2 * linux/drivers/ide/ide-tape.c Version 1.19 Nov, 2003
4 * Copyright (C) 1995 - 1999 Gadi Oxman <gadio@netvision.net.il>
8 * This driver was constructed as a student project in the software laboratory
9 * of the faculty of electrical engineering in the Technion - Israel's
10 * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
12 * It is hereby placed under the terms of the GNU general public license.
13 * (See linux/COPYING).
17 * IDE ATAPI streaming tape driver.
19 * This driver is a part of the Linux ide driver and works in co-operation
20 * with linux/drivers/block/ide.c.
22 * The driver, in co-operation with ide.c, basically traverses the
23 * request-list for the block device interface. The character device
24 * interface, on the other hand, creates new requests, adds them
25 * to the request-list of the block device, and waits for their completion.
27 * Pipelined operation mode is now supported on both reads and writes.
29 * The block device major and minor numbers are determined from the
30 * tape's relative position in the ide interfaces, as explained in ide.c.
32 * The character device interface consists of the following devices:
34 * ht0 major 37, minor 0 first IDE tape, rewind on close.
35 * ht1 major 37, minor 1 second IDE tape, rewind on close.
37 * nht0 major 37, minor 128 first IDE tape, no rewind on close.
38 * nht1 major 37, minor 129 second IDE tape, no rewind on close.
41 * Run linux/scripts/MAKEDEV.ide to create the above entries.
43 * The general magnetic tape commands compatible interface, as defined by
44 * include/linux/mtio.h, is accessible through the character device.
46 * General ide driver configuration options, such as the interrupt-unmask
47 * flag, can be configured by issuing an ioctl to the block device interface,
48 * as any other ide device.
50 * Our own ide-tape ioctl's can be issued to either the block device or
51 * the character device interface.
53 * Maximal throughput with minimal bus load will usually be achieved in the
56 * 1. ide-tape is operating in the pipelined operation mode.
57 * 2. No buffering is performed by the user backup program.
59 * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
61 * Ver 0.1 Nov 1 95 Pre-working code :-)
62 * Ver 0.2 Nov 23 95 A short backup (few megabytes) and restore procedure
63 * was successful ! (Using tar cvf ... on the block
65 * A longer backup resulted in major swapping, bad
66 * overall Linux performance and eventually failed as
67 * we received non serial read-ahead requests from the
69 * Ver 0.3 Nov 28 95 Long backups are now possible, thanks to the
70 * character device interface. Linux's responsiveness
71 * and performance doesn't seem to be much affected
72 * from the background backup procedure.
73 * Some general mtio.h magnetic tape operations are
74 * now supported by our character device. As a result,
75 * popular tape utilities are starting to work with
77 * The following configurations were tested:
78 * 1. An IDE ATAPI TAPE shares the same interface
79 * and irq with an IDE ATAPI CDROM.
80 * 2. An IDE ATAPI TAPE shares the same interface
81 * and irq with a normal IDE disk.
82 * Both configurations seemed to work just fine !
83 * However, to be on the safe side, it is meanwhile
84 * recommended to give the IDE TAPE its own interface
86 * The one thing which needs to be done here is to
87 * add a "request postpone" feature to ide.c,
88 * so that we won't have to wait for the tape to finish
89 * performing a long media access (DSC) request (such
90 * as a rewind) before we can access the other device
91 * on the same interface. This effect doesn't disturb
92 * normal operation most of the time because read/write
93 * requests are relatively fast, and once we are
94 * performing one tape r/w request, a lot of requests
95 * from the other device can be queued and ide.c will
96 * service all of them after this single tape request.
97 * Ver 1.0 Dec 11 95 Integrated into Linux 1.3.46 development tree.
98 * On each read / write request, we now ask the drive
99 * if we can transfer a constant number of bytes
100 * (a parameter of the drive) only to its buffers,
101 * without causing actual media access. If we can't,
102 * we just wait until we can by polling the DSC bit.
103 * This ensures that while we are not transferring
104 * more bytes than the constant referred to above, the
105 * interrupt latency will not become too high and
106 * we won't cause an interrupt timeout, as happened
107 * occasionally in the previous version.
108 * While polling for DSC, the current request is
109 * postponed and ide.c is free to handle requests from
110 * the other device. This is handled transparently to
111 * ide.c. The hwgroup locking method which was used
112 * in the previous version was removed.
113 * Use of new general features which are provided by
114 * ide.c for use with atapi devices.
115 * (Programming done by Mark Lord)
116 * Few potential bug fixes (Again, suggested by Mark)
117 * Single character device data transfers are now
118 * not limited in size, as they were before.
119 * We are asking the tape about its recommended
120 * transfer unit and send a larger data transfer
121 * as several transfers of the above size.
122 * For best results, use an integral number of this
123 * basic unit (which is shown during driver
124 * initialization). I will soon add an ioctl to get
125 * this important parameter.
126 * Our data transfer buffer is allocated on startup,
127 * rather than before each data transfer. This should
128 * ensure that we will indeed have a data buffer.
129 * Ver 1.1 Dec 14 95 Fixed random problems which occurred when the tape
130 * shared an interface with another device.
131 * (poll_for_dsc was a complete mess).
132 * Removed some old (non-active) code which had
133 * to do with supporting buffer cache originated
135 * The block device interface can now be opened, so
136 * that general ide driver features like the unmask
137 * interrupts flag can be selected with an ioctl.
138 * This is the only use of the block device interface.
139 * New fast pipelined operation mode (currently only on
140 * writes). When using the pipelined mode, the
141 * throughput can potentially reach the maximum
142 * tape supported throughput, regardless of the
143 * user backup program. On my tape drive, it sometimes
144 * boosted performance by a factor of 2. Pipelined
145 * mode is enabled by default, but since it has a few
146 * downfalls as well, you may want to disable it.
147 * A short explanation of the pipelined operation mode
148 * is available below.
149 * Ver 1.2 Jan 1 96 Eliminated pipelined mode race condition.
150 * Added pipeline read mode. As a result, restores
151 * are now as fast as backups.
152 * Optimized shared interface behavior. The new behavior
153 * typically results in better IDE bus efficiency and
154 * higher tape throughput.
155 * Pre-calculation of the expected read/write request
156 * service time, based on the tape's parameters. In
157 * the pipelined operation mode, this allows us to
158 * adjust our polling frequency to a much lower value,
159 * and thus to dramatically reduce our load on Linux,
160 * without any decrease in performance.
161 * Implemented additional mtio.h operations.
162 * The recommended user block size is returned by
163 * the MTIOCGET ioctl.
164 * Additional minor changes.
165 * Ver 1.3 Feb 9 96 Fixed pipelined read mode bug which prevented the
166 * use of some block sizes during a restore procedure.
167 * The character device interface will now present a
168 * continuous view of the media - any mix of block sizes
169 * during a backup/restore procedure is supported. The
170 * driver will buffer the requests internally and
171 * convert them to the tape's recommended transfer
172 * unit, making performance almost independent of the
173 * chosen user block size.
174 * Some improvements in error recovery.
175 * By cooperating with ide-dma.c, bus mastering DMA can
176 * now sometimes be used with IDE tape drives as well.
177 * Bus mastering DMA has the potential to dramatically
178 * reduce the CPU's overhead when accessing the device,
179 * and can be enabled by using hdparm -d1 on the tape's
180 * block device interface. For more info, read the
181 * comments in ide-dma.c.
182 * Ver 1.4 Mar 13 96 Fixed serialize support.
183 * Ver 1.5 Apr 12 96 Fixed shared interface operation, broken in 1.3.85.
184 * Fixed pipelined read mode inefficiency.
185 * Fixed nasty null dereferencing bug.
186 * Ver 1.6 Aug 16 96 Fixed FPU usage in the driver.
187 * Fixed end of media bug.
188 * Ver 1.7 Sep 10 96 Minor changes for the CONNER CTT8000-A model.
189 * Ver 1.8 Sep 26 96 Attempt to find a better balance between good
190 * interactive response and high system throughput.
191 * Ver 1.9 Nov 5 96 Automatically cross encountered filemarks rather
192 * than requiring an explicit FSF command.
193 * Abort pending requests at end of media.
194 * MTTELL was sometimes returning incorrect results.
195 * Return the real block size in the MTIOCGET ioctl.
196 * Some error recovery bug fixes.
197 * Ver 1.10 Nov 5 96 Major reorganization.
198 * Reduced CPU overhead a bit by eliminating internal
200 * Added module support.
201 * Added multiple tape drives support.
202 * Added partition support.
203 * Rewrote DSC handling.
204 * Some portability fixes.
205 * Removed ide-tape.h.
206 * Additional minor changes.
207 * Ver 1.11 Dec 2 96 Bug fix in previous DSC timeout handling.
208 * Use ide_stall_queue() for DSC overlap.
209 * Use the maximum speed rather than the current speed
210 * to compute the request service time.
211 * Ver 1.12 Dec 7 97 Fix random memory overwriting and/or last block data
212 * corruption, which could occur if the total number
213 * of bytes written to the tape was not an integral
214 * number of tape blocks.
215 * Add support for INTERRUPT DRQ devices.
216 * Ver 1.13 Jan 2 98 Add "speed == 0" work-around for HP COLORADO 5GB
217 * Ver 1.14 Dec 30 98 Partial fixes for the Sony/AIWA tape drives.
218 * Replace cli()/sti() with hwgroup spinlocks.
219 * Ver 1.15 Mar 25 99 Fix SMP race condition by replacing hwgroup
220 * spinlock with private per-tape spinlock.
221 * Ver 1.16 Sep 1 99 Add OnStream tape support.
222 * Abort read pipeline on EOD.
223 * Wait for the tape to become ready in case it returns
224 * "in the process of becoming ready" on open().
225 * Fix zero padding of the last written block in
226 * case the tape block size is larger than PAGE_SIZE.
227 * Decrease the default disconnection time to tn.
228 * Ver 1.16e Oct 3 99 Minor fixes.
229 * Ver 1.16e1 Oct 13 99 Patches by Arnold Niessen,
230 * niessen@iae.nl / arnold.niessen@philips.com
231 * GO-1) Undefined code in idetape_read_position
232 * according to Gadi's email
233 * AJN-1) Minor fix asc == 11 should be asc == 0x11
234 * in idetape_issue_packet_command (did effect
235 * debugging output only)
236 * AJN-2) Added more debugging output, and
237 * added ide-tape: where missing. I would also
238 * like to add tape->name where possible
239 * AJN-3) Added different debug_level's
240 * via /proc/ide/hdc/settings
241 * "debug_level" determines amount of debugging output;
242 * can be changed using /proc/ide/hdx/settings
243 * 0 : almost no debugging output
244 * 1 : 0+output errors only
245 * 2 : 1+output all sensekey/asc
246 * 3 : 2+follow all chrdev related procedures
247 * 4 : 3+follow all procedures
248 * 5 : 4+include pc_stack rq_stack info
249 * 6 : 5+USE_COUNT updates
250 * AJN-4) Fixed timeout for retension in idetape_queue_pc_tail
251 * from 5 to 10 minutes
252 * AJN-5) Changed maximum number of blocks to skip when
253 * reading tapes with multiple consecutive write
254 * errors from 100 to 1000 in idetape_get_logical_blk
255 * Proposed changes to code:
256 * 1) output "logical_blk_num" via /proc
257 * 2) output "current_operation" via /proc
258 * 3) Either solve or document the fact that `mt rewind' is
259 * required after reading from /dev/nhtx to be
260 * able to rmmod the idetape module;
261 * Also, sometimes an application finishes but the
262 * device remains `busy' for some time. Same cause ?
263 * Proposed changes to release-notes:
264 * 4) write a simple `quickstart' section in the
265 * release notes; I volunteer if you don't want to
266 * 5) include a pointer to video4linux in the doc
267 * to stimulate video applications
268 * 6) release notes lines 331 and 362: explain what happens
269 * if the application data rate is higher than 1100 KB/s;
270 * similar approach to lower-than-500 kB/s ?
271 * 7) 6.6 Comparison; wouldn't it be better to allow different
272 * strategies for read and write ?
273 * Wouldn't it be better to control the tape buffer
274 * contents instead of the bandwidth ?
275 * 8) line 536: replace will by would (if I understand
276 * this section correctly, a hypothetical and unwanted situation
277 * is being described)
278 * Ver 1.16f Dec 15 99 Change place of the secondary OnStream header frames.
279 * Ver 1.17 Nov 2000 / Jan 2001 Marcel Mol, marcel@mesa.nl
280 * - Add idetape_onstream_mode_sense_tape_parameter_page
281 * function to get tape capacity in frames: tape->capacity.
282 * - Add support for DI-50 drives( or any DI- drive).
283 * - 'workaround' for read error/blank block around block 3000.
284 * - Implement Early warning for end of media for Onstream.
285 * - Cosmetic code changes for readability.
286 * - Idetape_position_tape should not use SKIP bit during
287 * Onstream read recovery.
288 * - Add capacity, logical_blk_num and first/last_frame_position
289 * to /proc/ide/hd?/settings.
290 * - Module use count was gone in the Linux 2.4 driver.
291 * Ver 1.17a Apr 2001 Willem Riede osst@riede.org
292 * - Get drive's actual block size from mode sense block descriptor
293 * - Limit size of pipeline
294 * Ver 1.17b Oct 2002 Alan Stern <stern@rowland.harvard.edu>
295 * Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used
297 * Actually removed aborted stages in idetape_abort_pipeline
298 * instead of just changing the command code.
299 * Made the transfer byte count for Request Sense equal to the
300 * actual length of the data transfer.
301 * Changed handling of partial data transfers: they do not
303 * Moved initiation of DMA transfers to the correct place.
304 * Removed reference to unallocated memory.
305 * Made __idetape_discard_read_pipeline return the number of
306 * sectors skipped, not the number of stages.
307 * Replaced errant kfree() calls with __idetape_kfree_stage().
308 * Fixed off-by-one error in testing the pipeline length.
309 * Fixed handling of filemarks in the read pipeline.
310 * Small code optimization for MTBSF and MTBSFM ioctls.
311 * Don't try to unlock the door during device close if is
313 * Cosmetic fixes to miscellaneous debugging output messages.
314 * Set the minimum /proc/ide/hd?/settings values for "pipeline",
315 * "pipeline_min", and "pipeline_max" to 1.
317 * Here are some words from the first releases of hd.c, which are quoted
318 * in ide.c and apply here as well:
320 * | Special care is recommended. Have Fun!
325 * An overview of the pipelined operation mode.
327 * In the pipelined write mode, we will usually just add requests to our
328 * pipeline and return immediately, before we even start to service them. The
329 * user program will then have enough time to prepare the next request while
330 * we are still busy servicing previous requests. In the pipelined read mode,
331 * the situation is similar - we add read-ahead requests into the pipeline,
332 * before the user even requested them.
334 * The pipeline can be viewed as a "safety net" which will be activated when
335 * the system load is high and prevents the user backup program from keeping up
336 * with the current tape speed. At this point, the pipeline will get
337 * shorter and shorter but the tape will still be streaming at the same speed.
338 * Assuming we have enough pipeline stages, the system load will hopefully
339 * decrease before the pipeline is completely empty, and the backup program
340 * will be able to "catch up" and refill the pipeline again.
342 * When using the pipelined mode, it would be best to disable any type of
343 * buffering done by the user program, as ide-tape already provides all the
344 * benefits in the kernel, where it can be done in a more efficient way.
345 * As we will usually not block the user program on a request, the most
346 * efficient user code will then be a simple read-write-read-... cycle.
347 * Any additional logic will usually just slow down the backup process.
349 * Using the pipelined mode, I get a constant over 400 KBps throughput,
350 * which seems to be the maximum throughput supported by my tape.
352 * However, there are some downfalls:
354 * 1. We use memory (for data buffers) in proportional to the number
355 * of pipeline stages (each stage is about 26 KB with my tape).
356 * 2. In the pipelined write mode, we cheat and postpone error codes
357 * to the user task. In read mode, the actual tape position
358 * will be a bit further than the last requested block.
362 * 1. We allocate stages dynamically only when we need them. When
363 * we don't need them, we don't consume additional memory. In
364 * case we can't allocate stages, we just manage without them
365 * (at the expense of decreased throughput) so when Linux is
366 * tight in memory, we will not pose additional difficulties.
368 * 2. The maximum number of stages (which is, in fact, the maximum
369 * amount of memory) which we allocate is limited by the compile
370 * time parameter IDETAPE_MAX_PIPELINE_STAGES.
372 * 3. The maximum number of stages is a controlled parameter - We
373 * don't start from the user defined maximum number of stages
374 * but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we
375 * will not even allocate this amount of stages if the user
376 * program can't handle the speed). We then implement a feedback
377 * loop which checks if the pipeline is empty, and if it is, we
378 * increase the maximum number of stages as necessary until we
379 * reach the optimum value which just manages to keep the tape
380 * busy with minimum allocated memory or until we reach
381 * IDETAPE_MAX_PIPELINE_STAGES.
385 * In pipelined write mode, ide-tape can not return accurate error codes
386 * to the user program since we usually just add the request to the
387 * pipeline without waiting for it to be serviced. In case an error
388 * occurs, I will report it on the next user request.
390 * In the pipelined read mode, subsequent read requests or forward
391 * filemark spacing will perform correctly, as we preserve all blocks
392 * and filemarks which we encountered during our excess read-ahead.
394 * For accurate tape positioning and error reporting, disabling
395 * pipelined mode might be the best option.
397 * You can enable/disable/tune the pipelined operation mode by adjusting
398 * the compile time parameters below.
402 * Possible improvements.
404 * 1. Support for the ATAPI overlap protocol.
406 * In order to maximize bus throughput, we currently use the DSC
407 * overlap method which enables ide.c to service requests from the
408 * other device while the tape is busy executing a command. The
409 * DSC overlap method involves polling the tape's status register
410 * for the DSC bit, and servicing the other device while the tape
413 * In the current QIC development standard (December 1995),
414 * it is recommended that new tape drives will *in addition*
415 * implement the ATAPI overlap protocol, which is used for the
416 * same purpose - efficient use of the IDE bus, but is interrupt
417 * driven and thus has much less CPU overhead.
419 * ATAPI overlap is likely to be supported in most new ATAPI
420 * devices, including new ATAPI cdroms, and thus provides us
421 * a method by which we can achieve higher throughput when
422 * sharing a (fast) ATA-2 disk with any (slow) new ATAPI device.
425 #define IDETAPE_VERSION "1.19"
427 #include <linux/module.h>
428 #include <linux/types.h>
429 #include <linux/string.h>
430 #include <linux/kernel.h>
431 #include <linux/delay.h>
432 #include <linux/timer.h>
433 #include <linux/mm.h>
434 #include <linux/interrupt.h>
435 #include <linux/jiffies.h>
436 #include <linux/major.h>
437 #include <linux/errno.h>
438 #include <linux/genhd.h>
439 #include <linux/slab.h>
440 #include <linux/pci.h>
441 #include <linux/ide.h>
442 #include <linux/smp_lock.h>
443 #include <linux/completion.h>
444 #include <linux/bitops.h>
445 #include <linux/mutex.h>
447 #include <asm/byteorder.h>
449 #include <asm/uaccess.h>
451 #include <asm/unaligned.h>
456 typedef struct os_partition_s
{
460 __u32 first_frame_addr
;
461 __u32 last_frame_addr
;
462 __u32 eod_frame_addr
;
468 typedef struct os_dat_entry_s
{
478 #define OS_DAT_FLAGS_DATA (0xc)
479 #define OS_DAT_FLAGS_MARK (0x1)
481 typedef struct os_dat_s
{
486 os_dat_entry_t dat_list
[16];
489 #include <linux/mtio.h>
491 /**************************** Tunable parameters *****************************/
495 * Pipelined mode parameters.
497 * We try to use the minimum number of stages which is enough to
498 * keep the tape constantly streaming. To accomplish that, we implement
499 * a feedback loop around the maximum number of stages:
501 * We start from MIN maximum stages (we will not even use MIN stages
502 * if we don't need them), increment it by RATE*(MAX-MIN)
503 * whenever we sense that the pipeline is empty, until we reach
504 * the optimum value or until we reach MAX.
506 * Setting the following parameter to 0 is illegal: the pipelined mode
507 * cannot be disabled (calculate_speeds() divides by tape->max_stages.)
509 #define IDETAPE_MIN_PIPELINE_STAGES 1
510 #define IDETAPE_MAX_PIPELINE_STAGES 400
511 #define IDETAPE_INCREASE_STAGES_RATE 20
514 * The following are used to debug the driver:
516 * Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities.
517 * Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
518 * Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in
521 * Setting them to 0 will restore normal operation mode:
523 * 1. Disable logging normal successful operations.
524 * 2. Disable self-sanity checks.
525 * 3. Errors will still be logged, of course.
527 * All the #if DEBUG code will be removed some day, when the driver
528 * is verified to be stable enough. This will make it much more
531 #define IDETAPE_DEBUG_INFO 0
532 #define IDETAPE_DEBUG_LOG 0
533 #define IDETAPE_DEBUG_BUGS 1
536 * After each failed packet command we issue a request sense command
537 * and retry the packet command IDETAPE_MAX_PC_RETRIES times.
539 * Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
541 #define IDETAPE_MAX_PC_RETRIES 3
544 * With each packet command, we allocate a buffer of
545 * IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
546 * commands (Not for READ/WRITE commands).
548 #define IDETAPE_PC_BUFFER_SIZE 256
551 * In various places in the driver, we need to allocate storage
552 * for packet commands and requests, which will remain valid while
553 * we leave the driver to wait for an interrupt or a timeout event.
555 #define IDETAPE_PC_STACK (10 + IDETAPE_MAX_PC_RETRIES)
558 * Some drives (for example, Seagate STT3401A Travan) require a very long
559 * timeout, because they don't return an interrupt or clear their busy bit
560 * until after the command completes (even retension commands).
562 #define IDETAPE_WAIT_CMD (900*HZ)
565 * The following parameter is used to select the point in the internal
566 * tape fifo in which we will start to refill the buffer. Decreasing
567 * the following parameter will improve the system's latency and
568 * interactive response, while using a high value might improve sytem
571 #define IDETAPE_FIFO_THRESHOLD 2
574 * DSC polling parameters.
576 * Polling for DSC (a single bit in the status register) is a very
577 * important function in ide-tape. There are two cases in which we
580 * 1. Before a read/write packet command, to ensure that we
581 * can transfer data from/to the tape's data buffers, without
582 * causing an actual media access. In case the tape is not
583 * ready yet, we take out our request from the device
584 * request queue, so that ide.c will service requests from
585 * the other device on the same interface meanwhile.
587 * 2. After the successful initialization of a "media access
588 * packet command", which is a command which can take a long
589 * time to complete (it can be several seconds or even an hour).
591 * Again, we postpone our request in the middle to free the bus
592 * for the other device. The polling frequency here should be
593 * lower than the read/write frequency since those media access
594 * commands are slow. We start from a "fast" frequency -
595 * IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
596 * after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
597 * lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
599 * We also set a timeout for the timer, in case something goes wrong.
600 * The timeout should be longer then the maximum execution time of a
607 #define IDETAPE_DSC_RW_MIN 5*HZ/100 /* 50 msec */
608 #define IDETAPE_DSC_RW_MAX 40*HZ/100 /* 400 msec */
609 #define IDETAPE_DSC_RW_TIMEOUT 2*60*HZ /* 2 minutes */
610 #define IDETAPE_DSC_MA_FAST 2*HZ /* 2 seconds */
611 #define IDETAPE_DSC_MA_THRESHOLD 5*60*HZ /* 5 minutes */
612 #define IDETAPE_DSC_MA_SLOW 30*HZ /* 30 seconds */
613 #define IDETAPE_DSC_MA_TIMEOUT 2*60*60*HZ /* 2 hours */
615 /*************************** End of tunable parameters ***********************/
618 * Debugging/Performance analysis
622 #define USE_IOTRACE 0
624 #include <linux/io_trace.h>
625 #define IO_IDETAPE_FIFO 500
629 * Read/Write error simulation
631 #define SIMULATE_ERRORS 0
634 * For general magnetic tape device compatibility.
637 idetape_direction_none
,
638 idetape_direction_read
,
639 idetape_direction_write
640 } idetape_chrdev_direction_t
;
645 struct idetape_bh
*b_reqnext
;
650 * Our view of a packet command.
