2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_dev_init_params(struct ata_port
*ap
,
65 struct ata_device
*dev
);
66 static void ata_set_mode(struct ata_port
*ap
);
67 static unsigned int ata_dev_set_xfermode(struct ata_port
*ap
,
68 struct ata_device
*dev
);
69 static void ata_dev_xfermask(struct ata_port
*ap
, struct ata_device
*dev
);
70 static void ata_pio_error(struct ata_port
*ap
);
72 static unsigned int ata_unique_id
= 1;
73 static struct workqueue_struct
*ata_wq
;
75 int atapi_enabled
= 1;
76 module_param(atapi_enabled
, int, 0444);
77 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
80 module_param_named(fua
, libata_fua
, int, 0444);
81 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
83 MODULE_AUTHOR("Jeff Garzik");
84 MODULE_DESCRIPTION("Library module for ATA devices");
85 MODULE_LICENSE("GPL");
86 MODULE_VERSION(DRV_VERSION
);
90 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
91 * @tf: Taskfile to convert
92 * @fis: Buffer into which data will output
93 * @pmp: Port multiplier port
95 * Converts a standard ATA taskfile to a Serial ATA
96 * FIS structure (Register - Host to Device).
99 * Inherited from caller.
102 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
104 fis
[0] = 0x27; /* Register - Host to Device FIS */
105 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
106 bit 7 indicates Command FIS */
107 fis
[2] = tf
->command
;
108 fis
[3] = tf
->feature
;
115 fis
[8] = tf
->hob_lbal
;
116 fis
[9] = tf
->hob_lbam
;
117 fis
[10] = tf
->hob_lbah
;
118 fis
[11] = tf
->hob_feature
;
121 fis
[13] = tf
->hob_nsect
;
132 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
133 * @fis: Buffer from which data will be input
134 * @tf: Taskfile to output
136 * Converts a serial ATA FIS structure to a standard ATA taskfile.
139 * Inherited from caller.
142 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
144 tf
->command
= fis
[2]; /* status */
145 tf
->feature
= fis
[3]; /* error */
152 tf
->hob_lbal
= fis
[8];
153 tf
->hob_lbam
= fis
[9];
154 tf
->hob_lbah
= fis
[10];
157 tf
->hob_nsect
= fis
[13];
160 static const u8 ata_rw_cmds
[] = {
164 ATA_CMD_READ_MULTI_EXT
,
165 ATA_CMD_WRITE_MULTI_EXT
,
169 ATA_CMD_WRITE_MULTI_FUA_EXT
,
173 ATA_CMD_PIO_READ_EXT
,
174 ATA_CMD_PIO_WRITE_EXT
,
187 ATA_CMD_WRITE_FUA_EXT
191 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
192 * @qc: command to examine and configure
194 * Examine the device configuration and tf->flags to calculate
195 * the proper read/write commands and protocol to use.
200 int ata_rwcmd_protocol(struct ata_queued_cmd
*qc
)
202 struct ata_taskfile
*tf
= &qc
->tf
;
203 struct ata_device
*dev
= qc
->dev
;
206 int index
, fua
, lba48
, write
;
208 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
209 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
210 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
212 if (dev
->flags
& ATA_DFLAG_PIO
) {
213 tf
->protocol
= ATA_PROT_PIO
;
214 index
= dev
->multi_count
? 0 : 8;
215 } else if (lba48
&& (qc
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
216 /* Unable to use DMA due to host limitation */
217 tf
->protocol
= ATA_PROT_PIO
;
218 index
= dev
->multi_count
? 0 : 8;
220 tf
->protocol
= ATA_PROT_DMA
;
224 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
233 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
234 * @pio_mask: pio_mask
235 * @mwdma_mask: mwdma_mask
236 * @udma_mask: udma_mask
238 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
239 * unsigned int xfer_mask.
247 static unsigned int ata_pack_xfermask(unsigned int pio_mask
,
248 unsigned int mwdma_mask
,
249 unsigned int udma_mask
)
251 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
252 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
253 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
257 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
258 * @xfer_mask: xfer_mask to unpack
259 * @pio_mask: resulting pio_mask
260 * @mwdma_mask: resulting mwdma_mask
261 * @udma_mask: resulting udma_mask
263 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
264 * Any NULL distination masks will be ignored.
266 static void ata_unpack_xfermask(unsigned int xfer_mask
,
267 unsigned int *pio_mask
,
268 unsigned int *mwdma_mask
,
269 unsigned int *udma_mask
)
272 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
274 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
276 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
279 static const struct ata_xfer_ent
{
280 unsigned int shift
, bits
;
283 { ATA_SHIFT_PIO
, ATA_BITS_PIO
, XFER_PIO_0
},
284 { ATA_SHIFT_MWDMA
, ATA_BITS_MWDMA
, XFER_MW_DMA_0
},
285 { ATA_SHIFT_UDMA
, ATA_BITS_UDMA
, XFER_UDMA_0
},
290 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
291 * @xfer_mask: xfer_mask of interest
293 * Return matching XFER_* value for @xfer_mask. Only the highest
294 * bit of @xfer_mask is considered.
300 * Matching XFER_* value, 0 if no match found.
302 static u8
ata_xfer_mask2mode(unsigned int xfer_mask
)
304 int highbit
= fls(xfer_mask
) - 1;
305 const struct ata_xfer_ent
*ent
;
307 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
308 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
309 return ent
->base
+ highbit
- ent
->shift
;
314 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
315 * @xfer_mode: XFER_* of interest
317 * Return matching xfer_mask for @xfer_mode.
323 * Matching xfer_mask, 0 if no match found.
325 static unsigned int ata_xfer_mode2mask(u8 xfer_mode
)
327 const struct ata_xfer_ent
*ent
;
329 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
330 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
331 return 1 << (ent
->shift
+ xfer_mode
- ent
->base
);
336 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
337 * @xfer_mode: XFER_* of interest
339 * Return matching xfer_shift for @xfer_mode.
345 * Matching xfer_shift, -1 if no match found.
347 static int ata_xfer_mode2shift(unsigned int xfer_mode
)
349 const struct ata_xfer_ent
*ent
;
351 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
352 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
358 * ata_mode_string - convert xfer_mask to string
359 * @xfer_mask: mask of bits supported; only highest bit counts.
361 * Determine string which represents the highest speed
362 * (highest bit in @modemask).
368 * Constant C string representing highest speed listed in
369 * @mode_mask, or the constant C string "<n/a>".
371 static const char *ata_mode_string(unsigned int xfer_mask
)
373 static const char * const xfer_mode_str
[] = {
393 highbit
= fls(xfer_mask
) - 1;
394 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
395 return xfer_mode_str
[highbit
];
399 static void ata_dev_disable(struct ata_port
*ap
, struct ata_device
*dev
)
401 if (ata_dev_present(dev
)) {
402 printk(KERN_WARNING
"ata%u: dev %u disabled\n",
409 * ata_pio_devchk - PATA device presence detection
410 * @ap: ATA channel to examine
411 * @device: Device to examine (starting at zero)
413 * This technique was originally described in
414 * Hale Landis's ATADRVR (www.ata-atapi.com), and
415 * later found its way into the ATA/ATAPI spec.
417 * Write a pattern to the ATA shadow registers,
418 * and if a device is present, it will respond by
419 * correctly storing and echoing back the
420 * ATA shadow register contents.
426 static unsigned int ata_pio_devchk(struct ata_port
*ap
,
429 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
432 ap
->ops
->dev_select(ap
, device
);
434 outb(0x55, ioaddr
->nsect_addr
);
435 outb(0xaa, ioaddr
->lbal_addr
);
437 outb(0xaa, ioaddr
->nsect_addr
);
438 outb(0x55, ioaddr
->lbal_addr
);
440 outb(0x55, ioaddr
->nsect_addr
);
441 outb(0xaa, ioaddr
->lbal_addr
);
443 nsect
= inb(ioaddr
->nsect_addr
);
444 lbal
= inb(ioaddr
->lbal_addr
);
446 if ((nsect
== 0x55) && (lbal
== 0xaa))
447 return 1; /* we found a device */
449 return 0; /* nothing found */
453 * ata_mmio_devchk - PATA device presence detection
454 * @ap: ATA channel to examine
455 * @device: Device to examine (starting at zero)
457 * This technique was originally described in
458 * Hale Landis's ATADRVR (www.ata-atapi.com), and
459 * later found its way into the ATA/ATAPI spec.
461 * Write a pattern to the ATA shadow registers,
462 * and if a device is present, it will respond by
463 * correctly storing and echoing back the
464 * ATA shadow register contents.
470 static unsigned int ata_mmio_devchk(struct ata_port
*ap
,
473 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
476 ap
->ops
->dev_select(ap
, device
);
478 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
479 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
481 writeb(0xaa, (void __iomem
*) ioaddr
->nsect_addr
);
482 writeb(0x55, (void __iomem
*) ioaddr
->lbal_addr
);
484 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
485 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
487 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
488 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
490 if ((nsect
== 0x55) && (lbal
== 0xaa))
491 return 1; /* we found a device */
493 return 0; /* nothing found */
497 * ata_devchk - PATA device presence detection
498 * @ap: ATA channel to examine
499 * @device: Device to examine (starting at zero)
501 * Dispatch ATA device presence detection, depending
502 * on whether we are using PIO or MMIO to talk to the
503 * ATA shadow registers.
509 static unsigned int ata_devchk(struct ata_port
*ap
,
512 if (ap
->flags
& ATA_FLAG_MMIO
)
513 return ata_mmio_devchk(ap
, device
);
514 return ata_pio_devchk(ap
, device
);
518 * ata_dev_classify - determine device type based on ATA-spec signature
519 * @tf: ATA taskfile register set for device to be identified
521 * Determine from taskfile register contents whether a device is
522 * ATA or ATAPI, as per "Signature and persistence" section
523 * of ATA/PI spec (volume 1, sect 5.14).
529 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
530 * the event of failure.
533 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
535 /* Apple's open source Darwin code hints that some devices only
536 * put a proper signature into the LBA mid/high registers,
537 * So, we only check those. It's sufficient for uniqueness.
540 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
541 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
542 DPRINTK("found ATA device by sig\n");
546 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
547 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
548 DPRINTK("found ATAPI device by sig\n");
549 return ATA_DEV_ATAPI
;
552 DPRINTK("unknown device\n");
553 return ATA_DEV_UNKNOWN
;
557 * ata_dev_try_classify - Parse returned ATA device signature
558 * @ap: ATA channel to examine
559 * @device: Device to examine (starting at zero)
560 * @r_err: Value of error register on completion
562 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
563 * an ATA/ATAPI-defined set of values is placed in the ATA
564 * shadow registers, indicating the results of device detection
567 * Select the ATA device, and read the values from the ATA shadow
568 * registers. Then parse according to the Error register value,
569 * and the spec-defined values examined by ata_dev_classify().
575 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
579 ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
, u8
*r_err
)
581 struct ata_taskfile tf
;
585 ap
->ops
->dev_select(ap
, device
);
587 memset(&tf
, 0, sizeof(tf
));
589 ap
->ops
->tf_read(ap
, &tf
);
594 /* see if device passed diags */
597 else if ((device
== 0) && (err
== 0x81))
602 /* determine if device is ATA or ATAPI */
603 class = ata_dev_classify(&tf
);
605 if (class == ATA_DEV_UNKNOWN
)
607 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
613 * ata_id_string - Convert IDENTIFY DEVICE page into string
614 * @id: IDENTIFY DEVICE results we will examine
615 * @s: string into which data is output
616 * @ofs: offset into identify device page
617 * @len: length of string to return. must be an even number.
619 * The strings in the IDENTIFY DEVICE page are broken up into
620 * 16-bit chunks. Run through the string, and output each
621 * 8-bit chunk linearly, regardless of platform.
627 void ata_id_string(const u16
*id
, unsigned char *s
,
628 unsigned int ofs
, unsigned int len
)
647 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
648 * @id: IDENTIFY DEVICE results we will examine
649 * @s: string into which data is output
650 * @ofs: offset into identify device page
651 * @len: length of string to return. must be an odd number.
653 * This function is identical to ata_id_string except that it
654 * trims trailing spaces and terminates the resulting string with
655 * null. @len must be actual maximum length (even number) + 1.
660 void ata_id_c_string(const u16
*id
, unsigned char *s
,
661 unsigned int ofs
, unsigned int len
)
667 ata_id_string(id
, s
, ofs
, len
- 1);
669 p
= s
+ strnlen(s
, len
- 1);
670 while (p
> s
&& p
[-1] == ' ')
675 static u64
ata_id_n_sectors(const u16
*id
)
677 if (ata_id_has_lba(id
)) {
678 if (ata_id_has_lba48(id
))
679 return ata_id_u64(id
, 100);
681 return ata_id_u32(id
, 60);
683 if (ata_id_current_chs_valid(id
))
684 return ata_id_u32(id
, 57);
686 return id
[1] * id
[3] * id
[6];
691 * ata_noop_dev_select - Select device 0/1 on ATA bus
692 * @ap: ATA channel to manipulate
693 * @device: ATA device (numbered from zero) to select
695 * This function performs no actual function.
697 * May be used as the dev_select() entry in ata_port_operations.
702 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
708 * ata_std_dev_select - Select device 0/1 on ATA bus
709 * @ap: ATA channel to manipulate
710 * @device: ATA device (numbered from zero) to select
712 * Use the method defined in the ATA specification to
713 * make either device 0, or device 1, active on the
714 * ATA channel. Works with both PIO and MMIO.
716 * May be used as the dev_select() entry in ata_port_operations.
722 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
727 tmp
= ATA_DEVICE_OBS
;
729 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
731 if (ap
->flags
& ATA_FLAG_MMIO
) {
732 writeb(tmp
, (void __iomem
*) ap
->ioaddr
.device_addr
);
734 outb(tmp
, ap
->ioaddr
.device_addr
);
736 ata_pause(ap
); /* needed; also flushes, for mmio */
740 * ata_dev_select - Select device 0/1 on ATA bus
741 * @ap: ATA channel to manipulate
742 * @device: ATA device (numbered from zero) to select
743 * @wait: non-zero to wait for Status register BSY bit to clear
744 * @can_sleep: non-zero if context allows sleeping
746 * Use the method defined in the ATA specification to
747 * make either device 0, or device 1, active on the
750 * This is a high-level version of ata_std_dev_select(),
751 * which additionally provides the services of inserting
752 * the proper pauses and status polling, where needed.
758 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
759 unsigned int wait
, unsigned int can_sleep
)
761 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
762 ap
->id
, device
, wait
);
767 ap
->ops
->dev_select(ap
, device
);
770 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
777 * ata_dump_id - IDENTIFY DEVICE info debugging output
778 * @id: IDENTIFY DEVICE page to dump
780 * Dump selected 16-bit words from the given IDENTIFY DEVICE
787 static inline void ata_dump_id(const u16
*id
)
789 DPRINTK("49==0x%04x "
799 DPRINTK("80==0x%04x "
809 DPRINTK("88==0x%04x "
816 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
817 * @id: IDENTIFY data to compute xfer mask from
819 * Compute the xfermask for this device. This is not as trivial
820 * as it seems if we must consider early devices correctly.
822 * FIXME: pre IDE drive timing (do we care ?).
830 static unsigned int ata_id_xfermask(const u16
*id
)
832 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
834 /* Usual case. Word 53 indicates word 64 is valid */
835 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
836 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
840 /* If word 64 isn't valid then Word 51 high byte holds
841 * the PIO timing number for the maximum. Turn it into
844 pio_mask
= (2 << (id
[ATA_ID_OLD_PIO_MODES
] & 0xFF)) - 1 ;
846 /* But wait.. there's more. Design your standards by
847 * committee and you too can get a free iordy field to
848 * process. However its the speeds not the modes that
849 * are supported... Note drivers using the timing API
850 * will get this right anyway
854 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
857 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
858 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
860 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
864 * ata_port_queue_task - Queue port_task
865 * @ap: The ata_port to queue port_task for
867 * Schedule @fn(@data) for execution after @delay jiffies using
868 * port_task. There is one port_task per port and it's the
869 * user(low level driver)'s responsibility to make sure that only
870 * one task is active at any given time.
