x86: atomic64: The atomic64_t data type should be 8 bytes aligned on 32-bit too
[linux-2.6/mini2440.git] / fs / btrfs / transaction.c
blob4e83457ea253e798ccfc8cb1d493ad7e48daa2bd
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
30 #define BTRFS_ROOT_TRANS_TAG 0
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 WARN_ON(transaction->use_count == 0);
35 transaction->use_count--;
36 if (transaction->use_count == 0) {
37 list_del_init(&transaction->list);
38 memset(transaction, 0, sizeof(*transaction));
39 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 * either allocate a new transaction or hop into the existing one
46 static noinline int join_transaction(struct btrfs_root *root)
48 struct btrfs_transaction *cur_trans;
49 cur_trans = root->fs_info->running_transaction;
50 if (!cur_trans) {
51 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
52 GFP_NOFS);
53 BUG_ON(!cur_trans);
54 root->fs_info->generation++;
55 cur_trans->num_writers = 1;
56 cur_trans->num_joined = 0;
57 cur_trans->transid = root->fs_info->generation;
58 init_waitqueue_head(&cur_trans->writer_wait);
59 init_waitqueue_head(&cur_trans->commit_wait);
60 cur_trans->in_commit = 0;
61 cur_trans->blocked = 0;
62 cur_trans->use_count = 1;
63 cur_trans->commit_done = 0;
64 cur_trans->start_time = get_seconds();
66 cur_trans->delayed_refs.root.rb_node = NULL;
67 cur_trans->delayed_refs.num_entries = 0;
68 cur_trans->delayed_refs.num_heads_ready = 0;
69 cur_trans->delayed_refs.num_heads = 0;
70 cur_trans->delayed_refs.flushing = 0;
71 cur_trans->delayed_refs.run_delayed_start = 0;
72 spin_lock_init(&cur_trans->delayed_refs.lock);
74 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
75 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
76 extent_io_tree_init(&cur_trans->dirty_pages,
77 root->fs_info->btree_inode->i_mapping,
78 GFP_NOFS);
79 spin_lock(&root->fs_info->new_trans_lock);
80 root->fs_info->running_transaction = cur_trans;
81 spin_unlock(&root->fs_info->new_trans_lock);
82 } else {
83 cur_trans->num_writers++;
84 cur_trans->num_joined++;
87 return 0;
91 * this does all the record keeping required to make sure that a reference
92 * counted root is properly recorded in a given transaction. This is required
93 * to make sure the old root from before we joined the transaction is deleted
94 * when the transaction commits
96 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root)
99 if (root->ref_cows && root->last_trans < trans->transid) {
100 WARN_ON(root == root->fs_info->extent_root);
101 WARN_ON(root->root_item.refs == 0);
102 WARN_ON(root->commit_root != root->node);
104 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
105 (unsigned long)root->root_key.objectid,
106 BTRFS_ROOT_TRANS_TAG);
107 root->last_trans = trans->transid;
108 btrfs_init_reloc_root(trans, root);
110 return 0;
113 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
114 struct btrfs_root *root)
116 if (!root->ref_cows)
117 return 0;
119 mutex_lock(&root->fs_info->trans_mutex);
120 if (root->last_trans == trans->transid) {
121 mutex_unlock(&root->fs_info->trans_mutex);
122 return 0;
125 record_root_in_trans(trans, root);
126 mutex_unlock(&root->fs_info->trans_mutex);
127 return 0;
130 /* wait for commit against the current transaction to become unblocked
131 * when this is done, it is safe to start a new transaction, but the current
132 * transaction might not be fully on disk.