652 typedef struct idetape_packet_command_s
{
653 u8 c
[12]; /* Actual packet bytes */
654 int retries
; /* On each retry, we increment retries */
655 int error
; /* Error code */
656 int request_transfer
; /* Bytes to transfer */
657 int actually_transferred
; /* Bytes actually transferred */
658 int buffer_size
; /* Size of our data buffer */
659 struct idetape_bh
*bh
;
662 u8
*buffer
; /* Data buffer */
663 u8
*current_position
; /* Pointer into the above buffer */
664 ide_startstop_t (*callback
) (ide_drive_t
*); /* Called when this packet command is completed */
665 u8 pc_buffer
[IDETAPE_PC_BUFFER_SIZE
]; /* Temporary buffer */
666 unsigned long flags
; /* Status/Action bit flags: long for set_bit */
670 * Packet command flag bits.
672 /* Set when an error is considered normal - We won't retry */
674 /* 1 When polling for DSC on a media access command */
675 #define PC_WAIT_FOR_DSC 1
676 /* 1 when we prefer to use DMA if possible */
677 #define PC_DMA_RECOMMENDED 2
678 /* 1 while DMA in progress */
679 #define PC_DMA_IN_PROGRESS 3
680 /* 1 when encountered problem during DMA */
681 #define PC_DMA_ERROR 4
686 * Capabilities and Mechanical Status Page
689 unsigned page_code
:6; /* Page code - Should be 0x2a */
691 __u8 ps
:1; /* parameters saveable */
692 __u8 page_length
; /* Page Length - Should be 0x12 */
693 __u8 reserved2
, reserved3
;
694 unsigned ro
:1; /* Read Only Mode */
695 unsigned reserved4_1234
:4;
696 unsigned sprev
:1; /* Supports SPACE in the reverse direction */
697 unsigned reserved4_67
:2;
698 unsigned reserved5_012
:3;
699 unsigned efmt
:1; /* Supports ERASE command initiated formatting */
700 unsigned reserved5_4
:1;
701 unsigned qfa
:1; /* Supports the QFA two partition formats */
702 unsigned reserved5_67
:2;
703 unsigned lock
:1; /* Supports locking the volume */
704 unsigned locked
:1; /* The volume is locked */
705 unsigned prevent
:1; /* The device defaults in the prevent state after power up */
706 unsigned eject
:1; /* The device can eject the volume */
707 __u8 disconnect
:1; /* The device can break request > ctl */
709 unsigned ecc
:1; /* Supports error correction */
710 unsigned cmprs
:1; /* Supports data compression */
711 unsigned reserved7_0
:1;
712 unsigned blk512
:1; /* Supports 512 bytes block size */
713 unsigned blk1024
:1; /* Supports 1024 bytes block size */
714 unsigned reserved7_3_6
:4;
715 unsigned blk32768
:1; /* slowb - the device restricts the byte count for PIO */
716 /* transfers for slow buffer memory ??? */
717 /* Also 32768 block size in some cases */
718 __u16 max_speed
; /* Maximum speed supported in KBps */
719 __u8 reserved10
, reserved11
;
720 __u16 ctl
; /* Continuous Transfer Limit in blocks */
721 __u16 speed
; /* Current Speed, in KBps */
722 __u16 buffer_size
; /* Buffer Size, in 512 bytes */
723 __u8 reserved18
, reserved19
;
724 } idetape_capabilities_page_t
;
730 unsigned page_code
:6; /* Page code - Should be 0x30 */
731 unsigned reserved1_6
:1;
733 __u8 page_length
; /* Page Length - Should be 2 */
736 unsigned play32_5
:1;
737 unsigned reserved2_23
:2;
738 unsigned record32
:1;
739 unsigned record32_5
:1;
740 unsigned reserved2_6
:1;
742 } idetape_block_size_page_t
;
747 typedef struct idetape_stage_s
{
748 struct request rq
; /* The corresponding request */
749 struct idetape_bh
*bh
; /* The data buffers */
750 struct idetape_stage_s
*next
; /* Pointer to the next stage */
754 * REQUEST SENSE packet command result - Data Format.
757 unsigned error_code
:7; /* Current of deferred errors */
758 unsigned valid
:1; /* The information field conforms to QIC-157C */
759 __u8 reserved1
:8; /* Segment Number - Reserved */
760 unsigned sense_key
:4; /* Sense Key */
761 unsigned reserved2_4
:1; /* Reserved */
762 unsigned ili
:1; /* Incorrect Length Indicator */
763 unsigned eom
:1; /* End Of Medium */
764 unsigned filemark
:1; /* Filemark */
765 __u32 information
__attribute__ ((packed
));
766 __u8 asl
; /* Additional sense length (n-7) */
767 __u32 command_specific
; /* Additional command specific information */
768 __u8 asc
; /* Additional Sense Code */
769 __u8 ascq
; /* Additional Sense Code Qualifier */
770 __u8 replaceable_unit_code
; /* Field Replaceable Unit Code */
771 unsigned sk_specific1
:7; /* Sense Key Specific */
772 unsigned sksv
:1; /* Sense Key Specific information is valid */
773 __u8 sk_specific2
; /* Sense Key Specific */
774 __u8 sk_specific3
; /* Sense Key Specific */
775 __u8 pad
[2]; /* Padding to 20 bytes */
776 } idetape_request_sense_result_t
;
780 * Most of our global data which we need to save even as we leave the
781 * driver due to an interrupt or a timer event is stored in a variable
782 * of type idetape_tape_t, defined below.
784 typedef struct ide_tape_obj
{
786 ide_driver_t
*driver
;
787 struct gendisk
*disk
;
791 * Since a typical character device operation requires more
792 * than one packet command, we provide here enough memory
793 * for the maximum of interconnected packet commands.
794 * The packet commands are stored in the circular array pc_stack.
795 * pc_stack_index points to the last used entry, and warps around
796 * to the start when we get to the last array entry.
798 * pc points to the current processed packet command.
800 * failed_pc points to the last failed packet command, or contains
801 * NULL if we do not need to retry any packet command. This is
802 * required since an additional packet command is needed before the
803 * retry, to get detailed information on what went wrong.
805 /* Current packet command */
807 /* Last failed packet command */
808 idetape_pc_t
*failed_pc
;
809 /* Packet command stack */
810 idetape_pc_t pc_stack
[IDETAPE_PC_STACK
];
811 /* Next free packet command storage space */
813 struct request rq_stack
[IDETAPE_PC_STACK
];
814 /* We implement a circular array */
818 * DSC polling variables.
820 * While polling for DSC we use postponed_rq to postpone the
821 * current request so that ide.c will be able to service
822 * pending requests on the other device. Note that at most
823 * we will have only one DSC (usually data transfer) request
824 * in the device request queue. Additional requests can be
825 * queued in our internal pipeline, but they will be visible
826 * to ide.c only one at a time.
828 struct request
*postponed_rq
;
829 /* The time in which we started polling for DSC */
830 unsigned long dsc_polling_start
;
831 /* Timer used to poll for dsc */
832 struct timer_list dsc_timer
;
833 /* Read/Write dsc polling frequency */
834 unsigned long best_dsc_rw_frequency
;
835 /* The current polling frequency */
836 unsigned long dsc_polling_frequency
;
837 /* Maximum waiting time */
838 unsigned long dsc_timeout
;
841 * Read position information
845 unsigned int first_frame_position
;
846 unsigned int last_frame_position
;
847 unsigned int blocks_in_buffer
;
850 * Last error information
852 u8 sense_key
, asc
, ascq
;
855 * Character device operation
860 /* Current character device data transfer direction */
861 idetape_chrdev_direction_t chrdev_direction
;
866 /* Usually 512 or 1024 bytes */
867 unsigned short tape_block_size
;
869 /* Copy of the tape's Capabilities and Mechanical Page */
870 idetape_capabilities_page_t capabilities
;
873 * Active data transfer request parameters.
875 * At most, there is only one ide-tape originated data transfer
876 * request in the device request queue. This allows ide.c to
877 * easily service requests from the other device when we
878 * postpone our active request. In the pipelined operation
879 * mode, we use our internal pipeline structure to hold
880 * more data requests.
882 * The data buffer size is chosen based on the tape's
885 /* Pointer to the request which is waiting in the device request queue */
886 struct request
*active_data_request
;
887 /* Data buffer size (chosen based on the tape's recommendation */
889 idetape_stage_t
*merge_stage
;
890 int merge_stage_size
;
891 struct idetape_bh
*bh
;
896 * Pipeline parameters.
898 * To accomplish non-pipelined mode, we simply set the following
899 * variables to zero (or NULL, where appropriate).
901 /* Number of currently used stages */
903 /* Number of pending stages */
904 int nr_pending_stages
;
905 /* We will not allocate more than this number of stages */
906 int max_stages
, min_pipeline
, max_pipeline
;
907 /* The first stage which will be removed from the pipeline */
908 idetape_stage_t
*first_stage
;
909 /* The currently active stage */
910 idetape_stage_t
*active_stage
;
911 /* Will be serviced after the currently active request */
912 idetape_stage_t
*next_stage
;
913 /* New requests will be added to the pipeline here */
914 idetape_stage_t
*last_stage
;
915 /* Optional free stage which we can use */
916 idetape_stage_t
*cache_stage
;
918 /* Wasted space in each stage */
921 /* Status/Action flags: long for set_bit */
923 /* protects the ide-tape queue */
927 * Measures average tape speed
929 unsigned long avg_time
;
933 /* last sense information */
934 idetape_request_sense_result_t sense
;
938 char firmware_revision
[6];
939 int firmware_revision_num
;
941 /* the door is currently locked */
943 /* the tape hardware is write protected */
945 /* the tape is write protected (hardware or opened as read-only) */
949 * Limit the number of times a request can
950 * be postponed, to avoid an infinite postpone
953 /* request postpone count limit */
957 * Measures number of frames:
959 * 1. written/read to/from the driver pipeline (pipeline_head).
960 * 2. written/read to/from the tape buffers (idetape_bh).
961 * 3. written/read by the tape to/from the media (tape_head).
969 * Speed control at the tape buffers input/output
971 unsigned long insert_time
;
974 int max_insert_speed
;
975 int measure_insert_time
;
978 * Measure tape still time, in milliseconds
980 unsigned long tape_still_time_begin
;
984 * Speed regulation negative feedback loop
987 int pipeline_head_speed
;
988 int controlled_pipeline_head_speed
;
989 int uncontrolled_pipeline_head_speed
;
990 int controlled_last_pipeline_head
;
991 int uncontrolled_last_pipeline_head
;
992 unsigned long uncontrolled_pipeline_head_time
;
993 unsigned long controlled_pipeline_head_time
;
994 int controlled_previous_pipeline_head
;
995 int uncontrolled_previous_pipeline_head
;
996 unsigned long controlled_previous_head_time
;
997 unsigned long uncontrolled_previous_head_time
;
998 int restart_speed_control_req
;
1001 * Debug_level determines amount of debugging output;
1002 * can be changed using /proc/ide/hdx/settings
1003 * 0 : almost no debugging output
1004 * 1 : 0+output errors only
1005 * 2 : 1+output all sensekey/asc
1006 * 3 : 2+follow all chrdev related procedures
1007 * 4 : 3+follow all procedures
1008 * 5 : 4+include pc_stack rq_stack info
1009 * 6 : 5+USE_COUNT updates
1014 static DEFINE_MUTEX(idetape_ref_mutex
);
1016 static struct class *idetape_sysfs_class
;
1018 #define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
1020 #define ide_tape_g(disk) \
1021 container_of((disk)->private_data, struct ide_tape_obj, driver)
1023 static struct ide_tape_obj
*ide_tape_get(struct gendisk
*disk
)
1025 struct ide_tape_obj
*tape
= NULL
;
1027 mutex_lock(&idetape_ref_mutex
);
1028 tape
= ide_tape_g(disk
);
1030 kref_get(&tape
->kref
);
1031 mutex_unlock(&idetape_ref_mutex
);
1035 static void ide_tape_release(struct kref
*);
1037 static void ide_tape_put(struct ide_tape_obj
*tape
)
1039 mutex_lock(&idetape_ref_mutex
);
1040 kref_put(&tape
->kref
, ide_tape_release
);
1041 mutex_unlock(&idetape_ref_mutex
);
1047 #define DOOR_UNLOCKED 0
1048 #define DOOR_LOCKED 1
1049 #define DOOR_EXPLICITLY_LOCKED 2
1052 * Tape flag bits values.
1054 #define IDETAPE_IGNORE_DSC 0
1055 #define IDETAPE_ADDRESS_VALID 1 /* 0 When the tape position is unknown */
1056 #define IDETAPE_BUSY 2 /* Device already opened */
1057 #define IDETAPE_PIPELINE_ERROR 3 /* Error detected in a pipeline stage */
1058 #define IDETAPE_DETECT_BS 4 /* Attempt to auto-detect the current user block size */
1059 #define IDETAPE_FILEMARK 5 /* Currently on a filemark */
1060 #define IDETAPE_DRQ_INTERRUPT 6 /* DRQ interrupt device */
1061 #define IDETAPE_READ_ERROR 7
1062 #define IDETAPE_PIPELINE_ACTIVE 8 /* pipeline active */
1063 /* 0 = no tape is loaded, so we don't rewind after ejecting */
1064 #define IDETAPE_MEDIUM_PRESENT 9
1067 * Supported ATAPI tape drives packet commands
1069 #define IDETAPE_TEST_UNIT_READY_CMD 0x00
1070 #define IDETAPE_REWIND_CMD 0x01
1071 #define IDETAPE_REQUEST_SENSE_CMD 0x03
1072 #define IDETAPE_READ_CMD 0x08
1073 #define IDETAPE_WRITE_CMD 0x0a
1074 #define IDETAPE_WRITE_FILEMARK_CMD 0x10
1075 #define IDETAPE_SPACE_CMD 0x11
1076 #define IDETAPE_INQUIRY_CMD 0x12
1077 #define IDETAPE_ERASE_CMD 0x19
1078 #define IDETAPE_MODE_SENSE_CMD 0x1a
1079 #define IDETAPE_MODE_SELECT_CMD 0x15
1080 #define IDETAPE_LOAD_UNLOAD_CMD 0x1b
1081 #define IDETAPE_PREVENT_CMD 0x1e
1082 #define IDETAPE_LOCATE_CMD 0x2b
1083 #define IDETAPE_READ_POSITION_CMD 0x34
1084 #define IDETAPE_READ_BUFFER_CMD 0x3c
1085 #define IDETAPE_SET_SPEED_CMD 0xbb
1088 * Some defines for the READ BUFFER command
1090 #define IDETAPE_RETRIEVE_FAULTY_BLOCK 6
1093 * Some defines for the SPACE command
1095 #define IDETAPE_SPACE_OVER_FILEMARK 1
1096 #define IDETAPE_SPACE_TO_EOD 3
1099 * Some defines for the LOAD UNLOAD command
1101 #define IDETAPE_LU_LOAD_MASK 1
1102 #define IDETAPE_LU_RETENSION_MASK 2
1103 #define IDETAPE_LU_EOT_MASK 4
1106 * Special requests for our block device strategy routine.
1108 * In order to service a character device command, we add special
1109 * requests to the tail of our block device request queue and wait
1110 * for their completion.
1114 REQ_IDETAPE_PC1
= (1 << 0), /* packet command (first stage) */
1115 REQ_IDETAPE_PC2
= (1 << 1), /* packet command (second stage) */
1116 REQ_IDETAPE_READ
= (1 << 2),
1117 REQ_IDETAPE_WRITE
= (1 << 3),
1118 REQ_IDETAPE_READ_BUFFER
= (1 << 4),
1122 * Error codes which are returned in rq->errors to the higher part
1125 #define IDETAPE_ERROR_GENERAL 101
1126 #define IDETAPE_ERROR_FILEMARK 102
1127 #define IDETAPE_ERROR_EOD 103
1130 * The following is used to format the general configuration word of
1131 * the ATAPI IDENTIFY DEVICE command.
1133 struct idetape_id_gcw
{
1134 unsigned packet_size
:2; /* Packet Size */
1135 unsigned reserved234
:3; /* Reserved */
1136 unsigned drq_type
:2; /* Command packet DRQ type */
1137 unsigned removable
:1; /* Removable media */
1138 unsigned device_type
:5; /* Device type */
1139 unsigned reserved13
:1; /* Reserved */
1140 unsigned protocol
:2; /* Protocol type */
1144 * INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C)
1147 unsigned device_type
:5; /* Peripheral Device Type */
1148 unsigned reserved0_765
:3; /* Peripheral Qualifier - Reserved */
1149 unsigned reserved1_6t0
:7; /* Reserved */
1150 unsigned rmb
:1; /* Removable Medium Bit */
1151 unsigned ansi_version
:3; /* ANSI Version */
1152 unsigned ecma_version
:3; /* ECMA Version */
1153 unsigned iso_version
:2; /* ISO Version */
1154 unsigned response_format
:4; /* Response Data Format */
1155 unsigned reserved3_45
:2; /* Reserved */
1156 unsigned reserved3_6
:1; /* TrmIOP - Reserved */
1157 unsigned reserved3_7
:1; /* AENC - Reserved */
1158 __u8 additional_length
; /* Additional Length (total_length-4) */
1159 __u8 rsv5
, rsv6
, rsv7
; /* Reserved */
1160 __u8 vendor_id
[8]; /* Vendor Identification */
1161 __u8 product_id
[16]; /* Product Identification */
1162 __u8 revision_level
[4]; /* Revision Level */
1163 __u8 vendor_specific
[20]; /* Vendor Specific - Optional */
1164 __u8 reserved56t95
[40]; /* Reserved - Optional */
1165 /* Additional information may be returned */
1166 } idetape_inquiry_result_t
;
1169 * READ POSITION packet command - Data Format (From Table 6-57)
1172 unsigned reserved0_10
:2; /* Reserved */
1173 unsigned bpu
:1; /* Block Position Unknown */
1174 unsigned reserved0_543
:3; /* Reserved */
1175 unsigned eop
:1; /* End Of Partition */
1176 unsigned bop
:1; /* Beginning Of Partition */
1177 u8 partition
; /* Partition Number */
1178 u8 reserved2
, reserved3
; /* Reserved */
1179 u32 first_block
; /* First Block Location */
1180 u32 last_block
; /* Last Block Location (Optional) */
1181 u8 reserved12
; /* Reserved */
1182 u8 blocks_in_buffer
[3]; /* Blocks In Buffer - (Optional) */
1183 u32 bytes_in_buffer
; /* Bytes In Buffer (Optional) */
1184 } idetape_read_position_result_t
;
1187 * Follows structures which are related to the SELECT SENSE / MODE SENSE
1188 * packet commands. Those packet commands are still not supported
1191 #define IDETAPE_BLOCK_DESCRIPTOR 0
1192 #define IDETAPE_CAPABILITIES_PAGE 0x2a
1193 #define IDETAPE_PARAMTR_PAGE 0x2b /* Onstream DI-x0 only */
1194 #define IDETAPE_BLOCK_SIZE_PAGE 0x30
1195 #define IDETAPE_BUFFER_FILLING_PAGE 0x33
1198 * Mode Parameter Header for the MODE SENSE packet command
1201 __u8 mode_data_length
; /* Length of the following data transfer */
1202 __u8 medium_type
; /* Medium Type */
1203 __u8 dsp
; /* Device Specific Parameter */
1204 __u8 bdl
; /* Block Descriptor Length */
1206 /* data transfer page */
1208 __u8 reserved0_6
:1;
1209 __u8 ps
:1; /* parameters saveable */
1210 __u8 page_length
; /* page Length == 0x02 */
1212 __u8 read32k
:1; /* 32k blk size (data only) */
1213 __u8 read32k5
:1; /* 32.5k blk size (data&AUX) */
1214 __u8 reserved3_23
:2;
1215 __u8 write32k
:1; /* 32k blk size (data only) */
1216 __u8 write32k5
:1; /* 32.5k blk size (data&AUX) */
1217 __u8 reserved3_6
:1;
1218 __u8 streaming
:1; /* streaming mode enable */
1220 } idetape_mode_parameter_header_t
;
1223 * Mode Parameter Block Descriptor the MODE SENSE packet command
1225 * Support for block descriptors is optional.
1228 __u8 density_code
; /* Medium density code */
1229 __u8 blocks
[3]; /* Number of blocks */
1230 __u8 reserved4
; /* Reserved */
1231 __u8 length
[3]; /* Block Length */
1232 } idetape_parameter_block_descriptor_t
;
1235 * The Data Compression Page, as returned by the MODE SENSE packet command.
1238 unsigned page_code
:6; /* Page Code - Should be 0xf */
1239 unsigned reserved0
:1; /* Reserved */
1241 __u8 page_length
; /* Page Length - Should be 14 */
1242 unsigned reserved2
:6; /* Reserved */
1243 unsigned dcc
:1; /* Data Compression Capable */
1244 unsigned dce
:1; /* Data Compression Enable */
1245 unsigned reserved3
:5; /* Reserved */
1246 unsigned red
:2; /* Report Exception on Decompression */
1247 unsigned dde
:1; /* Data Decompression Enable */
1248 __u32 ca
; /* Compression Algorithm */
1249 __u32 da
; /* Decompression Algorithm */
1250 __u8 reserved
[4]; /* Reserved */
1251 } idetape_data_compression_page_t
;
1254 * The Medium Partition Page, as returned by the MODE SENSE packet command.
1257 unsigned page_code
:6; /* Page Code - Should be 0x11 */
1258 unsigned reserved1_6
:1; /* Reserved */
1260 __u8 page_length
; /* Page Length - Should be 6 */
1261 __u8 map
; /* Maximum Additional Partitions - Should be 0 */
1262 __u8 apd
; /* Additional Partitions Defined - Should be 0 */
1263 unsigned reserved4_012
:3; /* Reserved */
1264 unsigned psum
:2; /* Should be 0 */
1265 unsigned idp
:1; /* Should be 0 */
1266 unsigned sdp
:1; /* Should be 0 */
1267 unsigned fdp
:1; /* Fixed Data Partitions */
1268 __u8 mfr
; /* Medium Format Recognition */
1269 __u8 reserved
[2]; /* Reserved */
1270 } idetape_medium_partition_page_t
;
1273 * Run time configurable parameters.
1276 int dsc_rw_frequency
;
1277 int dsc_media_access_frequency
;
1282 * The variables below are used for the character device interface.
1283 * Additional state variables are defined in our ide_drive_t structure.
1285 static struct ide_tape_obj
* idetape_devs
[MAX_HWIFS
* MAX_DRIVES
];
1287 #define ide_tape_f(file) ((file)->private_data)
1289 static struct ide_tape_obj
*ide_tape_chrdev_get(unsigned int i
)
1291 struct ide_tape_obj
*tape
= NULL
;
1293 mutex_lock(&idetape_ref_mutex
);
1294 tape
= idetape_devs
[i
];
1296 kref_get(&tape
->kref
);
1297 mutex_unlock(&idetape_ref_mutex
);
1302 * Function declarations
1305 static int idetape_chrdev_release (struct inode
*inode
, struct file
*filp
);
1306 static void idetape_write_release (ide_drive_t
*drive
, unsigned int minor
);
1309 * Too bad. The drive wants to send us data which we are not ready to accept.
1310 * Just throw it away.