872 * libata core layer takes care of synchronization between
873 * port_task and EH. ata_port_queue_task() may be ignored for EH
877 * Inherited from caller.
879 void ata_port_queue_task(struct ata_port
*ap
, void (*fn
)(void *), void *data
,
884 if (ap
->flags
& ATA_FLAG_FLUSH_PORT_TASK
)
887 PREPARE_WORK(&ap
->port_task
, fn
, data
);
890 rc
= queue_work(ata_wq
, &ap
->port_task
);
892 rc
= queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
894 /* rc == 0 means that another user is using port task */
899 * ata_port_flush_task - Flush port_task
900 * @ap: The ata_port to flush port_task for
902 * After this function completes, port_task is guranteed not to
903 * be running or scheduled.
906 * Kernel thread context (may sleep)
908 void ata_port_flush_task(struct ata_port
*ap
)
914 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
915 ap
->flags
|= ATA_FLAG_FLUSH_PORT_TASK
;
916 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
918 DPRINTK("flush #1\n");
919 flush_workqueue(ata_wq
);
922 * At this point, if a task is running, it's guaranteed to see
923 * the FLUSH flag; thus, it will never queue pio tasks again.
926 if (!cancel_delayed_work(&ap
->port_task
)) {
927 DPRINTK("flush #2\n");
928 flush_workqueue(ata_wq
);
931 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
932 ap
->flags
&= ~ATA_FLAG_FLUSH_PORT_TASK
;
933 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
938 void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
940 struct completion
*waiting
= qc
->private_data
;
942 qc
->ap
->ops
->tf_read(qc
->ap
, &qc
->tf
);
947 * ata_exec_internal - execute libata internal command
948 * @ap: Port to which the command is sent
949 * @dev: Device to which the command is sent
950 * @tf: Taskfile registers for the command and the result
951 * @dma_dir: Data tranfer direction of the command
952 * @buf: Data buffer of the command
953 * @buflen: Length of data buffer
955 * Executes libata internal command with timeout. @tf contains
956 * command on entry and result on return. Timeout and error
957 * conditions are reported via return value. No recovery action
958 * is taken after a command times out. It's caller's duty to
959 * clean up after timeout.
962 * None. Should be called with kernel context, might sleep.
966 ata_exec_internal(struct ata_port
*ap
, struct ata_device
*dev
,
967 struct ata_taskfile
*tf
,
968 int dma_dir
, void *buf
, unsigned int buflen
)
970 u8 command
= tf
->command
;
971 struct ata_queued_cmd
*qc
;
972 DECLARE_COMPLETION(wait
);
974 unsigned int err_mask
;
976 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
978 qc
= ata_qc_new_init(ap
, dev
);
982 qc
->dma_dir
= dma_dir
;
983 if (dma_dir
!= DMA_NONE
) {
984 ata_sg_init_one(qc
, buf
, buflen
);
985 qc
->nsect
= buflen
/ ATA_SECT_SIZE
;
988 qc
->private_data
= &wait
;
989 qc
->complete_fn
= ata_qc_complete_internal
;
991 qc
->err_mask
= ata_qc_issue(qc
);
995 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
997 if (!wait_for_completion_timeout(&wait
, ATA_TMOUT_INTERNAL
)) {
998 ata_port_flush_task(ap
);
1000 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
1002 /* We're racing with irq here. If we lose, the
1003 * following test prevents us from completing the qc
1004 * again. If completion irq occurs after here but
1005 * before the caller cleans up, it will result in a
1006 * spurious interrupt. We can live with that.
1008 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1009 qc
->err_mask
= AC_ERR_TIMEOUT
;
1010 ata_qc_complete(qc
);
1011 printk(KERN_WARNING
"ata%u: qc timeout (cmd 0x%x)\n",
1015 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
1019 err_mask
= qc
->err_mask
;
1023 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1024 * Until those drivers are fixed, we detect the condition
1025 * here, fail the command with AC_ERR_SYSTEM and reenable the
1028 * Note that this doesn't change any behavior as internal
1029 * command failure results in disabling the device in the
1030 * higher layer for LLDDs without new reset/EH callbacks.
1032 * Kill the following code as soon as those drivers are fixed.
1034 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
) {
1035 err_mask
|= AC_ERR_SYSTEM
;
1043 * ata_pio_need_iordy - check if iordy needed
1046 * Check if the current speed of the device requires IORDY. Used
1047 * by various controllers for chip configuration.
1050 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1053 int speed
= adev
->pio_mode
- XFER_PIO_0
;
1060 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1062 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1063 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1064 /* Is the speed faster than the drive allows non IORDY ? */
1066 /* This is cycle times not frequency - watch the logic! */
1067 if (pio
> 240) /* PIO2 is 240nS per cycle */
1076 * ata_dev_read_id - Read ID data from the specified device
1077 * @ap: port on which target device resides
1078 * @dev: target device
1079 * @p_class: pointer to class of the target device (may be changed)
1080 * @post_reset: is this read ID post-reset?
1081 * @p_id: read IDENTIFY page (newly allocated)
1083 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1084 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1085 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1086 * for pre-ATA4 drives.
1089 * Kernel thread context (may sleep)
1092 * 0 on success, -errno otherwise.
1094 static int ata_dev_read_id(struct ata_port
*ap
, struct ata_device
*dev
,
1095 unsigned int *p_class
, int post_reset
, u16
**p_id
)
1097 unsigned int class = *p_class
;
1098 struct ata_taskfile tf
;
1099 unsigned int err_mask
= 0;
1104 DPRINTK("ENTER, host %u, dev %u\n", ap
->id
, dev
->devno
);
1106 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1108 id
= kmalloc(sizeof(id
[0]) * ATA_ID_WORDS
, GFP_KERNEL
);
1111 reason
= "out of memory";
1116 ata_tf_init(ap
, &tf
, dev
->devno
);
1120 tf
.command
= ATA_CMD_ID_ATA
;
1123 tf
.command
= ATA_CMD_ID_ATAPI
;
1127 reason
= "unsupported class";
1131 tf
.protocol
= ATA_PROT_PIO
;
1133 err_mask
= ata_exec_internal(ap
, dev
, &tf
, DMA_FROM_DEVICE
,
1134 id
, sizeof(id
[0]) * ATA_ID_WORDS
);
1137 reason
= "I/O error";
1141 swap_buf_le16(id
, ATA_ID_WORDS
);
1144 if ((class == ATA_DEV_ATA
) != ata_id_is_ata(id
)) {
1146 reason
= "device reports illegal type";
1150 if (post_reset
&& class == ATA_DEV_ATA
) {
1152 * The exact sequence expected by certain pre-ATA4 drives is:
1155 * INITIALIZE DEVICE PARAMETERS
1157 * Some drives were very specific about that exact sequence.
1159 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1160 err_mask
= ata_dev_init_params(ap
, dev
);
1163 reason
= "INIT_DEV_PARAMS failed";
1167 /* current CHS translation info (id[53-58]) might be
1168 * changed. reread the identify device info.
1180 printk(KERN_WARNING
"ata%u: dev %u failed to IDENTIFY (%s)\n",
1181 ap
->id
, dev
->devno
, reason
);
1186 static inline u8
ata_dev_knobble(const struct ata_port
*ap
,
1187 struct ata_device
*dev
)
1189 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
1193 * ata_dev_configure - Configure the specified ATA/ATAPI device
1194 * @ap: Port on which target device resides
1195 * @dev: Target device to configure
1196 * @print_info: Enable device info printout
1198 * Configure @dev according to @dev->id. Generic and low-level
1199 * driver specific fixups are also applied.
1202 * Kernel thread context (may sleep)
1205 * 0 on success, -errno otherwise
1207 static int ata_dev_configure(struct ata_port
*ap
, struct ata_device
*dev
,
1210 const u16
*id
= dev
->id
;
1211 unsigned int xfer_mask
;
1214 if (!ata_dev_present(dev
)) {
1215 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1216 ap
->id
, dev
->devno
);
1220 DPRINTK("ENTER, host %u, dev %u\n", ap
->id
, dev
->devno
);
1222 /* print device capabilities */
1224 printk(KERN_DEBUG
"ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1225 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1226 ap
->id
, dev
->devno
, id
[49], id
[82], id
[83],
1227 id
[84], id
[85], id
[86], id
[87], id
[88]);
1229 /* initialize to-be-configured parameters */
1231 dev
->max_sectors
= 0;
1239 * common ATA, ATAPI feature tests
1242 /* find max transfer mode; for printk only */
1243 xfer_mask
= ata_id_xfermask(id
);
1247 /* ATA-specific feature tests */
1248 if (dev
->class == ATA_DEV_ATA
) {
1249 dev
->n_sectors
= ata_id_n_sectors(id
);
1251 if (ata_id_has_lba(id
)) {
1252 const char *lba_desc
;
1255 dev
->flags
|= ATA_DFLAG_LBA
;
1256 if (ata_id_has_lba48(id
)) {
1257 dev
->flags
|= ATA_DFLAG_LBA48
;
1261 /* print device info to dmesg */
1263 printk(KERN_INFO
"ata%u: dev %u ATA-%d, "
1264 "max %s, %Lu sectors: %s\n",
1266 ata_id_major_version(id
),
1267 ata_mode_string(xfer_mask
),
1268 (unsigned long long)dev
->n_sectors
,
1273 /* Default translation */
1274 dev
->cylinders
= id
[1];
1276 dev
->sectors
= id
[6];
1278 if (ata_id_current_chs_valid(id
)) {
1279 /* Current CHS translation is valid. */
1280 dev
->cylinders
= id
[54];
1281 dev
->heads
= id
[55];
1282 dev
->sectors
= id
[56];
1285 /* print device info to dmesg */
1287 printk(KERN_INFO
"ata%u: dev %u ATA-%d, "
1288 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1290 ata_id_major_version(id
),
1291 ata_mode_string(xfer_mask
),
1292 (unsigned long long)dev
->n_sectors
,
1293 dev
->cylinders
, dev
->heads
, dev
->sectors
);
1296 if (dev
->id
[59] & 0x100) {
1297 dev
->multi_count
= dev
->id
[59] & 0xff;
1298 DPRINTK("ata%u: dev %u multi count %u\n",
1299 ap
->id
, device
, dev
->multi_count
);
1305 /* ATAPI-specific feature tests */
1306 else if (dev
->class == ATA_DEV_ATAPI
) {
1307 rc
= atapi_cdb_len(id
);
1308 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1309 printk(KERN_WARNING
"ata%u: unsupported CDB len\n", ap
->id
);
1313 dev
->cdb_len
= (unsigned int) rc
;
1315 if (ata_id_cdb_intr(dev
->id
))
1316 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
1318 /* print device info to dmesg */
1320 printk(KERN_INFO
"ata%u: dev %u ATAPI, max %s\n",
1321 ap
->id
, dev
->devno
, ata_mode_string(xfer_mask
));
1324 ap
->host
->max_cmd_len
= 0;
1325 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1326 ap
->host
->max_cmd_len
= max_t(unsigned int,
1327 ap
->host
->max_cmd_len
,
1328 ap
->device
[i
].cdb_len
);
1330 /* limit bridge transfers to udma5, 200 sectors */
1331 if (ata_dev_knobble(ap
, dev
)) {
1333 printk(KERN_INFO
"ata%u(%u): applying bridge limits\n",
1334 ap
->id
, dev
->devno
);
1335 dev
->udma_mask
&= ATA_UDMA5
;
1336 dev
->max_sectors
= ATA_MAX_SECTORS
;
1339 if (ap
->ops
->dev_config
)
1340 ap
->ops
->dev_config(ap
, dev
);
1342 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap
));
1346 DPRINTK("EXIT, err\n");
1351 * ata_bus_probe - Reset and probe ATA bus
1354 * Master ATA bus probing function. Initiates a hardware-dependent
1355 * bus reset, then attempts to identify any devices found on
1359 * PCI/etc. bus probe sem.
1362 * Zero on success, non-zero on error.
1365 static int ata_bus_probe(struct ata_port
*ap
)
1367 unsigned int classes
[ATA_MAX_DEVICES
];
1368 unsigned int i
, rc
, found
= 0;
1372 /* reset and determine device classes */
1373 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1374 classes
[i
] = ATA_DEV_UNKNOWN
;
1376 if (ap
->ops
->probe_reset
) {
1377 rc
= ap
->ops
->probe_reset(ap
, classes
);
1379 printk("ata%u: reset failed (errno=%d)\n", ap
->id
, rc
);
1383 ap
->ops
->phy_reset(ap
);
1385 if (!(ap
->flags
& ATA_FLAG_PORT_DISABLED
))
1386 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1387 classes
[i
] = ap
->device
[i
].class;
1392 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1393 if (classes
[i
] == ATA_DEV_UNKNOWN
)
1394 classes
[i
] = ATA_DEV_NONE
;
1396 /* read IDENTIFY page and configure devices */
1397 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1398 struct ata_device
*dev
= &ap
->device
[i
];
1400 dev
->class = classes
[i
];
1402 if (!ata_dev_present(dev
))
1405 WARN_ON(dev
->id
!= NULL
);
1406 if (ata_dev_read_id(ap
, dev
, &dev
->class, 1, &dev
->id
)) {
1407 dev
->class = ATA_DEV_NONE
;
1411 if (ata_dev_configure(ap
, dev
, 1)) {
1412 ata_dev_disable(ap
, dev
);
1420 goto err_out_disable
;
1423 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1424 goto err_out_disable
;
1429 ap
->ops
->port_disable(ap
);
1434 * ata_port_probe - Mark port as enabled
1435 * @ap: Port for which we indicate enablement
1437 * Modify @ap data structure such that the system
1438 * thinks that the entire port is enabled.
1440 * LOCKING: host_set lock, or some other form of
1444 void ata_port_probe(struct ata_port
*ap
)
1446 ap
->flags
&= ~ATA_FLAG_PORT_DISABLED
;
1450 * sata_print_link_status - Print SATA link status
1451 * @ap: SATA port to printk link status about
1453 * This function prints link speed and status of a SATA link.
1458 static void sata_print_link_status(struct ata_port
*ap
)
1463 if (!ap
->ops
->scr_read
)
1466 sstatus
= scr_read(ap
, SCR_STATUS
);
1468 if (sata_dev_present(ap
)) {
1469 tmp
= (sstatus
>> 4) & 0xf;
1472 else if (tmp
& (1 << 1))
1475 speed
= "<unknown>";
1476 printk(KERN_INFO
"ata%u: SATA link up %s Gbps (SStatus %X)\n",
1477 ap
->id
, speed
, sstatus
);
1479 printk(KERN_INFO
"ata%u: SATA link down (SStatus %X)\n",
1485 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1486 * @ap: SATA port associated with target SATA PHY.
1488 * This function issues commands to standard SATA Sxxx
1489 * PHY registers, to wake up the phy (and device), and
1490 * clear any reset condition.
1493 * PCI/etc. bus probe sem.
1496 void __sata_phy_reset(struct ata_port
*ap
)
1499 unsigned long timeout
= jiffies
+ (HZ
* 5);
1501 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
1502 /* issue phy wake/reset */
1503 scr_write_flush(ap
, SCR_CONTROL
, 0x301);
1504 /* Couldn't find anything in SATA I/II specs, but
1505 * AHCI-1.1 10.4.2 says at least 1 ms. */
1508 scr_write_flush(ap
, SCR_CONTROL
, 0x300); /* phy wake/clear reset */
1510 /* wait for phy to become ready, if necessary */
1513 sstatus
= scr_read(ap
, SCR_STATUS
);
1514 if ((sstatus
& 0xf) != 1)
1516 } while (time_before(jiffies
, timeout
));
1518 /* print link status */
1519 sata_print_link_status(ap
);
1521 /* TODO: phy layer with polling, timeouts, etc. */
1522 if (sata_dev_present(ap
))
1525 ata_port_disable(ap
);
1527 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1530 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
1531 ata_port_disable(ap
);
1535 ap
->cbl
= ATA_CBL_SATA
;
1539 * sata_phy_reset - Reset SATA bus.