134 static void wait_current_trans(struct btrfs_root *root)
136 struct btrfs_transaction *cur_trans;
138 cur_trans = root->fs_info->running_transaction;
139 if (cur_trans && cur_trans->blocked) {
140 DEFINE_WAIT(wait);
141 cur_trans->use_count++;
142 while (1) {
143 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
144 TASK_UNINTERRUPTIBLE);
145 if (cur_trans->blocked) {
146 mutex_unlock(&root->fs_info->trans_mutex);
147 schedule();
148 mutex_lock(&root->fs_info->trans_mutex);
149 finish_wait(&root->fs_info->transaction_wait,
150 &wait);
151 } else {
152 finish_wait(&root->fs_info->transaction_wait,
153 &wait);
154 break;
157 put_transaction(cur_trans);
161 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
162 int num_blocks, int wait)
164 struct btrfs_trans_handle *h =
165 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
166 int ret;
168 mutex_lock(&root->fs_info->trans_mutex);
169 if (!root->fs_info->log_root_recovering &&
170 ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
171 wait_current_trans(root);
172 ret = join_transaction(root);
173 BUG_ON(ret);
175 h->transid = root->fs_info->running_transaction->transid;
176 h->transaction = root->fs_info->running_transaction;
177 h->blocks_reserved = num_blocks;
178 h->blocks_used = 0;
179 h->block_group = 0;
180 h->alloc_exclude_nr = 0;
181 h->alloc_exclude_start = 0;
182 h->delayed_ref_updates = 0;
184 root->fs_info->running_transaction->use_count++;
185 record_root_in_trans(h, root);
186 mutex_unlock(&root->fs_info->trans_mutex);
187 return h;
190 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
191 int num_blocks)
193 return start_transaction(root, num_blocks, 1);
195 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
196 int num_blocks)
198 return start_transaction(root, num_blocks, 0);
201 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
202 int num_blocks)
204 return start_transaction(r, num_blocks, 2);
207 /* wait for a transaction commit to be fully complete */
208 static noinline int wait_for_commit(struct btrfs_root *root,
209 struct btrfs_transaction *commit)
211 DEFINE_WAIT(wait);
212 mutex_lock(&root->fs_info->trans_mutex);
213 while (!commit->commit_done) {
214 prepare_to_wait(&commit->commit_wait, &wait,
215 TASK_UNINTERRUPTIBLE);
216 if (commit->commit_done)
217 break;
218 mutex_unlock(&root->fs_info->trans_mutex);
219 schedule();
220 mutex_lock(&root->fs_info->trans_mutex);
222 mutex_unlock(&root->fs_info->trans_mutex);
223 finish_wait(&commit->commit_wait, &wait);
224 return 0;
227 #if 0
229 * rate limit against the drop_snapshot code. This helps to slow down new
230 * operations if the drop_snapshot code isn't able to keep up.
232 static void throttle_on_drops(struct btrfs_root *root)
234 struct btrfs_fs_info *info = root->fs_info;
235 int harder_count = 0;
237 harder:
238 if (atomic_read(&info->throttles)) {
239 DEFINE_WAIT(wait);
240 int thr;
241 thr = atomic_read(&info->throttle_gen);
243 do {
244 prepare_to_wait(&info->transaction_throttle,
245 &wait, TASK_UNINTERRUPTIBLE);
246 if (!atomic_read(&info->throttles)) {
247 finish_wait(&info->transaction_throttle, &wait);
248 break;
250 schedule();
251 finish_wait(&info->transaction_throttle, &wait);
252 } while (thr == atomic_read(&info->throttle_gen));
253 harder_count++;
255 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
256 harder_count < 2)
257 goto harder;
259 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
260 harder_count < 10)
261 goto harder;
263 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
264 harder_count < 20)
265 goto harder;
268 #endif
270 void btrfs_throttle(struct btrfs_root *root)
272 mutex_lock(&root->fs_info->trans_mutex);
273 if (!root->fs_info->open_ioctl_trans)
274 wait_current_trans(root);
275 mutex_unlock(&root->fs_info->trans_mutex);
278 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
279 struct btrfs_root *root, int throttle)
281 struct btrfs_transaction *cur_trans;
282 struct btrfs_fs_info *info = root->fs_info;
283 int count = 0;
285 while (count < 4) {
286 unsigned long cur = trans->delayed_ref_updates;
287 trans->delayed_ref_updates = 0;
288 if (cur &&
289 trans->transaction->delayed_refs.num_heads_ready > 64) {
290 trans->delayed_ref_updates = 0;
293 * do a full flush if the transaction is trying
294 * to close
296 if (trans->transaction->delayed_refs.flushing)
297 cur = 0;
298 btrfs_run_delayed_refs(trans, root, cur);
299 } else {
300 break;
302 count++;