1312 static void idetape_discard_data (ide_drive_t
*drive
, unsigned int bcount
)
1315 (void) HWIF(drive
)->INB(IDE_DATA_REG
);
1318 static void idetape_input_buffers (ide_drive_t
*drive
, idetape_pc_t
*pc
, unsigned int bcount
)
1320 struct idetape_bh
*bh
= pc
->bh
;
1324 #if IDETAPE_DEBUG_BUGS
1326 printk(KERN_ERR
"ide-tape: bh == NULL in "
1327 "idetape_input_buffers\n");
1328 idetape_discard_data(drive
, bcount
);
1331 #endif /* IDETAPE_DEBUG_BUGS */
1332 count
= min((unsigned int)(bh
->b_size
- atomic_read(&bh
->b_count
)), bcount
);
1333 HWIF(drive
)->atapi_input_bytes(drive
, bh
->b_data
+ atomic_read(&bh
->b_count
), count
);
1335 atomic_add(count
, &bh
->b_count
);
1336 if (atomic_read(&bh
->b_count
) == bh
->b_size
) {
1339 atomic_set(&bh
->b_count
, 0);
1345 static void idetape_output_buffers (ide_drive_t
*drive
, idetape_pc_t
*pc
, unsigned int bcount
)
1347 struct idetape_bh
*bh
= pc
->bh
;
1351 #if IDETAPE_DEBUG_BUGS
1353 printk(KERN_ERR
"ide-tape: bh == NULL in "
1354 "idetape_output_buffers\n");
1357 #endif /* IDETAPE_DEBUG_BUGS */
1358 count
= min((unsigned int)pc
->b_count
, (unsigned int)bcount
);
1359 HWIF(drive
)->atapi_output_bytes(drive
, pc
->b_data
, count
);
1361 pc
->b_data
+= count
;
1362 pc
->b_count
-= count
;
1364 pc
->bh
= bh
= bh
->b_reqnext
;
1366 pc
->b_data
= bh
->b_data
;
1367 pc
->b_count
= atomic_read(&bh
->b_count
);
1373 static void idetape_update_buffers (idetape_pc_t
*pc
)
1375 struct idetape_bh
*bh
= pc
->bh
;
1377 unsigned int bcount
= pc
->actually_transferred
;
1379 if (test_bit(PC_WRITING
, &pc
->flags
))
1382 #if IDETAPE_DEBUG_BUGS
1384 printk(KERN_ERR
"ide-tape: bh == NULL in "
1385 "idetape_update_buffers\n");
1388 #endif /* IDETAPE_DEBUG_BUGS */
1389 count
= min((unsigned int)bh
->b_size
, (unsigned int)bcount
);
1390 atomic_set(&bh
->b_count
, count
);
1391 if (atomic_read(&bh
->b_count
) == bh
->b_size
)
1399 * idetape_next_pc_storage returns a pointer to a place in which we can
1400 * safely store a packet command, even though we intend to leave the
1401 * driver. A storage space for a maximum of IDETAPE_PC_STACK packet
1402 * commands is allocated at initialization time.
1404 static idetape_pc_t
*idetape_next_pc_storage (ide_drive_t
*drive
)
1406 idetape_tape_t
*tape
= drive
->driver_data
;
1408 #if IDETAPE_DEBUG_LOG
1409 if (tape
->debug_level
>= 5)
1410 printk(KERN_INFO
"ide-tape: pc_stack_index=%d\n",
1411 tape
->pc_stack_index
);
1412 #endif /* IDETAPE_DEBUG_LOG */
1413 if (tape
->pc_stack_index
== IDETAPE_PC_STACK
)
1414 tape
->pc_stack_index
=0;
1415 return (&tape
->pc_stack
[tape
->pc_stack_index
++]);
1419 * idetape_next_rq_storage is used along with idetape_next_pc_storage.
1420 * Since we queue packet commands in the request queue, we need to
1421 * allocate a request, along with the allocation of a packet command.
1424 /**************************************************************
1426 * This should get fixed to use kmalloc(.., GFP_ATOMIC) *
1427 * followed later on by kfree(). -ml *
1429 **************************************************************/
1431 static struct request
*idetape_next_rq_storage (ide_drive_t
*drive
)
1433 idetape_tape_t
*tape
= drive
->driver_data
;
1435 #if IDETAPE_DEBUG_LOG
1436 if (tape
->debug_level
>= 5)
1437 printk(KERN_INFO
"ide-tape: rq_stack_index=%d\n",
1438 tape
->rq_stack_index
);
1439 #endif /* IDETAPE_DEBUG_LOG */
1440 if (tape
->rq_stack_index
== IDETAPE_PC_STACK
)
1441 tape
->rq_stack_index
=0;
1442 return (&tape
->rq_stack
[tape
->rq_stack_index
++]);
1446 * idetape_init_pc initializes a packet command.
1448 static void idetape_init_pc (idetape_pc_t
*pc
)
1450 memset(pc
->c
, 0, 12);
1453 pc
->request_transfer
= 0;
1454 pc
->buffer
= pc
->pc_buffer
;
1455 pc
->buffer_size
= IDETAPE_PC_BUFFER_SIZE
;
1461 * idetape_analyze_error is called on each failed packet command retry
1462 * to analyze the request sense. We currently do not utilize this
1465 static void idetape_analyze_error (ide_drive_t
*drive
, idetape_request_sense_result_t
*result
)
1467 idetape_tape_t
*tape
= drive
->driver_data
;
1468 idetape_pc_t
*pc
= tape
->failed_pc
;
1470 tape
->sense
= *result
;
1471 tape
->sense_key
= result
->sense_key
;
1472 tape
->asc
= result
->asc
;
1473 tape
->ascq
= result
->ascq
;
1474 #if IDETAPE_DEBUG_LOG
1476 * Without debugging, we only log an error if we decided to
1479 if (tape
->debug_level
>= 1)
1480 printk(KERN_INFO
"ide-tape: pc = %x, sense key = %x, "
1481 "asc = %x, ascq = %x\n",
1482 pc
->c
[0], result
->sense_key
,
1483 result
->asc
, result
->ascq
);
1484 #endif /* IDETAPE_DEBUG_LOG */
1487 * Correct pc->actually_transferred by asking the tape.
1489 if (test_bit(PC_DMA_ERROR
, &pc
->flags
)) {
1490 pc
->actually_transferred
= pc
->request_transfer
- tape
->tape_block_size
* ntohl(get_unaligned(&result
->information
));
1491 idetape_update_buffers(pc
);
1495 * If error was the result of a zero-length read or write command,
1496 * with sense key=5, asc=0x22, ascq=0, let it slide. Some drives
1497 * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
1499 if ((pc
->c
[0] == IDETAPE_READ_CMD
|| pc
->c
[0] == IDETAPE_WRITE_CMD
)
1500 && pc
->c
[4] == 0 && pc
->c
[3] == 0 && pc
->c
[2] == 0) { /* length==0 */
1501 if (result
->sense_key
== 5) {
1502 /* don't report an error, everything's ok */
1504 /* don't retry read/write */
1505 set_bit(PC_ABORT
, &pc
->flags
);
1508 if (pc
->c
[0] == IDETAPE_READ_CMD
&& result
->filemark
) {
1509 pc
->error
= IDETAPE_ERROR_FILEMARK
;
1510 set_bit(PC_ABORT
, &pc
->flags
);
1512 if (pc
->c
[0] == IDETAPE_WRITE_CMD
) {
1514 (result
->sense_key
== 0xd && result
->asc
== 0x0 &&
1515 result
->ascq
== 0x2)) {
1516 pc
->error
= IDETAPE_ERROR_EOD
;
1517 set_bit(PC_ABORT
, &pc
->flags
);
1520 if (pc
->c
[0] == IDETAPE_READ_CMD
|| pc
->c
[0] == IDETAPE_WRITE_CMD
) {
1521 if (result
->sense_key
== 8) {
1522 pc
->error
= IDETAPE_ERROR_EOD
;
1523 set_bit(PC_ABORT
, &pc
->flags
);
1525 if (!test_bit(PC_ABORT
, &pc
->flags
) &&
1526 pc
->actually_transferred
)
1527 pc
->retries
= IDETAPE_MAX_PC_RETRIES
+ 1;
1532 * idetape_active_next_stage will declare the next stage as "active".
1534 static void idetape_active_next_stage (ide_drive_t
*drive
)
1536 idetape_tape_t
*tape
= drive
->driver_data
;
1537 idetape_stage_t
*stage
= tape
->next_stage
;
1538 struct request
*rq
= &stage
->rq
;
1540 #if IDETAPE_DEBUG_LOG
1541 if (tape
->debug_level
>= 4)
1542 printk(KERN_INFO
"ide-tape: Reached idetape_active_next_stage\n");
1543 #endif /* IDETAPE_DEBUG_LOG */
1544 #if IDETAPE_DEBUG_BUGS
1545 if (stage
== NULL
) {
1546 printk(KERN_ERR
"ide-tape: bug: Trying to activate a non existing stage\n");
1549 #endif /* IDETAPE_DEBUG_BUGS */
1551 rq
->rq_disk
= tape
->disk
;
1553 rq
->special
= (void *)stage
->bh
;
1554 tape
->active_data_request
= rq
;
1555 tape
->active_stage
= stage
;
1556 tape
->next_stage
= stage
->next
;
1560 * idetape_increase_max_pipeline_stages is a part of the feedback
1561 * loop which tries to find the optimum number of stages. In the
1562 * feedback loop, we are starting from a minimum maximum number of
1563 * stages, and if we sense that the pipeline is empty, we try to
1564 * increase it, until we reach the user compile time memory limit.
1566 static void idetape_increase_max_pipeline_stages (ide_drive_t
*drive
)
1568 idetape_tape_t
*tape
= drive
->driver_data
;
1569 int increase
= (tape
->max_pipeline
- tape
->min_pipeline
) / 10;
1571 #if IDETAPE_DEBUG_LOG
1572 if (tape
->debug_level
>= 4)
1573 printk (KERN_INFO
"ide-tape: Reached idetape_increase_max_pipeline_stages\n");
1574 #endif /* IDETAPE_DEBUG_LOG */
1576 tape
->max_stages
+= max(increase
, 1);
1577 tape
->max_stages
= max(tape
->max_stages
, tape
->min_pipeline
);
1578 tape
->max_stages
= min(tape
->max_stages
, tape
->max_pipeline
);
1582 * idetape_kfree_stage calls kfree to completely free a stage, along with
1583 * its related buffers.
1585 static void __idetape_kfree_stage (idetape_stage_t
*stage
)
1587 struct idetape_bh
*prev_bh
, *bh
= stage
->bh
;
1590 while (bh
!= NULL
) {
1591 if (bh
->b_data
!= NULL
) {
1592 size
= (int) bh
->b_size
;
1594 free_page((unsigned long) bh
->b_data
);
1596 bh
->b_data
+= PAGE_SIZE
;
1606 static void idetape_kfree_stage (idetape_tape_t
*tape
, idetape_stage_t
*stage
)
1608 __idetape_kfree_stage(stage
);
1612 * idetape_remove_stage_head removes tape->first_stage from the pipeline.
1613 * The caller should avoid race conditions.
1615 static void idetape_remove_stage_head (ide_drive_t
*drive
)
1617 idetape_tape_t
*tape
= drive
->driver_data
;
1618 idetape_stage_t
*stage
;
1620 #if IDETAPE_DEBUG_LOG
1621 if (tape
->debug_level
>= 4)
1622 printk(KERN_INFO
"ide-tape: Reached idetape_remove_stage_head\n");
1623 #endif /* IDETAPE_DEBUG_LOG */
1624 #if IDETAPE_DEBUG_BUGS
1625 if (tape
->first_stage
== NULL
) {
1626 printk(KERN_ERR
"ide-tape: bug: tape->first_stage is NULL\n");
1629 if (tape
->active_stage
== tape
->first_stage
) {
1630 printk(KERN_ERR
"ide-tape: bug: Trying to free our active pipeline stage\n");
1633 #endif /* IDETAPE_DEBUG_BUGS */
1634 stage
= tape
->first_stage
;
1635 tape
->first_stage
= stage
->next
;
1636 idetape_kfree_stage(tape
, stage
);
1638 if (tape
->first_stage
== NULL
) {
1639 tape
->last_stage
= NULL
;
1640 #if IDETAPE_DEBUG_BUGS
1641 if (tape
->next_stage
!= NULL
)
1642 printk(KERN_ERR
"ide-tape: bug: tape->next_stage != NULL\n");
1643 if (tape
->nr_stages
)
1644 printk(KERN_ERR
"ide-tape: bug: nr_stages should be 0 now\n");
1645 #endif /* IDETAPE_DEBUG_BUGS */
1650 * This will free all the pipeline stages starting from new_last_stage->next
1651 * to the end of the list, and point tape->last_stage to new_last_stage.
1653 static void idetape_abort_pipeline(ide_drive_t
*drive
,
1654 idetape_stage_t
*new_last_stage
)
1656 idetape_tape_t
*tape
= drive
->driver_data
;
1657 idetape_stage_t
*stage
= new_last_stage
->next
;
1658 idetape_stage_t
*nstage
;
1660 #if IDETAPE_DEBUG_LOG
1661 if (tape
->debug_level
>= 4)
1662 printk(KERN_INFO
"ide-tape: %s: idetape_abort_pipeline called\n", tape
->name
);
1665 nstage
= stage
->next
;
1666 idetape_kfree_stage(tape
, stage
);
1668 --tape
->nr_pending_stages
;
1672 new_last_stage
->next
= NULL
;
1673 tape
->last_stage
= new_last_stage
;
1674 tape
->next_stage
= NULL
;
1678 * idetape_end_request is used to finish servicing a request, and to
1679 * insert a pending pipeline request into the main device queue.
1681 static int idetape_end_request(ide_drive_t
*drive
, int uptodate
, int nr_sects
)
1683 struct request
*rq
= HWGROUP(drive
)->rq
;
1684 idetape_tape_t
*tape
= drive
->driver_data
;
1685 unsigned long flags
;
1687 int remove_stage
= 0;
1688 idetape_stage_t
*active_stage
;
1690 #if IDETAPE_DEBUG_LOG
1691 if (tape
->debug_level
>= 4)
1692 printk(KERN_INFO
"ide-tape: Reached idetape_end_request\n");
1693 #endif /* IDETAPE_DEBUG_LOG */
1696 case 0: error
= IDETAPE_ERROR_GENERAL
; break;
1697 case 1: error
= 0; break;
1698 default: error
= uptodate
;
1702 tape
->failed_pc
= NULL
;
1704 spin_lock_irqsave(&tape
->spinlock
, flags
);
1706 /* The request was a pipelined data transfer request */
1707 if (tape
->active_data_request
== rq
) {
1708 active_stage
= tape
->active_stage
;
1709 tape
->active_stage
= NULL
;
1710 tape
->active_data_request
= NULL
;
1711 tape
->nr_pending_stages
--;
1712 if (rq
->cmd
[0] & REQ_IDETAPE_WRITE
) {
1715 set_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
);
1716 if (error
== IDETAPE_ERROR_EOD
)
1717 idetape_abort_pipeline(drive
, active_stage
);
1719 } else if (rq
->cmd
[0] & REQ_IDETAPE_READ
) {
1720 if (error
== IDETAPE_ERROR_EOD
) {
1721 set_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
);
1722 idetape_abort_pipeline(drive
, active_stage
);
1725 if (tape
->next_stage
!= NULL
) {
1726 idetape_active_next_stage(drive
);
1729 * Insert the next request into the request queue.
1731 (void) ide_do_drive_cmd(drive
, tape
->active_data_request
, ide_end
);
1732 } else if (!error
) {
1733 idetape_increase_max_pipeline_stages(drive
);
1736 ide_end_drive_cmd(drive
, 0, 0);
1737 // blkdev_dequeue_request(rq);
1738 // drive->rq = NULL;
1739 // end_that_request_last(rq);
1742 idetape_remove_stage_head(drive
);
1743 if (tape
->active_data_request
== NULL
)
1744 clear_bit(IDETAPE_PIPELINE_ACTIVE
, &tape
->flags
);
1745 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
1749 static ide_startstop_t
idetape_request_sense_callback (ide_drive_t
*drive
)
1751 idetape_tape_t
*tape
= drive
->driver_data
;
1753 #if IDETAPE_DEBUG_LOG
1754 if (tape
->debug_level
>= 4)
1755 printk(KERN_INFO
"ide-tape: Reached idetape_request_sense_callback\n");
1756 #endif /* IDETAPE_DEBUG_LOG */
1757 if (!tape
->pc
->error
) {
1758 idetape_analyze_error(drive
, (idetape_request_sense_result_t
*) tape
->pc
->buffer
);
1759 idetape_end_request(drive
, 1, 0);
1761 printk(KERN_ERR
"ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1762 idetape_end_request(drive
, 0, 0);
1767 static void idetape_create_request_sense_cmd (idetape_pc_t
*pc
)
1769 idetape_init_pc(pc
);
1770 pc
->c
[0] = IDETAPE_REQUEST_SENSE_CMD
;
1772 pc
->request_transfer
= 20;
1773 pc
->callback
= &idetape_request_sense_callback
;
1776 static void idetape_init_rq(struct request
*rq
, u8 cmd
)
1778 memset(rq
, 0, sizeof(*rq
));
1779 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
1784 * idetape_queue_pc_head generates a new packet command request in front
1785 * of the request queue, before the current request, so that it will be
1786 * processed immediately, on the next pass through the driver.
1788 * idetape_queue_pc_head is called from the request handling part of
1789 * the driver (the "bottom" part). Safe storage for the request should
1790 * be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1791 * before calling idetape_queue_pc_head.
1793 * Memory for those requests is pre-allocated at initialization time, and
1794 * is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1795 * space for the maximum possible number of inter-dependent packet commands.
1797 * The higher level of the driver - The ioctl handler and the character
1798 * device handling functions should queue request to the lower level part
1799 * and wait for their completion using idetape_queue_pc_tail or
1800 * idetape_queue_rw_tail.
1802 static void idetape_queue_pc_head (ide_drive_t
*drive
, idetape_pc_t
*pc
,struct request
*rq
)
1804 struct ide_tape_obj
*tape
= drive
->driver_data
;
1806 idetape_init_rq(rq
, REQ_IDETAPE_PC1
);
1807 rq
->buffer
= (char *) pc
;
1808 rq
->rq_disk
= tape
->disk
;
1809 (void) ide_do_drive_cmd(drive
, rq
, ide_preempt
);
1813 * idetape_retry_pc is called when an error was detected during the
1814 * last packet command. We queue a request sense packet command in
1815 * the head of the request list.
1817 static ide_startstop_t
idetape_retry_pc (ide_drive_t
*drive
)
1819 idetape_tape_t
*tape
= drive
->driver_data
;
1822 atapi_error_t error
;
1824 error
.all
= HWIF(drive
)->INB(IDE_ERROR_REG
);
1825 pc
= idetape_next_pc_storage(drive
);
1826 rq
= idetape_next_rq_storage(drive
);
1827 idetape_create_request_sense_cmd(pc
);
1828 set_bit(IDETAPE_IGNORE_DSC
, &tape
->flags
);
1829 idetape_queue_pc_head(drive
, pc
, rq
);
1834 * idetape_postpone_request postpones the current request so that
1835 * ide.c will be able to service requests from another device on
1836 * the same hwgroup while we are polling for DSC.
1838 static void idetape_postpone_request (ide_drive_t
*drive
)
1840 idetape_tape_t
*tape
= drive
->driver_data
;
1842 #if IDETAPE_DEBUG_LOG
1843 if (tape
->debug_level
>= 4)
1844 printk(KERN_INFO
"ide-tape: idetape_postpone_request\n");
1846 tape
->postponed_rq
= HWGROUP(drive
)->rq
;
1847 ide_stall_queue(drive
, tape
->dsc_polling_frequency
);
1851 * idetape_pc_intr is the usual interrupt handler which will be called
1852 * during a packet command. We will transfer some of the data (as
1853 * requested by the drive) and will re-point interrupt handler to us.
1854 * When data transfer is finished, we will act according to the
1855 * algorithm described before idetape_issue_packet_command.
1858 static ide_startstop_t
idetape_pc_intr (ide_drive_t
*drive
)
1860 ide_hwif_t
*hwif
= drive
->hwif
;
1861 idetape_tape_t
*tape
= drive
->driver_data
;
1862 atapi_status_t status
;
1863 atapi_bcount_t bcount
;
1864 atapi_ireason_t ireason
;
1865 idetape_pc_t
*pc
= tape
->pc
;
1869 static int error_sim_count
= 0;
1872 #if IDETAPE_DEBUG_LOG
1873 if (tape
->debug_level
>= 4)
1874 printk(KERN_INFO
"ide-tape: Reached idetape_pc_intr "
1875 "interrupt handler\n");
1876 #endif /* IDETAPE_DEBUG_LOG */
1878 /* Clear the interrupt */
1879 status
.all
= HWIF(drive
)->INB(IDE_STATUS_REG
);
1881 if (test_bit(PC_DMA_IN_PROGRESS
, &pc
->flags
)) {
1882 if (HWIF(drive
)->ide_dma_end(drive
) || status
.b
.check
) {
1884 * A DMA error is sometimes expected. For example,
1885 * if the tape is crossing a filemark during a
1886 * READ command, it will issue an irq and position
1887 * itself before the filemark, so that only a partial
1888 * data transfer will occur (which causes the DMA
1889 * error). In that case, we will later ask the tape
1890 * how much bytes of the original request were
1891 * actually transferred (we can't receive that
1892 * information from the DMA engine on most chipsets).
1896 * On the contrary, a DMA error is never expected;
1897 * it usually indicates a hardware error or abort.
1898 * If the tape crosses a filemark during a READ
1899 * command, it will issue an irq and position itself
1900 * after the filemark (not before). Only a partial
1901 * data transfer will occur, but no DMA error.
1904 set_bit(PC_DMA_ERROR
, &pc
->flags
);
1906 pc
->actually_transferred
= pc
->request_transfer
;
1907 idetape_update_buffers(pc
);
1909 #if IDETAPE_DEBUG_LOG
1910 if (tape
->debug_level
>= 4)
1911 printk(KERN_INFO
"ide-tape: DMA finished\n");
1912 #endif /* IDETAPE_DEBUG_LOG */
1915 /* No more interrupts */
1916 if (!status
.b
.drq
) {
1917 #if IDETAPE_DEBUG_LOG
1918 if (tape
->debug_level
>= 2)
1919 printk(KERN_INFO
"ide-tape: Packet command completed, %d bytes transferred\n", pc
->actually_transferred
);
1920 #endif /* IDETAPE_DEBUG_LOG */
1921 clear_bit(PC_DMA_IN_PROGRESS
, &pc
->flags
);
1926 if ((pc
->c
[0] == IDETAPE_WRITE_CMD
||
1927 pc
->c
[0] == IDETAPE_READ_CMD
) &&
1928 (++error_sim_count
% 100) == 0) {
1929 printk(KERN_INFO
"ide-tape: %s: simulating error\n",
1934 if (status
.b
.check
&& pc
->c
[0] == IDETAPE_REQUEST_SENSE_CMD
)
1936 if (status
.b
.check
|| test_bit(PC_DMA_ERROR
, &pc
->flags
)) { /* Error detected */
1937 #if IDETAPE_DEBUG_LOG
1938 if (tape
->debug_level
>= 1)
1939 printk(KERN_INFO
"ide-tape: %s: I/O error\n",
1941 #endif /* IDETAPE_DEBUG_LOG */
1942 if (pc
->c
[0] == IDETAPE_REQUEST_SENSE_CMD
) {
1943 printk(KERN_ERR
"ide-tape: I/O error in request sense command\n");
1944 return ide_do_reset(drive
);
1946 #if IDETAPE_DEBUG_LOG
1947 if (tape
->debug_level
>= 1)
1948 printk(KERN_INFO
"ide-tape: [cmd %x]: check condition\n", pc
->c
[0]);
1950 /* Retry operation */
1951 return idetape_retry_pc(drive
);
1954 if (test_bit(PC_WAIT_FOR_DSC
, &pc
->flags
) &&
1956 /* Media access command */
1957 tape
->dsc_polling_start
= jiffies
;
1958 tape
->dsc_polling_frequency
= IDETAPE_DSC_MA_FAST
;
1959 tape
->dsc_timeout
= jiffies
+ IDETAPE_DSC_MA_TIMEOUT
;
1960 /* Allow ide.c to handle other requests */
1961 idetape_postpone_request(drive
);
1964 if (tape
->failed_pc
== pc
)
1965 tape
->failed_pc
= NULL
;
1966 /* Command finished - Call the callback function */
1967 return pc
->callback(drive
);
1969 if (test_and_clear_bit(PC_DMA_IN_PROGRESS
, &pc
->flags
)) {
1970 printk(KERN_ERR
"ide-tape: The tape wants to issue more "
1971 "interrupts in DMA mode\n");
1972 printk(KERN_ERR
"ide-tape: DMA disabled, reverting to PIO\n");
1974 return ide_do_reset(drive
);
1976 /* Get the number of bytes to transfer on this interrupt. */
1977 bcount
.b
.high
= hwif
->INB(IDE_BCOUNTH_REG
);
1978 bcount
.b
.low
= hwif
->INB(IDE_BCOUNTL_REG
);
1980 ireason
.all
= hwif
->INB(IDE_IREASON_REG
);
1982 if (ireason
.b
.cod
) {
1983 printk(KERN_ERR
"ide-tape: CoD != 0 in idetape_pc_intr\n");
1984 return ide_do_reset(drive
);
1986 if (ireason
.b
.io
== test_bit(PC_WRITING
, &pc
->flags
)) {
1987 /* Hopefully, we will never get here */
1988 printk(KERN_ERR
"ide-tape: We wanted to %s, ",
1989 ireason
.b
.io
? "Write":"Read");
1990 printk(KERN_ERR
"ide-tape: but the tape wants us to %s !\n",
1991 ireason
.b
.io
? "Read":"Write");
1992 return ide_do_reset(drive
);
1994 if (!test_bit(PC_WRITING
, &pc
->flags
)) {
1995 /* Reading - Check that we have enough space */
1996 temp
= pc
->actually_transferred
+ bcount
.all
;
1997 if (temp
> pc
->request_transfer
) {
1998 if (temp
> pc
->buffer_size
) {
1999 printk(KERN_ERR
"ide-tape: The tape wants to send us more data than expected - discarding data\n");
2000 idetape_discard_data(drive
, bcount
.all
);
2001 ide_set_handler(drive
, &idetape_pc_intr
, IDETAPE_WAIT_CMD
, NULL
);
2004 #if IDETAPE_DEBUG_LOG
2005 if (tape
->debug_level
>= 2)
2006 printk(KERN_NOTICE
"ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
2007 #endif /* IDETAPE_DEBUG_LOG */
2010 if (test_bit(PC_WRITING
, &pc
->flags
)) {
2012 idetape_output_buffers(drive
, pc
, bcount
.all
);
2014 /* Write the current buffer */
2015 HWIF(drive
)->atapi_output_bytes(drive
, pc
->current_position
, bcount
.all
);
2018 idetape_input_buffers(drive
, pc
, bcount
.all
);
2020 /* Read the current buffer */
2021 HWIF(drive
)->atapi_input_bytes(drive
, pc
->current_position
, bcount
.all
);
2023 /* Update the current position */
2024 pc
->actually_transferred
+= bcount
.all
;
2025 pc
->current_position
+= bcount
.all
;
2026 #if IDETAPE_DEBUG_LOG
2027 if (tape
->debug_level
>= 2)
2028 printk(KERN_INFO
"ide-tape: [cmd %x] transferred %d bytes on that interrupt\n", pc
->c
[0], bcount
.all
);
2030 /* And set the interrupt handler again */
2031 ide_set_handler(drive
, &idetape_pc_intr
, IDETAPE_WAIT_CMD
, NULL
);
2036 * Packet Command Interface
2038 * The current Packet Command is available in tape->pc, and will not
2039 * change until we finish handling it. Each packet command is associated
2040 * with a callback function that will be called when the command is
2043 * The handling will be done in three stages:
2045 * 1. idetape_issue_packet_command will send the packet command to the
2046 * drive, and will set the interrupt handler to idetape_pc_intr.