1540 * @ap: SATA port associated with target SATA PHY.
1542 * This function resets the SATA bus, and then probes
1543 * the bus for devices.
1546 * PCI/etc. bus probe sem.
1549 void sata_phy_reset(struct ata_port
*ap
)
1551 __sata_phy_reset(ap
);
1552 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1558 * ata_dev_pair - return other device on cable
1562 * Obtain the other device on the same cable, or if none is
1563 * present NULL is returned
1566 struct ata_device
*ata_dev_pair(struct ata_port
*ap
, struct ata_device
*adev
)
1568 struct ata_device
*pair
= &ap
->device
[1 - adev
->devno
];
1569 if (!ata_dev_present(pair
))
1575 * ata_port_disable - Disable port.
1576 * @ap: Port to be disabled.
1578 * Modify @ap data structure such that the system
1579 * thinks that the entire port is disabled, and should
1580 * never attempt to probe or communicate with devices
1583 * LOCKING: host_set lock, or some other form of
1587 void ata_port_disable(struct ata_port
*ap
)
1589 ap
->device
[0].class = ATA_DEV_NONE
;
1590 ap
->device
[1].class = ATA_DEV_NONE
;
1591 ap
->flags
|= ATA_FLAG_PORT_DISABLED
;
1595 * This mode timing computation functionality is ported over from
1596 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1599 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1600 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1601 * for PIO 5, which is a nonstandard extension and UDMA6, which
1602 * is currently supported only by Maxtor drives.
1605 static const struct ata_timing ata_timing
[] = {
1607 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
1608 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
1609 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
1610 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
1612 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
1613 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
1614 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
1616 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1618 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
1619 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
1620 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
1622 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
1623 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
1624 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
1626 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1627 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
1628 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
1630 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
1631 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
1632 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
1634 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1639 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1640 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1642 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
1644 q
->setup
= EZ(t
->setup
* 1000, T
);
1645 q
->act8b
= EZ(t
->act8b
* 1000, T
);
1646 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
1647 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
1648 q
->active
= EZ(t
->active
* 1000, T
);
1649 q
->recover
= EZ(t
->recover
* 1000, T
);
1650 q
->cycle
= EZ(t
->cycle
* 1000, T
);
1651 q
->udma
= EZ(t
->udma
* 1000, UT
);
1654 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
1655 struct ata_timing
*m
, unsigned int what
)
1657 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
1658 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
1659 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
1660 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
1661 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
1662 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
1663 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
1664 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
1667 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
1669 const struct ata_timing
*t
;
1671 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
1672 if (t
->mode
== 0xFF)
1677 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
1678 struct ata_timing
*t
, int T
, int UT
)
1680 const struct ata_timing
*s
;
1681 struct ata_timing p
;
1687 if (!(s
= ata_timing_find_mode(speed
)))
1690 memcpy(t
, s
, sizeof(*s
));
1693 * If the drive is an EIDE drive, it can tell us it needs extended
1694 * PIO/MW_DMA cycle timing.
1697 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
1698 memset(&p
, 0, sizeof(p
));
1699 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
1700 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
1701 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
1702 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
1703 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
1705 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
1709 * Convert the timing to bus clock counts.
1712 ata_timing_quantize(t
, t
, T
, UT
);
1715 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1716 * S.M.A.R.T * and some other commands. We have to ensure that the
1717 * DMA cycle timing is slower/equal than the fastest PIO timing.
1720 if (speed
> XFER_PIO_4
) {
1721 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
1722 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
1726 * Lengthen active & recovery time so that cycle time is correct.
1729 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
1730 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
1731 t
->rec8b
= t
->cyc8b
- t
->act8b
;
1734 if (t
->active
+ t
->recover
< t
->cycle
) {
1735 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
1736 t
->recover
= t
->cycle
- t
->active
;
1742 static int ata_dev_set_mode(struct ata_port
*ap
, struct ata_device
*dev
)
1744 unsigned int err_mask
;
1747 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
1748 dev
->flags
|= ATA_DFLAG_PIO
;
1750 err_mask
= ata_dev_set_xfermode(ap
, dev
);
1753 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1758 rc
= ata_dev_revalidate(ap
, dev
, 0);
1761 "ata%u: failed to revalidate after set xfermode\n",
1766 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1767 dev
->xfer_shift
, (int)dev
->xfer_mode
);
1769 printk(KERN_INFO
"ata%u: dev %u configured for %s\n",
1771 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
1775 static int ata_host_set_pio(struct ata_port
*ap
)
1779 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1780 struct ata_device
*dev
= &ap
->device
[i
];
1782 if (!ata_dev_present(dev
))
1785 if (!dev
->pio_mode
) {
1786 printk(KERN_WARNING
"ata%u: no PIO support for device %d.\n", ap
->id
, i
);
1790 dev
->xfer_mode
= dev
->pio_mode
;
1791 dev
->xfer_shift
= ATA_SHIFT_PIO
;
1792 if (ap
->ops
->set_piomode
)
1793 ap
->ops
->set_piomode(ap
, dev
);
1799 static void ata_host_set_dma(struct ata_port
*ap
)
1803 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1804 struct ata_device
*dev
= &ap
->device
[i
];
1806 if (!ata_dev_present(dev
) || !dev
->dma_mode
)
1809 dev
->xfer_mode
= dev
->dma_mode
;
1810 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
1811 if (ap
->ops
->set_dmamode
)
1812 ap
->ops
->set_dmamode(ap
, dev
);
1817 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1818 * @ap: port on which timings will be programmed
1820 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1823 * PCI/etc. bus probe sem.
1825 static void ata_set_mode(struct ata_port
*ap
)
1829 /* step 1: calculate xfer_mask */
1830 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1831 struct ata_device
*dev
= &ap
->device
[i
];
1832 unsigned int pio_mask
, dma_mask
;
1834 if (!ata_dev_present(dev
))
1837 ata_dev_xfermask(ap
, dev
);
1839 /* TODO: let LLDD filter dev->*_mask here */
1841 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
1842 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
1843 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
1844 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
1847 /* step 2: always set host PIO timings */
1848 rc
= ata_host_set_pio(ap
);
1852 /* step 3: set host DMA timings */
1853 ata_host_set_dma(ap
);
1855 /* step 4: update devices' xfer mode */
1856 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1857 struct ata_device
*dev
= &ap
->device
[i
];
1859 if (!ata_dev_present(dev
))
1862 if (ata_dev_set_mode(ap
, dev
))
1866 if (ap
->ops
->post_set_mode
)
1867 ap
->ops
->post_set_mode(ap
);
1872 ata_port_disable(ap
);
1876 * ata_tf_to_host - issue ATA taskfile to host controller
1877 * @ap: port to which command is being issued
1878 * @tf: ATA taskfile register set
1880 * Issues ATA taskfile register set to ATA host controller,
1881 * with proper synchronization with interrupt handler and
1885 * spin_lock_irqsave(host_set lock)
1888 static inline void ata_tf_to_host(struct ata_port
*ap
,
1889 const struct ata_taskfile
*tf
)
1891 ap
->ops
->tf_load(ap
, tf
);
1892 ap
->ops
->exec_command(ap
, tf
);
1896 * ata_busy_sleep - sleep until BSY clears, or timeout
1897 * @ap: port containing status register to be polled
1898 * @tmout_pat: impatience timeout
1899 * @tmout: overall timeout
1901 * Sleep until ATA Status register bit BSY clears,
1902 * or a timeout occurs.
1907 unsigned int ata_busy_sleep (struct ata_port
*ap
,
1908 unsigned long tmout_pat
, unsigned long tmout
)
1910 unsigned long timer_start
, timeout
;
1913 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
1914 timer_start
= jiffies
;
1915 timeout
= timer_start
+ tmout_pat
;
1916 while ((status
& ATA_BUSY
) && (time_before(jiffies
, timeout
))) {
1918 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
1921 if (status
& ATA_BUSY
)
1922 printk(KERN_WARNING
"ata%u is slow to respond, "
1923 "please be patient\n", ap
->id
);
1925 timeout
= timer_start
+ tmout
;
1926 while ((status
& ATA_BUSY
) && (time_before(jiffies
, timeout
))) {
1928 status
= ata_chk_status(ap
);
1931 if (status
& ATA_BUSY
) {
1932 printk(KERN_ERR
"ata%u failed to respond (%lu secs)\n",
1933 ap
->id
, tmout
/ HZ
);
1940 static void ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
)
1942 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1943 unsigned int dev0
= devmask
& (1 << 0);
1944 unsigned int dev1
= devmask
& (1 << 1);
1945 unsigned long timeout
;
1947 /* if device 0 was found in ata_devchk, wait for its
1951 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
1953 /* if device 1 was found in ata_devchk, wait for
1954 * register access, then wait for BSY to clear
1956 timeout
= jiffies
+ ATA_TMOUT_BOOT
;
1960 ap
->ops
->dev_select(ap
, 1);
1961 if (ap
->flags
& ATA_FLAG_MMIO
) {
1962 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
1963 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
1965 nsect
= inb(ioaddr
->nsect_addr
);
1966 lbal
= inb(ioaddr
->lbal_addr
);
1968 if ((nsect
== 1) && (lbal
== 1))
1970 if (time_after(jiffies
, timeout
)) {
1974 msleep(50); /* give drive a breather */
1977 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
1979 /* is all this really necessary? */
1980 ap
->ops
->dev_select(ap
, 0);
1982 ap
->ops
->dev_select(ap
, 1);
1984 ap
->ops
->dev_select(ap
, 0);
1987 static unsigned int ata_bus_softreset(struct ata_port
*ap
,
1988 unsigned int devmask
)
1990 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1992 DPRINTK("ata%u: bus reset via SRST\n", ap
->id
);
1994 /* software reset. causes dev0 to be selected */
1995 if (ap
->flags
& ATA_FLAG_MMIO
) {
1996 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
1997 udelay(20); /* FIXME: flush */
1998 writeb(ap
->ctl
| ATA_SRST
, (void __iomem
*) ioaddr
->ctl_addr
);
1999 udelay(20); /* FIXME: flush */
2000 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2002 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2004 outb(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
2006 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2009 /* spec mandates ">= 2ms" before checking status.
2010 * We wait 150ms, because that was the magic delay used for
2011 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2012 * between when the ATA command register is written, and then
2013 * status is checked. Because waiting for "a while" before
2014 * checking status is fine, post SRST, we perform this magic
2015 * delay here as well.
2017 * Old drivers/ide uses the 2mS rule and then waits for ready
2022 /* Before we perform post reset processing we want to see if
2023 the bus shows 0xFF because the odd clown forgets the D7 pulldown
2026 if (ata_check_status(ap
) == 0xFF)
2027 return 1; /* Positive is failure for some reason */
2029 ata_bus_post_reset(ap
, devmask
);
2035 * ata_bus_reset - reset host port and associated ATA channel
2036 * @ap: port to reset
2038 * This is typically the first time we actually start issuing
2039 * commands to the ATA channel. We wait for BSY to clear, then
2040 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2041 * result. Determine what devices, if any, are on the channel
2042 * by looking at the device 0/1 error register. Look at the signature
2043 * stored in each device's taskfile registers, to determine if
2044 * the device is ATA or ATAPI.
2047 * PCI/etc. bus probe sem.
2048 * Obtains host_set lock.
2051 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2054 void ata_bus_reset(struct ata_port
*ap
)
2056 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2057 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2059 unsigned int dev0
, dev1
= 0, devmask
= 0;
2061 DPRINTK("ENTER, host %u, port %u\n", ap
->id
, ap
->port_no
);
2063 /* determine if device 0/1 are present */
2064 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
2067 dev0
= ata_devchk(ap
, 0);
2069 dev1
= ata_devchk(ap
, 1);
2073 devmask
|= (1 << 0);
2075 devmask
|= (1 << 1);
2077 /* select device 0 again */
2078 ap
->ops
->dev_select(ap
, 0);
2080 /* issue bus reset */
2081 if (ap
->flags
& ATA_FLAG_SRST
)
2082 if (ata_bus_softreset(ap
, devmask
))
2086 * determine by signature whether we have ATA or ATAPI devices
2088 ap
->device
[0].class = ata_dev_try_classify(ap
, 0, &err
);
2089 if ((slave_possible
) && (err
!= 0x81))
2090 ap
->device
[1].class = ata_dev_try_classify(ap
, 1, &err
);
2092 /* re-enable interrupts */
2093 if (ap
->ioaddr
.ctl_addr
) /* FIXME: hack. create a hook instead */
2096 /* is double-select really necessary? */
2097 if (ap
->device
[1].class != ATA_DEV_NONE
)
2098 ap
->ops
->dev_select(ap
, 1);
2099 if (ap
->device
[0].class != ATA_DEV_NONE
)
2100 ap
->ops
->dev_select(ap
, 0);
2102 /* if no devices were detected, disable this port */
2103 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
2104 (ap
->device
[1].class == ATA_DEV_NONE
))
2107 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
2108 /* set up device control for ATA_FLAG_SATA_RESET */
2109 if (ap
->flags
& ATA_FLAG_MMIO
)
2110 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2112 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2119 printk(KERN_ERR
"ata%u: disabling port\n", ap
->id
);
2120 ap
->ops
->port_disable(ap
);
2125 static int sata_phy_resume(struct ata_port
*ap
)
2127 unsigned long timeout
= jiffies
+ (HZ
* 5);
2130 scr_write_flush(ap
, SCR_CONTROL
, 0x300);
2132 /* Wait for phy to become ready, if necessary. */
2135 sstatus
= scr_read(ap
, SCR_STATUS
);
2136 if ((sstatus
& 0xf) != 1)
2138 } while (time_before(jiffies
, timeout
));
2144 * ata_std_probeinit - initialize probing
2145 * @ap: port to be probed
2147 * @ap is about to be probed. Initialize it. This function is
2148 * to be used as standard callback for ata_drive_probe_reset().
2150 * NOTE!!! Do not use this function as probeinit if a low level
2151 * driver implements only hardreset. Just pass NULL as probeinit
2152 * in that case. Using this function is probably okay but doing
2153 * so makes reset sequence different from the original
2154 * ->phy_reset implementation and Jeff nervous. :-P
2156 extern void ata_std_probeinit(struct ata_port
*ap
)
2158 if (ap
->flags
& ATA_FLAG_SATA
&& ap
->ops
->scr_read
) {
2159 sata_phy_resume(ap
);
2160 if (sata_dev_present(ap
))
2161 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2166 * ata_std_softreset - reset host port via ATA SRST
2167 * @ap: port to reset
2168 * @verbose: fail verbosely
2169 * @classes: resulting classes of attached devices
2171 * Reset host port using ATA SRST. This function is to be used
2172 * as standard callback for ata_drive_*_reset() functions.
2175 * Kernel thread context (may sleep)
2178 * 0 on success, -errno otherwise.
