2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 #include <linux/module.h>
20 #include <linux/errno.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/crc-itu-t.h>
24 #include "fw-transaction.h"
25 #include "fw-topology.h"
26 #include "fw-device.h"
28 int fw_compute_block_crc(u32
*block
)
30 __be32 be32_block
[256];
33 length
= (*block
>> 16) & 0xff;
34 for (i
= 0; i
< length
; i
++)
35 be32_block
[i
] = cpu_to_be32(block
[i
+ 1]);
36 *block
|= crc_itu_t(0, (u8
*) be32_block
, length
* 4);
41 static DEFINE_MUTEX(card_mutex
);
42 static LIST_HEAD(card_list
);
44 static LIST_HEAD(descriptor_list
);
45 static int descriptor_count
;
47 #define BIB_CRC(v) ((v) << 0)
48 #define BIB_CRC_LENGTH(v) ((v) << 16)
49 #define BIB_INFO_LENGTH(v) ((v) << 24)
51 #define BIB_LINK_SPEED(v) ((v) << 0)
52 #define BIB_GENERATION(v) ((v) << 4)
53 #define BIB_MAX_ROM(v) ((v) << 8)
54 #define BIB_MAX_RECEIVE(v) ((v) << 12)
55 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
56 #define BIB_PMC ((1) << 27)
57 #define BIB_BMC ((1) << 28)
58 #define BIB_ISC ((1) << 29)
59 #define BIB_CMC ((1) << 30)
60 #define BIB_IMC ((1) << 31)
63 generate_config_rom(struct fw_card
*card
, size_t *config_rom_length
)
65 struct fw_descriptor
*desc
;
66 static u32 config_rom
[256];
70 * Initialize contents of config rom buffer. On the OHCI
71 * controller, block reads to the config rom accesses the host
72 * memory, but quadlet read access the hardware bus info block
73 * registers. That's just crack, but it means we should make
74 * sure the contents of bus info block in host memory mathces
75 * the version stored in the OHCI registers.
78 memset(config_rom
, 0, sizeof(config_rom
));
79 config_rom
[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
80 config_rom
[1] = 0x31333934;
83 BIB_LINK_SPEED(card
->link_speed
) |
84 BIB_GENERATION(card
->config_rom_generation
++ % 14 + 2) |
86 BIB_MAX_RECEIVE(card
->max_receive
) |
87 BIB_BMC
| BIB_ISC
| BIB_CMC
| BIB_IMC
;
88 config_rom
[3] = card
->guid
>> 32;
89 config_rom
[4] = card
->guid
;
91 /* Generate root directory. */
94 config_rom
[i
++] = 0x0c0083c0; /* node capabilities */
95 j
= i
+ descriptor_count
;
97 /* Generate root directory entries for descriptors. */
98 list_for_each_entry (desc
, &descriptor_list
, link
) {
99 if (desc
->immediate
> 0)
100 config_rom
[i
++] = desc
->immediate
;
101 config_rom
[i
] = desc
->key
| (j
- i
);
106 /* Update root directory length. */
107 config_rom
[5] = (i
- 5 - 1) << 16;
109 /* End of root directory, now copy in descriptors. */
110 list_for_each_entry (desc
, &descriptor_list
, link
) {
111 memcpy(&config_rom
[i
], desc
->data
, desc
->length
* 4);
115 /* Calculate CRCs for all blocks in the config rom. This
116 * assumes that CRC length and info length are identical for
117 * the bus info block, which is always the case for this
119 for (i
= 0; i
< j
; i
+= length
+ 1)
120 length
= fw_compute_block_crc(config_rom
+ i
);
122 *config_rom_length
= j
;
128 update_config_roms(void)
130 struct fw_card
*card
;
134 list_for_each_entry (card
, &card_list
, link
) {
135 config_rom
= generate_config_rom(card
, &length
);
136 card
->driver
->set_config_rom(card
, config_rom
, length
);
141 fw_core_add_descriptor(struct fw_descriptor
*desc
)
146 * Check descriptor is valid; the length of all blocks in the
147 * descriptor has to add up to exactly the length of the
151 while (i
< desc
->length
)
152 i
+= (desc
->data
[i
] >> 16) + 1;
154 if (i
!= desc
->length
)
157 mutex_lock(&card_mutex
);
159 list_add_tail(&desc
->link
, &descriptor_list
);
161 if (desc
->immediate
> 0)
163 update_config_roms();
165 mutex_unlock(&card_mutex
);
169 EXPORT_SYMBOL(fw_core_add_descriptor
);
172 fw_core_remove_descriptor(struct fw_descriptor
*desc
)
174 mutex_lock(&card_mutex
);
176 list_del(&desc
->link
);
178 if (desc
->immediate
> 0)
180 update_config_roms();
182 mutex_unlock(&card_mutex
);
184 EXPORT_SYMBOL(fw_core_remove_descriptor
);
186 static const char gap_count_table
[] = {
187 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
191 struct fw_transaction t
;
198 struct completion done
;
202 complete_bm_lock(struct fw_card
*card
, int rcode
,
203 void *payload
, size_t length
, void *data
)
205 struct bm_data
*bmd
= data
;
207 if (rcode
== RCODE_COMPLETE
)
208 bmd
->old
= be32_to_cpu(*(__be32
*) payload
);
210 complete(&bmd
->done
);
214 fw_card_bm_work(struct work_struct
*work
)
216 struct fw_card
*card
= container_of(work
, struct fw_card
, work
.work
);
217 struct fw_device
*root
;
220 int root_id
, new_root_id
, irm_id
, gap_count
, generation
, grace
;
223 spin_lock_irqsave(&card
->lock
, flags
);
225 generation
= card
->generation
;
226 root
= card
->root_node
->data
;
227 root_id
= card
->root_node
->node_id
;
228 grace
= time_after(jiffies
, card
->reset_jiffies
+ DIV_ROUND_UP(HZ
, 10));
230 if (card
->bm_generation
+ 1 == generation
||
231 (card
->bm_generation
!= generation
&& grace
)) {
233 * This first step is to figure out who is IRM and
234 * then try to become bus manager. If the IRM is not
235 * well defined (e.g. does not have an active link
236 * layer or does not responds to our lock request, we
237 * will have to do a little vigilante bus management.