2048 * 2. On each interrupt, idetape_pc_intr will be called. This step
2049 * will be repeated until the device signals us that no more
2050 * interrupts will be issued.
2052 * 3. ATAPI Tape media access commands have immediate status with a
2053 * delayed process. In case of a successful initiation of a
2054 * media access packet command, the DSC bit will be set when the
2055 * actual execution of the command is finished.
2056 * Since the tape drive will not issue an interrupt, we have to
2057 * poll for this event. In this case, we define the request as
2058 * "low priority request" by setting rq_status to
2059 * IDETAPE_RQ_POSTPONED, set a timer to poll for DSC and exit
2062 * ide.c will then give higher priority to requests which
2063 * originate from the other device, until will change rq_status
2066 * 4. When the packet command is finished, it will be checked for errors.
2068 * 5. In case an error was found, we queue a request sense packet
2069 * command in front of the request queue and retry the operation
2070 * up to IDETAPE_MAX_PC_RETRIES times.
2072 * 6. In case no error was found, or we decided to give up and not
2073 * to retry again, the callback function will be called and then
2074 * we will handle the next request.
2077 static ide_startstop_t
idetape_transfer_pc(ide_drive_t
*drive
)
2079 ide_hwif_t
*hwif
= drive
->hwif
;
2080 idetape_tape_t
*tape
= drive
->driver_data
;
2081 idetape_pc_t
*pc
= tape
->pc
;
2082 atapi_ireason_t ireason
;
2084 ide_startstop_t startstop
;
2086 if (ide_wait_stat(&startstop
,drive
,DRQ_STAT
,BUSY_STAT
,WAIT_READY
)) {
2087 printk(KERN_ERR
"ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
2090 ireason
.all
= hwif
->INB(IDE_IREASON_REG
);
2091 while (retries
-- && (!ireason
.b
.cod
|| ireason
.b
.io
)) {
2092 printk(KERN_ERR
"ide-tape: (IO,CoD != (0,1) while issuing "
2093 "a packet command, retrying\n");
2095 ireason
.all
= hwif
->INB(IDE_IREASON_REG
);
2097 printk(KERN_ERR
"ide-tape: (IO,CoD != (0,1) while "
2098 "issuing a packet command, ignoring\n");
2103 if (!ireason
.b
.cod
|| ireason
.b
.io
) {
2104 printk(KERN_ERR
"ide-tape: (IO,CoD) != (0,1) while issuing "
2105 "a packet command\n");
2106 return ide_do_reset(drive
);
2108 /* Set the interrupt routine */
2109 ide_set_handler(drive
, &idetape_pc_intr
, IDETAPE_WAIT_CMD
, NULL
);
2110 #ifdef CONFIG_BLK_DEV_IDEDMA
2111 /* Begin DMA, if necessary */
2112 if (test_bit(PC_DMA_IN_PROGRESS
, &pc
->flags
))
2113 hwif
->dma_start(drive
);
2115 /* Send the actual packet */
2116 HWIF(drive
)->atapi_output_bytes(drive
, pc
->c
, 12);
2120 static ide_startstop_t
idetape_issue_packet_command (ide_drive_t
*drive
, idetape_pc_t
*pc
)
2122 ide_hwif_t
*hwif
= drive
->hwif
;
2123 idetape_tape_t
*tape
= drive
->driver_data
;
2124 atapi_bcount_t bcount
;
2127 #if IDETAPE_DEBUG_BUGS
2128 if (tape
->pc
->c
[0] == IDETAPE_REQUEST_SENSE_CMD
&&
2129 pc
->c
[0] == IDETAPE_REQUEST_SENSE_CMD
) {
2130 printk(KERN_ERR
"ide-tape: possible ide-tape.c bug - "
2131 "Two request sense in serial were issued\n");
2133 #endif /* IDETAPE_DEBUG_BUGS */
2135 if (tape
->failed_pc
== NULL
&& pc
->c
[0] != IDETAPE_REQUEST_SENSE_CMD
)
2136 tape
->failed_pc
= pc
;
2137 /* Set the current packet command */
2140 if (pc
->retries
> IDETAPE_MAX_PC_RETRIES
||
2141 test_bit(PC_ABORT
, &pc
->flags
)) {
2143 * We will "abort" retrying a packet command in case
2144 * a legitimate error code was received (crossing a
2145 * filemark, or end of the media, for example).
2147 if (!test_bit(PC_ABORT
, &pc
->flags
)) {
2148 if (!(pc
->c
[0] == IDETAPE_TEST_UNIT_READY_CMD
&&
2149 tape
->sense_key
== 2 && tape
->asc
== 4 &&
2150 (tape
->ascq
== 1 || tape
->ascq
== 8))) {
2151 printk(KERN_ERR
"ide-tape: %s: I/O error, "
2152 "pc = %2x, key = %2x, "
2153 "asc = %2x, ascq = %2x\n",
2154 tape
->name
, pc
->c
[0],
2155 tape
->sense_key
, tape
->asc
,
2159 pc
->error
= IDETAPE_ERROR_GENERAL
;
2161 tape
->failed_pc
= NULL
;
2162 return pc
->callback(drive
);
2164 #if IDETAPE_DEBUG_LOG
2165 if (tape
->debug_level
>= 2)
2166 printk(KERN_INFO
"ide-tape: Retry number - %d, cmd = %02X\n", pc
->retries
, pc
->c
[0]);
2167 #endif /* IDETAPE_DEBUG_LOG */
2170 /* We haven't transferred any data yet */
2171 pc
->actually_transferred
= 0;
2172 pc
->current_position
= pc
->buffer
;
2173 /* Request to transfer the entire buffer at once */
2174 bcount
.all
= pc
->request_transfer
;
2176 if (test_and_clear_bit(PC_DMA_ERROR
, &pc
->flags
)) {
2177 printk(KERN_WARNING
"ide-tape: DMA disabled, "
2178 "reverting to PIO\n");
2181 if (test_bit(PC_DMA_RECOMMENDED
, &pc
->flags
) && drive
->using_dma
)
2182 dma_ok
= !hwif
->dma_setup(drive
);
2184 if (IDE_CONTROL_REG
)
2185 hwif
->OUTB(drive
->ctl
, IDE_CONTROL_REG
);
2186 hwif
->OUTB(dma_ok
? 1 : 0, IDE_FEATURE_REG
); /* Use PIO/DMA */
2187 hwif
->OUTB(bcount
.b
.high
, IDE_BCOUNTH_REG
);
2188 hwif
->OUTB(bcount
.b
.low
, IDE_BCOUNTL_REG
);
2189 hwif
->OUTB(drive
->select
.all
, IDE_SELECT_REG
);
2190 if (dma_ok
) /* Will begin DMA later */
2191 set_bit(PC_DMA_IN_PROGRESS
, &pc
->flags
);
2192 if (test_bit(IDETAPE_DRQ_INTERRUPT
, &tape
->flags
)) {
2193 ide_set_handler(drive
, &idetape_transfer_pc
, IDETAPE_WAIT_CMD
, NULL
);
2194 hwif
->OUTB(WIN_PACKETCMD
, IDE_COMMAND_REG
);
2197 hwif
->OUTB(WIN_PACKETCMD
, IDE_COMMAND_REG
);
2198 return idetape_transfer_pc(drive
);
2203 * General packet command callback function.
2205 static ide_startstop_t
idetape_pc_callback (ide_drive_t
*drive
)
2207 idetape_tape_t
*tape
= drive
->driver_data
;
2209 #if IDETAPE_DEBUG_LOG
2210 if (tape
->debug_level
>= 4)
2211 printk(KERN_INFO
"ide-tape: Reached idetape_pc_callback\n");
2212 #endif /* IDETAPE_DEBUG_LOG */
2214 idetape_end_request(drive
, tape
->pc
->error
? 0 : 1, 0);
2219 * A mode sense command is used to "sense" tape parameters.
2221 static void idetape_create_mode_sense_cmd (idetape_pc_t
*pc
, u8 page_code
)
2223 idetape_init_pc(pc
);
2224 pc
->c
[0] = IDETAPE_MODE_SENSE_CMD
;
2225 if (page_code
!= IDETAPE_BLOCK_DESCRIPTOR
)
2226 pc
->c
[1] = 8; /* DBD = 1 - Don't return block descriptors */
2227 pc
->c
[2] = page_code
;
2229 * Changed pc->c[3] to 0 (255 will at best return unused info).
2231 * For SCSI this byte is defined as subpage instead of high byte
2232 * of length and some IDE drives seem to interpret it this way
2233 * and return an error when 255 is used.
2236 pc
->c
[4] = 255; /* (We will just discard data in that case) */
2237 if (page_code
== IDETAPE_BLOCK_DESCRIPTOR
)
2238 pc
->request_transfer
= 12;
2239 else if (page_code
== IDETAPE_CAPABILITIES_PAGE
)
2240 pc
->request_transfer
= 24;
2242 pc
->request_transfer
= 50;
2243 pc
->callback
= &idetape_pc_callback
;
2246 static void calculate_speeds(ide_drive_t
*drive
)
2248 idetape_tape_t
*tape
= drive
->driver_data
;
2249 int full
= 125, empty
= 75;
2251 if (time_after(jiffies
, tape
->controlled_pipeline_head_time
+ 120 * HZ
)) {
2252 tape
->controlled_previous_pipeline_head
= tape
->controlled_last_pipeline_head
;
2253 tape
->controlled_previous_head_time
= tape
->controlled_pipeline_head_time
;
2254 tape
->controlled_last_pipeline_head
= tape
->pipeline_head
;
2255 tape
->controlled_pipeline_head_time
= jiffies
;
2257 if (time_after(jiffies
, tape
->controlled_pipeline_head_time
+ 60 * HZ
))
2258 tape
->controlled_pipeline_head_speed
= (tape
->pipeline_head
- tape
->controlled_last_pipeline_head
) * 32 * HZ
/ (jiffies
- tape
->controlled_pipeline_head_time
);
2259 else if (time_after(jiffies
, tape
->controlled_previous_head_time
))
2260 tape
->controlled_pipeline_head_speed
= (tape
->pipeline_head
- tape
->controlled_previous_pipeline_head
) * 32 * HZ
/ (jiffies
- tape
->controlled_previous_head_time
);
2262 if (tape
->nr_pending_stages
< tape
->max_stages
/*- 1 */) {
2263 /* -1 for read mode error recovery */
2264 if (time_after(jiffies
, tape
->uncontrolled_previous_head_time
+ 10 * HZ
)) {
2265 tape
->uncontrolled_pipeline_head_time
= jiffies
;
2266 tape
->uncontrolled_pipeline_head_speed
= (tape
->pipeline_head
- tape
->uncontrolled_previous_pipeline_head
) * 32 * HZ
/ (jiffies
- tape
->uncontrolled_previous_head_time
);
2269 tape
->uncontrolled_previous_head_time
= jiffies
;
2270 tape
->uncontrolled_previous_pipeline_head
= tape
->pipeline_head
;
2271 if (time_after(jiffies
, tape
->uncontrolled_pipeline_head_time
+ 30 * HZ
)) {
2272 tape
->uncontrolled_pipeline_head_time
= jiffies
;
2275 tape
->pipeline_head_speed
= max(tape
->uncontrolled_pipeline_head_speed
, tape
->controlled_pipeline_head_speed
);
2276 if (tape
->speed_control
== 0) {
2277 tape
->max_insert_speed
= 5000;
2278 } else if (tape
->speed_control
== 1) {
2279 if (tape
->nr_pending_stages
>= tape
->max_stages
/ 2)
2280 tape
->max_insert_speed
= tape
->pipeline_head_speed
+
2281 (1100 - tape
->pipeline_head_speed
) * 2 * (tape
->nr_pending_stages
- tape
->max_stages
/ 2) / tape
->max_stages
;
2283 tape
->max_insert_speed
= 500 +
2284 (tape
->pipeline_head_speed
- 500) * 2 * tape
->nr_pending_stages
/ tape
->max_stages
;
2285 if (tape
->nr_pending_stages
>= tape
->max_stages
* 99 / 100)
2286 tape
->max_insert_speed
= 5000;
2287 } else if (tape
->speed_control
== 2) {
2288 tape
->max_insert_speed
= tape
->pipeline_head_speed
* empty
/ 100 +
2289 (tape
->pipeline_head_speed
* full
/ 100 - tape
->pipeline_head_speed
* empty
/ 100) * tape
->nr_pending_stages
/ tape
->max_stages
;
2291 tape
->max_insert_speed
= tape
->speed_control
;
2292 tape
->max_insert_speed
= max(tape
->max_insert_speed
, 500);
2295 static ide_startstop_t
idetape_media_access_finished (ide_drive_t
*drive
)
2297 idetape_tape_t
*tape
= drive
->driver_data
;
2298 idetape_pc_t
*pc
= tape
->pc
;
2299 atapi_status_t status
;
2301 status
.all
= HWIF(drive
)->INB(IDE_STATUS_REG
);
2303 if (status
.b
.check
) {
2304 /* Error detected */
2305 if (pc
->c
[0] != IDETAPE_TEST_UNIT_READY_CMD
)
2306 printk(KERN_ERR
"ide-tape: %s: I/O error, ",
2308 /* Retry operation */
2309 return idetape_retry_pc(drive
);
2312 if (tape
->failed_pc
== pc
)
2313 tape
->failed_pc
= NULL
;
2315 pc
->error
= IDETAPE_ERROR_GENERAL
;
2316 tape
->failed_pc
= NULL
;
2318 return pc
->callback(drive
);
2321 static ide_startstop_t
idetape_rw_callback (ide_drive_t
*drive
)
2323 idetape_tape_t
*tape
= drive
->driver_data
;
2324 struct request
*rq
= HWGROUP(drive
)->rq
;
2325 int blocks
= tape
->pc
->actually_transferred
/ tape
->tape_block_size
;
2327 tape
->avg_size
+= blocks
* tape
->tape_block_size
;
2328 tape
->insert_size
+= blocks
* tape
->tape_block_size
;
2329 if (tape
->insert_size
> 1024 * 1024)
2330 tape
->measure_insert_time
= 1;
2331 if (tape
->measure_insert_time
) {
2332 tape
->measure_insert_time
= 0;
2333 tape
->insert_time
= jiffies
;
2334 tape
->insert_size
= 0;
2336 if (time_after(jiffies
, tape
->insert_time
))
2337 tape
->insert_speed
= tape
->insert_size
/ 1024 * HZ
/ (jiffies
- tape
->insert_time
);
2338 if (time_after_eq(jiffies
, tape
->avg_time
+ HZ
)) {
2339 tape
->avg_speed
= tape
->avg_size
* HZ
/ (jiffies
- tape
->avg_time
) / 1024;
2341 tape
->avg_time
= jiffies
;
2344 #if IDETAPE_DEBUG_LOG
2345 if (tape
->debug_level
>= 4)
2346 printk(KERN_INFO
"ide-tape: Reached idetape_rw_callback\n");
2347 #endif /* IDETAPE_DEBUG_LOG */
2349 tape
->first_frame_position
+= blocks
;
2350 rq
->current_nr_sectors
-= blocks
;
2352 if (!tape
->pc
->error
)
2353 idetape_end_request(drive
, 1, 0);
2355 idetape_end_request(drive
, tape
->pc
->error
, 0);
2359 static void idetape_create_read_cmd(idetape_tape_t
*tape
, idetape_pc_t
*pc
, unsigned int length
, struct idetape_bh
*bh
)
2361 idetape_init_pc(pc
);
2362 pc
->c
[0] = IDETAPE_READ_CMD
;
2363 put_unaligned(htonl(length
), (unsigned int *) &pc
->c
[1]);
2365 pc
->callback
= &idetape_rw_callback
;
2367 atomic_set(&bh
->b_count
, 0);
2369 pc
->request_transfer
= pc
->buffer_size
= length
* tape
->tape_block_size
;
2370 if (pc
->request_transfer
== tape
->stage_size
)
2371 set_bit(PC_DMA_RECOMMENDED
, &pc
->flags
);
2374 static void idetape_create_read_buffer_cmd(idetape_tape_t
*tape
, idetape_pc_t
*pc
, unsigned int length
, struct idetape_bh
*bh
)
2377 struct idetape_bh
*p
= bh
;
2379 idetape_init_pc(pc
);
2380 pc
->c
[0] = IDETAPE_READ_BUFFER_CMD
;
2381 pc
->c
[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK
;
2382 pc
->c
[7] = size
>> 8;
2383 pc
->c
[8] = size
& 0xff;
2384 pc
->callback
= &idetape_pc_callback
;
2386 atomic_set(&bh
->b_count
, 0);
2389 atomic_set(&p
->b_count
, 0);
2392 pc
->request_transfer
= pc
->buffer_size
= size
;
2395 static void idetape_create_write_cmd(idetape_tape_t
*tape
, idetape_pc_t
*pc
, unsigned int length
, struct idetape_bh
*bh
)
2397 idetape_init_pc(pc
);
2398 pc
->c
[0] = IDETAPE_WRITE_CMD
;
2399 put_unaligned(htonl(length
), (unsigned int *) &pc
->c
[1]);
2401 pc
->callback
= &idetape_rw_callback
;
2402 set_bit(PC_WRITING
, &pc
->flags
);
2404 pc
->b_data
= bh
->b_data
;
2405 pc
->b_count
= atomic_read(&bh
->b_count
);
2407 pc
->request_transfer
= pc
->buffer_size
= length
* tape
->tape_block_size
;
2408 if (pc
->request_transfer
== tape
->stage_size
)
2409 set_bit(PC_DMA_RECOMMENDED
, &pc
->flags
);
2413 * idetape_do_request is our request handling function.
2415 static ide_startstop_t
idetape_do_request(ide_drive_t
*drive
,
2416 struct request
*rq
, sector_t block
)
2418 idetape_tape_t
*tape
= drive
->driver_data
;
2419 idetape_pc_t
*pc
= NULL
;
2420 struct request
*postponed_rq
= tape
->postponed_rq
;
2421 atapi_status_t status
;
2423 #if IDETAPE_DEBUG_LOG
2425 if (tape
->debug_level
>= 5)
2426 printk(KERN_INFO
"ide-tape: %d, "
2427 "dev: %s, cmd: %ld, errors: %d\n",
2428 rq
->rq_disk
->disk_name
, rq
->cmd
[0], rq
->errors
);
2430 if (tape
->debug_level
>= 2)
2431 printk(KERN_INFO
"ide-tape: sector: %ld, "
2432 "nr_sectors: %ld, current_nr_sectors: %d\n",
2433 rq
->sector
, rq
->nr_sectors
, rq
->current_nr_sectors
);
2434 #endif /* IDETAPE_DEBUG_LOG */
2436 if (!blk_special_request(rq
)) {
2438 * We do not support buffer cache originated requests.
2440 printk(KERN_NOTICE
"ide-tape: %s: Unsupported request in "
2441 "request queue (%d)\n", drive
->name
, rq
->cmd_type
);
2442 ide_end_request(drive
, 0, 0);
2447 * Retry a failed packet command
2449 if (tape
->failed_pc
!= NULL
&&
2450 tape
->pc
->c
[0] == IDETAPE_REQUEST_SENSE_CMD
) {
2451 return idetape_issue_packet_command(drive
, tape
->failed_pc
);
2453 #if IDETAPE_DEBUG_BUGS
2454 if (postponed_rq
!= NULL
)
2455 if (rq
!= postponed_rq
) {
2456 printk(KERN_ERR
"ide-tape: ide-tape.c bug - "
2457 "Two DSC requests were queued\n");
2458 idetape_end_request(drive
, 0, 0);
2461 #endif /* IDETAPE_DEBUG_BUGS */
2463 tape
->postponed_rq
= NULL
;
2466 * If the tape is still busy, postpone our request and service
2467 * the other device meanwhile.
2469 status
.all
= HWIF(drive
)->INB(IDE_STATUS_REG
);
2471 if (!drive
->dsc_overlap
&& !(rq
->cmd
[0] & REQ_IDETAPE_PC2
))
2472 set_bit(IDETAPE_IGNORE_DSC
, &tape
->flags
);
2474 if (drive
->post_reset
== 1) {
2475 set_bit(IDETAPE_IGNORE_DSC
, &tape
->flags
);
2476 drive
->post_reset
= 0;
2479 if (tape
->tape_still_time
> 100 && tape
->tape_still_time
< 200)
2480 tape
->measure_insert_time
= 1;
2481 if (time_after(jiffies
, tape
->insert_time
))
2482 tape
->insert_speed
= tape
->insert_size
/ 1024 * HZ
/ (jiffies
- tape
->insert_time
);
2483 calculate_speeds(drive
);
2484 if (!test_and_clear_bit(IDETAPE_IGNORE_DSC
, &tape
->flags
) &&
2486 if (postponed_rq
== NULL
) {
2487 tape
->dsc_polling_start
= jiffies
;
2488 tape
->dsc_polling_frequency
= tape
->best_dsc_rw_frequency
;
2489 tape
->dsc_timeout
= jiffies
+ IDETAPE_DSC_RW_TIMEOUT
;
2490 } else if (time_after(jiffies
, tape
->dsc_timeout
)) {
2491 printk(KERN_ERR
"ide-tape: %s: DSC timeout\n",
2493 if (rq
->cmd
[0] & REQ_IDETAPE_PC2
) {
2494 idetape_media_access_finished(drive
);
2497 return ide_do_reset(drive
);
2499 } else if (time_after(jiffies
, tape
->dsc_polling_start
+ IDETAPE_DSC_MA_THRESHOLD
))
2500 tape
->dsc_polling_frequency
= IDETAPE_DSC_MA_SLOW
;
2501 idetape_postpone_request(drive
);
2504 if (rq
->cmd
[0] & REQ_IDETAPE_READ
) {
2505 tape
->buffer_head
++;
2507 IO_trace(IO_IDETAPE_FIFO
, tape
->pipeline_head
, tape
->buffer_head
, tape
->tape_head
, tape
->minor
);
2509 tape
->postpone_cnt
= 0;
2510 pc
= idetape_next_pc_storage(drive
);
2511 idetape_create_read_cmd(tape
, pc
, rq
->current_nr_sectors
, (struct idetape_bh
*)rq
->special
);
2514 if (rq
->cmd
[0] & REQ_IDETAPE_WRITE
) {
2515 tape
->buffer_head
++;
2517 IO_trace(IO_IDETAPE_FIFO
, tape
->pipeline_head
, tape
->buffer_head
, tape
->tape_head
, tape
->minor
);
2519 tape
->postpone_cnt
= 0;
2520 pc
= idetape_next_pc_storage(drive
);
2521 idetape_create_write_cmd(tape
, pc
, rq
->current_nr_sectors
, (struct idetape_bh
*)rq
->special
);
2524 if (rq
->cmd
[0] & REQ_IDETAPE_READ_BUFFER
) {
2525 tape
->postpone_cnt
= 0;
2526 pc
= idetape_next_pc_storage(drive
);
2527 idetape_create_read_buffer_cmd(tape
, pc
, rq
->current_nr_sectors
, (struct idetape_bh
*)rq
->special
);
2530 if (rq
->cmd
[0] & REQ_IDETAPE_PC1
) {
2531 pc
= (idetape_pc_t
*) rq
->buffer
;
2532 rq
->cmd
[0] &= ~(REQ_IDETAPE_PC1
);
2533 rq
->cmd
[0] |= REQ_IDETAPE_PC2
;
2536 if (rq
->cmd
[0] & REQ_IDETAPE_PC2
) {
2537 idetape_media_access_finished(drive
);
2542 return idetape_issue_packet_command(drive
, pc
);
2546 * Pipeline related functions
2548 static inline int idetape_pipeline_active (idetape_tape_t
*tape
)
2552 rc1
= test_bit(IDETAPE_PIPELINE_ACTIVE
, &tape
->flags
);
2553 rc2
= (tape
->active_data_request
!= NULL
);
2558 * idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
2559 * stage, along with all the necessary small buffers which together make
2560 * a buffer of size tape->stage_size (or a bit more). We attempt to
2561 * combine sequential pages as much as possible.