2180 int ata_std_softreset(struct ata_port
*ap
, int verbose
, unsigned int *classes
)
2182 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2183 unsigned int devmask
= 0, err_mask
;
2188 if (ap
->ops
->scr_read
&& !sata_dev_present(ap
)) {
2189 classes
[0] = ATA_DEV_NONE
;
2193 /* determine if device 0/1 are present */
2194 if (ata_devchk(ap
, 0))
2195 devmask
|= (1 << 0);
2196 if (slave_possible
&& ata_devchk(ap
, 1))
2197 devmask
|= (1 << 1);
2199 /* select device 0 again */
2200 ap
->ops
->dev_select(ap
, 0);
2202 /* issue bus reset */
2203 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2204 err_mask
= ata_bus_softreset(ap
, devmask
);
2207 printk(KERN_ERR
"ata%u: SRST failed (err_mask=0x%x)\n",
2210 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2215 /* determine by signature whether we have ATA or ATAPI devices */
2216 classes
[0] = ata_dev_try_classify(ap
, 0, &err
);
2217 if (slave_possible
&& err
!= 0x81)
2218 classes
[1] = ata_dev_try_classify(ap
, 1, &err
);
2221 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2226 * sata_std_hardreset - reset host port via SATA phy reset
2227 * @ap: port to reset
2228 * @verbose: fail verbosely
2229 * @class: resulting class of attached device
2231 * SATA phy-reset host port using DET bits of SControl register.
2232 * This function is to be used as standard callback for
2233 * ata_drive_*_reset().
2236 * Kernel thread context (may sleep)
2239 * 0 on success, -errno otherwise.
2241 int sata_std_hardreset(struct ata_port
*ap
, int verbose
, unsigned int *class)
2245 /* Issue phy wake/reset */
2246 scr_write_flush(ap
, SCR_CONTROL
, 0x301);
2249 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2250 * 10.4.2 says at least 1 ms.
2254 /* Bring phy back */
2255 sata_phy_resume(ap
);
2257 /* TODO: phy layer with polling, timeouts, etc. */
2258 if (!sata_dev_present(ap
)) {
2259 *class = ATA_DEV_NONE
;
2260 DPRINTK("EXIT, link offline\n");
2264 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
2266 printk(KERN_ERR
"ata%u: COMRESET failed "
2267 "(device not ready)\n", ap
->id
);
2269 DPRINTK("EXIT, device not ready\n");
2273 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
2275 *class = ata_dev_try_classify(ap
, 0, NULL
);
2277 DPRINTK("EXIT, class=%u\n", *class);
2282 * ata_std_postreset - standard postreset callback
2283 * @ap: the target ata_port
2284 * @classes: classes of attached devices
2286 * This function is invoked after a successful reset. Note that
2287 * the device might have been reset more than once using
2288 * different reset methods before postreset is invoked.
2290 * This function is to be used as standard callback for
2291 * ata_drive_*_reset().
2294 * Kernel thread context (may sleep)
2296 void ata_std_postreset(struct ata_port
*ap
, unsigned int *classes
)
2300 /* set cable type if it isn't already set */
2301 if (ap
->cbl
== ATA_CBL_NONE
&& ap
->flags
& ATA_FLAG_SATA
)
2302 ap
->cbl
= ATA_CBL_SATA
;
2304 /* print link status */
2305 if (ap
->cbl
== ATA_CBL_SATA
)
2306 sata_print_link_status(ap
);
2308 /* re-enable interrupts */
2309 if (ap
->ioaddr
.ctl_addr
) /* FIXME: hack. create a hook instead */
2312 /* is double-select really necessary? */
2313 if (classes
[0] != ATA_DEV_NONE
)
2314 ap
->ops
->dev_select(ap
, 1);
2315 if (classes
[1] != ATA_DEV_NONE
)
2316 ap
->ops
->dev_select(ap
, 0);
2318 /* bail out if no device is present */
2319 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2320 DPRINTK("EXIT, no device\n");
2324 /* set up device control */
2325 if (ap
->ioaddr
.ctl_addr
) {
2326 if (ap
->flags
& ATA_FLAG_MMIO
)
2327 writeb(ap
->ctl
, (void __iomem
*) ap
->ioaddr
.ctl_addr
);
2329 outb(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
2336 * ata_std_probe_reset - standard probe reset method
2337 * @ap: prot to perform probe-reset
2338 * @classes: resulting classes of attached devices
2340 * The stock off-the-shelf ->probe_reset method.
2343 * Kernel thread context (may sleep)
2346 * 0 on success, -errno otherwise.
2348 int ata_std_probe_reset(struct ata_port
*ap
, unsigned int *classes
)
2350 ata_reset_fn_t hardreset
;
2353 if (ap
->flags
& ATA_FLAG_SATA
&& ap
->ops
->scr_read
)
2354 hardreset
= sata_std_hardreset
;
2356 return ata_drive_probe_reset(ap
, ata_std_probeinit
,
2357 ata_std_softreset
, hardreset
,
2358 ata_std_postreset
, classes
);
2361 static int do_probe_reset(struct ata_port
*ap
, ata_reset_fn_t reset
,
2362 ata_postreset_fn_t postreset
,
2363 unsigned int *classes
)
2367 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2368 classes
[i
] = ATA_DEV_UNKNOWN
;
2370 rc
= reset(ap
, 0, classes
);
2374 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2375 * is complete and convert all ATA_DEV_UNKNOWN to
2378 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2379 if (classes
[i
] != ATA_DEV_UNKNOWN
)
2382 if (i
< ATA_MAX_DEVICES
)
2383 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2384 if (classes
[i
] == ATA_DEV_UNKNOWN
)
2385 classes
[i
] = ATA_DEV_NONE
;
2388 postreset(ap
, classes
);
2390 return classes
[0] != ATA_DEV_UNKNOWN
? 0 : -ENODEV
;
2394 * ata_drive_probe_reset - Perform probe reset with given methods
2395 * @ap: port to reset
2396 * @probeinit: probeinit method (can be NULL)
2397 * @softreset: softreset method (can be NULL)
2398 * @hardreset: hardreset method (can be NULL)
2399 * @postreset: postreset method (can be NULL)
2400 * @classes: resulting classes of attached devices
2402 * Reset the specified port and classify attached devices using
2403 * given methods. This function prefers softreset but tries all
2404 * possible reset sequences to reset and classify devices. This
2405 * function is intended to be used for constructing ->probe_reset
2406 * callback by low level drivers.
2408 * Reset methods should follow the following rules.
2410 * - Return 0 on sucess, -errno on failure.
2411 * - If classification is supported, fill classes[] with
2412 * recognized class codes.
2413 * - If classification is not supported, leave classes[] alone.
2414 * - If verbose is non-zero, print error message on failure;
2415 * otherwise, shut up.
2418 * Kernel thread context (may sleep)
2421 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2422 * if classification fails, and any error code from reset
2425 int ata_drive_probe_reset(struct ata_port
*ap
, ata_probeinit_fn_t probeinit
,
2426 ata_reset_fn_t softreset
, ata_reset_fn_t hardreset
,
2427 ata_postreset_fn_t postreset
, unsigned int *classes
)
2435 rc
= do_probe_reset(ap
, softreset
, postreset
, classes
);
2443 rc
= do_probe_reset(ap
, hardreset
, postreset
, classes
);
2444 if (rc
== 0 || rc
!= -ENODEV
)
2448 rc
= do_probe_reset(ap
, softreset
, postreset
, classes
);
2454 * ata_dev_same_device - Determine whether new ID matches configured device
2455 * @ap: port on which the device to compare against resides
2456 * @dev: device to compare against
2457 * @new_class: class of the new device
2458 * @new_id: IDENTIFY page of the new device
2460 * Compare @new_class and @new_id against @dev and determine
2461 * whether @dev is the device indicated by @new_class and
2468 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2470 static int ata_dev_same_device(struct ata_port
*ap
, struct ata_device
*dev
,
2471 unsigned int new_class
, const u16
*new_id
)
2473 const u16
*old_id
= dev
->id
;
2474 unsigned char model
[2][41], serial
[2][21];
2477 if (dev
->class != new_class
) {
2479 "ata%u: dev %u class mismatch %d != %d\n",
2480 ap
->id
, dev
->devno
, dev
->class, new_class
);
2484 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD_OFS
, sizeof(model
[0]));
2485 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD_OFS
, sizeof(model
[1]));
2486 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO_OFS
, sizeof(serial
[0]));
2487 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO_OFS
, sizeof(serial
[1]));
2488 new_n_sectors
= ata_id_n_sectors(new_id
);
2490 if (strcmp(model
[0], model
[1])) {
2492 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2493 ap
->id
, dev
->devno
, model
[0], model
[1]);
2497 if (strcmp(serial
[0], serial
[1])) {
2499 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2500 ap
->id
, dev
->devno
, serial
[0], serial
[1]);
2504 if (dev
->class == ATA_DEV_ATA
&& dev
->n_sectors
!= new_n_sectors
) {
2506 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2507 ap
->id
, dev
->devno
, (unsigned long long)dev
->n_sectors
,
2508 (unsigned long long)new_n_sectors
);
2516 * ata_dev_revalidate - Revalidate ATA device
2517 * @ap: port on which the device to revalidate resides
2518 * @dev: device to revalidate
2519 * @post_reset: is this revalidation after reset?
2521 * Re-read IDENTIFY page and make sure @dev is still attached to
2525 * Kernel thread context (may sleep)
2528 * 0 on success, negative errno otherwise
2530 int ata_dev_revalidate(struct ata_port
*ap
, struct ata_device
*dev
,
2537 if (!ata_dev_present(dev
))
2543 /* allocate & read ID data */
2544 rc
= ata_dev_read_id(ap
, dev
, &class, post_reset
, &id
);
2548 /* is the device still there? */
2549 if (!ata_dev_same_device(ap
, dev
, class, id
)) {
2557 /* configure device according to the new ID */
2558 return ata_dev_configure(ap
, dev
, 0);
2561 printk(KERN_ERR
"ata%u: dev %u revalidation failed (errno=%d)\n",
2562 ap
->id
, dev
->devno
, rc
);
2567 static const char * const ata_dma_blacklist
[] = {
2568 "WDC AC11000H", NULL
,
2569 "WDC AC22100H", NULL
,
2570 "WDC AC32500H", NULL
,
2571 "WDC AC33100H", NULL
,
2572 "WDC AC31600H", NULL
,
2573 "WDC AC32100H", "24.09P07",
2574 "WDC AC23200L", "21.10N21",
2575 "Compaq CRD-8241B", NULL
,
2580 "SanDisk SDP3B", NULL
,
2581 "SanDisk SDP3B-64", NULL
,
2582 "SANYO CD-ROM CRD", NULL
,
2583 "HITACHI CDR-8", NULL
,
2584 "HITACHI CDR-8335", NULL
,
2585 "HITACHI CDR-8435", NULL
,
2586 "Toshiba CD-ROM XM-6202B", NULL
,
2587 "TOSHIBA CD-ROM XM-1702BC", NULL
,
2589 "E-IDE CD-ROM CR-840", NULL
,
2590 "CD-ROM Drive/F5A", NULL
,
2591 "WPI CDD-820", NULL
,
2592 "SAMSUNG CD-ROM SC-148C", NULL
,
2593 "SAMSUNG CD-ROM SC", NULL
,
2594 "SanDisk SDP3B-64", NULL
,
2595 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,
2596 "_NEC DV5800A", NULL
,
2597 "SAMSUNG CD-ROM SN-124", "N001"
2600 static int ata_strim(char *s
, size_t len
)
2602 len
= strnlen(s
, len
);
2604 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2605 while ((len
> 0) && (s
[len
- 1] == ' ')) {
2612 static int ata_dma_blacklisted(const struct ata_device
*dev
)
2614 unsigned char model_num
[40];
2615 unsigned char model_rev
[16];
2616 unsigned int nlen
, rlen
;
2619 ata_id_string(dev
->id
, model_num
, ATA_ID_PROD_OFS
,
2621 ata_id_string(dev
->id
, model_rev
, ATA_ID_FW_REV_OFS
,
2623 nlen
= ata_strim(model_num
, sizeof(model_num
));
2624 rlen
= ata_strim(model_rev
, sizeof(model_rev
));
2626 for (i
= 0; i
< ARRAY_SIZE(ata_dma_blacklist
); i
+= 2) {
2627 if (!strncmp(ata_dma_blacklist
[i
], model_num
, nlen
)) {
2628 if (ata_dma_blacklist
[i
+1] == NULL
)
2630 if (!strncmp(ata_dma_blacklist
[i
], model_rev
, rlen
))
2638 * ata_dev_xfermask - Compute supported xfermask of the given device
2639 * @ap: Port on which the device to compute xfermask for resides
2640 * @dev: Device to compute xfermask for
2642 * Compute supported xfermask of @dev and store it in
2643 * dev->*_mask. This function is responsible for applying all
2644 * known limits including host controller limits, device
2650 static void ata_dev_xfermask(struct ata_port
*ap
, struct ata_device
*dev
)
2652 unsigned long xfer_mask
;
2655 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
2658 /* use port-wide xfermask for now */
2659 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2660 struct ata_device
*d
= &ap
->device
[i
];
2661 if (!ata_dev_present(d
))
2663 xfer_mask
&= ata_pack_xfermask(d
->pio_mask
, d
->mwdma_mask
,
2665 xfer_mask
&= ata_id_xfermask(d
->id
);
2666 if (ata_dma_blacklisted(d
))
2667 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
2670 if (ata_dma_blacklisted(dev
))
2671 printk(KERN_WARNING
"ata%u: dev %u is on DMA blacklist, "
2672 "disabling DMA\n", ap
->id
, dev
->devno
);
2674 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
2679 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2680 * @ap: Port associated with device @dev
2681 * @dev: Device to which command will be sent
2683 * Issue SET FEATURES - XFER MODE command to device @dev
2687 * PCI/etc. bus probe sem.
2690 * 0 on success, AC_ERR_* mask otherwise.
2693 static unsigned int ata_dev_set_xfermode(struct ata_port
*ap
,
2694 struct ata_device
*dev
)
2696 struct ata_taskfile tf
;
2697 unsigned int err_mask
;
2699 /* set up set-features taskfile */
2700 DPRINTK("set features - xfer mode\n");
2702 ata_tf_init(ap
, &tf
, dev
->devno
);
2703 tf
.command
= ATA_CMD_SET_FEATURES
;
2704 tf
.feature
= SETFEATURES_XFER
;
2705 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2706 tf
.protocol
= ATA_PROT_NODATA
;
2707 tf
.nsect
= dev
->xfer_mode
;
2709 err_mask
= ata_exec_internal(ap
, dev
, &tf
, DMA_NONE
, NULL
, 0);
2711 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
2716 * ata_dev_init_params - Issue INIT DEV PARAMS command
2717 * @ap: Port associated with device @dev
2718 * @dev: Device to which command will be sent
2721 * Kernel thread context (may sleep)
2724 * 0 on success, AC_ERR_* mask otherwise.
2727 static unsigned int ata_dev_init_params(struct ata_port
*ap
,
2728 struct ata_device
*dev
)
2730 struct ata_taskfile tf
;
2731 unsigned int err_mask
;
2732 u16 sectors
= dev
->id
[6];
2733 u16 heads
= dev
->id
[3];
2735 /* Number of sectors per track 1-255. Number of heads 1-16 */
2736 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
2739 /* set up init dev params taskfile */
2740 DPRINTK("init dev params \n");
2742 ata_tf_init(ap
, &tf
, dev
->devno
);
2743 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
2744 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2745 tf
.protocol
= ATA_PROT_NODATA
;
2747 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
2749 err_mask
= ata_exec_internal(ap
, dev
, &tf
, DMA_NONE
, NULL
, 0);
2751 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
2756 * ata_sg_clean - Unmap DMA memory associated with command
2757 * @qc: Command containing DMA memory to be released
2759 * Unmap all mapped DMA memory associated with this command.