238 * In that case, we do a goto into the gap count logic
239 * so that when we do the reset, we still optimize the
240 * gap count. That could well save a reset in the
244 irm_id
= card
->irm_node
->node_id
;
245 if (!card
->irm_node
->link_on
) {
246 new_root_id
= card
->local_node
->node_id
;
247 fw_notify("IRM has link off, making local node (%02x) root.\n",
252 bmd
.lock
.arg
= cpu_to_be32(0x3f);
253 bmd
.lock
.data
= cpu_to_be32(card
->local_node
->node_id
);
255 spin_unlock_irqrestore(&card
->lock
, flags
);
257 init_completion(&bmd
.done
);
258 fw_send_request(card
, &bmd
.t
, TCODE_LOCK_COMPARE_SWAP
,
260 SCODE_100
, CSR_REGISTER_BASE
+ CSR_BUS_MANAGER_ID
,
261 &bmd
.lock
, sizeof(bmd
.lock
),
262 complete_bm_lock
, &bmd
);
263 wait_for_completion(&bmd
.done
);
265 if (bmd
.rcode
== RCODE_GENERATION
) {
267 * Another bus reset happened. Just return,
268 * the BM work has been rescheduled.
273 if (bmd
.rcode
== RCODE_COMPLETE
&& bmd
.old
!= 0x3f)
274 /* Somebody else is BM, let them do the work. */
277 spin_lock_irqsave(&card
->lock
, flags
);
278 if (bmd
.rcode
!= RCODE_COMPLETE
) {
280 * The lock request failed, maybe the IRM
281 * isn't really IRM capable after all. Let's
282 * do a bus reset and pick the local node as
283 * root, and thus, IRM.
285 new_root_id
= card
->local_node
->node_id
;
286 fw_notify("BM lock failed, making local node (%02x) root.\n",
290 } else if (card
->bm_generation
!= generation
) {
292 * OK, we weren't BM in the last generation, and it's
293 * less than 100ms since last bus reset. Reschedule
294 * this task 100ms from now.
296 spin_unlock_irqrestore(&card
->lock
, flags
);
297 schedule_delayed_work(&card
->work
, DIV_ROUND_UP(HZ
, 10));
302 * We're bus manager for this generation, so next step is to
303 * make sure we have an active cycle master and do gap count
306 card
->bm_generation
= generation
;
310 * Either link_on is false, or we failed to read the
311 * config rom. In either case, pick another root.
313 new_root_id
= card
->local_node
->node_id
;
314 } else if (atomic_read(&root
->state
) != FW_DEVICE_RUNNING
) {
316 * If we haven't probed this device yet, bail out now
317 * and let's try again once that's done.
319 spin_unlock_irqrestore(&card
->lock
, flags
);
321 } else if (root
->config_rom
[2] & BIB_CMC
) {
323 * FIXME: I suppose we should set the cmstr bit in the
324 * STATE_CLEAR register of this node, as described in
325 * 1394-1995, 8.4.2.6. Also, send out a force root
326 * packet for this node.
328 new_root_id
= root_id
;
331 * Current root has an active link layer and we
332 * successfully read the config rom, but it's not
333 * cycle master capable.
335 new_root_id
= card
->local_node
->node_id
;
340 * Pick a gap count from 1394a table E-1. The table doesn't cover
341 * the typically much larger 1394b beta repeater delays though.
343 if (!card
->beta_repeaters_present
&&
344 card
->root_node
->max_hops
< ARRAY_SIZE(gap_count_table
))
345 gap_count
= gap_count_table
[card
->root_node
->max_hops
];
350 * Finally, figure out if we should do a reset or not. If we've
351 * done less that 5 resets with the same physical topology and we
352 * have either a new root or a new gap count setting, let's do it.