2563 * Returns a pointer to the new allocated stage, or NULL if we
2564 * can't (or don't want to) allocate a stage.
2566 * Pipeline stages are optional and are used to increase performance.
2567 * If we can't allocate them, we'll manage without them.
2569 static idetape_stage_t
*__idetape_kmalloc_stage (idetape_tape_t
*tape
, int full
, int clear
)
2571 idetape_stage_t
*stage
;
2572 struct idetape_bh
*prev_bh
, *bh
;
2573 int pages
= tape
->pages_per_stage
;
2574 char *b_data
= NULL
;
2576 if ((stage
= kmalloc(sizeof (idetape_stage_t
),GFP_KERNEL
)) == NULL
)
2580 bh
= stage
->bh
= kmalloc(sizeof(struct idetape_bh
), GFP_KERNEL
);
2583 bh
->b_reqnext
= NULL
;
2584 if ((bh
->b_data
= (char *) __get_free_page (GFP_KERNEL
)) == NULL
)
2587 memset(bh
->b_data
, 0, PAGE_SIZE
);
2588 bh
->b_size
= PAGE_SIZE
;
2589 atomic_set(&bh
->b_count
, full
? bh
->b_size
: 0);
2592 if ((b_data
= (char *) __get_free_page (GFP_KERNEL
)) == NULL
)
2595 memset(b_data
, 0, PAGE_SIZE
);
2596 if (bh
->b_data
== b_data
+ PAGE_SIZE
) {
2597 bh
->b_size
+= PAGE_SIZE
;
2598 bh
->b_data
-= PAGE_SIZE
;
2600 atomic_add(PAGE_SIZE
, &bh
->b_count
);
2603 if (b_data
== bh
->b_data
+ bh
->b_size
) {
2604 bh
->b_size
+= PAGE_SIZE
;
2606 atomic_add(PAGE_SIZE
, &bh
->b_count
);
2610 if ((bh
= kmalloc(sizeof(struct idetape_bh
), GFP_KERNEL
)) == NULL
) {
2611 free_page((unsigned long) b_data
);
2614 bh
->b_reqnext
= NULL
;
2615 bh
->b_data
= b_data
;
2616 bh
->b_size
= PAGE_SIZE
;
2617 atomic_set(&bh
->b_count
, full
? bh
->b_size
: 0);
2618 prev_bh
->b_reqnext
= bh
;
2620 bh
->b_size
-= tape
->excess_bh_size
;
2622 atomic_sub(tape
->excess_bh_size
, &bh
->b_count
);
2625 __idetape_kfree_stage(stage
);
2629 static idetape_stage_t
*idetape_kmalloc_stage (idetape_tape_t
*tape
)
2631 idetape_stage_t
*cache_stage
= tape
->cache_stage
;
2633 #if IDETAPE_DEBUG_LOG
2634 if (tape
->debug_level
>= 4)
2635 printk(KERN_INFO
"ide-tape: Reached idetape_kmalloc_stage\n");
2636 #endif /* IDETAPE_DEBUG_LOG */
2638 if (tape
->nr_stages
>= tape
->max_stages
)
2640 if (cache_stage
!= NULL
) {
2641 tape
->cache_stage
= NULL
;
2644 return __idetape_kmalloc_stage(tape
, 0, 0);
2647 static int idetape_copy_stage_from_user (idetape_tape_t
*tape
, idetape_stage_t
*stage
, const char __user
*buf
, int n
)
2649 struct idetape_bh
*bh
= tape
->bh
;
2654 #if IDETAPE_DEBUG_BUGS
2656 printk(KERN_ERR
"ide-tape: bh == NULL in "
2657 "idetape_copy_stage_from_user\n");
2660 #endif /* IDETAPE_DEBUG_BUGS */
2661 count
= min((unsigned int)(bh
->b_size
- atomic_read(&bh
->b_count
)), (unsigned int)n
);
2662 if (copy_from_user(bh
->b_data
+ atomic_read(&bh
->b_count
), buf
, count
))
2665 atomic_add(count
, &bh
->b_count
);
2667 if (atomic_read(&bh
->b_count
) == bh
->b_size
) {
2670 atomic_set(&bh
->b_count
, 0);
2677 static int idetape_copy_stage_to_user (idetape_tape_t
*tape
, char __user
*buf
, idetape_stage_t
*stage
, int n
)
2679 struct idetape_bh
*bh
= tape
->bh
;
2684 #if IDETAPE_DEBUG_BUGS
2686 printk(KERN_ERR
"ide-tape: bh == NULL in "
2687 "idetape_copy_stage_to_user\n");
2690 #endif /* IDETAPE_DEBUG_BUGS */
2691 count
= min(tape
->b_count
, n
);
2692 if (copy_to_user(buf
, tape
->b_data
, count
))
2695 tape
->b_data
+= count
;
2696 tape
->b_count
-= count
;
2698 if (!tape
->b_count
) {
2699 tape
->bh
= bh
= bh
->b_reqnext
;
2701 tape
->b_data
= bh
->b_data
;
2702 tape
->b_count
= atomic_read(&bh
->b_count
);
2709 static void idetape_init_merge_stage (idetape_tape_t
*tape
)
2711 struct idetape_bh
*bh
= tape
->merge_stage
->bh
;
2714 if (tape
->chrdev_direction
== idetape_direction_write
)
2715 atomic_set(&bh
->b_count
, 0);
2717 tape
->b_data
= bh
->b_data
;
2718 tape
->b_count
= atomic_read(&bh
->b_count
);
2722 static void idetape_switch_buffers (idetape_tape_t
*tape
, idetape_stage_t
*stage
)
2724 struct idetape_bh
*tmp
;
2727 stage
->bh
= tape
->merge_stage
->bh
;
2728 tape
->merge_stage
->bh
= tmp
;
2729 idetape_init_merge_stage(tape
);
2733 * idetape_add_stage_tail adds a new stage at the end of the pipeline.
2735 static void idetape_add_stage_tail (ide_drive_t
*drive
,idetape_stage_t
*stage
)
2737 idetape_tape_t
*tape
= drive
->driver_data
;
2738 unsigned long flags
;
2740 #if IDETAPE_DEBUG_LOG
2741 if (tape
->debug_level
>= 4)
2742 printk (KERN_INFO
"ide-tape: Reached idetape_add_stage_tail\n");
2743 #endif /* IDETAPE_DEBUG_LOG */
2744 spin_lock_irqsave(&tape
->spinlock
, flags
);
2746 if (tape
->last_stage
!= NULL
)
2747 tape
->last_stage
->next
=stage
;
2749 tape
->first_stage
= tape
->next_stage
=stage
;
2750 tape
->last_stage
= stage
;
2751 if (tape
->next_stage
== NULL
)
2752 tape
->next_stage
= tape
->last_stage
;
2754 tape
->nr_pending_stages
++;
2755 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
2759 * idetape_wait_for_request installs a completion in a pending request
2760 * and sleeps until it is serviced.
2762 * The caller should ensure that the request will not be serviced
2763 * before we install the completion (usually by disabling interrupts).
2765 static void idetape_wait_for_request (ide_drive_t
*drive
, struct request
*rq
)
2767 DECLARE_COMPLETION_ONSTACK(wait
);
2768 idetape_tape_t
*tape
= drive
->driver_data
;
2770 #if IDETAPE_DEBUG_BUGS
2771 if (rq
== NULL
|| !blk_special_request(rq
)) {
2772 printk (KERN_ERR
"ide-tape: bug: Trying to sleep on non-valid request\n");
2775 #endif /* IDETAPE_DEBUG_BUGS */
2776 rq
->end_io_data
= &wait
;
2777 rq
->end_io
= blk_end_sync_rq
;
2778 spin_unlock_irq(&tape
->spinlock
);
2779 wait_for_completion(&wait
);
2780 /* The stage and its struct request have been deallocated */
2781 spin_lock_irq(&tape
->spinlock
);
2784 static ide_startstop_t
idetape_read_position_callback (ide_drive_t
*drive
)
2786 idetape_tape_t
*tape
= drive
->driver_data
;
2787 idetape_read_position_result_t
*result
;
2789 #if IDETAPE_DEBUG_LOG
2790 if (tape
->debug_level
>= 4)
2791 printk(KERN_INFO
"ide-tape: Reached idetape_read_position_callback\n");
2792 #endif /* IDETAPE_DEBUG_LOG */
2794 if (!tape
->pc
->error
) {
2795 result
= (idetape_read_position_result_t
*) tape
->pc
->buffer
;
2796 #if IDETAPE_DEBUG_LOG
2797 if (tape
->debug_level
>= 2)
2798 printk(KERN_INFO
"ide-tape: BOP - %s\n",result
->bop
? "Yes":"No");
2799 if (tape
->debug_level
>= 2)
2800 printk(KERN_INFO
"ide-tape: EOP - %s\n",result
->eop
? "Yes":"No");
2801 #endif /* IDETAPE_DEBUG_LOG */
2803 printk(KERN_INFO
"ide-tape: Block location is unknown to the tape\n");
2804 clear_bit(IDETAPE_ADDRESS_VALID
, &tape
->flags
);
2805 idetape_end_request(drive
, 0, 0);
2807 #if IDETAPE_DEBUG_LOG
2808 if (tape
->debug_level
>= 2)
2809 printk(KERN_INFO
"ide-tape: Block Location - %u\n", ntohl(result
->first_block
));
2810 #endif /* IDETAPE_DEBUG_LOG */
2811 tape
->partition
= result
->partition
;
2812 tape
->first_frame_position
= ntohl(result
->first_block
);
2813 tape
->last_frame_position
= ntohl(result
->last_block
);
2814 tape
->blocks_in_buffer
= result
->blocks_in_buffer
[2];
2815 set_bit(IDETAPE_ADDRESS_VALID
, &tape
->flags
);
2816 idetape_end_request(drive
, 1, 0);
2819 idetape_end_request(drive
, 0, 0);
2825 * idetape_create_write_filemark_cmd will:
2827 * 1. Write a filemark if write_filemark=1.
2828 * 2. Flush the device buffers without writing a filemark
2829 * if write_filemark=0.
2832 static void idetape_create_write_filemark_cmd (ide_drive_t
*drive
, idetape_pc_t
*pc
,int write_filemark
)
2834 idetape_init_pc(pc
);
2835 pc
->c
[0] = IDETAPE_WRITE_FILEMARK_CMD
;
2836 pc
->c
[4] = write_filemark
;
2837 set_bit(PC_WAIT_FOR_DSC
, &pc
->flags
);
2838 pc
->callback
= &idetape_pc_callback
;
2841 static void idetape_create_test_unit_ready_cmd(idetape_pc_t
*pc
)
2843 idetape_init_pc(pc
);
2844 pc
->c
[0] = IDETAPE_TEST_UNIT_READY_CMD
;
2845 pc
->callback
= &idetape_pc_callback
;
2849 * idetape_queue_pc_tail is based on the following functions:
2851 * ide_do_drive_cmd from ide.c
2852 * cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2854 * We add a special packet command request to the tail of the request
2855 * queue, and wait for it to be serviced.
2857 * This is not to be called from within the request handling part
2858 * of the driver ! We allocate here data in the stack, and it is valid
2859 * until the request is finished. This is not the case for the bottom
2860 * part of the driver, where we are always leaving the functions to wait
2861 * for an interrupt or a timer event.
2863 * From the bottom part of the driver, we should allocate safe memory
2864 * using idetape_next_pc_storage and idetape_next_rq_storage, and add
2865 * the request to the request list without waiting for it to be serviced !
2866 * In that case, we usually use idetape_queue_pc_head.
2868 static int __idetape_queue_pc_tail (ide_drive_t
*drive
, idetape_pc_t
*pc
)
2870 struct ide_tape_obj
*tape
= drive
->driver_data
;
2873 idetape_init_rq(&rq
, REQ_IDETAPE_PC1
);
2874 rq
.buffer
= (char *) pc
;
2875 rq
.rq_disk
= tape
->disk
;
2876 return ide_do_drive_cmd(drive
, &rq
, ide_wait
);
2879 static void idetape_create_load_unload_cmd (ide_drive_t
*drive
, idetape_pc_t
*pc
,int cmd
)
2881 idetape_init_pc(pc
);
2882 pc
->c
[0] = IDETAPE_LOAD_UNLOAD_CMD
;
2884 set_bit(PC_WAIT_FOR_DSC
, &pc
->flags
);
2885 pc
->callback
= &idetape_pc_callback
;
2888 static int idetape_wait_ready(ide_drive_t
*drive
, unsigned long timeout
)
2890 idetape_tape_t
*tape
= drive
->driver_data
;
2892 int load_attempted
= 0;
2895 * Wait for the tape to become ready
2897 set_bit(IDETAPE_MEDIUM_PRESENT
, &tape
->flags
);
2899 while (time_before(jiffies
, timeout
)) {
2900 idetape_create_test_unit_ready_cmd(&pc
);
2901 if (!__idetape_queue_pc_tail(drive
, &pc
))
2903 if ((tape
->sense_key
== 2 && tape
->asc
== 4 && tape
->ascq
== 2)
2904 || (tape
->asc
== 0x3A)) { /* no media */
2907 idetape_create_load_unload_cmd(drive
, &pc
, IDETAPE_LU_LOAD_MASK
);
2908 __idetape_queue_pc_tail(drive
, &pc
);
2910 /* not about to be ready */
2911 } else if (!(tape
->sense_key
== 2 && tape
->asc
== 4 &&
2912 (tape
->ascq
== 1 || tape
->ascq
== 8)))
2919 static int idetape_queue_pc_tail (ide_drive_t
*drive
,idetape_pc_t
*pc
)
2921 return __idetape_queue_pc_tail(drive
, pc
);
2924 static int idetape_flush_tape_buffers (ide_drive_t
*drive
)
2929 idetape_create_write_filemark_cmd(drive
, &pc
, 0);
2930 if ((rc
= idetape_queue_pc_tail(drive
, &pc
)))
2932 idetape_wait_ready(drive
, 60 * 5 * HZ
);
2936 static void idetape_create_read_position_cmd (idetape_pc_t
*pc
)
2938 idetape_init_pc(pc
);
2939 pc
->c
[0] = IDETAPE_READ_POSITION_CMD
;
2940 pc
->request_transfer
= 20;
2941 pc
->callback
= &idetape_read_position_callback
;
2944 static int idetape_read_position (ide_drive_t
*drive
)
2946 idetape_tape_t
*tape
= drive
->driver_data
;
2950 #if IDETAPE_DEBUG_LOG
2951 if (tape
->debug_level
>= 4)
2952 printk(KERN_INFO
"ide-tape: Reached idetape_read_position\n");
2953 #endif /* IDETAPE_DEBUG_LOG */
2955 idetape_create_read_position_cmd(&pc
);
2956 if (idetape_queue_pc_tail(drive
, &pc
))
2958 position
= tape
->first_frame_position
;
2962 static void idetape_create_locate_cmd (ide_drive_t
*drive
, idetape_pc_t
*pc
, unsigned int block
, u8 partition
, int skip
)
2964 idetape_init_pc(pc
);
2965 pc
->c
[0] = IDETAPE_LOCATE_CMD
;
2967 put_unaligned(htonl(block
), (unsigned int *) &pc
->c
[3]);
2968 pc
->c
[8] = partition
;
2969 set_bit(PC_WAIT_FOR_DSC
, &pc
->flags
);
2970 pc
->callback
= &idetape_pc_callback
;
2973 static int idetape_create_prevent_cmd (ide_drive_t
*drive
, idetape_pc_t
*pc
, int prevent
)
2975 idetape_tape_t
*tape
= drive
->driver_data
;
2977 if (!tape
->capabilities
.lock
)
2980 idetape_init_pc(pc
);
2981 pc
->c
[0] = IDETAPE_PREVENT_CMD
;
2983 pc
->callback
= &idetape_pc_callback
;
2987 static int __idetape_discard_read_pipeline (ide_drive_t
*drive
)
2989 idetape_tape_t
*tape
= drive
->driver_data
;
2990 unsigned long flags
;
2993 if (tape
->chrdev_direction
!= idetape_direction_read
)
2996 /* Remove merge stage. */
2997 cnt
= tape
->merge_stage_size
/ tape
->tape_block_size
;
2998 if (test_and_clear_bit(IDETAPE_FILEMARK
, &tape
->flags
))
2999 ++cnt
; /* Filemarks count as 1 sector */
3000 tape
->merge_stage_size
= 0;
3001 if (tape
->merge_stage
!= NULL
) {
3002 __idetape_kfree_stage(tape
->merge_stage
);
3003 tape
->merge_stage
= NULL
;
3006 /* Clear pipeline flags. */
3007 clear_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
);
3008 tape
->chrdev_direction
= idetape_direction_none
;
3010 /* Remove pipeline stages. */
3011 if (tape
->first_stage
== NULL
)
3014 spin_lock_irqsave(&tape
->spinlock
, flags
);
3015 tape
->next_stage
= NULL
;
3016 if (idetape_pipeline_active(tape
))
3017 idetape_wait_for_request(drive
, tape
->active_data_request
);
3018 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3020 while (tape
->first_stage
!= NULL
) {
3021 struct request
*rq_ptr
= &tape
->first_stage
->rq
;
3023 cnt
+= rq_ptr
->nr_sectors
- rq_ptr
->current_nr_sectors
;
3024 if (rq_ptr
->errors
== IDETAPE_ERROR_FILEMARK
)
3026 idetape_remove_stage_head(drive
);
3028 tape
->nr_pending_stages
= 0;
3029 tape
->max_stages
= tape
->min_pipeline
;
3034 * idetape_position_tape positions the tape to the requested block
3035 * using the LOCATE packet command. A READ POSITION command is then
3036 * issued to check where we are positioned.
3038 * Like all higher level operations, we queue the commands at the tail
3039 * of the request queue and wait for their completion.
3042 static int idetape_position_tape (ide_drive_t
*drive
, unsigned int block
, u8 partition
, int skip
)
3044 idetape_tape_t
*tape
= drive
->driver_data
;
3048 if (tape
->chrdev_direction
== idetape_direction_read
)
3049 __idetape_discard_read_pipeline(drive
);
3050 idetape_wait_ready(drive
, 60 * 5 * HZ
);
3051 idetape_create_locate_cmd(drive
, &pc
, block
, partition
, skip
);
3052 retval
= idetape_queue_pc_tail(drive
, &pc
);
3056 idetape_create_read_position_cmd(&pc
);
3057 return (idetape_queue_pc_tail(drive
, &pc
));
3060 static void idetape_discard_read_pipeline (ide_drive_t
*drive
, int restore_position
)
3062 idetape_tape_t
*tape
= drive
->driver_data
;
3066 cnt
= __idetape_discard_read_pipeline(drive
);
3067 if (restore_position
) {
3068 position
= idetape_read_position(drive
);
3069 seek
= position
> cnt
? position
- cnt
: 0;
3070 if (idetape_position_tape(drive
, seek
, 0, 0)) {
3071 printk(KERN_INFO
"ide-tape: %s: position_tape failed in discard_pipeline()\n", tape
->name
);
3078 * idetape_queue_rw_tail generates a read/write request for the block
3079 * device interface and wait for it to be serviced.
3081 static int idetape_queue_rw_tail(ide_drive_t
*drive
, int cmd
, int blocks
, struct idetape_bh
*bh
)
3083 idetape_tape_t
*tape
= drive
->driver_data
;
3086 #if IDETAPE_DEBUG_LOG
3087 if (tape
->debug_level
>= 2)
3088 printk(KERN_INFO
"ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd
);
3089 #endif /* IDETAPE_DEBUG_LOG */
3090 #if IDETAPE_DEBUG_BUGS
3091 if (idetape_pipeline_active(tape
)) {
3092 printk(KERN_ERR
"ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
3095 #endif /* IDETAPE_DEBUG_BUGS */
3097 idetape_init_rq(&rq
, cmd
);
3098 rq
.rq_disk
= tape
->disk
;
3099 rq
.special
= (void *)bh
;
3100 rq
.sector
= tape
->first_frame_position
;
3101 rq
.nr_sectors
= rq
.current_nr_sectors
= blocks
;
3102 (void) ide_do_drive_cmd(drive
, &rq
, ide_wait
);
3104 if ((cmd
& (REQ_IDETAPE_READ
| REQ_IDETAPE_WRITE
)) == 0)
3107 if (tape
->merge_stage
)
3108 idetape_init_merge_stage(tape
);
3109 if (rq
.errors
== IDETAPE_ERROR_GENERAL
)
3111 return (tape
->tape_block_size
* (blocks
-rq
.current_nr_sectors
));
3115 * idetape_insert_pipeline_into_queue is used to start servicing the
3116 * pipeline stages, starting from tape->next_stage.
3118 static void idetape_insert_pipeline_into_queue (ide_drive_t
*drive
)
3120 idetape_tape_t
*tape
= drive
->driver_data
;
3122 if (tape
->next_stage
== NULL
)
3124 if (!idetape_pipeline_active(tape
)) {
3125 set_bit(IDETAPE_PIPELINE_ACTIVE
, &tape
->flags
);
3126 idetape_active_next_stage(drive
);
3127 (void) ide_do_drive_cmd(drive
, tape
->active_data_request
, ide_end
);
3131 static void idetape_create_inquiry_cmd (idetape_pc_t
*pc
)
3133 idetape_init_pc(pc
);
3134 pc
->c
[0] = IDETAPE_INQUIRY_CMD
;
3135 pc
->c
[4] = pc
->request_transfer
= 254;
3136 pc
->callback
= &idetape_pc_callback
;
3139 static void idetape_create_rewind_cmd (ide_drive_t
*drive
, idetape_pc_t
*pc
)
3141 idetape_init_pc(pc
);
3142 pc
->c
[0] = IDETAPE_REWIND_CMD
;
3143 set_bit(PC_WAIT_FOR_DSC
, &pc
->flags
);
3144 pc
->callback
= &idetape_pc_callback
;
3148 static void idetape_create_mode_select_cmd (idetape_pc_t
*pc
, int length
)
3150 idetape_init_pc(pc
);
3151 set_bit(PC_WRITING
, &pc
->flags
);
3152 pc
->c
[0] = IDETAPE_MODE_SELECT_CMD
;
3154 put_unaligned(htons(length
), (unsigned short *) &pc
->c
[3]);
3155 pc
->request_transfer
= 255;
3156 pc
->callback
= &idetape_pc_callback
;
3160 static void idetape_create_erase_cmd (idetape_pc_t
*pc
)
3162 idetape_init_pc(pc
);
3163 pc
->c
[0] = IDETAPE_ERASE_CMD
;
3165 set_bit(PC_WAIT_FOR_DSC
, &pc
->flags
);
3166 pc
->callback
= &idetape_pc_callback
;
3169 static void idetape_create_space_cmd (idetape_pc_t
*pc
,int count
, u8 cmd
)
3171 idetape_init_pc(pc
);
3172 pc
->c
[0] = IDETAPE_SPACE_CMD
;
3173 put_unaligned(htonl(count
), (unsigned int *) &pc
->c
[1]);
3175 set_bit(PC_WAIT_FOR_DSC
, &pc
->flags
);
3176 pc
->callback
= &idetape_pc_callback
;
3179 static void idetape_wait_first_stage (ide_drive_t
*drive
)
3181 idetape_tape_t
*tape
= drive
->driver_data
;
3182 unsigned long flags
;
3184 if (tape
->first_stage
== NULL
)
3186 spin_lock_irqsave(&tape
->spinlock
, flags
);
3187 if (tape
->active_stage
== tape
->first_stage
)
3188 idetape_wait_for_request(drive
, tape
->active_data_request
);
3189 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3193 * idetape_add_chrdev_write_request tries to add a character device
3194 * originated write request to our pipeline. In case we don't succeed,
3195 * we revert to non-pipelined operation mode for this request.
