468 count = -(unsigned long) addr;
1470 read_lock(&vmlist_lock);
1471 for (tmp = vmlist; tmp; tmp = tmp->next) {
1472 vaddr = (char *) tmp->addr;
1473 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1474 continue;
1475 while (addr < vaddr) {
1476 if (count == 0)
1477 goto finished;
1478 buf++;
1479 addr++;
1480 count--;
1482 n = vaddr + tmp->size - PAGE_SIZE - addr;
1483 do {
1484 if (count == 0)
1485 goto finished;
1486 *addr = *buf;
1487 buf++;
1488 addr++;
1489 count--;
1490 } while (--n > 0);
1492 finished:
1493 read_unlock(&vmlist_lock);
1494 return buf - buf_start;
1498 * remap_vmalloc_range - map vmalloc pages to userspace
1499 * @vma: vma to cover (map full range of vma)
1500 * @addr: vmalloc memory
1501 * @pgoff: number of pages into addr before first page to map
1503 * Returns: 0 for success, -Exxx on failure
1505 * This function checks that addr is a valid vmalloc'ed area, and
1506 * that it is big enough to cover the vma. Will return failure if
1507 * that criteria isn't met.
1509 * Similar to remap_pfn_range() (see mm/memory.c)
1511 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1512 unsigned long pgoff)
1514 struct vm_struct *area;
1515 unsigned long uaddr = vma->vm_start;
1516 unsigned long usize = vma->vm_end - vma->vm_start;
1518 if ((PAGE_SIZE-1) & (unsigned long)addr)
1519 return -EINVAL;
1521 area = find_vm_area(addr);
1522 if (!area)
1523 return -EINVAL;
1525 if (!(area->flags & VM_USERMAP))
1526 return -EINVAL;
1528 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1529 return -EINVAL;
1531 addr += pgoff << PAGE_SHIFT;
1532 do {
1533 struct page *page = vmalloc_to_page(addr);
1534 int ret;
1536 ret = vm_insert_page(vma, uaddr, page);
1537 if (ret)
1538 return ret;
1540 uaddr += PAGE_SIZE;
1541 addr += PAGE_SIZE;
1542 usize -= PAGE_SIZE;
1543 } while (usize > 0);
1545 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1546 vma->vm_flags |= VM_RESERVED;
1548 return 0;
1550 EXPORT_SYMBOL(remap_vmalloc_range);
1553 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1554 * have one.
1556 void __attribute__((weak)) vmalloc_sync_all(void)
1561 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1563 /* apply_to_page_range() does all the hard work. */
1564 return 0;
1568 * alloc_vm_area - allocate a range of kernel address space
1569 * @size: size of the area
1571 * Returns: NULL on failure, vm_struct on success
1573 * This function reserves a range of kernel address space, and
1574 * allocates pagetables to map that range. No actual mappings
1575 * are created. If the kernel address space is not shared
1576 * between processes, it syncs the pagetable across all
1577 * processes.
1579 struct vm_struct *alloc_vm_area(size_t size)
1581 struct vm_struct *area;
1583 area = get_vm_area_caller(size, VM_IOREMAP,
1584 __builtin_return_address(0));
1585 if (area == NULL)
1586 return NULL;
1589 * This ensures that page tables are constructed for this region
1590 * of kernel virtual address space and mapped into init_mm.
1592 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1593 area->size, f, NULL)) {
1594 free_vm_area(area);
1595 return NULL;
1598 /* Make sure the pagetables are constructed in process kernel
1599 mappings */
1600 vmalloc_sync_all();
1602 return area;
1604 EXPORT_SYMBOL_GPL(alloc_vm_area);
1606 void free_vm_area(struct vm_struct *area)
1608 struct vm_struct *ret;
1609 ret = remove_vm_area(area->addr);
1610 BUG_ON(ret != area);
1611 kfree(area);
1613 EXPORT_SYMBOL_GPL(free_vm_area);
1616 #ifdef CONFIG_PROC_FS
1617 static void *s_start(struct seq_file *m, loff_t *pos)
1619 loff_t n = *pos;
1620 struct vm_struct *v;
1622 read_lock(&vmlist_lock);
1623 v = vmlist;
1624 while (n > 0 && v) {
1625 n--;
1626 v = v->next;
1628 if (!n)
1629 return v;
1631 return NULL;
1635 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1637 struct vm_struct *v = p;
1639 ++*pos;
1640 return v->next;
1643 static void s_stop(struct seq_file *m, void *p)
1645 read_unlock(&vmlist_lock);
1648 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1650 if (NUMA_BUILD) {
1651 unsigned int nr, *counters = m->private;
1653 if (!counters)
1654 return;
1656 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1658 for (nr = 0; nr < v->nr_pages; nr++)
1659 counters[page_to_nid(v->pages[nr])]++;
1661 for_each_node_state(nr, N_HIGH_MEMORY)
1662 if (counters[nr])
1663 seq_printf(m, " N%u=%u", nr, counters[nr]);
1667 static int s_show(struct seq_file *m, void *p)
1669 struct vm_struct *v = p;
1671 seq_printf(m, "0x%p-0x%p %7ld",
1672 v->addr, v->addr + v->size, v->size);
1674 if (v->caller) {
1675 char buff[2 * KSYM_NAME_LEN];
1677 seq_putc(m, ' ');
1678 sprint_symbol(buff, (unsigned long)v->caller);
1679 seq_puts(m, buff);
1682 if (v->nr_pages)
1683 seq_printf(m, " pages=%d", v->nr_pages);
1685 if (v->phys_addr)
1686 seq_printf(m, " phys=%lx", v->phys_addr);
1688 if (v->flags & VM_IOREMAP)
1689 seq_printf(m, " ioremap");
1691 if (v->flags & VM_ALLOC)
1692 seq_printf(m, " vmalloc");
1694 if (v->flags & VM_MAP)
1695 seq_printf(m, " vmap");
1697 if (v->flags & VM_USERMAP)
1698 seq_printf(m, " user");
1700 if (v->flags & VM_VPAGES)
1701 seq_printf(m, " vpages");
1703 show_numa_info(m, v);
1704 seq_putc(m, '\n');
1705 return 0;
1708 const struct seq_operations vmalloc_op = {
1709 .start = s_start,
1710 .next = s_next,
1711 .stop = s_stop,
1712 .show = s_show,
1714 #endif