305 mutex_lock(&info->trans_mutex);
306 cur_trans = info->running_transaction;
307 WARN_ON(cur_trans != trans->transaction);
308 WARN_ON(cur_trans->num_writers < 1);
309 cur_trans->num_writers--;
311 if (waitqueue_active(&cur_trans->writer_wait))
312 wake_up(&cur_trans->writer_wait);
313 put_transaction(cur_trans);
314 mutex_unlock(&info->trans_mutex);
315 memset(trans, 0, sizeof(*trans));
316 kmem_cache_free(btrfs_trans_handle_cachep, trans);
318 return 0;
321 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
322 struct btrfs_root *root)
324 return __btrfs_end_transaction(trans, root, 0);
327 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
328 struct btrfs_root *root)
330 return __btrfs_end_transaction(trans, root, 1);
334 * when btree blocks are allocated, they have some corresponding bits set for
335 * them in one of two extent_io trees. This is used to make sure all of
336 * those extents are on disk for transaction or log commit
338 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
339 struct extent_io_tree *dirty_pages)
341 int ret;
342 int err = 0;
343 int werr = 0;
344 struct page *page;
345 struct inode *btree_inode = root->fs_info->btree_inode;
346 u64 start = 0;
347 u64 end;
348 unsigned long index;
350 while (1) {
351 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
352 EXTENT_DIRTY);
353 if (ret)
354 break;
355 while (start <= end) {
356 cond_resched();
358 index = start >> PAGE_CACHE_SHIFT;
359 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
360 page = find_get_page(btree_inode->i_mapping, index);
361 if (!page)
362 continue;
364 btree_lock_page_hook(page);
365 if (!page->mapping) {
366 unlock_page(page);
367 page_cache_release(page);
368 continue;
371 if (PageWriteback(page)) {
372 if (PageDirty(page))
373 wait_on_page_writeback(page);
374 else {
375 unlock_page(page);
376 page_cache_release(page);
377 continue;
380 err = write_one_page(page, 0);
381 if (err)
382 werr = err;
383 page_cache_release(page);
386 while (1) {
387 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
388 EXTENT_DIRTY);
389 if (ret)
390 break;
392 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
393 while (start <= end) {
394 index = start >> PAGE_CACHE_SHIFT;
395 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
396 page = find_get_page(btree_inode->i_mapping, index);
397 if (!page)
398 continue;
399 if (PageDirty(page)) {
400 btree_lock_page_hook(page);
401 wait_on_page_writeback(page);
402 err = write_one_page(page, 0);
403 if (err)
404 werr = err;
406 wait_on_page_writeback(page);
407 page_cache_release(page);
408 cond_resched();
411 if (err)
412 werr = err;
413 return werr;
416 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
417 struct btrfs_root *root)
419 if (!trans || !trans->transaction) {
420 struct inode *btree_inode;
421 btree_inode = root->fs_info->btree_inode;
422 return filemap_write_and_wait(btree_inode->i_mapping);
424 return btrfs_write_and_wait_marked_extents(root,
425 &trans->transaction->dirty_pages);
429 * this is used to update the root pointer in the tree of tree roots.
431 * But, in the case of the extent allocation tree, updating the root
432 * pointer may allocate blocks which may change the root of the extent
433 * allocation tree.
435 * So, this loops and repeats and makes sure the cowonly root didn't
436 * change while the root pointer was being updated in the metadata.
438 static int update_cowonly_root(struct btrfs_trans_handle *trans,
439 struct btrfs_root *root)
441 int ret;
442 u64 old_root_bytenr;
443 struct btrfs_root *tree_root = root->fs_info->tree_root;
445 btrfs_write_dirty_block_groups(trans, root);
447 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
448 BUG_ON(ret);
450 while (1) {
451 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
452 if (old_root_bytenr == root->node->start)
453 break;
455 btrfs_set_root_node(&root->root_item, root->node);
456 ret = btrfs_update_root(trans, tree_root,
457 &root->root_key,
458 &root->root_item);
459 BUG_ON(ret);
460 btrfs_write_dirty_block_groups(trans, root);
462 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
463 BUG_ON(ret);
465 free_extent_buffer(root->commit_root);
466 root->commit_root = btrfs_root_node(root);
467 return 0;
471 * update all the cowonly tree roots on disk
473 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
474 struct btrfs_root *root)
476 struct btrfs_fs_info *fs_info = root->fs_info;
477 struct list_head *next;
478 struct extent_buffer *eb;