3197 * 1. Try to allocate a new pipeline stage.
3198 * 2. If we can't, wait for more and more requests to be serviced
3199 * and try again each time.
3200 * 3. If we still can't allocate a stage, fallback to
3201 * non-pipelined operation mode for this request.
3203 static int idetape_add_chrdev_write_request (ide_drive_t
*drive
, int blocks
)
3205 idetape_tape_t
*tape
= drive
->driver_data
;
3206 idetape_stage_t
*new_stage
;
3207 unsigned long flags
;
3210 #if IDETAPE_DEBUG_LOG
3211 if (tape
->debug_level
>= 3)
3212 printk(KERN_INFO
"ide-tape: Reached idetape_add_chrdev_write_request\n");
3213 #endif /* IDETAPE_DEBUG_LOG */
3216 * Attempt to allocate a new stage.
3217 * Pay special attention to possible race conditions.
3219 while ((new_stage
= idetape_kmalloc_stage(tape
)) == NULL
) {
3220 spin_lock_irqsave(&tape
->spinlock
, flags
);
3221 if (idetape_pipeline_active(tape
)) {
3222 idetape_wait_for_request(drive
, tape
->active_data_request
);
3223 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3225 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3226 idetape_insert_pipeline_into_queue(drive
);
3227 if (idetape_pipeline_active(tape
))
3230 * Linux is short on memory. Fallback to
3231 * non-pipelined operation mode for this request.
3233 return idetape_queue_rw_tail(drive
, REQ_IDETAPE_WRITE
, blocks
, tape
->merge_stage
->bh
);
3236 rq
= &new_stage
->rq
;
3237 idetape_init_rq(rq
, REQ_IDETAPE_WRITE
);
3238 /* Doesn't actually matter - We always assume sequential access */
3239 rq
->sector
= tape
->first_frame_position
;
3240 rq
->nr_sectors
= rq
->current_nr_sectors
= blocks
;
3242 idetape_switch_buffers(tape
, new_stage
);
3243 idetape_add_stage_tail(drive
, new_stage
);
3244 tape
->pipeline_head
++;
3246 IO_trace(IO_IDETAPE_FIFO
, tape
->pipeline_head
, tape
->buffer_head
, tape
->tape_head
, tape
->minor
);
3248 calculate_speeds(drive
);
3251 * Estimate whether the tape has stopped writing by checking
3252 * if our write pipeline is currently empty. If we are not
3253 * writing anymore, wait for the pipeline to be full enough
3254 * (90%) before starting to service requests, so that we will
3255 * be able to keep up with the higher speeds of the tape.
3257 if (!idetape_pipeline_active(tape
)) {
3258 if (tape
->nr_stages
>= tape
->max_stages
* 9 / 10 ||
3259 tape
->nr_stages
>= tape
->max_stages
- tape
->uncontrolled_pipeline_head_speed
* 3 * 1024 / tape
->tape_block_size
) {
3260 tape
->measure_insert_time
= 1;
3261 tape
->insert_time
= jiffies
;
3262 tape
->insert_size
= 0;
3263 tape
->insert_speed
= 0;
3264 idetape_insert_pipeline_into_queue(drive
);
3267 if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
))
3268 /* Return a deferred error */
3274 * idetape_wait_for_pipeline will wait until all pending pipeline
3275 * requests are serviced. Typically called on device close.
3277 static void idetape_wait_for_pipeline (ide_drive_t
*drive
)
3279 idetape_tape_t
*tape
= drive
->driver_data
;
3280 unsigned long flags
;
3282 while (tape
->next_stage
|| idetape_pipeline_active(tape
)) {
3283 idetape_insert_pipeline_into_queue(drive
);
3284 spin_lock_irqsave(&tape
->spinlock
, flags
);
3285 if (idetape_pipeline_active(tape
))
3286 idetape_wait_for_request(drive
, tape
->active_data_request
);
3287 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3291 static void idetape_empty_write_pipeline (ide_drive_t
*drive
)
3293 idetape_tape_t
*tape
= drive
->driver_data
;
3295 struct idetape_bh
*bh
;
3297 #if IDETAPE_DEBUG_BUGS
3298 if (tape
->chrdev_direction
!= idetape_direction_write
) {
3299 printk(KERN_ERR
"ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
3302 if (tape
->merge_stage_size
> tape
->stage_size
) {
3303 printk(KERN_ERR
"ide-tape: bug: merge_buffer too big\n");
3304 tape
->merge_stage_size
= tape
->stage_size
;
3306 #endif /* IDETAPE_DEBUG_BUGS */
3307 if (tape
->merge_stage_size
) {
3308 blocks
= tape
->merge_stage_size
/ tape
->tape_block_size
;
3309 if (tape
->merge_stage_size
% tape
->tape_block_size
) {
3313 i
= tape
->tape_block_size
- tape
->merge_stage_size
% tape
->tape_block_size
;
3314 bh
= tape
->bh
->b_reqnext
;
3316 atomic_set(&bh
->b_count
, 0);
3323 printk(KERN_INFO
"ide-tape: bug, bh NULL\n");
3326 min
= min(i
, (unsigned int)(bh
->b_size
- atomic_read(&bh
->b_count
)));
3327 memset(bh
->b_data
+ atomic_read(&bh
->b_count
), 0, min
);
3328 atomic_add(min
, &bh
->b_count
);
3333 (void) idetape_add_chrdev_write_request(drive
, blocks
);
3334 tape
->merge_stage_size
= 0;
3336 idetape_wait_for_pipeline(drive
);
3337 if (tape
->merge_stage
!= NULL
) {
3338 __idetape_kfree_stage(tape
->merge_stage
);
3339 tape
->merge_stage
= NULL
;
3341 clear_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
);
3342 tape
->chrdev_direction
= idetape_direction_none
;
3345 * On the next backup, perform the feedback loop again.
3346 * (I don't want to keep sense information between backups,
3347 * as some systems are constantly on, and the system load
3348 * can be totally different on the next backup).
3350 tape
->max_stages
= tape
->min_pipeline
;
3351 #if IDETAPE_DEBUG_BUGS
3352 if (tape
->first_stage
!= NULL
||
3353 tape
->next_stage
!= NULL
||
3354 tape
->last_stage
!= NULL
||
3355 tape
->nr_stages
!= 0) {
3356 printk(KERN_ERR
"ide-tape: ide-tape pipeline bug, "
3357 "first_stage %p, next_stage %p, "
3358 "last_stage %p, nr_stages %d\n",
3359 tape
->first_stage
, tape
->next_stage
,
3360 tape
->last_stage
, tape
->nr_stages
);
3362 #endif /* IDETAPE_DEBUG_BUGS */
3365 static void idetape_restart_speed_control (ide_drive_t
*drive
)
3367 idetape_tape_t
*tape
= drive
->driver_data
;
3369 tape
->restart_speed_control_req
= 0;
3370 tape
->pipeline_head
= 0;
3371 tape
->controlled_last_pipeline_head
= tape
->uncontrolled_last_pipeline_head
= 0;
3372 tape
->controlled_previous_pipeline_head
= tape
->uncontrolled_previous_pipeline_head
= 0;
3373 tape
->pipeline_head_speed
= tape
->controlled_pipeline_head_speed
= 5000;
3374 tape
->uncontrolled_pipeline_head_speed
= 0;
3375 tape
->controlled_pipeline_head_time
= tape
->uncontrolled_pipeline_head_time
= jiffies
;
3376 tape
->controlled_previous_head_time
= tape
->uncontrolled_previous_head_time
= jiffies
;
3379 static int idetape_initiate_read (ide_drive_t
*drive
, int max_stages
)
3381 idetape_tape_t
*tape
= drive
->driver_data
;
3382 idetape_stage_t
*new_stage
;
3385 int blocks
= tape
->capabilities
.ctl
;
3387 /* Initialize read operation */
3388 if (tape
->chrdev_direction
!= idetape_direction_read
) {
3389 if (tape
->chrdev_direction
== idetape_direction_write
) {
3390 idetape_empty_write_pipeline(drive
);
3391 idetape_flush_tape_buffers(drive
);
3393 #if IDETAPE_DEBUG_BUGS
3394 if (tape
->merge_stage
|| tape
->merge_stage_size
) {
3395 printk (KERN_ERR
"ide-tape: merge_stage_size should be 0 now\n");
3396 tape
->merge_stage_size
= 0;
3398 #endif /* IDETAPE_DEBUG_BUGS */
3399 if ((tape
->merge_stage
= __idetape_kmalloc_stage(tape
, 0, 0)) == NULL
)
3401 tape
->chrdev_direction
= idetape_direction_read
;
3404 * Issue a read 0 command to ensure that DSC handshake
3405 * is switched from completion mode to buffer available
3407 * No point in issuing this if DSC overlap isn't supported,
3408 * some drives (Seagate STT3401A) will return an error.
3410 if (drive
->dsc_overlap
) {
3411 bytes_read
= idetape_queue_rw_tail(drive
, REQ_IDETAPE_READ
, 0, tape
->merge_stage
->bh
);
3412 if (bytes_read
< 0) {
3413 __idetape_kfree_stage(tape
->merge_stage
);
3414 tape
->merge_stage
= NULL
;
3415 tape
->chrdev_direction
= idetape_direction_none
;
3420 if (tape
->restart_speed_control_req
)
3421 idetape_restart_speed_control(drive
);
3422 idetape_init_rq(&rq
, REQ_IDETAPE_READ
);
3423 rq
.sector
= tape
->first_frame_position
;
3424 rq
.nr_sectors
= rq
.current_nr_sectors
= blocks
;
3425 if (!test_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
) &&
3426 tape
->nr_stages
< max_stages
) {
3427 new_stage
= idetape_kmalloc_stage(tape
);
3428 while (new_stage
!= NULL
) {
3430 idetape_add_stage_tail(drive
, new_stage
);
3431 if (tape
->nr_stages
>= max_stages
)
3433 new_stage
= idetape_kmalloc_stage(tape
);
3436 if (!idetape_pipeline_active(tape
)) {
3437 if (tape
->nr_pending_stages
>= 3 * max_stages
/ 4) {
3438 tape
->measure_insert_time
= 1;
3439 tape
->insert_time
= jiffies
;
3440 tape
->insert_size
= 0;
3441 tape
->insert_speed
= 0;
3442 idetape_insert_pipeline_into_queue(drive
);
3449 * idetape_add_chrdev_read_request is called from idetape_chrdev_read
3450 * to service a character device read request and add read-ahead
3451 * requests to our pipeline.
3453 static int idetape_add_chrdev_read_request (ide_drive_t
*drive
,int blocks
)
3455 idetape_tape_t
*tape
= drive
->driver_data
;
3456 unsigned long flags
;
3457 struct request
*rq_ptr
;
3460 #if IDETAPE_DEBUG_LOG
3461 if (tape
->debug_level
>= 4)
3462 printk(KERN_INFO
"ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks
);
3463 #endif /* IDETAPE_DEBUG_LOG */
3466 * If we are at a filemark, return a read length of 0
3468 if (test_bit(IDETAPE_FILEMARK
, &tape
->flags
))
3472 * Wait for the next block to be available at the head
3475 idetape_initiate_read(drive
, tape
->max_stages
);
3476 if (tape
->first_stage
== NULL
) {
3477 if (test_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
))
3479 return idetape_queue_rw_tail(drive
, REQ_IDETAPE_READ
, blocks
, tape
->merge_stage
->bh
);
3481 idetape_wait_first_stage(drive
);
3482 rq_ptr
= &tape
->first_stage
->rq
;
3483 bytes_read
= tape
->tape_block_size
* (rq_ptr
->nr_sectors
- rq_ptr
->current_nr_sectors
);
3484 rq_ptr
->nr_sectors
= rq_ptr
->current_nr_sectors
= 0;
3487 if (rq_ptr
->errors
== IDETAPE_ERROR_EOD
)
3490 idetape_switch_buffers(tape
, tape
->first_stage
);
3491 if (rq_ptr
->errors
== IDETAPE_ERROR_FILEMARK
)
3492 set_bit(IDETAPE_FILEMARK
, &tape
->flags
);
3493 spin_lock_irqsave(&tape
->spinlock
, flags
);
3494 idetape_remove_stage_head(drive
);
3495 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3496 tape
->pipeline_head
++;
3498 IO_trace(IO_IDETAPE_FIFO
, tape
->pipeline_head
, tape
->buffer_head
, tape
->tape_head
, tape
->minor
);
3500 calculate_speeds(drive
);
3502 #if IDETAPE_DEBUG_BUGS
3503 if (bytes_read
> blocks
* tape
->tape_block_size
) {
3504 printk(KERN_ERR
"ide-tape: bug: trying to return more bytes than requested\n");
3505 bytes_read
= blocks
* tape
->tape_block_size
;
3507 #endif /* IDETAPE_DEBUG_BUGS */
3508 return (bytes_read
);
3511 static void idetape_pad_zeros (ide_drive_t
*drive
, int bcount
)
3513 idetape_tape_t
*tape
= drive
->driver_data
;
3514 struct idetape_bh
*bh
;
3520 bh
= tape
->merge_stage
->bh
;
3521 count
= min(tape
->stage_size
, bcount
);
3523 blocks
= count
/ tape
->tape_block_size
;
3525 atomic_set(&bh
->b_count
, min(count
, (unsigned int)bh
->b_size
));
3526 memset(bh
->b_data
, 0, atomic_read(&bh
->b_count
));
3527 count
-= atomic_read(&bh
->b_count
);
3530 idetape_queue_rw_tail(drive
, REQ_IDETAPE_WRITE
, blocks
, tape
->merge_stage
->bh
);
3534 static int idetape_pipeline_size (ide_drive_t
*drive
)
3536 idetape_tape_t
*tape
= drive
->driver_data
;
3537 idetape_stage_t
*stage
;
3541 idetape_wait_for_pipeline(drive
);
3542 stage
= tape
->first_stage
;
3543 while (stage
!= NULL
) {
3545 size
+= tape
->tape_block_size
* (rq
->nr_sectors
-rq
->current_nr_sectors
);
3546 if (rq
->errors
== IDETAPE_ERROR_FILEMARK
)
3547 size
+= tape
->tape_block_size
;
3548 stage
= stage
->next
;
3550 size
+= tape
->merge_stage_size
;
3555 * Rewinds the tape to the Beginning Of the current Partition (BOP).
3557 * We currently support only one partition.
3559 static int idetape_rewind_tape (ide_drive_t
*drive
)
3563 #if IDETAPE_DEBUG_LOG
3564 idetape_tape_t
*tape
= drive
->driver_data
;
3565 if (tape
->debug_level
>= 2)
3566 printk(KERN_INFO
"ide-tape: Reached idetape_rewind_tape\n");
3567 #endif /* IDETAPE_DEBUG_LOG */
3569 idetape_create_rewind_cmd(drive
, &pc
);
3570 retval
= idetape_queue_pc_tail(drive
, &pc
);
3574 idetape_create_read_position_cmd(&pc
);
3575 retval
= idetape_queue_pc_tail(drive
, &pc
);
3582 * Our special ide-tape ioctl's.
3584 * Currently there aren't any ioctl's.
3585 * mtio.h compatible commands should be issued to the character device
3588 static int idetape_blkdev_ioctl(ide_drive_t
*drive
, unsigned int cmd
, unsigned long arg
)
3590 idetape_tape_t
*tape
= drive
->driver_data
;
3591 idetape_config_t config
;
3592 void __user
*argp
= (void __user
*)arg
;
3594 #if IDETAPE_DEBUG_LOG
3595 if (tape
->debug_level
>= 4)
3596 printk(KERN_INFO
"ide-tape: Reached idetape_blkdev_ioctl\n");
3597 #endif /* IDETAPE_DEBUG_LOG */
3600 if (copy_from_user(&config
, argp
, sizeof (idetape_config_t
)))
3602 tape
->best_dsc_rw_frequency
= config
.dsc_rw_frequency
;
3603 tape
->max_stages
= config
.nr_stages
;
3606 config
.dsc_rw_frequency
= (int) tape
->best_dsc_rw_frequency
;
3607 config
.nr_stages
= tape
->max_stages
;
3608 if (copy_to_user(argp
, &config
, sizeof (idetape_config_t
)))
3618 * idetape_space_over_filemarks is now a bit more complicated than just
3619 * passing the command to the tape since we may have crossed some
3620 * filemarks during our pipelined read-ahead mode.
3622 * As a minor side effect, the pipeline enables us to support MTFSFM when
3623 * the filemark is in our internal pipeline even if the tape doesn't
3624 * support spacing over filemarks in the reverse direction.
3626 static int idetape_space_over_filemarks (ide_drive_t
*drive
,short mt_op
,int mt_count
)
3628 idetape_tape_t
*tape
= drive
->driver_data
;
3630 unsigned long flags
;
3635 if (MTBSF
== mt_op
|| MTBSFM
== mt_op
) {
3636 if (!tape
->capabilities
.sprev
)
3638 mt_count
= - mt_count
;
3641 if (tape
->chrdev_direction
== idetape_direction_read
) {
3643 * We have a read-ahead buffer. Scan it for crossed
3646 tape
->merge_stage_size
= 0;
3647 if (test_and_clear_bit(IDETAPE_FILEMARK
, &tape
->flags
))
3649 while (tape
->first_stage
!= NULL
) {
3650 if (count
== mt_count
) {
3651 if (mt_op
== MTFSFM
)
3652 set_bit(IDETAPE_FILEMARK
, &tape
->flags
);
3655 spin_lock_irqsave(&tape
->spinlock
, flags
);
3656 if (tape
->first_stage
== tape
->active_stage
) {
3658 * We have reached the active stage in the read pipeline.
3659 * There is no point in allowing the drive to continue
3660 * reading any farther, so we stop the pipeline.
3662 * This section should be moved to a separate subroutine,
3663 * because a similar function is performed in
3664 * __idetape_discard_read_pipeline(), for example.
3666 tape
->next_stage
= NULL
;
3667 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3668 idetape_wait_first_stage(drive
);
3669 tape
->next_stage
= tape
->first_stage
->next
;
3671 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3672 if (tape
->first_stage
->rq
.errors
== IDETAPE_ERROR_FILEMARK
)
3674 idetape_remove_stage_head(drive
);
3676 idetape_discard_read_pipeline(drive
, 0);
3680 * The filemark was not found in our internal pipeline.
3681 * Now we can issue the space command.
3686 idetape_create_space_cmd(&pc
,mt_count
-count
,IDETAPE_SPACE_OVER_FILEMARK
);
3687 return (idetape_queue_pc_tail(drive
, &pc
));
3690 if (!tape
->capabilities
.sprev
)
3692 retval
= idetape_space_over_filemarks(drive
, MTFSF
, mt_count
-count
);
3693 if (retval
) return (retval
);
3694 count
= (MTBSFM
== mt_op
? 1 : -1);
3695 return (idetape_space_over_filemarks(drive
, MTFSF
, count
));
3697 printk(KERN_ERR
"ide-tape: MTIO operation %d not supported\n",mt_op
);
3704 * Our character device read / write functions.
3706 * The tape is optimized to maximize throughput when it is transferring
3707 * an integral number of the "continuous transfer limit", which is
3708 * a parameter of the specific tape (26 KB on my particular tape).
3709 * (32 kB for Onstream)
3711 * As of version 1.3 of the driver, the character device provides an
3712 * abstract continuous view of the media - any mix of block sizes (even 1
3713 * byte) on the same backup/restore procedure is supported. The driver
3714 * will internally convert the requests to the recommended transfer unit,
3715 * so that an unmatch between the user's block size to the recommended
3716 * size will only result in a (slightly) increased driver overhead, but
3717 * will no longer hit performance.
3718 * This is not applicable to Onstream.
3720 static ssize_t
idetape_chrdev_read (struct file
*file
, char __user
*buf
,
3721 size_t count
, loff_t
*ppos
)
3723 struct ide_tape_obj
*tape
= ide_tape_f(file
);
3724 ide_drive_t
*drive
= tape
->drive
;
3725 ssize_t bytes_read
,temp
, actually_read
= 0, rc
;
3728 #if IDETAPE_DEBUG_LOG
3729 if (tape
->debug_level
>= 3)
3730 printk(KERN_INFO
"ide-tape: Reached idetape_chrdev_read, count %Zd\n", count
);
3731 #endif /* IDETAPE_DEBUG_LOG */
3733 if (tape
->chrdev_direction
!= idetape_direction_read
) {
3734 if (test_bit(IDETAPE_DETECT_BS
, &tape
->flags
))
3735 if (count
> tape
->tape_block_size
&&
3736 (count
% tape
->tape_block_size
) == 0)
3737 tape
->user_bs_factor
= count
/ tape
->tape_block_size
;
3739 if ((rc
= idetape_initiate_read(drive
, tape
->max_stages
)) < 0)
3743 if (tape
->merge_stage_size
) {
3744 actually_read
= min((unsigned int)(tape
->merge_stage_size
), (unsigned int)count
);
3745 if (idetape_copy_stage_to_user(tape
, buf
, tape
->merge_stage
, actually_read
))
3747 buf
+= actually_read
;
3748 tape
->merge_stage_size
-= actually_read
;
3749 count
-= actually_read
;
3751 while (count
>= tape
->stage_size
) {
3752 bytes_read
= idetape_add_chrdev_read_request(drive
, tape
->capabilities
.ctl
);
3753 if (bytes_read
<= 0)
3755 if (idetape_copy_stage_to_user(tape
, buf
, tape
->merge_stage
, bytes_read
))
3758 count
-= bytes_read
;
3759 actually_read
+= bytes_read
;
3762 bytes_read
= idetape_add_chrdev_read_request(drive
, tape
->capabilities
.ctl
);
3763 if (bytes_read
<= 0)
3765 temp
= min((unsigned long)count
, (unsigned long)bytes_read
);
3766 if (idetape_copy_stage_to_user(tape
, buf
, tape
->merge_stage
, temp
))
3768 actually_read
+= temp
;
3769 tape
->merge_stage_size
= bytes_read
-temp
;
3772 if (!actually_read
&& test_bit(IDETAPE_FILEMARK
, &tape
->flags
)) {
3773 #if IDETAPE_DEBUG_LOG
3774 if (tape
->debug_level
>= 2)
3775 printk(KERN_INFO
"ide-tape: %s: spacing over filemark\n", tape
->name
);
3777 idetape_space_over_filemarks(drive
, MTFSF
, 1);
3781 return (ret
) ? ret
: actually_read
;
3784 static ssize_t
idetape_chrdev_write (struct file
*file
, const char __user
*buf
,
3785 size_t count
, loff_t
*ppos
)
3787 struct ide_tape_obj
*tape
= ide_tape_f(file
);
3788 ide_drive_t
*drive
= tape
->drive
;
3789 ssize_t actually_written
= 0;
3792 /* The drive is write protected. */
3793 if (tape
->write_prot
)
3796 #if IDETAPE_DEBUG_LOG
3797 if (tape
->debug_level
>= 3)
3798 printk(KERN_INFO
"ide-tape: Reached idetape_chrdev_write, "
3799 "count %Zd\n", count
);
3800 #endif /* IDETAPE_DEBUG_LOG */
3802 /* Initialize write operation */
3803 if (tape
->chrdev_direction
!= idetape_direction_write
) {
3804 if (tape
->chrdev_direction
== idetape_direction_read
)
3805 idetape_discard_read_pipeline(drive
, 1);
3806 #if IDETAPE_DEBUG_BUGS
3807 if (tape
->merge_stage
|| tape
->merge_stage_size
) {
3808 printk(KERN_ERR
"ide-tape: merge_stage_size "
3809 "should be 0 now\n");
3810 tape
->merge_stage_size
= 0;
3812 #endif /* IDETAPE_DEBUG_BUGS */
3813 if ((tape
->merge_stage
= __idetape_kmalloc_stage(tape
, 0, 0)) == NULL
)
3815 tape
->chrdev_direction
= idetape_direction_write
;
3816 idetape_init_merge_stage(tape
);
3819 * Issue a write 0 command to ensure that DSC handshake
3820 * is switched from completion mode to buffer available
3822 * No point in issuing this if DSC overlap isn't supported,
3823 * some drives (Seagate STT3401A) will return an error.