2762 * spin_lock_irqsave(host_set lock)
2765 static void ata_sg_clean(struct ata_queued_cmd
*qc
)
2767 struct ata_port
*ap
= qc
->ap
;
2768 struct scatterlist
*sg
= qc
->__sg
;
2769 int dir
= qc
->dma_dir
;
2770 void *pad_buf
= NULL
;
2772 WARN_ON(!(qc
->flags
& ATA_QCFLAG_DMAMAP
));
2773 WARN_ON(sg
== NULL
);
2775 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
2776 WARN_ON(qc
->n_elem
> 1);
2778 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
2780 /* if we padded the buffer out to 32-bit bound, and data
2781 * xfer direction is from-device, we must copy from the
2782 * pad buffer back into the supplied buffer
2784 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
2785 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2787 if (qc
->flags
& ATA_QCFLAG_SG
) {
2789 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
2790 /* restore last sg */
2791 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
2793 struct scatterlist
*psg
= &qc
->pad_sgent
;
2794 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
2795 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
2796 kunmap_atomic(addr
, KM_IRQ0
);
2800 dma_unmap_single(ap
->dev
,
2801 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
2804 sg
->length
+= qc
->pad_len
;
2806 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
2807 pad_buf
, qc
->pad_len
);
2810 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
2815 * ata_fill_sg - Fill PCI IDE PRD table
2816 * @qc: Metadata associated with taskfile to be transferred
2818 * Fill PCI IDE PRD (scatter-gather) table with segments
2819 * associated with the current disk command.
2822 * spin_lock_irqsave(host_set lock)
2825 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
2827 struct ata_port
*ap
= qc
->ap
;
2828 struct scatterlist
*sg
;
2831 WARN_ON(qc
->__sg
== NULL
);
2832 WARN_ON(qc
->n_elem
== 0 && qc
->pad_len
== 0);
2835 ata_for_each_sg(sg
, qc
) {
2839 /* determine if physical DMA addr spans 64K boundary.
2840 * Note h/w doesn't support 64-bit, so we unconditionally
2841 * truncate dma_addr_t to u32.
2843 addr
= (u32
) sg_dma_address(sg
);
2844 sg_len
= sg_dma_len(sg
);
2847 offset
= addr
& 0xffff;
2849 if ((offset
+ sg_len
) > 0x10000)
2850 len
= 0x10000 - offset
;
2852 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
2853 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
2854 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
2863 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2866 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2867 * @qc: Metadata associated with taskfile to check
2869 * Allow low-level driver to filter ATA PACKET commands, returning
2870 * a status indicating whether or not it is OK to use DMA for the
2871 * supplied PACKET command.
2874 * spin_lock_irqsave(host_set lock)
2876 * RETURNS: 0 when ATAPI DMA can be used
2879 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
2881 struct ata_port
*ap
= qc
->ap
;
2882 int rc
= 0; /* Assume ATAPI DMA is OK by default */
2884 if (ap
->ops
->check_atapi_dma
)
2885 rc
= ap
->ops
->check_atapi_dma(qc
);
2890 * ata_qc_prep - Prepare taskfile for submission
2891 * @qc: Metadata associated with taskfile to be prepared
2893 * Prepare ATA taskfile for submission.
2896 * spin_lock_irqsave(host_set lock)
2898 void ata_qc_prep(struct ata_queued_cmd
*qc
)
2900 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2906 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
2909 * ata_sg_init_one - Associate command with memory buffer
2910 * @qc: Command to be associated
2911 * @buf: Memory buffer
2912 * @buflen: Length of memory buffer, in bytes.
2914 * Initialize the data-related elements of queued_cmd @qc
2915 * to point to a single memory buffer, @buf of byte length @buflen.
2918 * spin_lock_irqsave(host_set lock)
2921 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
2923 struct scatterlist
*sg
;
2925 qc
->flags
|= ATA_QCFLAG_SINGLE
;
2927 memset(&qc
->sgent
, 0, sizeof(qc
->sgent
));
2928 qc
->__sg
= &qc
->sgent
;
2930 qc
->orig_n_elem
= 1;
2934 sg_init_one(sg
, buf
, buflen
);
2938 * ata_sg_init - Associate command with scatter-gather table.
2939 * @qc: Command to be associated
2940 * @sg: Scatter-gather table.
2941 * @n_elem: Number of elements in s/g table.
2943 * Initialize the data-related elements of queued_cmd @qc
2944 * to point to a scatter-gather table @sg, containing @n_elem
2948 * spin_lock_irqsave(host_set lock)
2951 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
2952 unsigned int n_elem
)
2954 qc
->flags
|= ATA_QCFLAG_SG
;
2956 qc
->n_elem
= n_elem
;
2957 qc
->orig_n_elem
= n_elem
;
2961 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2962 * @qc: Command with memory buffer to be mapped.
2964 * DMA-map the memory buffer associated with queued_cmd @qc.
2967 * spin_lock_irqsave(host_set lock)
2970 * Zero on success, negative on error.
2973 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
2975 struct ata_port
*ap
= qc
->ap
;
2976 int dir
= qc
->dma_dir
;
2977 struct scatterlist
*sg
= qc
->__sg
;
2978 dma_addr_t dma_address
;
2981 /* we must lengthen transfers to end on a 32-bit boundary */
2982 qc
->pad_len
= sg
->length
& 3;
2984 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2985 struct scatterlist
*psg
= &qc
->pad_sgent
;
2987 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
2989 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
2991 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
2992 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
2995 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2996 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
2998 sg
->length
-= qc
->pad_len
;
2999 if (sg
->length
== 0)
3002 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3003 sg
->length
, qc
->pad_len
);
3011 dma_address
= dma_map_single(ap
->dev
, qc
->buf_virt
,
3013 if (dma_mapping_error(dma_address
)) {
3015 sg
->length
+= qc
->pad_len
;
3019 sg_dma_address(sg
) = dma_address
;
3020 sg_dma_len(sg
) = sg
->length
;
3023 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
3024 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3030 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3031 * @qc: Command with scatter-gather table to be mapped.
3033 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3036 * spin_lock_irqsave(host_set lock)
3039 * Zero on success, negative on error.
3043 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
3045 struct ata_port
*ap
= qc
->ap
;
3046 struct scatterlist
*sg
= qc
->__sg
;
3047 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
3048 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
3050 VPRINTK("ENTER, ata%u\n", ap
->id
);
3051 WARN_ON(!(qc
->flags
& ATA_QCFLAG_SG
));
3053 /* we must lengthen transfers to end on a 32-bit boundary */
3054 qc
->pad_len
= lsg
->length
& 3;
3056 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3057 struct scatterlist
*psg
= &qc
->pad_sgent
;
3058 unsigned int offset
;
3060 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3062 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3065 * psg->page/offset are used to copy to-be-written
3066 * data in this function or read data in ata_sg_clean.
3068 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
3069 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
3070 psg
->offset
= offset_in_page(offset
);
3072 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
3073 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3074 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
3075 kunmap_atomic(addr
, KM_IRQ0
);
3078 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3079 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3081 lsg
->length
-= qc
->pad_len
;
3082 if (lsg
->length
== 0)
3085 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3086 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
3089 pre_n_elem
= qc
->n_elem
;
3090 if (trim_sg
&& pre_n_elem
)
3099 n_elem
= dma_map_sg(ap
->dev
, sg
, pre_n_elem
, dir
);
3101 /* restore last sg */
3102 lsg
->length
+= qc
->pad_len
;
3106 DPRINTK("%d sg elements mapped\n", n_elem
);
3109 qc
->n_elem
= n_elem
;
3115 * ata_poll_qc_complete - turn irq back on and finish qc
3116 * @qc: Command to complete
3117 * @err_mask: ATA status register content
3120 * None. (grabs host lock)
3123 void ata_poll_qc_complete(struct ata_queued_cmd
*qc
)
3125 struct ata_port
*ap
= qc
->ap
;
3126 unsigned long flags
;
3128 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
3130 ata_qc_complete(qc
);
3131 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
3135 * ata_pio_poll - poll using PIO, depending on current state
3136 * @ap: the target ata_port
3139 * None. (executing in kernel thread context)
3142 * timeout value to use
3145 static unsigned long ata_pio_poll(struct ata_port
*ap
)
3147 struct ata_queued_cmd
*qc
;
3149 unsigned int poll_state
= HSM_ST_UNKNOWN
;
3150 unsigned int reg_state
= HSM_ST_UNKNOWN
;
3152 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3153 WARN_ON(qc
== NULL
);
3155 switch (ap
->hsm_task_state
) {
3158 poll_state
= HSM_ST_POLL
;
3162 case HSM_ST_LAST_POLL
:
3163 poll_state
= HSM_ST_LAST_POLL
;
3164 reg_state
= HSM_ST_LAST
;
3171 status
= ata_chk_status(ap
);
3172 if (status
& ATA_BUSY
) {
3173 if (time_after(jiffies
, ap
->pio_task_timeout
)) {
3174 qc
->err_mask
|= AC_ERR_TIMEOUT
;
3175 ap
->hsm_task_state
= HSM_ST_TMOUT
;
3178 ap
->hsm_task_state
= poll_state
;
3179 return ATA_SHORT_PAUSE
;
3182 ap
->hsm_task_state
= reg_state
;
3187 * ata_pio_complete - check if drive is busy or idle
3188 * @ap: the target ata_port
3191 * None. (executing in kernel thread context)
3194 * Zero if qc completed.
3195 * Non-zero if has next.
3198 static int ata_pio_complete (struct ata_port
*ap
)
3200 struct ata_queued_cmd
*qc
;
3204 * This is purely heuristic. This is a fast path. Sometimes when
3205 * we enter, BSY will be cleared in a chk-status or two. If not,
3206 * the drive is probably seeking or something. Snooze for a couple
3207 * msecs, then chk-status again. If still busy, fall back to
3208 * HSM_ST_LAST_POLL state.
3210 drv_stat
= ata_busy_wait(ap
, ATA_BUSY
, 10);
3211 if (drv_stat
& ATA_BUSY
) {
3213 drv_stat
= ata_busy_wait(ap
, ATA_BUSY
, 10);
3214 if (drv_stat
& ATA_BUSY
) {
3215 ap
->hsm_task_state
= HSM_ST_LAST_POLL
;
3216 ap
->pio_task_timeout
= jiffies
+ ATA_TMOUT_PIO
;
3221 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3222 WARN_ON(qc
== NULL
);
3224 drv_stat
= ata_wait_idle(ap
);
3225 if (!ata_ok(drv_stat
)) {
3226 qc
->err_mask
|= __ac_err_mask(drv_stat
);
3227 ap
->hsm_task_state
= HSM_ST_ERR
;
3231 ap
->hsm_task_state
= HSM_ST_IDLE
;
3233 WARN_ON(qc
->err_mask
);
3234 ata_poll_qc_complete(qc
);
3236 /* another command may start at this point */
3243 * swap_buf_le16 - swap halves of 16-bit words in place
3244 * @buf: Buffer to swap
3245 * @buf_words: Number of 16-bit words in buffer.
3247 * Swap halves of 16-bit words if needed to convert from
3248 * little-endian byte order to native cpu byte order, or
3252 * Inherited from caller.
3254 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
3259 for (i
= 0; i
< buf_words
; i
++)
3260 buf
[i
] = le16_to_cpu(buf
[i
]);
3261 #endif /* __BIG_ENDIAN */
3265 * ata_mmio_data_xfer - Transfer data by MMIO
3266 * @ap: port to read/write
3268 * @buflen: buffer length
3269 * @write_data: read/write
3271 * Transfer data from/to the device data register by MMIO.
3274 * Inherited from caller.
3277 static void ata_mmio_data_xfer(struct ata_port
*ap
, unsigned char *buf
,
3278 unsigned int buflen
, int write_data
)
3281 unsigned int words
= buflen
>> 1;
3282 u16
*buf16
= (u16
*) buf
;
3283 void __iomem
*mmio
= (void __iomem
*)ap
->ioaddr
.data_addr
;
3285 /* Transfer multiple of 2 bytes */
3287 for (i
= 0; i
< words
; i
++)
3288 writew(le16_to_cpu(buf16
[i
]), mmio
);
3290 for (i
= 0; i
< words
; i
++)
3291 buf16
[i
] = cpu_to_le16(readw(mmio
));
3294 /* Transfer trailing 1 byte, if any. */
3295 if (unlikely(buflen
& 0x01)) {
3296 u16 align_buf
[1] = { 0 };
3297 unsigned char *trailing_buf
= buf
+ buflen
- 1;
3300 memcpy(align_buf
, trailing_buf
, 1);
3301 writew(le16_to_cpu(align_buf
[0]), mmio
);
3303 align_buf
[0] = cpu_to_le16(readw(mmio
));
3304 memcpy(trailing_buf
, align_buf
, 1);
3310 * ata_pio_data_xfer - Transfer data by PIO
3311 * @ap: port to read/write
3313 * @buflen: buffer length
3314 * @write_data: read/write
3316 * Transfer data from/to the device data register by PIO.
3319 * Inherited from caller.
3322 static void ata_pio_data_xfer(struct ata_port
*ap
, unsigned char *buf
,
3323 unsigned int buflen
, int write_data
)
3325 unsigned int words
= buflen
>> 1;
3327 /* Transfer multiple of 2 bytes */
3329 outsw(ap
->ioaddr
.data_addr
, buf
, words
);
3331 insw(ap
->ioaddr
.data_addr
, buf
, words
);
3333 /* Transfer trailing 1 byte, if any. */
3334 if (unlikely(buflen
& 0x01)) {
3335 u16 align_buf
[1] = { 0 };
3336 unsigned char *trailing_buf
= buf
+ buflen
- 1;
3339 memcpy(align_buf
, trailing_buf
, 1);
3340 outw(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
3342 align_buf
[0] = cpu_to_le16(inw(ap
->ioaddr
.data_addr
));
3343 memcpy(trailing_buf
, align_buf
, 1);
3349 * ata_data_xfer - Transfer data from/to the data register.
3350 * @ap: port to read/write
3352 * @buflen: buffer length
3353 * @do_write: read/write
3355 * Transfer data from/to the device data register.
3358 * Inherited from caller.
3361 static void ata_data_xfer(struct ata_port
*ap
, unsigned char *buf
,
3362 unsigned int buflen
, int do_write
)
3364 /* Make the crap hardware pay the costs not the good stuff */
3365 if (unlikely(ap
->flags
& ATA_FLAG_IRQ_MASK
)) {
3366 unsigned long flags
;
3367 local_irq_save(flags
);
3368 if (ap
->flags
& ATA_FLAG_MMIO
)
3369 ata_mmio_data_xfer(ap
, buf
, buflen
, do_write
);
3371 ata_pio_data_xfer(ap
, buf
, buflen
, do_write
);
3372 local_irq_restore(flags
);
3374 if (ap
->flags
& ATA_FLAG_MMIO
)
3375 ata_mmio_data_xfer(ap
, buf
, buflen
, do_write
);
3377 ata_pio_data_xfer(ap
, buf
, buflen
, do_write
);
3382 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3383 * @qc: Command on going
3385 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3388 * Inherited from caller.
3391 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
3393 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3394 struct scatterlist
*sg
= qc
->__sg
;
3395 struct ata_port
*ap
= qc
->ap
;
3397 unsigned int offset
;
3400 if (qc
->cursect
== (qc
->nsect
- 1))
3401 ap
->hsm_task_state
= HSM_ST_LAST
;
3403 page
= sg
[qc
->cursg
].page
;
3404 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
* ATA_SECT_SIZE
;
3406 /* get the current page and offset */
3407 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3408 offset
%= PAGE_SIZE
;
3410 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3412 if (PageHighMem(page
)) {
3413 unsigned long flags
;
3415 local_irq_save(flags
);
3416 buf
= kmap_atomic(page
, KM_IRQ0
);
3418 /* do the actual data transfer */
3419 ata_data_xfer(ap
, buf
+ offset
, ATA_SECT_SIZE
, do_write
);
3421 kunmap_atomic(buf
, KM_IRQ0
);
3422 local_irq_restore(flags
);
3424 buf
= page_address(page
);
3425 ata_data_xfer(ap
, buf
+ offset
, ATA_SECT_SIZE
, do_write
);
3431 if ((qc
->cursg_ofs
* ATA_SECT_SIZE
) == (&sg
[qc
->cursg
])->length
) {
3438 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3439 * @qc: Command on going
3441 * Transfer one or many ATA_SECT_SIZE of data from/to the
3442 * ATA device for the DRQ request.