479 int ret;
481 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
482 BUG_ON(ret);
484 eb = btrfs_lock_root_node(fs_info->tree_root);
485 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
486 btrfs_tree_unlock(eb);
487 free_extent_buffer(eb);
489 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
490 BUG_ON(ret);
492 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
493 next = fs_info->dirty_cowonly_roots.next;
494 list_del_init(next);
495 root = list_entry(next, struct btrfs_root, dirty_list);
497 update_cowonly_root(trans, root);
499 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
500 BUG_ON(ret);
502 return 0;
506 * dead roots are old snapshots that need to be deleted. This allocates
507 * a dirty root struct and adds it into the list of dead roots that need to
508 * be deleted
510 int btrfs_add_dead_root(struct btrfs_root *root)
512 mutex_lock(&root->fs_info->trans_mutex);
513 list_add(&root->root_list, &root->fs_info->dead_roots);
514 mutex_unlock(&root->fs_info->trans_mutex);
515 return 0;
519 * update all the cowonly tree roots on disk
521 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
522 struct btrfs_root *root)
524 struct btrfs_root *gang[8];
525 struct btrfs_fs_info *fs_info = root->fs_info;
526 int i;
527 int ret;
528 int err = 0;
530 while (1) {
531 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
532 (void **)gang, 0,
533 ARRAY_SIZE(gang),
534 BTRFS_ROOT_TRANS_TAG);
535 if (ret == 0)
536 break;
537 for (i = 0; i < ret; i++) {
538 root = gang[i];
539 radix_tree_tag_clear(&fs_info->fs_roots_radix,
540 (unsigned long)root->root_key.objectid,
541 BTRFS_ROOT_TRANS_TAG);
543 btrfs_free_log(trans, root);
544 btrfs_update_reloc_root(trans, root);
546 if (root->commit_root != root->node) {
547 free_extent_buffer(root->commit_root);
548 root->commit_root = btrfs_root_node(root);
549 btrfs_set_root_node(&root->root_item,
550 root->node);
553 err = btrfs_update_root(trans, fs_info->tree_root,
554 &root->root_key,
555 &root->root_item);
556 if (err)
557 break;
560 return err;
564 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
565 * otherwise every leaf in the btree is read and defragged.
567 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
569 struct btrfs_fs_info *info = root->fs_info;
570 int ret;
571 struct btrfs_trans_handle *trans;
572 unsigned long nr;
574 smp_mb();
575 if (root->defrag_running)
576 return 0;
577 trans = btrfs_start_transaction(root, 1);
578 while (1) {
579 root->defrag_running = 1;
580 ret = btrfs_defrag_leaves(trans, root, cacheonly);
581 nr = trans->blocks_used;
582 btrfs_end_transaction(trans, root);
583 btrfs_btree_balance_dirty(info->tree_root, nr);
584 cond_resched();
586 trans = btrfs_start_transaction(root, 1);
587 if (root->fs_info->closing || ret != -EAGAIN)
588 break;
590 root->defrag_running = 0;
591 smp_mb();
592 btrfs_end_transaction(trans, root);
593 return 0;
597 * when dropping snapshots, we generate a ton of delayed refs, and it makes
598 * sense not to join the transaction while it is trying to flush the current
599 * queue of delayed refs out.
601 * This is used by the drop snapshot code only
603 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
605 DEFINE_WAIT(wait);
607 mutex_lock(&info->trans_mutex);
608 while (info->running_transaction &&
609 info->running_transaction->delayed_refs.flushing) {
610 prepare_to_wait(&info->transaction_wait, &wait,
611 TASK_UNINTERRUPTIBLE);
612 mutex_unlock(&info->trans_mutex);
614 schedule();
616 mutex_lock(&info->trans_mutex);
617 finish_wait(&info->transaction_wait, &wait);
619 mutex_unlock(&info->trans_mutex);
620 return 0;
624 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
625 * all of them
627 int btrfs_drop_dead_root(struct btrfs_root *root)
629 struct btrfs_trans_handle *trans;
630 struct btrfs_root *tree_root = root->fs_info->tree_root;
631 unsigned long nr;
632 int ret;
634 while (1) {
636 * we don't want to jump in and create a bunch of
637 * delayed refs if the transaction is starting to close
639 wait_transaction_pre_flush(tree_root->fs_info);
640 trans = btrfs_start_transaction(tree_root, 1);
643 * we've joined a transaction, make sure it isn't
644 * closing right now
646 if (trans->transaction->delayed_refs.flushing) {
647 btrfs_end_transaction(trans, tree_root);
648 continue;
651 ret = btrfs_drop_snapshot(trans, root);
652 if (ret != -EAGAIN)
653 break;
655 ret = btrfs_update_root(trans, tree_root,
656 &root->root_key,