3825 if (drive
->dsc_overlap
) {
3826 ssize_t retval
= idetape_queue_rw_tail(drive
, REQ_IDETAPE_WRITE
, 0, tape
->merge_stage
->bh
);
3828 __idetape_kfree_stage(tape
->merge_stage
);
3829 tape
->merge_stage
= NULL
;
3830 tape
->chrdev_direction
= idetape_direction_none
;
3837 if (tape
->restart_speed_control_req
)
3838 idetape_restart_speed_control(drive
);
3839 if (tape
->merge_stage_size
) {
3840 #if IDETAPE_DEBUG_BUGS
3841 if (tape
->merge_stage_size
>= tape
->stage_size
) {
3842 printk(KERN_ERR
"ide-tape: bug: merge buffer too big\n");
3843 tape
->merge_stage_size
= 0;
3845 #endif /* IDETAPE_DEBUG_BUGS */
3846 actually_written
= min((unsigned int)(tape
->stage_size
- tape
->merge_stage_size
), (unsigned int)count
);
3847 if (idetape_copy_stage_from_user(tape
, tape
->merge_stage
, buf
, actually_written
))
3849 buf
+= actually_written
;
3850 tape
->merge_stage_size
+= actually_written
;
3851 count
-= actually_written
;
3853 if (tape
->merge_stage_size
== tape
->stage_size
) {
3855 tape
->merge_stage_size
= 0;
3856 retval
= idetape_add_chrdev_write_request(drive
, tape
->capabilities
.ctl
);
3861 while (count
>= tape
->stage_size
) {
3863 if (idetape_copy_stage_from_user(tape
, tape
->merge_stage
, buf
, tape
->stage_size
))
3865 buf
+= tape
->stage_size
;
3866 count
-= tape
->stage_size
;
3867 retval
= idetape_add_chrdev_write_request(drive
, tape
->capabilities
.ctl
);
3868 actually_written
+= tape
->stage_size
;
3873 actually_written
+= count
;
3874 if (idetape_copy_stage_from_user(tape
, tape
->merge_stage
, buf
, count
))
3876 tape
->merge_stage_size
+= count
;
3878 return (ret
) ? ret
: actually_written
;
3881 static int idetape_write_filemark (ide_drive_t
*drive
)
3885 /* Write a filemark */
3886 idetape_create_write_filemark_cmd(drive
, &pc
, 1);
3887 if (idetape_queue_pc_tail(drive
, &pc
)) {
3888 printk(KERN_ERR
"ide-tape: Couldn't write a filemark\n");
3895 * idetape_mtioctop is called from idetape_chrdev_ioctl when
3896 * the general mtio MTIOCTOP ioctl is requested.
3898 * We currently support the following mtio.h operations:
3900 * MTFSF - Space over mt_count filemarks in the positive direction.
3901 * The tape is positioned after the last spaced filemark.
3903 * MTFSFM - Same as MTFSF, but the tape is positioned before the
3906 * MTBSF - Steps background over mt_count filemarks, tape is
3907 * positioned before the last filemark.
3909 * MTBSFM - Like MTBSF, only tape is positioned after the last filemark.
3913 * MTBSF and MTBSFM are not supported when the tape doesn't
3914 * support spacing over filemarks in the reverse direction.
3915 * In this case, MTFSFM is also usually not supported (it is
3916 * supported in the rare case in which we crossed the filemark
3917 * during our read-ahead pipelined operation mode).
3919 * MTWEOF - Writes mt_count filemarks. Tape is positioned after
3920 * the last written filemark.
3922 * MTREW - Rewinds tape.
3924 * MTLOAD - Loads the tape.
3926 * MTOFFL - Puts the tape drive "Offline": Rewinds the tape and
3927 * MTUNLOAD prevents further access until the media is replaced.
3929 * MTNOP - Flushes tape buffers.
3931 * MTRETEN - Retension media. This typically consists of one end
3932 * to end pass on the media.
3934 * MTEOM - Moves to the end of recorded data.
3936 * MTERASE - Erases tape.
3938 * MTSETBLK - Sets the user block size to mt_count bytes. If
3939 * mt_count is 0, we will attempt to autodetect
3942 * MTSEEK - Positions the tape in a specific block number, where
3943 * each block is assumed to contain which user_block_size
3946 * MTSETPART - Switches to another tape partition.
3948 * MTLOCK - Locks the tape door.
3950 * MTUNLOCK - Unlocks the tape door.
3952 * The following commands are currently not supported:
3954 * MTFSS, MTBSS, MTWSM, MTSETDENSITY,
3955 * MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD.
3957 static int idetape_mtioctop (ide_drive_t
*drive
,short mt_op
,int mt_count
)
3959 idetape_tape_t
*tape
= drive
->driver_data
;
3963 #if IDETAPE_DEBUG_LOG
3964 if (tape
->debug_level
>= 1)
3965 printk(KERN_INFO
"ide-tape: Handling MTIOCTOP ioctl: "
3966 "mt_op=%d, mt_count=%d\n", mt_op
, mt_count
);
3967 #endif /* IDETAPE_DEBUG_LOG */
3969 * Commands which need our pipelined read-ahead stages.
3978 return (idetape_space_over_filemarks(drive
,mt_op
,mt_count
));
3984 if (tape
->write_prot
)
3986 idetape_discard_read_pipeline(drive
, 1);
3987 for (i
= 0; i
< mt_count
; i
++) {
3988 retval
= idetape_write_filemark(drive
);
3994 idetape_discard_read_pipeline(drive
, 0);
3995 if (idetape_rewind_tape(drive
))
3999 idetape_discard_read_pipeline(drive
, 0);
4000 idetape_create_load_unload_cmd(drive
, &pc
, IDETAPE_LU_LOAD_MASK
);
4001 return (idetape_queue_pc_tail(drive
, &pc
));
4005 * If door is locked, attempt to unlock before
4006 * attempting to eject.
4008 if (tape
->door_locked
) {
4009 if (idetape_create_prevent_cmd(drive
, &pc
, 0))
4010 if (!idetape_queue_pc_tail(drive
, &pc
))
4011 tape
->door_locked
= DOOR_UNLOCKED
;
4013 idetape_discard_read_pipeline(drive
, 0);
4014 idetape_create_load_unload_cmd(drive
, &pc
,!IDETAPE_LU_LOAD_MASK
);
4015 retval
= idetape_queue_pc_tail(drive
, &pc
);
4017 clear_bit(IDETAPE_MEDIUM_PRESENT
, &tape
->flags
);
4020 idetape_discard_read_pipeline(drive
, 0);
4021 return (idetape_flush_tape_buffers(drive
));
4023 idetape_discard_read_pipeline(drive
, 0);
4024 idetape_create_load_unload_cmd(drive
, &pc
,IDETAPE_LU_RETENSION_MASK
| IDETAPE_LU_LOAD_MASK
);
4025 return (idetape_queue_pc_tail(drive
, &pc
));
4027 idetape_create_space_cmd(&pc
, 0, IDETAPE_SPACE_TO_EOD
);
4028 return (idetape_queue_pc_tail(drive
, &pc
));
4030 (void) idetape_rewind_tape(drive
);
4031 idetape_create_erase_cmd(&pc
);
4032 return (idetape_queue_pc_tail(drive
, &pc
));
4035 if (mt_count
< tape
->tape_block_size
|| mt_count
% tape
->tape_block_size
)
4037 tape
->user_bs_factor
= mt_count
/ tape
->tape_block_size
;
4038 clear_bit(IDETAPE_DETECT_BS
, &tape
->flags
);
4040 set_bit(IDETAPE_DETECT_BS
, &tape
->flags
);
4043 idetape_discard_read_pipeline(drive
, 0);
4044 return idetape_position_tape(drive
, mt_count
* tape
->user_bs_factor
, tape
->partition
, 0);
4046 idetape_discard_read_pipeline(drive
, 0);
4047 return (idetape_position_tape(drive
, 0, mt_count
, 0));
4051 if (!idetape_create_prevent_cmd(drive
, &pc
, 1))
4053 retval
= idetape_queue_pc_tail(drive
, &pc
);
4054 if (retval
) return retval
;
4055 tape
->door_locked
= DOOR_EXPLICITLY_LOCKED
;
4058 if (!idetape_create_prevent_cmd(drive
, &pc
, 0))
4060 retval
= idetape_queue_pc_tail(drive
, &pc
);
4061 if (retval
) return retval
;
4062 tape
->door_locked
= DOOR_UNLOCKED
;
4065 printk(KERN_ERR
"ide-tape: MTIO operation %d not "
4066 "supported\n", mt_op
);
4072 * Our character device ioctls.
4074 * General mtio.h magnetic io commands are supported here, and not in
4075 * the corresponding block interface.
4077 * The following ioctls are supported:
4079 * MTIOCTOP - Refer to idetape_mtioctop for detailed description.
4081 * MTIOCGET - The mt_dsreg field in the returned mtget structure
4082 * will be set to (user block size in bytes <<
4083 * MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK.
4085 * The mt_blkno is set to the current user block number.
4086 * The other mtget fields are not supported.
4088 * MTIOCPOS - The current tape "block position" is returned. We
4089 * assume that each block contains user_block_size
4092 * Our own ide-tape ioctls are supported on both interfaces.
4094 static int idetape_chrdev_ioctl (struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
4096 struct ide_tape_obj
*tape
= ide_tape_f(file
);
4097 ide_drive_t
*drive
= tape
->drive
;
4101 int block_offset
= 0, position
= tape
->first_frame_position
;
4102 void __user
*argp
= (void __user
*)arg
;
4104 #if IDETAPE_DEBUG_LOG
4105 if (tape
->debug_level
>= 3)
4106 printk(KERN_INFO
"ide-tape: Reached idetape_chrdev_ioctl, "
4108 #endif /* IDETAPE_DEBUG_LOG */
4110 tape
->restart_speed_control_req
= 1;
4111 if (tape
->chrdev_direction
== idetape_direction_write
) {
4112 idetape_empty_write_pipeline(drive
);
4113 idetape_flush_tape_buffers(drive
);
4115 if (cmd
== MTIOCGET
|| cmd
== MTIOCPOS
) {
4116 block_offset
= idetape_pipeline_size(drive
) / (tape
->tape_block_size
* tape
->user_bs_factor
);
4117 if ((position
= idetape_read_position(drive
)) < 0)
4122 if (copy_from_user(&mtop
, argp
, sizeof (struct mtop
)))
4124 return (idetape_mtioctop(drive
,mtop
.mt_op
,mtop
.mt_count
));
4126 memset(&mtget
, 0, sizeof (struct mtget
));
4127 mtget
.mt_type
= MT_ISSCSI2
;
4128 mtget
.mt_blkno
= position
/ tape
->user_bs_factor
- block_offset
;
4129 mtget
.mt_dsreg
= ((tape
->tape_block_size
* tape
->user_bs_factor
) << MT_ST_BLKSIZE_SHIFT
) & MT_ST_BLKSIZE_MASK
;
4130 if (tape
->drv_write_prot
) {
4131 mtget
.mt_gstat
|= GMT_WR_PROT(0xffffffff);
4133 if (copy_to_user(argp
, &mtget
, sizeof(struct mtget
)))
4137 mtpos
.mt_blkno
= position
/ tape
->user_bs_factor
- block_offset
;
4138 if (copy_to_user(argp
, &mtpos
, sizeof(struct mtpos
)))
4142 if (tape
->chrdev_direction
== idetape_direction_read
)
4143 idetape_discard_read_pipeline(drive
, 1);
4144 return idetape_blkdev_ioctl(drive
, cmd
, arg
);
4148 static void idetape_get_blocksize_from_block_descriptor(ide_drive_t
*drive
);
4151 * Our character device open function.
4153 static int idetape_chrdev_open (struct inode
*inode
, struct file
*filp
)
4155 unsigned int minor
= iminor(inode
), i
= minor
& ~0xc0;
4157 idetape_tape_t
*tape
;
4162 * We really want to do nonseekable_open(inode, filp); here, but some
4163 * versions of tar incorrectly call lseek on tapes and bail out if that
4164 * fails. So we disallow pread() and pwrite(), but permit lseeks.
4166 filp
->f_mode
&= ~(FMODE_PREAD
| FMODE_PWRITE
);
4168 #if IDETAPE_DEBUG_LOG
4169 printk(KERN_INFO
"ide-tape: Reached idetape_chrdev_open\n");
4170 #endif /* IDETAPE_DEBUG_LOG */
4172 if (i
>= MAX_HWIFS
* MAX_DRIVES
)
4175 if (!(tape
= ide_tape_chrdev_get(i
)))
4178 drive
= tape
->drive
;
4180 filp
->private_data
= tape
;
4182 if (test_and_set_bit(IDETAPE_BUSY
, &tape
->flags
)) {
4187 retval
= idetape_wait_ready(drive
, 60 * HZ
);
4189 clear_bit(IDETAPE_BUSY
, &tape
->flags
);
4190 printk(KERN_ERR
"ide-tape: %s: drive not ready\n", tape
->name
);
4194 idetape_read_position(drive
);
4195 if (!test_bit(IDETAPE_ADDRESS_VALID
, &tape
->flags
))
4196 (void)idetape_rewind_tape(drive
);
4198 if (tape
->chrdev_direction
!= idetape_direction_read
)
4199 clear_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
);
4201 /* Read block size and write protect status from drive. */
4202 idetape_get_blocksize_from_block_descriptor(drive
);
4204 /* Set write protect flag if device is opened as read-only. */
4205 if ((filp
->f_flags
& O_ACCMODE
) == O_RDONLY
)
4206 tape
->write_prot
= 1;
4208 tape
->write_prot
= tape
->drv_write_prot
;
4210 /* Make sure drive isn't write protected if user wants to write. */
4211 if (tape
->write_prot
) {
4212 if ((filp
->f_flags
& O_ACCMODE
) == O_WRONLY
||
4213 (filp
->f_flags
& O_ACCMODE
) == O_RDWR
) {
4214 clear_bit(IDETAPE_BUSY
, &tape
->flags
);
4221 * Lock the tape drive door so user can't eject.
4223 if (tape
->chrdev_direction
== idetape_direction_none
) {
4224 if (idetape_create_prevent_cmd(drive
, &pc
, 1)) {
4225 if (!idetape_queue_pc_tail(drive
, &pc
)) {
4226 if (tape
->door_locked
!= DOOR_EXPLICITLY_LOCKED
)
4227 tape
->door_locked
= DOOR_LOCKED
;
4231 idetape_restart_speed_control(drive
);
4232 tape
->restart_speed_control_req
= 0;
4240 static void idetape_write_release (ide_drive_t
*drive
, unsigned int minor
)
4242 idetape_tape_t
*tape
= drive
->driver_data
;
4244 idetape_empty_write_pipeline(drive
);
4245 tape
->merge_stage
= __idetape_kmalloc_stage(tape
, 1, 0);
4246 if (tape
->merge_stage
!= NULL
) {
4247 idetape_pad_zeros(drive
, tape
->tape_block_size
* (tape
->user_bs_factor
- 1));
4248 __idetape_kfree_stage(tape
->merge_stage
);
4249 tape
->merge_stage
= NULL
;
4251 idetape_write_filemark(drive
);
4252 idetape_flush_tape_buffers(drive
);
4253 idetape_flush_tape_buffers(drive
);
4257 * Our character device release function.
4259 static int idetape_chrdev_release (struct inode
*inode
, struct file
*filp
)
4261 struct ide_tape_obj
*tape
= ide_tape_f(filp
);
4262 ide_drive_t
*drive
= tape
->drive
;
4264 unsigned int minor
= iminor(inode
);
4267 tape
= drive
->driver_data
;
4268 #if IDETAPE_DEBUG_LOG
4269 if (tape
->debug_level
>= 3)
4270 printk(KERN_INFO
"ide-tape: Reached idetape_chrdev_release\n");
4271 #endif /* IDETAPE_DEBUG_LOG */
4273 if (tape
->chrdev_direction
== idetape_direction_write
)
4274 idetape_write_release(drive
, minor
);
4275 if (tape
->chrdev_direction
== idetape_direction_read
) {
4277 idetape_discard_read_pipeline(drive
, 1);
4279 idetape_wait_for_pipeline(drive
);
4281 if (tape
->cache_stage
!= NULL
) {
4282 __idetape_kfree_stage(tape
->cache_stage
);
4283 tape
->cache_stage
= NULL
;
4285 if (minor
< 128 && test_bit(IDETAPE_MEDIUM_PRESENT
, &tape
->flags
))
4286 (void) idetape_rewind_tape(drive
);
4287 if (tape
->chrdev_direction
== idetape_direction_none
) {
4288 if (tape
->door_locked
== DOOR_LOCKED
) {
4289 if (idetape_create_prevent_cmd(drive
, &pc
, 0)) {
4290 if (!idetape_queue_pc_tail(drive
, &pc
))
4291 tape
->door_locked
= DOOR_UNLOCKED
;
4295 clear_bit(IDETAPE_BUSY
, &tape
->flags
);
4302 * idetape_identify_device is called to check the contents of the
4303 * ATAPI IDENTIFY command results. We return:
4305 * 1 If the tape can be supported by us, based on the information
4308 * 0 If this tape driver is not currently supported by us.
4310 static int idetape_identify_device (ide_drive_t
*drive
)
4312 struct idetape_id_gcw gcw
;
4313 struct hd_driveid
*id
= drive
->id
;
4314 #if IDETAPE_DEBUG_INFO
4315 unsigned short mask
,i
;
4316 #endif /* IDETAPE_DEBUG_INFO */
4318 if (drive
->id_read
== 0)
4321 *((unsigned short *) &gcw
) = id
->config
;
4323 #if IDETAPE_DEBUG_INFO
4324 printk(KERN_INFO
"ide-tape: Dumping ATAPI Identify Device tape parameters\n");
4325 printk(KERN_INFO
"ide-tape: Protocol Type: ");
4326 switch (gcw
.protocol
) {
4327 case 0: case 1: printk("ATA\n");break;
4328 case 2: printk("ATAPI\n");break;
4329 case 3: printk("Reserved (Unknown to ide-tape)\n");break;
4331 printk(KERN_INFO
"ide-tape: Device Type: %x - ",gcw
.device_type
);
4332 switch (gcw
.device_type
) {
4333 case 0: printk("Direct-access Device\n");break;
4334 case 1: printk("Streaming Tape Device\n");break;
4335 case 2: case 3: case 4: printk("Reserved\n");break;
4336 case 5: printk("CD-ROM Device\n");break;
4337 case 6: printk("Reserved\n");
4338 case 7: printk("Optical memory Device\n");break;
4339 case 0x1f: printk("Unknown or no Device type\n");break;
4340 default: printk("Reserved\n");
4342 printk(KERN_INFO
"ide-tape: Removable: %s",gcw
.removable
? "Yes\n":"No\n");
4343 printk(KERN_INFO
"ide-tape: Command Packet DRQ Type: ");
4344 switch (gcw
.drq_type
) {
4345 case 0: printk("Microprocessor DRQ\n");break;
4346 case 1: printk("Interrupt DRQ\n");break;
4347 case 2: printk("Accelerated DRQ\n");break;
4348 case 3: printk("Reserved\n");break;
4350 printk(KERN_INFO
"ide-tape: Command Packet Size: ");
4351 switch (gcw
.packet_size
) {
4352 case 0: printk("12 bytes\n");break;
4353 case 1: printk("16 bytes\n");break;
4354 default: printk("Reserved\n");break;
4356 printk(KERN_INFO
"ide-tape: Model: %.40s\n",id
->model
);
4357 printk(KERN_INFO
"ide-tape: Firmware Revision: %.8s\n",id
->fw_rev
);
4358 printk(KERN_INFO
"ide-tape: Serial Number: %.20s\n",id
->serial_no
);
4359 printk(KERN_INFO
"ide-tape: Write buffer size: %d bytes\n",id
->buf_size
*512);
4360 printk(KERN_INFO
"ide-tape: DMA: %s",id
->capability
& 0x01 ? "Yes\n":"No\n");
4361 printk(KERN_INFO
"ide-tape: LBA: %s",id
->capability
& 0x02 ? "Yes\n":"No\n");
4362 printk(KERN_INFO
"ide-tape: IORDY can be disabled: %s",id
->capability
& 0x04 ? "Yes\n":"No\n");
4363 printk(KERN_INFO
"ide-tape: IORDY supported: %s",id
->capability
& 0x08 ? "Yes\n":"Unknown\n");
4364 printk(KERN_INFO
"ide-tape: ATAPI overlap supported: %s",id
->capability
& 0x20 ? "Yes\n":"No\n");
4365 printk(KERN_INFO
"ide-tape: PIO Cycle Timing Category: %d\n",id
->tPIO
);
4366 printk(KERN_INFO
"ide-tape: DMA Cycle Timing Category: %d\n",id
->tDMA
);
4367 printk(KERN_INFO
"ide-tape: Single Word DMA supported modes: ");
4368 for (i
=0,mask
=1;i
<8;i
++,mask
=mask
<< 1) {
4369 if (id
->dma_1word
& mask
)
4371 if (id
->dma_1word
& (mask
<< 8))
4372 printk("(active) ");
4375 printk(KERN_INFO
"ide-tape: Multi Word DMA supported modes: ");
4376 for (i
=0,mask
=1;i
<8;i
++,mask
=mask
<< 1) {
4377 if (id
->dma_mword
& mask
)
4379 if (id
->dma_mword
& (mask
<< 8))
4380 printk("(active) ");
4383 if (id
->field_valid
& 0x0002) {
4384 printk(KERN_INFO
"ide-tape: Enhanced PIO Modes: %s\n",
4385 id
->eide_pio_modes
& 1 ? "Mode 3":"None");
4386 printk(KERN_INFO
"ide-tape: Minimum Multi-word DMA cycle per word: ");
4387 if (id
->eide_dma_min
== 0)
4388 printk("Not supported\n");
4390 printk("%d ns\n",id
->eide_dma_min
);
4392 printk(KERN_INFO
"ide-tape: Manufacturer\'s Recommended Multi-word cycle: ");
4393 if (id
->eide_dma_time
== 0)
4394 printk("Not supported\n");
4396 printk("%d ns\n",id
->eide_dma_time
);
4398 printk(KERN_INFO
"ide-tape: Minimum PIO cycle without IORDY: ");
4399 if (id
->eide_pio
== 0)
4400 printk("Not supported\n");
4402 printk("%d ns\n",id
->eide_pio
);
4404 printk(KERN_INFO
"ide-tape: Minimum PIO cycle with IORDY: ");
4405 if (id
->eide_pio_iordy
== 0)
4406 printk("Not supported\n");
4408 printk("%d ns\n",id
->eide_pio_iordy
);
4411 printk(KERN_INFO
"ide-tape: According to the device, fields 64-70 are not valid.\n");
4412 #endif /* IDETAPE_DEBUG_INFO */
4414 /* Check that we can support this device */
4416 if (gcw
.protocol
!=2 )
4417 printk(KERN_ERR
"ide-tape: Protocol is not ATAPI\n");
4418 else if (gcw
.device_type
!= 1)
4419 printk(KERN_ERR
"ide-tape: Device type is not set to tape\n");
4420 else if (!gcw
.removable
)
4421 printk(KERN_ERR
"ide-tape: The removable flag is not set\n");
4422 else if (gcw
.packet_size
!= 0) {
4423 printk(KERN_ERR
"ide-tape: Packet size is not 12 bytes long\n");
4424 if (gcw
.packet_size
== 1)
4425 printk(KERN_ERR
"ide-tape: Sorry, padding to 16 bytes is still not supported\n");
4432 * Use INQUIRY to get the firmware revision
4434 static void idetape_get_inquiry_results (ide_drive_t
*drive
)
4437 idetape_tape_t
*tape
= drive
->driver_data
;
4439 idetape_inquiry_result_t
*inquiry
;
4441 idetape_create_inquiry_cmd(&pc
);
4442 if (idetape_queue_pc_tail(drive
, &pc
)) {
4443 printk(KERN_ERR
"ide-tape: %s: can't get INQUIRY results\n", tape
->name
);
4446 inquiry
= (idetape_inquiry_result_t
*) pc
.buffer
;
4447 memcpy(tape
->vendor_id
, inquiry
->vendor_id
, 8);
4448 memcpy(tape
->product_id
, inquiry
->product_id
, 16);
4449 memcpy(tape
->firmware_revision
, inquiry
->revision_level
, 4);
4450 ide_fixstring(tape
->vendor_id
, 10, 0);
4451 ide_fixstring(tape
->product_id
, 18, 0);
4452 ide_fixstring(tape
->firmware_revision
, 6, 0);
4453 r
= tape
->firmware_revision
;
4454 if (*(r
+ 1) == '.')