355 if (card
->bm_retries
++ < 5 &&
356 (card
->gap_count
!= gap_count
|| new_root_id
!= root_id
))
359 spin_unlock_irqrestore(&card
->lock
, flags
);
362 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
363 card
->index
, new_root_id
, gap_count
);
364 fw_send_phy_config(card
, new_root_id
, generation
, gap_count
);
365 fw_core_initiate_bus_reset(card
, 1);
370 flush_timer_callback(unsigned long data
)
372 struct fw_card
*card
= (struct fw_card
*)data
;
374 fw_flush_transactions(card
);
378 fw_card_initialize(struct fw_card
*card
, const struct fw_card_driver
*driver
,
379 struct device
*device
)
381 static atomic_t index
= ATOMIC_INIT(-1);
383 kref_init(&card
->kref
);
384 card
->index
= atomic_inc_return(&index
);
385 card
->driver
= driver
;
386 card
->device
= device
;
387 card
->current_tlabel
= 0;
388 card
->tlabel_mask
= 0;
391 INIT_LIST_HEAD(&card
->transaction_list
);
392 spin_lock_init(&card
->lock
);
393 setup_timer(&card
->flush_timer
,
394 flush_timer_callback
, (unsigned long)card
);
396 card
->local_node
= NULL
;
398 INIT_DELAYED_WORK(&card
->work
, fw_card_bm_work
);
400 EXPORT_SYMBOL(fw_card_initialize
);
403 fw_card_add(struct fw_card
*card
,
404 u32 max_receive
, u32 link_speed
, u64 guid
)
409 card
->max_receive
= max_receive
;
410 card
->link_speed
= link_speed
;
414 * The subsystem grabs a reference when the card is added and
415 * drops it when the driver calls fw_core_remove_card.
419 mutex_lock(&card_mutex
);
420 config_rom
= generate_config_rom(card
, &length
);
421 list_add_tail(&card
->link
, &card_list
);
422 mutex_unlock(&card_mutex
);
424 return card
->driver
->enable(card
, config_rom
, length
);
426 EXPORT_SYMBOL(fw_card_add
);
430 * The next few functions implements a dummy driver that use once a
431 * card driver shuts down an fw_card. This allows the driver to
432 * cleanly unload, as all IO to the card will be handled by the dummy
433 * driver instead of calling into the (possibly) unloaded module. The
434 * dummy driver just fails all IO.
438 dummy_enable(struct fw_card
*card
, u32
*config_rom
, size_t length
)
445 dummy_update_phy_reg(struct fw_card
*card
, int address
,
446 int clear_bits
, int set_bits
)
452 dummy_set_config_rom(struct fw_card
*card
,
453 u32
*config_rom
, size_t length
)
456 * We take the card out of card_list before setting the dummy
457 * driver, so this should never get called.
464 dummy_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
466 packet
->callback(packet
, card
, -ENODEV
);
470 dummy_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
472 packet
->callback(packet
, card
, -ENODEV
);
476 dummy_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
482 dummy_enable_phys_dma(struct fw_card
*card
,
483 int node_id
, int generation
)
488 static struct fw_card_driver dummy_driver
= {
490 .enable
= dummy_enable
,
491 .update_phy_reg
= dummy_update_phy_reg
,
492 .set_config_rom
= dummy_set_config_rom
,
493 .send_request
= dummy_send_request
,
494 .cancel_packet
= dummy_cancel_packet
,
495 .send_response
= dummy_send_response
,
496 .enable_phys_dma
= dummy_enable_phys_dma
,
500 fw_core_remove_card(struct fw_card
*card
)
502 card
->driver
->update_phy_reg(card
, 4,
503 PHY_LINK_ACTIVE
| PHY_CONTENDER
, 0);
504 fw_core_initiate_bus_reset(card
, 1);
506 mutex_lock(&card_mutex
);
507 list_del(&card
->link
);
508 mutex_unlock(&card_mutex
);
510 /* Set up the dummy driver. */
511 card
->driver
= &dummy_driver
;
513 fw_destroy_nodes(card
);
514 flush_scheduled_work();
516 fw_flush_transactions(card
);
517 del_timer_sync(&card
->flush_timer
);
521 EXPORT_SYMBOL(fw_core_remove_card
);
524 fw_card_get(struct fw_card
*card
)
526 kref_get(&card
->kref
);
530 EXPORT_SYMBOL(fw_card_get
);
533 release_card(struct kref
*kref
)
535 struct fw_card
*card
= container_of(kref
, struct fw_card
, kref
);
541 * An assumption for fw_card_put() is that the card driver allocates
542 * the fw_card struct with kalloc and that it has been shut down
543 * before the last ref is dropped.
546 fw_card_put(struct fw_card
*card
)
548 kref_put(&card
->kref
, release_card
);
550 EXPORT_SYMBOL(fw_card_put
);
553 fw_core_initiate_bus_reset(struct fw_card
*card
, int short_reset
)
555 int reg
= short_reset
? 5 : 1;
556 int bit
= short_reset
? PHY_BUS_SHORT_RESET
: PHY_BUS_RESET
;
558 return card
->driver
->update_phy_reg(card
, reg
, 0, bit
);
560 EXPORT_SYMBOL(fw_core_initiate_bus_reset
);