3445 * Inherited from caller.
3448 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
3450 if (is_multi_taskfile(&qc
->tf
)) {
3451 /* READ/WRITE MULTIPLE */
3454 WARN_ON(qc
->dev
->multi_count
== 0);
3456 nsect
= min(qc
->nsect
- qc
->cursect
, qc
->dev
->multi_count
);
3464 * atapi_send_cdb - Write CDB bytes to hardware
3465 * @ap: Port to which ATAPI device is attached.
3466 * @qc: Taskfile currently active
3468 * When device has indicated its readiness to accept
3469 * a CDB, this function is called. Send the CDB.
3475 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
3478 DPRINTK("send cdb\n");
3479 WARN_ON(qc
->dev
->cdb_len
< 12);
3481 ata_data_xfer(ap
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
3482 ata_altstatus(ap
); /* flush */
3484 switch (qc
->tf
.protocol
) {
3485 case ATA_PROT_ATAPI
:
3486 ap
->hsm_task_state
= HSM_ST
;
3488 case ATA_PROT_ATAPI_NODATA
:
3489 ap
->hsm_task_state
= HSM_ST_LAST
;
3491 case ATA_PROT_ATAPI_DMA
:
3492 ap
->hsm_task_state
= HSM_ST_LAST
;
3493 /* initiate bmdma */
3494 ap
->ops
->bmdma_start(qc
);
3500 * ata_pio_first_block - Write first data block to hardware
3501 * @ap: Port to which ATA/ATAPI device is attached.
3503 * When device has indicated its readiness to accept
3504 * the data, this function sends out the CDB or
3505 * the first data block by PIO.
3507 * - If polling, ata_pio_task() handles the rest.
3508 * - Otherwise, interrupt handler takes over.
3511 * Kernel thread context (may sleep)
3514 * Zero if irq handler takes over
3515 * Non-zero if has next (polling).
3518 static int ata_pio_first_block(struct ata_port
*ap
)
3520 struct ata_queued_cmd
*qc
;
3522 unsigned long flags
;
3525 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3526 WARN_ON(qc
== NULL
);
3527 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
3529 /* if polling, we will stay in the work queue after sending the data.
3530 * otherwise, interrupt handler takes over after sending the data.
3532 has_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
3534 /* sleep-wait for BSY to clear */
3535 DPRINTK("busy wait\n");
3536 if (ata_busy_sleep(ap
, ATA_TMOUT_DATAOUT_QUICK
, ATA_TMOUT_DATAOUT
)) {
3537 qc
->err_mask
|= AC_ERR_TIMEOUT
;
3538 ap
->hsm_task_state
= HSM_ST_TMOUT
;
3542 /* make sure DRQ is set */
3543 status
= ata_chk_status(ap
);
3544 if ((status
& (ATA_BUSY
| ATA_DRQ
)) != ATA_DRQ
) {
3545 /* device status error */
3546 qc
->err_mask
|= AC_ERR_HSM
;
3547 ap
->hsm_task_state
= HSM_ST_ERR
;
3551 /* Send the CDB (atapi) or the first data block (ata pio out).
3552 * During the state transition, interrupt handler shouldn't
3553 * be invoked before the data transfer is complete and
3554 * hsm_task_state is changed. Hence, the following locking.
3556 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
3558 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
3559 /* PIO data out protocol.
3560 * send first data block.
3563 /* ata_pio_sectors() might change the state to HSM_ST_LAST.
3564 * so, the state is changed here before ata_pio_sectors().
3566 ap
->hsm_task_state
= HSM_ST
;
3567 ata_pio_sectors(qc
);
3568 ata_altstatus(ap
); /* flush */
3571 atapi_send_cdb(ap
, qc
);
3573 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
3575 /* if polling, ata_pio_task() handles the rest.
3576 * otherwise, interrupt handler takes over from here.
3581 return 1; /* has next */
3585 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3586 * @qc: Command on going
3587 * @bytes: number of bytes
3589 * Transfer Transfer data from/to the ATAPI device.
3592 * Inherited from caller.
3596 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
3598 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3599 struct scatterlist
*sg
= qc
->__sg
;
3600 struct ata_port
*ap
= qc
->ap
;
3603 unsigned int offset
, count
;
3605 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
3606 ap
->hsm_task_state
= HSM_ST_LAST
;
3609 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
3611 * The end of qc->sg is reached and the device expects
3612 * more data to transfer. In order not to overrun qc->sg
3613 * and fulfill length specified in the byte count register,
3614 * - for read case, discard trailing data from the device
3615 * - for write case, padding zero data to the device
3617 u16 pad_buf
[1] = { 0 };
3618 unsigned int words
= bytes
>> 1;
3621 if (words
) /* warning if bytes > 1 */
3622 printk(KERN_WARNING
"ata%u: %u bytes trailing data\n",
3625 for (i
= 0; i
< words
; i
++)
3626 ata_data_xfer(ap
, (unsigned char*)pad_buf
, 2, do_write
);
3628 ap
->hsm_task_state
= HSM_ST_LAST
;
3632 sg
= &qc
->__sg
[qc
->cursg
];
3635 offset
= sg
->offset
+ qc
->cursg_ofs
;
3637 /* get the current page and offset */
3638 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3639 offset
%= PAGE_SIZE
;
3641 /* don't overrun current sg */
3642 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
3644 /* don't cross page boundaries */
3645 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
3647 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3649 if (PageHighMem(page
)) {
3650 unsigned long flags
;
3652 local_irq_save(flags
);
3653 buf
= kmap_atomic(page
, KM_IRQ0
);
3655 /* do the actual data transfer */
3656 ata_data_xfer(ap
, buf
+ offset
, count
, do_write
);
3658 kunmap_atomic(buf
, KM_IRQ0
);
3659 local_irq_restore(flags
);
3661 buf
= page_address(page
);
3662 ata_data_xfer(ap
, buf
+ offset
, count
, do_write
);
3666 qc
->curbytes
+= count
;
3667 qc
->cursg_ofs
+= count
;
3669 if (qc
->cursg_ofs
== sg
->length
) {
3679 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3680 * @qc: Command on going
3682 * Transfer Transfer data from/to the ATAPI device.
3685 * Inherited from caller.
3688 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
3690 struct ata_port
*ap
= qc
->ap
;
3691 struct ata_device
*dev
= qc
->dev
;
3692 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
3693 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
3695 ap
->ops
->tf_read(ap
, &qc
->tf
);
3696 ireason
= qc
->tf
.nsect
;
3697 bc_lo
= qc
->tf
.lbam
;
3698 bc_hi
= qc
->tf
.lbah
;
3699 bytes
= (bc_hi
<< 8) | bc_lo
;
3701 /* shall be cleared to zero, indicating xfer of data */
3702 if (ireason
& (1 << 0))
3705 /* make sure transfer direction matches expected */
3706 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
3707 if (do_write
!= i_write
)
3710 VPRINTK("ata%u: xfering %d bytes\n", ap
->id
, bytes
);
3712 __atapi_pio_bytes(qc
, bytes
);
3717 printk(KERN_INFO
"ata%u: dev %u: ATAPI check failed\n",
3718 ap
->id
, dev
->devno
);
3719 qc
->err_mask
|= AC_ERR_HSM
;
3720 ap
->hsm_task_state
= HSM_ST_ERR
;
3724 * ata_pio_block - start PIO on a block
3725 * @ap: the target ata_port
3728 * None. (executing in kernel thread context)
3731 static void ata_pio_block(struct ata_port
*ap
)
3733 struct ata_queued_cmd
*qc
;
3737 * This is purely heuristic. This is a fast path.
3738 * Sometimes when we enter, BSY will be cleared in
3739 * a chk-status or two. If not, the drive is probably seeking
3740 * or something. Snooze for a couple msecs, then
3741 * chk-status again. If still busy, fall back to
3742 * HSM_ST_POLL state.
3744 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
3745 if (status
& ATA_BUSY
) {
3747 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
3748 if (status
& ATA_BUSY
) {
3749 ap
->hsm_task_state
= HSM_ST_POLL
;
3750 ap
->pio_task_timeout
= jiffies
+ ATA_TMOUT_PIO
;
3755 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3756 WARN_ON(qc
== NULL
);
3759 if (status
& (ATA_ERR
| ATA_DF
)) {
3760 qc
->err_mask
|= AC_ERR_DEV
;
3761 ap
->hsm_task_state
= HSM_ST_ERR
;
3765 /* transfer data if any */
3766 if (is_atapi_taskfile(&qc
->tf
)) {
3767 /* DRQ=0 means no more data to transfer */
3768 if ((status
& ATA_DRQ
) == 0) {
3769 ap
->hsm_task_state
= HSM_ST_LAST
;
3773 atapi_pio_bytes(qc
);
3775 /* handle BSY=0, DRQ=0 as error */
3776 if ((status
& ATA_DRQ
) == 0) {
3777 qc
->err_mask
|= AC_ERR_HSM
;
3778 ap
->hsm_task_state
= HSM_ST_ERR
;
3782 ata_pio_sectors(qc
);
3785 ata_altstatus(ap
); /* flush */
3788 static void ata_pio_error(struct ata_port
*ap
)
3790 struct ata_queued_cmd
*qc
;
3792 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3793 WARN_ON(qc
== NULL
);
3795 if (qc
->tf
.command
!= ATA_CMD_PACKET
)
3796 printk(KERN_WARNING
"ata%u: PIO error\n", ap
->id
);
3798 /* make sure qc->err_mask is available to
3799 * know what's wrong and recover
3801 WARN_ON(qc
->err_mask
== 0);
3803 ap
->hsm_task_state
= HSM_ST_IDLE
;
3805 ata_poll_qc_complete(qc
);
3809 * ata_hsm_move - move the HSM to the next state.
3810 * @ap: the target ata_port
3812 * @status: current device status
3813 * @in_wq: 1 if called from workqueue, 0 otherwise
3816 * 1 when poll next status needed, 0 otherwise.
3819 static int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
3820 u8 status
, int in_wq
)
3822 unsigned long flags
= 0;
3825 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
3827 /* Make sure ata_qc_issue_prot() does not throw things
3828 * like DMA polling into the workqueue. Notice that
3829 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3831 WARN_ON(in_wq
!= ((qc
->tf
.flags
& ATA_TFLAG_POLLING
) ||
3832 (ap
->hsm_task_state
== HSM_ST_FIRST
&&
3833 ((qc
->tf
.protocol
== ATA_PROT_PIO
&&
3834 (qc
->tf
.flags
& ATA_TFLAG_WRITE
)) ||
3835 (is_atapi_taskfile(&qc
->tf
) &&
3836 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))))));
3839 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
3840 qc
->err_mask
|= AC_ERR_DEV
;
3841 ap
->hsm_task_state
= HSM_ST_ERR
;
3845 switch (ap
->hsm_task_state
) {
3847 /* Send first data block or PACKET CDB */
3849 /* If polling, we will stay in the work queue after
3850 * sending the data. Otherwise, interrupt handler
3851 * takes over after sending the data.
3853 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
3855 /* check device status */
3856 if (unlikely((status
& (ATA_BUSY
| ATA_DRQ
)) != ATA_DRQ
)) {
3857 /* Wrong status. Let EH handle this */
3858 qc
->err_mask
|= AC_ERR_HSM
;
3859 ap
->hsm_task_state
= HSM_ST_ERR
;
3863 /* Send the CDB (atapi) or the first data block (ata pio out).
3864 * During the state transition, interrupt handler shouldn't
3865 * be invoked before the data transfer is complete and
3866 * hsm_task_state is changed. Hence, the following locking.
3869 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
3871 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
3872 /* PIO data out protocol.
3873 * send first data block.
3876 /* ata_pio_sectors() might change the state
3877 * to HSM_ST_LAST. so, the state is changed here
3878 * before ata_pio_sectors().
3880 ap
->hsm_task_state
= HSM_ST
;
3881 ata_pio_sectors(qc
);
3882 ata_altstatus(ap
); /* flush */
3885 atapi_send_cdb(ap
, qc
);
3888 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
3890 /* if polling, ata_pio_task() handles the rest.
3891 * otherwise, interrupt handler takes over from here.
3896 /* complete command or read/write the data register */
3897 if (qc
->tf
.protocol
== ATA_PROT_ATAPI
) {
3898 /* ATAPI PIO protocol */
3899 if ((status
& ATA_DRQ
) == 0) {
3900 /* no more data to transfer */
3901 ap
->hsm_task_state
= HSM_ST_LAST
;
3905 atapi_pio_bytes(qc
);
3907 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
3908 /* bad ireason reported by device */
3912 /* ATA PIO protocol */
3913 if (unlikely((status
& ATA_DRQ
) == 0)) {
3914 /* handle BSY=0, DRQ=0 as error */
3915 qc
->err_mask
|= AC_ERR_HSM
;
3916 ap
->hsm_task_state
= HSM_ST_ERR
;
3920 ata_pio_sectors(qc
);
3922 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
3923 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
3926 status
= ata_chk_status(ap
);
3931 ata_altstatus(ap
); /* flush */
3936 if (unlikely(!ata_ok(status
))) {
3937 qc
->err_mask
|= __ac_err_mask(status
);
3938 ap
->hsm_task_state
= HSM_ST_ERR
;
3942 /* no more data to transfer */
3943 DPRINTK("ata%u: command complete, drv_stat 0x%x\n",
3946 WARN_ON(qc
->err_mask
);
3948 ap
->hsm_task_state
= HSM_ST_IDLE
;
3950 /* complete taskfile transaction */
3952 ata_poll_qc_complete(qc
);
3954 ata_qc_complete(qc
);
3960 if (qc
->tf
.command
!= ATA_CMD_PACKET
)
3961 printk(KERN_ERR
"ata%u: command error, drv_stat 0x%x\n",
3964 /* make sure qc->err_mask is available to
3965 * know what's wrong and recover
3967 WARN_ON(qc
->err_mask
== 0);
3969 ap
->hsm_task_state
= HSM_ST_IDLE
;
3972 ata_poll_qc_complete(qc
);
3974 ata_qc_complete(qc
);
3986 static void ata_pio_task(void *_data
)
3988 struct ata_port
*ap
= _data
;
3989 unsigned long timeout
;
3996 switch (ap
->hsm_task_state
) {
3998 has_next
= ata_pio_first_block(ap
);
4006 has_next
= ata_pio_complete(ap
);
4010 case HSM_ST_LAST_POLL
:
4011 timeout
= ata_pio_poll(ap
);
4025 ata_port_queue_task(ap
, ata_pio_task
, ap
, timeout
);
4031 * ata_qc_timeout - Handle timeout of queued command
4032 * @qc: Command that timed out
4034 * Some part of the kernel (currently, only the SCSI layer)
4035 * has noticed that the active command on port @ap has not
4036 * completed after a specified length of time. Handle this
4037 * condition by disabling DMA (if necessary) and completing
4038 * transactions, with error if necessary.
4040 * This also handles the case of the "lost interrupt", where
4041 * for some reason (possibly hardware bug, possibly driver bug)
4042 * an interrupt was not delivered to the driver, even though the
4043 * transaction completed successfully.