657 &root->root_item);
658 if (ret)
659 break;
661 nr = trans->blocks_used;
662 ret = btrfs_end_transaction(trans, tree_root);
663 BUG_ON(ret);
665 btrfs_btree_balance_dirty(tree_root, nr);
666 cond_resched();
668 BUG_ON(ret);
670 ret = btrfs_del_root(trans, tree_root, &root->root_key);
671 BUG_ON(ret);
673 nr = trans->blocks_used;
674 ret = btrfs_end_transaction(trans, tree_root);
675 BUG_ON(ret);
677 free_extent_buffer(root->node);
678 free_extent_buffer(root->commit_root);
679 kfree(root);
681 btrfs_btree_balance_dirty(tree_root, nr);
682 return ret;
686 * new snapshots need to be created at a very specific time in the
687 * transaction commit. This does the actual creation
689 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
690 struct btrfs_fs_info *fs_info,
691 struct btrfs_pending_snapshot *pending)
693 struct btrfs_key key;
694 struct btrfs_root_item *new_root_item;
695 struct btrfs_root *tree_root = fs_info->tree_root;
696 struct btrfs_root *root = pending->root;
697 struct extent_buffer *tmp;
698 struct extent_buffer *old;
699 int ret;
700 u64 objectid;
702 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
703 if (!new_root_item) {
704 ret = -ENOMEM;
705 goto fail;
707 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
708 if (ret)
709 goto fail;
711 record_root_in_trans(trans, root);
712 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
713 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
715 key.objectid = objectid;
716 key.offset = 0;
717 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
719 old = btrfs_lock_root_node(root);
720 btrfs_cow_block(trans, root, old, NULL, 0, &old);
721 btrfs_set_lock_blocking(old);
723 btrfs_copy_root(trans, root, old, &tmp, objectid);
724 btrfs_tree_unlock(old);
725 free_extent_buffer(old);
727 btrfs_set_root_node(new_root_item, tmp);
728 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
729 new_root_item);
730 btrfs_tree_unlock(tmp);
731 free_extent_buffer(tmp);
732 if (ret)
733 goto fail;
735 key.offset = (u64)-1;
736 memcpy(&pending->root_key, &key, sizeof(key));
737 fail:
738 kfree(new_root_item);
739 return ret;
742 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
743 struct btrfs_pending_snapshot *pending)
745 int ret;
746 int namelen;
747 u64 index = 0;
748 struct btrfs_trans_handle *trans;
749 struct inode *parent_inode;
750 struct inode *inode;
751 struct btrfs_root *parent_root;
753 parent_inode = pending->dentry->d_parent->d_inode;
754 parent_root = BTRFS_I(parent_inode)->root;
755 trans = btrfs_join_transaction(parent_root, 1);
758 * insert the directory item
760 namelen = strlen(pending->name);
761 ret = btrfs_set_inode_index(parent_inode, &index);
762 ret = btrfs_insert_dir_item(trans, parent_root,
763 pending->name, namelen,
764 parent_inode->i_ino,
765 &pending->root_key, BTRFS_FT_DIR, index);
767 if (ret)
768 goto fail;
770 btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
771 ret = btrfs_update_inode(trans, parent_root, parent_inode);
772 BUG_ON(ret);
774 /* add the backref first */
775 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
776 pending->root_key.objectid,
777 BTRFS_ROOT_BACKREF_KEY,
778 parent_root->root_key.objectid,
779 parent_inode->i_ino, index, pending->name,
780 namelen);
782 BUG_ON(ret);
784 /* now add the forward ref */
785 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
786 parent_root->root_key.objectid,
787 BTRFS_ROOT_REF_KEY,
788 pending->root_key.objectid,
789 parent_inode->i_ino, index, pending->name,
790 namelen);
792 inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
793 d_instantiate(pending->dentry, inode);
794 fail:
795 btrfs_end_transaction(trans, fs_info->fs_root);
796 return ret;
800 * create all the snapshots we've scheduled for creation
802 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
803 struct btrfs_fs_info *fs_info)
805 struct btrfs_pending_snapshot *pending;
806 struct list_head *head = &trans->transaction->pending_snapshots;
807 int ret;
809 list_for_each_entry(pending, head, list) {
810 ret = create_pending_snapshot(trans, fs_info, pending);
811 BUG_ON(ret);
813 return 0;
816 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
817 struct btrfs_fs_info *fs_info)
819 struct btrfs_pending_snapshot *pending;
820 struct list_head *head = &trans->transaction->pending_snapshots;
821 int ret;
823 while (!list_empty(head)) {
824 pending = list_entry(head->next,
825 struct btrfs_pending_snapshot, list);