4455 tape
->firmware_revision_num
= (*r
- '0') * 100 + (*(r
+ 2) - '0') * 10 + *(r
+ 3) - '0';
4456 printk(KERN_INFO
"ide-tape: %s <-> %s: %s %s rev %s\n", drive
->name
, tape
->name
, tape
->vendor_id
, tape
->product_id
, tape
->firmware_revision
);
4460 * idetape_get_mode_sense_results asks the tape about its various
4461 * parameters. In particular, we will adjust our data transfer buffer
4462 * size to the recommended value as returned by the tape.
4464 static void idetape_get_mode_sense_results (ide_drive_t
*drive
)
4466 idetape_tape_t
*tape
= drive
->driver_data
;
4468 idetape_mode_parameter_header_t
*header
;
4469 idetape_capabilities_page_t
*capabilities
;
4471 idetape_create_mode_sense_cmd(&pc
, IDETAPE_CAPABILITIES_PAGE
);
4472 if (idetape_queue_pc_tail(drive
, &pc
)) {
4473 printk(KERN_ERR
"ide-tape: Can't get tape parameters - assuming some default values\n");
4474 tape
->tape_block_size
= 512;
4475 tape
->capabilities
.ctl
= 52;
4476 tape
->capabilities
.speed
= 450;
4477 tape
->capabilities
.buffer_size
= 6 * 52;
4480 header
= (idetape_mode_parameter_header_t
*) pc
.buffer
;
4481 capabilities
= (idetape_capabilities_page_t
*) (pc
.buffer
+ sizeof(idetape_mode_parameter_header_t
) + header
->bdl
);
4483 capabilities
->max_speed
= ntohs(capabilities
->max_speed
);
4484 capabilities
->ctl
= ntohs(capabilities
->ctl
);
4485 capabilities
->speed
= ntohs(capabilities
->speed
);
4486 capabilities
->buffer_size
= ntohs(capabilities
->buffer_size
);
4488 if (!capabilities
->speed
) {
4489 printk(KERN_INFO
"ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive
->name
);
4490 capabilities
->speed
= 650;
4492 if (!capabilities
->max_speed
) {
4493 printk(KERN_INFO
"ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive
->name
);
4494 capabilities
->max_speed
= 650;
4497 tape
->capabilities
= *capabilities
; /* Save us a copy */
4498 if (capabilities
->blk512
)
4499 tape
->tape_block_size
= 512;
4500 else if (capabilities
->blk1024
)
4501 tape
->tape_block_size
= 1024;
4503 #if IDETAPE_DEBUG_INFO
4504 printk(KERN_INFO
"ide-tape: Dumping the results of the MODE SENSE packet command\n");
4505 printk(KERN_INFO
"ide-tape: Mode Parameter Header:\n");
4506 printk(KERN_INFO
"ide-tape: Mode Data Length - %d\n",header
->mode_data_length
);
4507 printk(KERN_INFO
"ide-tape: Medium Type - %d\n",header
->medium_type
);
4508 printk(KERN_INFO
"ide-tape: Device Specific Parameter - %d\n",header
->dsp
);
4509 printk(KERN_INFO
"ide-tape: Block Descriptor Length - %d\n",header
->bdl
);
4511 printk(KERN_INFO
"ide-tape: Capabilities and Mechanical Status Page:\n");
4512 printk(KERN_INFO
"ide-tape: Page code - %d\n",capabilities
->page_code
);
4513 printk(KERN_INFO
"ide-tape: Page length - %d\n",capabilities
->page_length
);
4514 printk(KERN_INFO
"ide-tape: Read only - %s\n",capabilities
->ro
? "Yes":"No");
4515 printk(KERN_INFO
"ide-tape: Supports reverse space - %s\n",capabilities
->sprev
? "Yes":"No");
4516 printk(KERN_INFO
"ide-tape: Supports erase initiated formatting - %s\n",capabilities
->efmt
? "Yes":"No");
4517 printk(KERN_INFO
"ide-tape: Supports QFA two Partition format - %s\n",capabilities
->qfa
? "Yes":"No");
4518 printk(KERN_INFO
"ide-tape: Supports locking the medium - %s\n",capabilities
->lock
? "Yes":"No");
4519 printk(KERN_INFO
"ide-tape: The volume is currently locked - %s\n",capabilities
->locked
? "Yes":"No");
4520 printk(KERN_INFO
"ide-tape: The device defaults in the prevent state - %s\n",capabilities
->prevent
? "Yes":"No");
4521 printk(KERN_INFO
"ide-tape: Supports ejecting the medium - %s\n",capabilities
->eject
? "Yes":"No");
4522 printk(KERN_INFO
"ide-tape: Supports error correction - %s\n",capabilities
->ecc
? "Yes":"No");
4523 printk(KERN_INFO
"ide-tape: Supports data compression - %s\n",capabilities
->cmprs
? "Yes":"No");
4524 printk(KERN_INFO
"ide-tape: Supports 512 bytes block size - %s\n",capabilities
->blk512
? "Yes":"No");
4525 printk(KERN_INFO
"ide-tape: Supports 1024 bytes block size - %s\n",capabilities
->blk1024
? "Yes":"No");
4526 printk(KERN_INFO
"ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities
->blk32768
? "Yes":"No");
4527 printk(KERN_INFO
"ide-tape: Maximum supported speed in KBps - %d\n",capabilities
->max_speed
);
4528 printk(KERN_INFO
"ide-tape: Continuous transfer limits in blocks - %d\n",capabilities
->ctl
);
4529 printk(KERN_INFO
"ide-tape: Current speed in KBps - %d\n",capabilities
->speed
);
4530 printk(KERN_INFO
"ide-tape: Buffer size - %d\n",capabilities
->buffer_size
*512);
4531 #endif /* IDETAPE_DEBUG_INFO */
4535 * ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor
4536 * and if it succeeds sets the tape block size with the reported value
4538 static void idetape_get_blocksize_from_block_descriptor(ide_drive_t
*drive
)
4541 idetape_tape_t
*tape
= drive
->driver_data
;
4543 idetape_mode_parameter_header_t
*header
;
4544 idetape_parameter_block_descriptor_t
*block_descrp
;
4546 idetape_create_mode_sense_cmd(&pc
, IDETAPE_BLOCK_DESCRIPTOR
);
4547 if (idetape_queue_pc_tail(drive
, &pc
)) {
4548 printk(KERN_ERR
"ide-tape: Can't get block descriptor\n");
4549 if (tape
->tape_block_size
== 0) {
4550 printk(KERN_WARNING
"ide-tape: Cannot deal with zero block size, assume 32k\n");
4551 tape
->tape_block_size
= 32768;
4555 header
= (idetape_mode_parameter_header_t
*) pc
.buffer
;
4556 block_descrp
= (idetape_parameter_block_descriptor_t
*) (pc
.buffer
+ sizeof(idetape_mode_parameter_header_t
));
4557 tape
->tape_block_size
=( block_descrp
->length
[0]<<16) + (block_descrp
->length
[1]<<8) + block_descrp
->length
[2];
4558 tape
->drv_write_prot
= (header
->dsp
& 0x80) >> 7;
4560 #if IDETAPE_DEBUG_INFO
4561 printk(KERN_INFO
"ide-tape: Adjusted block size - %d\n", tape
->tape_block_size
);
4562 #endif /* IDETAPE_DEBUG_INFO */
4565 #ifdef CONFIG_IDE_PROC_FS
4566 static void idetape_add_settings (ide_drive_t
*drive
)
4568 idetape_tape_t
*tape
= drive
->driver_data
;
4571 * drive setting name read/write data type min max mul_factor div_factor data pointer set function
4573 ide_add_setting(drive
, "buffer", SETTING_READ
, TYPE_SHORT
, 0, 0xffff, 1, 2, &tape
->capabilities
.buffer_size
, NULL
);
4574 ide_add_setting(drive
, "pipeline_min", SETTING_RW
, TYPE_INT
, 1, 0xffff, tape
->stage_size
/ 1024, 1, &tape
->min_pipeline
, NULL
);
4575 ide_add_setting(drive
, "pipeline", SETTING_RW
, TYPE_INT
, 1, 0xffff, tape
->stage_size
/ 1024, 1, &tape
->max_stages
, NULL
);
4576 ide_add_setting(drive
, "pipeline_max", SETTING_RW
, TYPE_INT
, 1, 0xffff, tape
->stage_size
/ 1024, 1, &tape
->max_pipeline
, NULL
);
4577 ide_add_setting(drive
, "pipeline_used", SETTING_READ
, TYPE_INT
, 0, 0xffff, tape
->stage_size
/ 1024, 1, &tape
->nr_stages
, NULL
);
4578 ide_add_setting(drive
, "pipeline_pending", SETTING_READ
, TYPE_INT
, 0, 0xffff, tape
->stage_size
/ 1024, 1, &tape
->nr_pending_stages
, NULL
);
4579 ide_add_setting(drive
, "speed", SETTING_READ
, TYPE_SHORT
, 0, 0xffff, 1, 1, &tape
->capabilities
.speed
, NULL
);
4580 ide_add_setting(drive
, "stage", SETTING_READ
, TYPE_INT
, 0, 0xffff, 1, 1024, &tape
->stage_size
, NULL
);
4581 ide_add_setting(drive
, "tdsc", SETTING_RW
, TYPE_INT
, IDETAPE_DSC_RW_MIN
, IDETAPE_DSC_RW_MAX
, 1000, HZ
, &tape
->best_dsc_rw_frequency
, NULL
);
4582 ide_add_setting(drive
, "dsc_overlap", SETTING_RW
, TYPE_BYTE
, 0, 1, 1, 1, &drive
->dsc_overlap
, NULL
);
4583 ide_add_setting(drive
, "pipeline_head_speed_c",SETTING_READ
, TYPE_INT
, 0, 0xffff, 1, 1, &tape
->controlled_pipeline_head_speed
, NULL
);
4584 ide_add_setting(drive
, "pipeline_head_speed_u",SETTING_READ
, TYPE_INT
, 0, 0xffff, 1, 1, &tape
->uncontrolled_pipeline_head_speed
,NULL
);
4585 ide_add_setting(drive
, "avg_speed", SETTING_READ
, TYPE_INT
, 0, 0xffff, 1, 1, &tape
->avg_speed
, NULL
);
4586 ide_add_setting(drive
, "debug_level", SETTING_RW
, TYPE_INT
, 0, 0xffff, 1, 1, &tape
->debug_level
, NULL
);
4589 static inline void idetape_add_settings(ide_drive_t
*drive
) { ; }
4593 * ide_setup is called to:
4595 * 1. Initialize our various state variables.
4596 * 2. Ask the tape for its capabilities.
4597 * 3. Allocate a buffer which will be used for data
4598 * transfer. The buffer size is chosen based on
4599 * the recommendation which we received in step (2).
4601 * Note that at this point ide.c already assigned us an irq, so that
4602 * we can queue requests here and wait for their completion.
4604 static void idetape_setup (ide_drive_t
*drive
, idetape_tape_t
*tape
, int minor
)
4606 unsigned long t1
, tmid
, tn
, t
;
4608 struct idetape_id_gcw gcw
;
4612 spin_lock_init(&tape
->spinlock
);
4613 drive
->dsc_overlap
= 1;
4614 #ifdef CONFIG_BLK_DEV_IDEPCI
4615 if (HWIF(drive
)->pci_dev
!= NULL
) {
4617 * These two ide-pci host adapters appear to need DSC overlap disabled.
4618 * This probably needs further analysis.
4620 if ((HWIF(drive
)->pci_dev
->device
== PCI_DEVICE_ID_ARTOP_ATP850UF
) ||
4621 (HWIF(drive
)->pci_dev
->device
== PCI_DEVICE_ID_TTI_HPT343
)) {
4622 printk(KERN_INFO
"ide-tape: %s: disabling DSC overlap\n", tape
->name
);
4623 drive
->dsc_overlap
= 0;
4626 #endif /* CONFIG_BLK_DEV_IDEPCI */
4627 /* Seagate Travan drives do not support DSC overlap. */
4628 if (strstr(drive
->id
->model
, "Seagate STT3401"))
4629 drive
->dsc_overlap
= 0;
4630 tape
->minor
= minor
;
4631 tape
->name
[0] = 'h';
4632 tape
->name
[1] = 't';
4633 tape
->name
[2] = '0' + minor
;
4634 tape
->chrdev_direction
= idetape_direction_none
;
4635 tape
->pc
= tape
->pc_stack
;
4636 tape
->max_insert_speed
= 10000;
4637 tape
->speed_control
= 1;
4638 *((unsigned short *) &gcw
) = drive
->id
->config
;
4639 if (gcw
.drq_type
== 1)
4640 set_bit(IDETAPE_DRQ_INTERRUPT
, &tape
->flags
);
4642 tape
->min_pipeline
= tape
->max_pipeline
= tape
->max_stages
= 10;
4644 idetape_get_inquiry_results(drive
);
4645 idetape_get_mode_sense_results(drive
);
4646 idetape_get_blocksize_from_block_descriptor(drive
);
4647 tape
->user_bs_factor
= 1;
4648 tape
->stage_size
= tape
->capabilities
.ctl
* tape
->tape_block_size
;
4649 while (tape
->stage_size
> 0xffff) {
4650 printk(KERN_NOTICE
"ide-tape: decreasing stage size\n");
4651 tape
->capabilities
.ctl
/= 2;
4652 tape
->stage_size
= tape
->capabilities
.ctl
* tape
->tape_block_size
;
4654 stage_size
= tape
->stage_size
;
4655 tape
->pages_per_stage
= stage_size
/ PAGE_SIZE
;
4656 if (stage_size
% PAGE_SIZE
) {
4657 tape
->pages_per_stage
++;
4658 tape
->excess_bh_size
= PAGE_SIZE
- stage_size
% PAGE_SIZE
;
4662 * Select the "best" DSC read/write polling frequency
4663 * and pipeline size.
4665 speed
= max(tape
->capabilities
.speed
, tape
->capabilities
.max_speed
);
4667 tape
->max_stages
= speed
* 1000 * 10 / tape
->stage_size
;
4670 * Limit memory use for pipeline to 10% of physical memory
4673 if (tape
->max_stages
* tape
->stage_size
> si
.totalram
* si
.mem_unit
/ 10)
4674 tape
->max_stages
= si
.totalram
* si
.mem_unit
/ (10 * tape
->stage_size
);
4675 tape
->max_stages
= min(tape
->max_stages
, IDETAPE_MAX_PIPELINE_STAGES
);
4676 tape
->min_pipeline
= min(tape
->max_stages
, IDETAPE_MIN_PIPELINE_STAGES
);
4677 tape
->max_pipeline
= min(tape
->max_stages
* 2, IDETAPE_MAX_PIPELINE_STAGES
);
4678 if (tape
->max_stages
== 0)
4679 tape
->max_stages
= tape
->min_pipeline
= tape
->max_pipeline
= 1;
4681 t1
= (tape
->stage_size
* HZ
) / (speed
* 1000);
4682 tmid
= (tape
->capabilities
.buffer_size
* 32 * HZ
) / (speed
* 125);
4683 tn
= (IDETAPE_FIFO_THRESHOLD
* tape
->stage_size
* HZ
) / (speed
* 1000);
4685 if (tape
->max_stages
)
4691 * Ensure that the number we got makes sense; limit
4692 * it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
4694 tape
->best_dsc_rw_frequency
= max_t(unsigned long, min_t(unsigned long, t
, IDETAPE_DSC_RW_MAX
), IDETAPE_DSC_RW_MIN
);
4695 printk(KERN_INFO
"ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
4696 "%dkB pipeline, %lums tDSC%s\n",
4697 drive
->name
, tape
->name
, tape
->capabilities
.speed
,
4698 (tape
->capabilities
.buffer_size
* 512) / tape
->stage_size
,
4699 tape
->stage_size
/ 1024,
4700 tape
->max_stages
* tape
->stage_size
/ 1024,
4701 tape
->best_dsc_rw_frequency
* 1000 / HZ
,
4702 drive
->using_dma
? ", DMA":"");
4704 idetape_add_settings(drive
);
4707 static void ide_tape_remove(ide_drive_t
*drive
)
4709 idetape_tape_t
*tape
= drive
->driver_data
;
4711 ide_proc_unregister_driver(drive
, tape
->driver
);
4713 ide_unregister_region(tape
->disk
);
4718 static void ide_tape_release(struct kref
*kref
)
4720 struct ide_tape_obj
*tape
= to_ide_tape(kref
);
4721 ide_drive_t
*drive
= tape
->drive
;
4722 struct gendisk
*g
= tape
->disk
;
4724 BUG_ON(tape
->first_stage
!= NULL
|| tape
->merge_stage_size
);
4726 drive
->dsc_overlap
= 0;
4727 drive
->driver_data
= NULL
;
4728 class_device_destroy(idetape_sysfs_class
,
4729 MKDEV(IDETAPE_MAJOR
, tape
->minor
));
4730 class_device_destroy(idetape_sysfs_class
,
4731 MKDEV(IDETAPE_MAJOR
, tape
->minor
+ 128));
4732 idetape_devs
[tape
->minor
] = NULL
;
4733 g
->private_data
= NULL
;
4738 #ifdef CONFIG_IDE_PROC_FS
4739 static int proc_idetape_read_name
4740 (char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
)
4742 ide_drive_t
*drive
= (ide_drive_t
*) data
;
4743 idetape_tape_t
*tape
= drive
->driver_data
;
4747 len
= sprintf(out
, "%s\n", tape
->name
);
4748 PROC_IDE_READ_RETURN(page
, start
, off
, count
, eof
, len
);
4751 static ide_proc_entry_t idetape_proc
[] = {
4752 { "capacity", S_IFREG
|S_IRUGO
, proc_ide_read_capacity
, NULL
},
4753 { "name", S_IFREG
|S_IRUGO
, proc_idetape_read_name
, NULL
},
4754 { NULL
, 0, NULL
, NULL
}
4758 static int ide_tape_probe(ide_drive_t
*);
4760 static ide_driver_t idetape_driver
= {
4762 .owner
= THIS_MODULE
,
4764 .bus
= &ide_bus_type
,
4766 .probe
= ide_tape_probe
,
4767 .remove
= ide_tape_remove
,
4768 .version
= IDETAPE_VERSION
,
4770 .supports_dsc_overlap
= 1,
4771 .do_request
= idetape_do_request
,
4772 .end_request
= idetape_end_request
,
4773 .error
= __ide_error
,
4774 .abort
= __ide_abort
,
4775 #ifdef CONFIG_IDE_PROC_FS
4776 .proc
= idetape_proc
,
4781 * Our character device supporting functions, passed to register_chrdev.
4783 static const struct file_operations idetape_fops
= {
4784 .owner
= THIS_MODULE
,
4785 .read
= idetape_chrdev_read
,
4786 .write
= idetape_chrdev_write
,
4787 .ioctl
= idetape_chrdev_ioctl
,
4788 .open
= idetape_chrdev_open
,
4789 .release
= idetape_chrdev_release
,
4792 static int idetape_open(struct inode
*inode
, struct file
*filp
)
4794 struct gendisk
*disk
= inode
->i_bdev
->bd_disk
;
4795 struct ide_tape_obj
*tape
;
4797 if (!(tape
= ide_tape_get(disk
)))
4803 static int idetape_release(struct inode
*inode
, struct file
*filp
)
4805 struct gendisk
*disk
= inode
->i_bdev
->bd_disk
;
4806 struct ide_tape_obj
*tape
= ide_tape_g(disk
);
4813 static int idetape_ioctl(struct inode
*inode
, struct file
*file
,
4814 unsigned int cmd
, unsigned long arg
)
4816 struct block_device
*bdev
= inode
->i_bdev
;
4817 struct ide_tape_obj
*tape
= ide_tape_g(bdev
->bd_disk
);
4818 ide_drive_t
*drive
= tape
->drive
;
4819 int err
= generic_ide_ioctl(drive
, file
, bdev
, cmd
, arg
);
4821 err
= idetape_blkdev_ioctl(drive
, cmd
, arg
);
4825 static struct block_device_operations idetape_block_ops
= {
4826 .owner
= THIS_MODULE
,
4827 .open
= idetape_open
,
4828 .release
= idetape_release
,
4829 .ioctl
= idetape_ioctl
,
4832 static int ide_tape_probe(ide_drive_t
*drive
)
4834 idetape_tape_t
*tape
;
4838 if (!strstr("ide-tape", drive
->driver_req
))
4840 if (!drive
->present
)
4842 if (drive
->media
!= ide_tape
)
4844 if (!idetape_identify_device (drive
)) {
4845 printk(KERN_ERR
"ide-tape: %s: not supported by this version of ide-tape\n", drive
->name
);
4849 printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive
->name
);
4852 if (strstr(drive
->id
->model
, "OnStream DI-")) {
4853 printk(KERN_WARNING
"ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive
->name
);
4854 printk(KERN_WARNING
"ide-tape: OnStream support will be removed soon from ide-tape!\n");
4856 tape
= kzalloc(sizeof (idetape_tape_t
), GFP_KERNEL
);
4858 printk(KERN_ERR
"ide-tape: %s: Can't allocate a tape structure\n", drive
->name
);
4862 g
= alloc_disk(1 << PARTN_BITS
);
4866 ide_init_disk(g
, drive
);
4868 ide_proc_register_driver(drive
, &idetape_driver
);
4870 kref_init(&tape
->kref
);
4872 tape
->drive
= drive
;
4873 tape
->driver
= &idetape_driver
;
4876 g
->private_data
= &tape
->driver
;
4878 drive
->driver_data
= tape
;
4880 mutex_lock(&idetape_ref_mutex
);
4881 for (minor
= 0; idetape_devs
[minor
]; minor
++)
4883 idetape_devs
[minor
] = tape
;
4884 mutex_unlock(&idetape_ref_mutex
);
4886 idetape_setup(drive
, tape
, minor
);
4888 class_device_create(idetape_sysfs_class
, NULL
,
4889 MKDEV(IDETAPE_MAJOR
, minor
), &drive
->gendev
, "%s", tape
->name
);
4890 class_device_create(idetape_sysfs_class
, NULL
,
4891 MKDEV(IDETAPE_MAJOR
, minor
+ 128), &drive
->gendev
, "n%s", tape
->name
);
4893 g
->fops
= &idetape_block_ops
;
4894 ide_register_region(g
);
4904 MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
4905 MODULE_LICENSE("GPL");
4907 static void __exit
idetape_exit (void)
4909 driver_unregister(&idetape_driver
.gen_driver
);
4910 class_destroy(idetape_sysfs_class
);
4911 unregister_chrdev(IDETAPE_MAJOR
, "ht");
4914 static int __init
idetape_init(void)
4917 idetape_sysfs_class
= class_create(THIS_MODULE
, "ide_tape");
4918 if (IS_ERR(idetape_sysfs_class
)) {
4919 idetape_sysfs_class
= NULL
;
4920 printk(KERN_ERR
"Unable to create sysfs class for ide tapes\n");
4925 if (register_chrdev(IDETAPE_MAJOR
, "ht", &idetape_fops
)) {
4926 printk(KERN_ERR
"ide-tape: Failed to register character device interface\n");
4928 goto out_free_class
;
4931 error
= driver_register(&idetape_driver
.gen_driver
);
4933 goto out_free_driver
;
4938 driver_unregister(&idetape_driver
.gen_driver
);
4940 class_destroy(idetape_sysfs_class
);
4945 MODULE_ALIAS("ide:*m-tape*");
4946 module_init(idetape_init
);
4947 module_exit(idetape_exit
);
4948 MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR
);