4046 * Inherited from SCSI layer (none, can sleep)
4049 static void ata_qc_timeout(struct ata_queued_cmd
*qc
)
4051 struct ata_port
*ap
= qc
->ap
;
4052 struct ata_host_set
*host_set
= ap
->host_set
;
4053 u8 host_stat
= 0, drv_stat
;
4054 unsigned long flags
;
4058 ap
->hsm_task_state
= HSM_ST_IDLE
;
4060 spin_lock_irqsave(&host_set
->lock
, flags
);
4062 switch (qc
->tf
.protocol
) {
4065 case ATA_PROT_ATAPI_DMA
:
4066 host_stat
= ap
->ops
->bmdma_status(ap
);
4068 /* before we do anything else, clear DMA-Start bit */
4069 ap
->ops
->bmdma_stop(qc
);
4075 drv_stat
= ata_chk_status(ap
);
4077 /* ack bmdma irq events */
4078 ap
->ops
->irq_clear(ap
);
4080 printk(KERN_ERR
"ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
4081 ap
->id
, qc
->tf
.command
, drv_stat
, host_stat
);
4083 ap
->hsm_task_state
= HSM_ST_IDLE
;
4085 /* complete taskfile transaction */
4086 qc
->err_mask
|= AC_ERR_TIMEOUT
;
4090 spin_unlock_irqrestore(&host_set
->lock
, flags
);
4092 ata_eh_qc_complete(qc
);
4098 * ata_eng_timeout - Handle timeout of queued command
4099 * @ap: Port on which timed-out command is active
4101 * Some part of the kernel (currently, only the SCSI layer)
4102 * has noticed that the active command on port @ap has not
4103 * completed after a specified length of time. Handle this
4104 * condition by disabling DMA (if necessary) and completing
4105 * transactions, with error if necessary.
4107 * This also handles the case of the "lost interrupt", where
4108 * for some reason (possibly hardware bug, possibly driver bug)
4109 * an interrupt was not delivered to the driver, even though the
4110 * transaction completed successfully.
4113 * Inherited from SCSI layer (none, can sleep)
4116 void ata_eng_timeout(struct ata_port
*ap
)
4120 ata_qc_timeout(ata_qc_from_tag(ap
, ap
->active_tag
));
4126 * ata_qc_new - Request an available ATA command, for queueing
4127 * @ap: Port associated with device @dev
4128 * @dev: Device from whom we request an available command structure
4134 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4136 struct ata_queued_cmd
*qc
= NULL
;
4139 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++)
4140 if (!test_and_set_bit(i
, &ap
->qactive
)) {
4141 qc
= ata_qc_from_tag(ap
, i
);
4152 * ata_qc_new_init - Request an available ATA command, and initialize it
4153 * @ap: Port associated with device @dev
4154 * @dev: Device from whom we request an available command structure
4160 struct ata_queued_cmd
*ata_qc_new_init(struct ata_port
*ap
,
4161 struct ata_device
*dev
)
4163 struct ata_queued_cmd
*qc
;
4165 qc
= ata_qc_new(ap
);
4178 * ata_qc_free - free unused ata_queued_cmd
4179 * @qc: Command to complete
4181 * Designed to free unused ata_queued_cmd object
4182 * in case something prevents using it.
4185 * spin_lock_irqsave(host_set lock)
4187 void ata_qc_free(struct ata_queued_cmd
*qc
)
4189 struct ata_port
*ap
= qc
->ap
;
4192 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4196 if (likely(ata_tag_valid(tag
))) {
4197 if (tag
== ap
->active_tag
)
4198 ap
->active_tag
= ATA_TAG_POISON
;
4199 qc
->tag
= ATA_TAG_POISON
;
4200 clear_bit(tag
, &ap
->qactive
);
4204 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4206 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4207 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4209 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4212 /* atapi: mark qc as inactive to prevent the interrupt handler
4213 * from completing the command twice later, before the error handler
4214 * is called. (when rc != 0 and atapi request sense is needed)
4216 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4218 /* call completion callback */
4219 qc
->complete_fn(qc
);
4222 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
4224 struct ata_port
*ap
= qc
->ap
;
4226 switch (qc
->tf
.protocol
) {
4228 case ATA_PROT_ATAPI_DMA
:
4231 case ATA_PROT_ATAPI
:
4233 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
4246 * ata_qc_issue - issue taskfile to device
4247 * @qc: command to issue to device
4249 * Prepare an ATA command to submission to device.
4250 * This includes mapping the data into a DMA-able
4251 * area, filling in the S/G table, and finally
4252 * writing the taskfile to hardware, starting the command.
4255 * spin_lock_irqsave(host_set lock)
4258 * Zero on success, AC_ERR_* mask on failure
4261 unsigned int ata_qc_issue(struct ata_queued_cmd
*qc
)
4263 struct ata_port
*ap
= qc
->ap
;
4265 if (ata_should_dma_map(qc
)) {
4266 if (qc
->flags
& ATA_QCFLAG_SG
) {
4267 if (ata_sg_setup(qc
))
4269 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
4270 if (ata_sg_setup_one(qc
))
4274 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4277 ap
->ops
->qc_prep(qc
);
4279 qc
->ap
->active_tag
= qc
->tag
;
4280 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
4282 return ap
->ops
->qc_issue(qc
);
4285 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4286 return AC_ERR_SYSTEM
;
4291 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4292 * @qc: command to issue to device
4294 * Using various libata functions and hooks, this function
4295 * starts an ATA command. ATA commands are grouped into
4296 * classes called "protocols", and issuing each type of protocol
4297 * is slightly different.
4299 * May be used as the qc_issue() entry in ata_port_operations.
4302 * spin_lock_irqsave(host_set lock)
4305 * Zero on success, AC_ERR_* mask on failure
4308 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
4310 struct ata_port
*ap
= qc
->ap
;
4312 /* Use polling pio if the LLD doesn't handle
4313 * interrupt driven pio and atapi CDB interrupt.
4315 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
4316 switch (qc
->tf
.protocol
) {
4318 case ATA_PROT_ATAPI
:
4319 case ATA_PROT_ATAPI_NODATA
:
4320 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
4322 case ATA_PROT_ATAPI_DMA
:
4323 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
4331 /* select the device */
4332 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
4334 /* start the command */
4335 switch (qc
->tf
.protocol
) {
4336 case ATA_PROT_NODATA
:
4337 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4338 ata_qc_set_polling(qc
);
4340 ata_tf_to_host(ap
, &qc
->tf
);
4341 ap
->hsm_task_state
= HSM_ST_LAST
;
4343 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4344 ata_port_queue_task(ap
, ata_pio_task
, ap
, 0);
4349 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4351 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
4352 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
4353 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
4354 ap
->hsm_task_state
= HSM_ST_LAST
;
4358 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4359 ata_qc_set_polling(qc
);
4361 ata_tf_to_host(ap
, &qc
->tf
);
4363 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
4364 /* PIO data out protocol */
4365 ap
->hsm_task_state
= HSM_ST_FIRST
;
4366 ata_port_queue_task(ap
, ata_pio_task
, ap
, 0);
4368 /* always send first data block using
4369 * the ata_pio_task() codepath.
4372 /* PIO data in protocol */
4373 ap
->hsm_task_state
= HSM_ST
;
4375 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4376 ata_port_queue_task(ap
, ata_pio_task
, ap
, 0);
4378 /* if polling, ata_pio_task() handles the rest.
4379 * otherwise, interrupt handler takes over from here.
4385 case ATA_PROT_ATAPI
:
4386 case ATA_PROT_ATAPI_NODATA
:
4387 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4388 ata_qc_set_polling(qc
);
4390 ata_tf_to_host(ap
, &qc
->tf
);
4392 ap
->hsm_task_state
= HSM_ST_FIRST
;
4394 /* send cdb by polling if no cdb interrupt */
4395 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
4396 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
4397 ata_port_queue_task(ap
, ata_pio_task
, ap
, 0);
4400 case ATA_PROT_ATAPI_DMA
:
4401 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4403 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
4404 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
4405 ap
->hsm_task_state
= HSM_ST_FIRST
;
4407 /* send cdb by polling if no cdb interrupt */
4408 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4409 ata_port_queue_task(ap
, ata_pio_task
, ap
, 0);
4414 return AC_ERR_SYSTEM
;
4421 * ata_host_intr - Handle host interrupt for given (port, task)
4422 * @ap: Port on which interrupt arrived (possibly...)
4423 * @qc: Taskfile currently active in engine
4425 * Handle host interrupt for given queued command. Currently,
4426 * only DMA interrupts are handled. All other commands are
4427 * handled via polling with interrupts disabled (nIEN bit).
4430 * spin_lock_irqsave(host_set lock)
4433 * One if interrupt was handled, zero if not (shared irq).
4436 inline unsigned int ata_host_intr (struct ata_port
*ap
,
4437 struct ata_queued_cmd
*qc
)
4439 u8 status
, host_stat
= 0;
4441 VPRINTK("ata%u: protocol %d task_state %d\n",
4442 ap
->id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
4444 /* Check whether we are expecting interrupt in this state */
4445 switch (ap
->hsm_task_state
) {
4447 /* Some pre-ATAPI-4 devices assert INTRQ
4448 * at this state when ready to receive CDB.
4451 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4452 * The flag was turned on only for atapi devices.
4453 * No need to check is_atapi_taskfile(&qc->tf) again.
4455 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4459 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
4460 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
) {
4461 /* check status of DMA engine */
4462 host_stat
= ap
->ops
->bmdma_status(ap
);
4463 VPRINTK("ata%u: host_stat 0x%X\n", ap
->id
, host_stat
);
4465 /* if it's not our irq... */
4466 if (!(host_stat
& ATA_DMA_INTR
))
4469 /* before we do anything else, clear DMA-Start bit */
4470 ap
->ops
->bmdma_stop(qc
);
4472 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
4473 /* error when transfering data to/from memory */
4474 qc
->err_mask
|= AC_ERR_HOST_BUS
;
4475 ap
->hsm_task_state
= HSM_ST_ERR
;
4485 /* check altstatus */
4486 status
= ata_altstatus(ap
);
4487 if (status
& ATA_BUSY
)
4490 /* check main status, clearing INTRQ */
4491 status
= ata_chk_status(ap
);
4492 if (unlikely(status
& ATA_BUSY
))
4495 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4496 ap
->id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
4498 /* ack bmdma irq events */
4499 ap
->ops
->irq_clear(ap
);
4501 ata_hsm_move(ap
, qc
, status
, 0);
4502 return 1; /* irq handled */
4505 ap
->stats
.idle_irq
++;
4508 if ((ap
->stats
.idle_irq
% 1000) == 0) {
4509 ata_irq_ack(ap
, 0); /* debug trap */
4510 printk(KERN_WARNING
"ata%d: irq trap\n", ap
->id
);
4514 return 0; /* irq not handled */
4518 * ata_interrupt - Default ATA host interrupt handler
4519 * @irq: irq line (unused)
4520 * @dev_instance: pointer to our ata_host_set information structure
4523 * Default interrupt handler for PCI IDE devices. Calls
4524 * ata_host_intr() for each port that is not disabled.
4527 * Obtains host_set lock during operation.
4530 * IRQ_NONE or IRQ_HANDLED.
4533 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
, struct pt_regs
*regs
)
4535 struct ata_host_set
*host_set
= dev_instance
;
4537 unsigned int handled
= 0;
4538 unsigned long flags
;
4540 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4541 spin_lock_irqsave(&host_set
->lock
, flags
);
4543 for (i
= 0; i
< host_set
->n_ports
; i
++) {
4544 struct ata_port
*ap
;
4546 ap
= host_set
->ports
[i
];
4548 !(ap
->flags
& ATA_FLAG_PORT_DISABLED
)) {
4549 struct ata_queued_cmd
*qc
;
4551 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
4552 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
4553 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
4554 handled
|= ata_host_intr(ap
, qc
);
4558 spin_unlock_irqrestore(&host_set
->lock
, flags
);
4560 return IRQ_RETVAL(handled
);
4565 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4566 * without filling any other registers
4568 static int ata_do_simple_cmd(struct ata_port
*ap
, struct ata_device
*dev
,
4571 struct ata_taskfile tf
;
4574 ata_tf_init(ap
, &tf
, dev
->devno
);
4577 tf
.flags
|= ATA_TFLAG_DEVICE
;
4578 tf
.protocol
= ATA_PROT_NODATA
;
4580 err
= ata_exec_internal(ap
, dev
, &tf
, DMA_NONE
, NULL
, 0);
4582 printk(KERN_ERR
"%s: ata command failed: %d\n",
4588 static int ata_flush_cache(struct ata_port
*ap
, struct ata_device
*dev
)
4592 if (!ata_try_flush_cache(dev
))
4595 if (ata_id_has_flush_ext(dev
->id
))
4596 cmd
= ATA_CMD_FLUSH_EXT
;
4598 cmd
= ATA_CMD_FLUSH
;
4600 return ata_do_simple_cmd(ap
, dev
, cmd
);
4603 static int ata_standby_drive(struct ata_port
*ap
, struct ata_device
*dev
)
4605 return ata_do_simple_cmd(ap
, dev
, ATA_CMD_STANDBYNOW1
);
4608 static int ata_start_drive(struct ata_port
*ap
, struct ata_device
*dev
)
4610 return ata_do_simple_cmd(ap
, dev
, ATA_CMD_IDLEIMMEDIATE
);
4614 * ata_device_resume - wakeup a previously suspended devices
4615 * @ap: port the device is connected to
4616 * @dev: the device to resume
4618 * Kick the drive back into action, by sending it an idle immediate
4619 * command and making sure its transfer mode matches between drive
4623 int ata_device_resume(struct ata_port
*ap
, struct ata_device
*dev
)
4625 if (ap
->flags
& ATA_FLAG_SUSPENDED
) {
4626 ap
->flags
&= ~ATA_FLAG_SUSPENDED
;
4629 if (!ata_dev_present(dev
))
4631 if (dev
->class == ATA_DEV_ATA
)
4632 ata_start_drive(ap
, dev
);
4638 * ata_device_suspend - prepare a device for suspend
4639 * @ap: port the device is connected to
4640 * @dev: the device to suspend
4642 * Flush the cache on the drive, if appropriate, then issue a
4643 * standbynow command.
4645 int ata_device_suspend(struct ata_port
*ap
, struct ata_device
*dev
, pm_message_t state
)
4647 if (!ata_dev_present(dev
))
4649 if (dev
->class == ATA_DEV_ATA
)
4650 ata_flush_cache(ap
, dev
);
4652 if (state
.event
!= PM_EVENT_FREEZE
)
4653 ata_standby_drive(ap
, dev
);
4654 ap
->flags
|= ATA_FLAG_SUSPENDED
;
4659 * ata_port_start - Set port up for dma.
4660 * @ap: Port to initialize
4662 * Called just after data structures for each port are
4663 * initialized. Allocates space for PRD table.
4665 * May be used as the port_start() entry in ata_port_operations.
4668 * Inherited from caller.
4671 int ata_port_start (struct ata_port
*ap
)
4673 struct device
*dev
= ap
->dev
;
4676 ap
->prd
= dma_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
, GFP_KERNEL
);
4680 rc
= ata_pad_alloc(ap
, dev
);
4682 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
4686 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
, (unsigned long long) ap
->prd_dma
);
4693 * ata_port_stop - Undo ata_port_start()
4694 * @ap: Port to shut down
4696 * Frees the PRD table.
4698 * May be used as the port_stop() entry in ata_port_operations.
4701 * Inherited from caller.
4704 void ata_port_stop (struct ata_port
*ap
)
4706 struct device
*dev
= ap
->dev
;
4708 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
4709 ata_pad_free(ap
, dev
);
4712 void ata_host_stop (struct ata_host_set
*host_set
)
4714 if (host_set
->mmio_base
)
4715 iounmap(host_set
->mmio_base
);
4720 * ata_host_remove - Unregister SCSI host structure with upper layers
4721 * @ap: Port to unregister
4722 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4725 * Inherited from caller.
4728 static void ata_host_remove(struct ata_port
*ap
, unsigned int do_unregister
)
4730 struct Scsi_Host
*sh
= ap
->host
;
4735 scsi_remove_host(sh
);
4737 ap
->ops
->port_stop(ap
);
4741 * ata_host_init - Initialize an ata_port structure
4742 * @ap: Structure to initialize
4743 * @host: associated SCSI mid-layer structure
4744 * @host_set: Collection of hosts to which @ap belongs
4745 * @ent: Probe information provided by low-level driver
4746 * @port_no: Port number associated with this ata_port
4748 * Initialize a new ata_port structure, and its associated
4752 * Inherited from caller.