826 ret = finish_pending_snapshot(fs_info, pending);
827 BUG_ON(ret);
828 list_del(&pending->list);
829 kfree(pending->name);
830 kfree(pending);
832 return 0;
835 static void update_super_roots(struct btrfs_root *root)
837 struct btrfs_root_item *root_item;
838 struct btrfs_super_block *super;
840 super = &root->fs_info->super_copy;
842 root_item = &root->fs_info->chunk_root->root_item;
843 super->chunk_root = root_item->bytenr;
844 super->chunk_root_generation = root_item->generation;
845 super->chunk_root_level = root_item->level;
847 root_item = &root->fs_info->tree_root->root_item;
848 super->root = root_item->bytenr;
849 super->generation = root_item->generation;
850 super->root_level = root_item->level;
853 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
854 struct btrfs_root *root)
856 unsigned long joined = 0;
857 unsigned long timeout = 1;
858 struct btrfs_transaction *cur_trans;
859 struct btrfs_transaction *prev_trans = NULL;
860 struct extent_io_tree *pinned_copy;
861 DEFINE_WAIT(wait);
862 int ret;
863 int should_grow = 0;
864 unsigned long now = get_seconds();
865 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
867 btrfs_run_ordered_operations(root, 0);
869 /* make a pass through all the delayed refs we have so far
870 * any runnings procs may add more while we are here
872 ret = btrfs_run_delayed_refs(trans, root, 0);
873 BUG_ON(ret);
875 cur_trans = trans->transaction;
877 * set the flushing flag so procs in this transaction have to
878 * start sending their work down.
880 cur_trans->delayed_refs.flushing = 1;
882 ret = btrfs_run_delayed_refs(trans, root, 0);
883 BUG_ON(ret);
885 mutex_lock(&root->fs_info->trans_mutex);
886 if (cur_trans->in_commit) {
887 cur_trans->use_count++;
888 mutex_unlock(&root->fs_info->trans_mutex);
889 btrfs_end_transaction(trans, root);
891 ret = wait_for_commit(root, cur_trans);
892 BUG_ON(ret);
894 mutex_lock(&root->fs_info->trans_mutex);
895 put_transaction(cur_trans);
896 mutex_unlock(&root->fs_info->trans_mutex);
898 return 0;
901 pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
902 if (!pinned_copy)
903 return -ENOMEM;
905 extent_io_tree_init(pinned_copy,
906 root->fs_info->btree_inode->i_mapping, GFP_NOFS);
908 trans->transaction->in_commit = 1;
909 trans->transaction->blocked = 1;
910 if (cur_trans->list.prev != &root->fs_info->trans_list) {
911 prev_trans = list_entry(cur_trans->list.prev,
912 struct btrfs_transaction, list);
913 if (!prev_trans->commit_done) {
914 prev_trans->use_count++;
915 mutex_unlock(&root->fs_info->trans_mutex);
917 wait_for_commit(root, prev_trans);
919 mutex_lock(&root->fs_info->trans_mutex);
920 put_transaction(prev_trans);
924 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
925 should_grow = 1;
927 do {
928 int snap_pending = 0;
929 joined = cur_trans->num_joined;
930 if (!list_empty(&trans->transaction->pending_snapshots))
931 snap_pending = 1;
933 WARN_ON(cur_trans != trans->transaction);
934 prepare_to_wait(&cur_trans->writer_wait, &wait,
935 TASK_UNINTERRUPTIBLE);
937 if (cur_trans->num_writers > 1)
938 timeout = MAX_SCHEDULE_TIMEOUT;
939 else if (should_grow)
940 timeout = 1;
942 mutex_unlock(&root->fs_info->trans_mutex);
944 if (flush_on_commit || snap_pending) {
945 if (flush_on_commit)
946 btrfs_start_delalloc_inodes(root);
947 ret = btrfs_wait_ordered_extents(root, 1);
948 BUG_ON(ret);
952 * rename don't use btrfs_join_transaction, so, once we
953 * set the transaction to blocked above, we aren't going
954 * to get any new ordered operations. We can safely run
955 * it here and no for sure that nothing new will be added
956 * to the list
958 btrfs_run_ordered_operations(root, 1);
960 smp_mb();
961 if (cur_trans->num_writers > 1 || should_grow)
962 schedule_timeout(timeout);
964 mutex_lock(&root->fs_info->trans_mutex);
965 finish_wait(&cur_trans->writer_wait, &wait);
966 } while (cur_trans->num_writers > 1 ||
967 (should_grow && cur_trans->num_joined != joined));
969 ret = create_pending_snapshots(trans, root->fs_info);
970 BUG_ON(ret);
972 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
973 BUG_ON(ret);
975 WARN_ON(cur_trans != trans->transaction);
977 /* btrfs_commit_tree_roots is responsible for getting the
978 * various roots consistent with each other. Every pointer
979 * in the tree of tree roots has to point to the most up to date
980 * root for every subvolume and other tree. So, we have to keep
981 * the tree logging code from jumping in and changing any
982 * of the trees.
984 * At this point in the commit, there can't be any tree-log
985 * writers, but a little lower down we drop the trans mutex
986 * and let new people in. By holding the tree_log_mutex
987 * from now until after the super is written, we avoid races
988 * with the tree-log code.
990 mutex_lock(&root->fs_info->tree_log_mutex);
992 ret = commit_fs_roots(trans, root);
993 BUG_ON(ret);
995 /* commit_fs_roots gets rid of all the tree log roots, it is now
996 * safe to free the root of tree log roots
998 btrfs_free_log_root_tree(trans, root->fs_info);
1000 ret = commit_cowonly_roots(trans, root);
1001 BUG_ON(ret);
1003 cur_trans = root->fs_info->running_transaction;
1004 spin_lock(&root->fs_info->new_trans_lock);
1005 root->fs_info->running_transaction = NULL;
1006 spin_unlock(&root->fs_info->new_trans_lock);
1008 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1009 root->fs_info->tree_root->node);
1010 free_extent_buffer(root->fs_info->tree_root->commit_root);
1011 root->fs_info->tree_root->commit_root =
1012 btrfs_root_node(root->fs_info->tree_root);
1014 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1015 root->fs_info->chunk_root->node);
1016 free_extent_buffer(root->fs_info->chunk_root->commit_root);
1017 root->fs_info->chunk_root->commit_root =
1018 btrfs_root_node(root->fs_info->chunk_root);
1020 update_super_roots(root);
1022 if (!root->fs_info->log_root_recovering) {
1023 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1024 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1027 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1028 sizeof(root->fs_info->super_copy));
1030 btrfs_copy_pinned(root, pinned_copy);
1032 trans->transaction->blocked = 0;
1034 wake_up(&root->fs_info->transaction_wait);
1036 mutex_unlock(&root->fs_info->trans_mutex);
1037 ret = btrfs_write_and_wait_transaction(trans, root);
1038 BUG_ON(ret);
1039 write_ctree_super(trans, root, 0);
1042 * the super is written, we can safely allow the tree-loggers
1043 * to go about their business
1045 mutex_unlock(&root->fs_info->tree_log_mutex);
1047 btrfs_finish_extent_commit(trans, root, pinned_copy);
1048 kfree(pinned_copy);
1050 /* do the directory inserts of any pending snapshot creations */
1051 finish_pending_snapshots(trans, root->fs_info);
1053 mutex_lock(&root->fs_info->trans_mutex);
1055 cur_trans->commit_done = 1;
1057 root->fs_info->last_trans_committed = cur_trans->transid;
1058 wake_up(&cur_trans->commit_wait);
1060 put_transaction(cur_trans);
1061 put_transaction(cur_trans);
1063 mutex_unlock(&root->fs_info->trans_mutex);
1065 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1066 return ret;
1070 * interface function to delete all the snapshots we have scheduled for deletion
1072 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1074 LIST_HEAD(list);
1075 struct btrfs_fs_info *fs_info = root->fs_info;
1077 mutex_lock(&fs_info->trans_mutex);
1078 list_splice_init(&fs_info->dead_roots, &list);
1079 mutex_unlock(&fs_info->trans_mutex);
1081 while (!list_empty(&list)) {
1082 root = list_entry(list.next, struct btrfs_root, root_list);
1083 list_del_init(&root->root_list);
1084 btrfs_drop_dead_root(root);
1086 return 0;