4755 static void ata_host_init(struct ata_port
*ap
, struct Scsi_Host
*host
,
4756 struct ata_host_set
*host_set
,
4757 const struct ata_probe_ent
*ent
, unsigned int port_no
)
4763 host
->max_channel
= 1;
4764 host
->unique_id
= ata_unique_id
++;
4765 host
->max_cmd_len
= 12;
4767 ap
->flags
= ATA_FLAG_PORT_DISABLED
;
4768 ap
->id
= host
->unique_id
;
4770 ap
->ctl
= ATA_DEVCTL_OBS
;
4771 ap
->host_set
= host_set
;
4773 ap
->port_no
= port_no
;
4775 ent
->legacy_mode
? ent
->hard_port_no
: port_no
;
4776 ap
->pio_mask
= ent
->pio_mask
;
4777 ap
->mwdma_mask
= ent
->mwdma_mask
;
4778 ap
->udma_mask
= ent
->udma_mask
;
4779 ap
->flags
|= ent
->host_flags
;
4780 ap
->ops
= ent
->port_ops
;
4781 ap
->cbl
= ATA_CBL_NONE
;
4782 ap
->active_tag
= ATA_TAG_POISON
;
4783 ap
->last_ctl
= 0xFF;
4785 INIT_WORK(&ap
->port_task
, NULL
, NULL
);
4786 INIT_LIST_HEAD(&ap
->eh_done_q
);
4788 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
4789 struct ata_device
*dev
= &ap
->device
[i
];
4791 dev
->pio_mask
= UINT_MAX
;
4792 dev
->mwdma_mask
= UINT_MAX
;
4793 dev
->udma_mask
= UINT_MAX
;
4797 ap
->stats
.unhandled_irq
= 1;
4798 ap
->stats
.idle_irq
= 1;
4801 memcpy(&ap
->ioaddr
, &ent
->port
[port_no
], sizeof(struct ata_ioports
));
4805 * ata_host_add - Attach low-level ATA driver to system
4806 * @ent: Information provided by low-level driver
4807 * @host_set: Collections of ports to which we add
4808 * @port_no: Port number associated with this host
4810 * Attach low-level ATA driver to system.
4813 * PCI/etc. bus probe sem.
4816 * New ata_port on success, for NULL on error.
4819 static struct ata_port
* ata_host_add(const struct ata_probe_ent
*ent
,
4820 struct ata_host_set
*host_set
,
4821 unsigned int port_no
)
4823 struct Scsi_Host
*host
;
4824 struct ata_port
*ap
;
4829 if (!ent
->port_ops
->probe_reset
&&
4830 !(ent
->host_flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
))) {
4831 printk(KERN_ERR
"ata%u: no reset mechanism available\n",
4836 host
= scsi_host_alloc(ent
->sht
, sizeof(struct ata_port
));
4840 host
->transportt
= &ata_scsi_transport_template
;
4842 ap
= (struct ata_port
*) &host
->hostdata
[0];
4844 ata_host_init(ap
, host
, host_set
, ent
, port_no
);
4846 rc
= ap
->ops
->port_start(ap
);
4853 scsi_host_put(host
);
4858 * ata_device_add - Register hardware device with ATA and SCSI layers
4859 * @ent: Probe information describing hardware device to be registered
4861 * This function processes the information provided in the probe
4862 * information struct @ent, allocates the necessary ATA and SCSI
4863 * host information structures, initializes them, and registers
4864 * everything with requisite kernel subsystems.
4866 * This function requests irqs, probes the ATA bus, and probes
4870 * PCI/etc. bus probe sem.
4873 * Number of ports registered. Zero on error (no ports registered).
4876 int ata_device_add(const struct ata_probe_ent
*ent
)
4878 unsigned int count
= 0, i
;
4879 struct device
*dev
= ent
->dev
;
4880 struct ata_host_set
*host_set
;
4883 /* alloc a container for our list of ATA ports (buses) */
4884 host_set
= kzalloc(sizeof(struct ata_host_set
) +
4885 (ent
->n_ports
* sizeof(void *)), GFP_KERNEL
);
4888 spin_lock_init(&host_set
->lock
);
4890 host_set
->dev
= dev
;
4891 host_set
->n_ports
= ent
->n_ports
;
4892 host_set
->irq
= ent
->irq
;
4893 host_set
->mmio_base
= ent
->mmio_base
;
4894 host_set
->private_data
= ent
->private_data
;
4895 host_set
->ops
= ent
->port_ops
;
4897 /* register each port bound to this device */
4898 for (i
= 0; i
< ent
->n_ports
; i
++) {
4899 struct ata_port
*ap
;
4900 unsigned long xfer_mode_mask
;
4902 ap
= ata_host_add(ent
, host_set
, i
);
4906 host_set
->ports
[i
] = ap
;
4907 xfer_mode_mask
=(ap
->udma_mask
<< ATA_SHIFT_UDMA
) |
4908 (ap
->mwdma_mask
<< ATA_SHIFT_MWDMA
) |
4909 (ap
->pio_mask
<< ATA_SHIFT_PIO
);
4911 /* print per-port info to dmesg */
4912 printk(KERN_INFO
"ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4913 "bmdma 0x%lX irq %lu\n",
4915 ap
->flags
& ATA_FLAG_SATA
? 'S' : 'P',
4916 ata_mode_string(xfer_mode_mask
),
4917 ap
->ioaddr
.cmd_addr
,
4918 ap
->ioaddr
.ctl_addr
,
4919 ap
->ioaddr
.bmdma_addr
,
4923 host_set
->ops
->irq_clear(ap
);
4930 /* obtain irq, that is shared between channels */
4931 if (request_irq(ent
->irq
, ent
->port_ops
->irq_handler
, ent
->irq_flags
,
4932 DRV_NAME
, host_set
))
4935 /* perform each probe synchronously */
4936 DPRINTK("probe begin\n");
4937 for (i
= 0; i
< count
; i
++) {
4938 struct ata_port
*ap
;
4941 ap
= host_set
->ports
[i
];
4943 DPRINTK("ata%u: bus probe begin\n", ap
->id
);
4944 rc
= ata_bus_probe(ap
);
4945 DPRINTK("ata%u: bus probe end\n", ap
->id
);
4948 /* FIXME: do something useful here?
4949 * Current libata behavior will
4950 * tear down everything when
4951 * the module is removed
4952 * or the h/w is unplugged.
4956 rc
= scsi_add_host(ap
->host
, dev
);
4958 printk(KERN_ERR
"ata%u: scsi_add_host failed\n",
4960 /* FIXME: do something useful here */
4961 /* FIXME: handle unconditional calls to
4962 * scsi_scan_host and ata_host_remove, below,
4968 /* probes are done, now scan each port's disk(s) */
4969 DPRINTK("host probe begin\n");
4970 for (i
= 0; i
< count
; i
++) {
4971 struct ata_port
*ap
= host_set
->ports
[i
];
4973 ata_scsi_scan_host(ap
);
4976 dev_set_drvdata(dev
, host_set
);
4978 VPRINTK("EXIT, returning %u\n", ent
->n_ports
);
4979 return ent
->n_ports
; /* success */
4982 for (i
= 0; i
< count
; i
++) {
4983 ata_host_remove(host_set
->ports
[i
], 1);
4984 scsi_host_put(host_set
->ports
[i
]->host
);
4988 VPRINTK("EXIT, returning 0\n");
4993 * ata_host_set_remove - PCI layer callback for device removal
4994 * @host_set: ATA host set that was removed
4996 * Unregister all objects associated with this host set. Free those
5000 * Inherited from calling layer (may sleep).
5003 void ata_host_set_remove(struct ata_host_set
*host_set
)
5005 struct ata_port
*ap
;
5008 for (i
= 0; i
< host_set
->n_ports
; i
++) {
5009 ap
= host_set
->ports
[i
];
5010 scsi_remove_host(ap
->host
);
5013 free_irq(host_set
->irq
, host_set
);
5015 for (i
= 0; i
< host_set
->n_ports
; i
++) {
5016 ap
= host_set
->ports
[i
];
5018 ata_scsi_release(ap
->host
);
5020 if ((ap
->flags
& ATA_FLAG_NO_LEGACY
) == 0) {
5021 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
5023 if (ioaddr
->cmd_addr
== 0x1f0)
5024 release_region(0x1f0, 8);
5025 else if (ioaddr
->cmd_addr
== 0x170)
5026 release_region(0x170, 8);
5029 scsi_host_put(ap
->host
);
5032 if (host_set
->ops
->host_stop
)
5033 host_set
->ops
->host_stop(host_set
);
5039 * ata_scsi_release - SCSI layer callback hook for host unload
5040 * @host: libata host to be unloaded
5042 * Performs all duties necessary to shut down a libata port...
5043 * Kill port kthread, disable port, and release resources.
5046 * Inherited from SCSI layer.
5052 int ata_scsi_release(struct Scsi_Host
*host
)
5054 struct ata_port
*ap
= (struct ata_port
*) &host
->hostdata
[0];
5059 ap
->ops
->port_disable(ap
);
5060 ata_host_remove(ap
, 0);
5061 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
5062 kfree(ap
->device
[i
].id
);
5069 * ata_std_ports - initialize ioaddr with standard port offsets.
5070 * @ioaddr: IO address structure to be initialized
5072 * Utility function which initializes data_addr, error_addr,
5073 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5074 * device_addr, status_addr, and command_addr to standard offsets
5075 * relative to cmd_addr.
5077 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5080 void ata_std_ports(struct ata_ioports
*ioaddr
)
5082 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
5083 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
5084 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
5085 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
5086 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
5087 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
5088 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
5089 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
5090 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
5091 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
5097 void ata_pci_host_stop (struct ata_host_set
*host_set
)
5099 struct pci_dev
*pdev
= to_pci_dev(host_set
->dev
);
5101 pci_iounmap(pdev
, host_set
->mmio_base
);
5105 * ata_pci_remove_one - PCI layer callback for device removal
5106 * @pdev: PCI device that was removed
5108 * PCI layer indicates to libata via this hook that
5109 * hot-unplug or module unload event has occurred.
5110 * Handle this by unregistering all objects associated
5111 * with this PCI device. Free those objects. Then finally
5112 * release PCI resources and disable device.
5115 * Inherited from PCI layer (may sleep).
5118 void ata_pci_remove_one (struct pci_dev
*pdev
)
5120 struct device
*dev
= pci_dev_to_dev(pdev
);
5121 struct ata_host_set
*host_set
= dev_get_drvdata(dev
);
5123 ata_host_set_remove(host_set
);
5124 pci_release_regions(pdev
);
5125 pci_disable_device(pdev
);
5126 dev_set_drvdata(dev
, NULL
);
5129 /* move to PCI subsystem */
5130 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
5132 unsigned long tmp
= 0;
5134 switch (bits
->width
) {
5137 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
5143 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
5149 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
5160 return (tmp
== bits
->val
) ? 1 : 0;
5163 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5165 pci_save_state(pdev
);
5166 pci_disable_device(pdev
);
5167 pci_set_power_state(pdev
, PCI_D3hot
);
5171 int ata_pci_device_resume(struct pci_dev
*pdev
)
5173 pci_set_power_state(pdev
, PCI_D0
);
5174 pci_restore_state(pdev
);
5175 pci_enable_device(pdev
);
5176 pci_set_master(pdev
);
5179 #endif /* CONFIG_PCI */
5182 static int __init
ata_init(void)
5184 ata_wq
= create_workqueue("ata");
5188 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
5192 static void __exit
ata_exit(void)
5194 destroy_workqueue(ata_wq
);
5197 module_init(ata_init
);
5198 module_exit(ata_exit
);
5200 static unsigned long ratelimit_time
;
5201 static spinlock_t ata_ratelimit_lock
= SPIN_LOCK_UNLOCKED
;
5203 int ata_ratelimit(void)
5206 unsigned long flags
;
5208 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
5210 if (time_after(jiffies
, ratelimit_time
)) {
5212 ratelimit_time
= jiffies
+ (HZ
/5);
5216 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
5222 * libata is essentially a library of internal helper functions for
5223 * low-level ATA host controller drivers. As such, the API/ABI is
5224 * likely to change as new drivers are added and updated.
5225 * Do not depend on ABI/API stability.
5228 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
5229 EXPORT_SYMBOL_GPL(ata_std_ports
);
5230 EXPORT_SYMBOL_GPL(ata_device_add
);
5231 EXPORT_SYMBOL_GPL(ata_host_set_remove
);
5232 EXPORT_SYMBOL_GPL(ata_sg_init
);
5233 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
5234 EXPORT_SYMBOL_GPL(__ata_qc_complete
);
5235 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
5236 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
5237 EXPORT_SYMBOL_GPL(ata_tf_load
);
5238 EXPORT_SYMBOL_GPL(ata_tf_read
);
5239 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
5240 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
5241 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
5242 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
5243 EXPORT_SYMBOL_GPL(ata_check_status
);
5244 EXPORT_SYMBOL_GPL(ata_altstatus
);
5245 EXPORT_SYMBOL_GPL(ata_exec_command
);
5246 EXPORT_SYMBOL_GPL(ata_port_start
);
5247 EXPORT_SYMBOL_GPL(ata_port_stop
);
5248 EXPORT_SYMBOL_GPL(ata_host_stop
);
5249 EXPORT_SYMBOL_GPL(ata_interrupt
);
5250 EXPORT_SYMBOL_GPL(ata_qc_prep
);
5251 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
5252 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
5253 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
5254 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
5255 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
5256 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
5257 EXPORT_SYMBOL_GPL(ata_port_probe
);
5258 EXPORT_SYMBOL_GPL(sata_phy_reset
);
5259 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
5260 EXPORT_SYMBOL_GPL(ata_bus_reset
);
5261 EXPORT_SYMBOL_GPL(ata_std_probeinit
);
5262 EXPORT_SYMBOL_GPL(ata_std_softreset
);
5263 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
5264 EXPORT_SYMBOL_GPL(ata_std_postreset
);
5265 EXPORT_SYMBOL_GPL(ata_std_probe_reset
);
5266 EXPORT_SYMBOL_GPL(ata_drive_probe_reset
);
5267 EXPORT_SYMBOL_GPL(ata_dev_revalidate
);
5268 EXPORT_SYMBOL_GPL(ata_dev_classify
);
5269 EXPORT_SYMBOL_GPL(ata_dev_pair
);
5270 EXPORT_SYMBOL_GPL(ata_port_disable
);
5271 EXPORT_SYMBOL_GPL(ata_ratelimit
);
5272 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
5273 EXPORT_SYMBOL_GPL(ata_port_queue_task
);
5274 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
5275 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
5276 EXPORT_SYMBOL_GPL(ata_scsi_error
);
5277 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
5278 EXPORT_SYMBOL_GPL(ata_scsi_release
);
5279 EXPORT_SYMBOL_GPL(ata_host_intr
);
5280 EXPORT_SYMBOL_GPL(ata_id_string
);
5281 EXPORT_SYMBOL_GPL(ata_id_c_string
);
5282 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
5283 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
5284 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
5286 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
5287 EXPORT_SYMBOL_GPL(ata_timing_compute
);
5288 EXPORT_SYMBOL_GPL(ata_timing_merge
);
5291 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
5292 EXPORT_SYMBOL_GPL(ata_pci_host_stop
);
5293 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode
);
5294 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
5295 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
5296 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
5297 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
5298 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
5299 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
5300 #endif /* CONFIG_PCI */
5302 EXPORT_SYMBOL_GPL(ata_device_suspend
);
5303 EXPORT_SYMBOL_GPL(ata_device_resume
);
5304 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend
);
5305 EXPORT_SYMBOL_GPL(ata_scsi_device_resume
);