4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
58 #include <linux/kmod.h>
62 /* for /sbin/loader handling in search_binary_handler() */
63 #include <linux/a.out.h>
67 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
68 int suid_dumpable
= 0;
70 /* The maximal length of core_pattern is also specified in sysctl.c */
72 static LIST_HEAD(formats
);
73 static DEFINE_RWLOCK(binfmt_lock
);
75 int register_binfmt(struct linux_binfmt
* fmt
)
79 write_lock(&binfmt_lock
);
80 list_add(&fmt
->lh
, &formats
);
81 write_unlock(&binfmt_lock
);
85 EXPORT_SYMBOL(register_binfmt
);
87 void unregister_binfmt(struct linux_binfmt
* fmt
)
89 write_lock(&binfmt_lock
);
91 write_unlock(&binfmt_lock
);
94 EXPORT_SYMBOL(unregister_binfmt
);
96 static inline void put_binfmt(struct linux_binfmt
* fmt
)
98 module_put(fmt
->module
);
102 * Note that a shared library must be both readable and executable due to
105 * Also note that we take the address to load from from the file itself.
107 asmlinkage
long sys_uselib(const char __user
* library
)
113 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
118 if (!S_ISREG(nd
.path
.dentry
->d_inode
->i_mode
))
121 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
);
125 file
= nameidata_to_filp(&nd
, O_RDONLY
|O_LARGEFILE
);
126 error
= PTR_ERR(file
);
132 struct linux_binfmt
* fmt
;
134 read_lock(&binfmt_lock
);
135 list_for_each_entry(fmt
, &formats
, lh
) {
136 if (!fmt
->load_shlib
)
138 if (!try_module_get(fmt
->module
))
140 read_unlock(&binfmt_lock
);
141 error
= fmt
->load_shlib(file
);
142 read_lock(&binfmt_lock
);
144 if (error
!= -ENOEXEC
)
147 read_unlock(&binfmt_lock
);
153 release_open_intent(&nd
);
160 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
166 #ifdef CONFIG_STACK_GROWSUP
168 ret
= expand_stack_downwards(bprm
->vma
, pos
);
173 ret
= get_user_pages(current
, bprm
->mm
, pos
,
174 1, write
, 1, &page
, NULL
);
179 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
183 * We've historically supported up to 32 pages (ARG_MAX)
184 * of argument strings even with small stacks
190 * Limit to 1/4-th the stack size for the argv+env strings.
192 * - the remaining binfmt code will not run out of stack space,
193 * - the program will have a reasonable amount of stack left
196 rlim
= current
->signal
->rlim
;
197 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
206 static void put_arg_page(struct page
*page
)
211 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
215 static void free_arg_pages(struct linux_binprm
*bprm
)
219 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
222 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
225 static int __bprm_mm_init(struct linux_binprm
*bprm
)
228 struct vm_area_struct
*vma
= NULL
;
229 struct mm_struct
*mm
= bprm
->mm
;
231 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
235 down_write(&mm
->mmap_sem
);
239 * Place the stack at the largest stack address the architecture
240 * supports. Later, we'll move this to an appropriate place. We don't
241 * use STACK_TOP because that can depend on attributes which aren't
244 vma
->vm_end
= STACK_TOP_MAX
;
245 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
247 vma
->vm_flags
= VM_STACK_FLAGS
;
248 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
249 err
= insert_vm_struct(mm
, vma
);
251 up_write(&mm
->mmap_sem
);
255 mm
->stack_vm
= mm
->total_vm
= 1;
256 up_write(&mm
->mmap_sem
);
258 bprm
->p
= vma
->vm_end
- sizeof(void *);
265 kmem_cache_free(vm_area_cachep
, vma
);
271 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
273 return len
<= MAX_ARG_STRLEN
;
278 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
283 page
= bprm
->page
[pos
/ PAGE_SIZE
];
284 if (!page
&& write
) {
285 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
288 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
294 static void put_arg_page(struct page
*page
)
298 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
301 __free_page(bprm
->page
[i
]);
302 bprm
->page
[i
] = NULL
;
306 static void free_arg_pages(struct linux_binprm
*bprm
)
310 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
311 free_arg_page(bprm
, i
);
314 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
319 static int __bprm_mm_init(struct linux_binprm
*bprm
)
321 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
325 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
327 return len
<= bprm
->p
;
330 #endif /* CONFIG_MMU */
333 * Create a new mm_struct and populate it with a temporary stack
334 * vm_area_struct. We don't have enough context at this point to set the stack
335 * flags, permissions, and offset, so we use temporary values. We'll update
336 * them later in setup_arg_pages().
338 int bprm_mm_init(struct linux_binprm
*bprm
)
341 struct mm_struct
*mm
= NULL
;
343 bprm
->mm
= mm
= mm_alloc();
348 err
= init_new_context(current
, mm
);
352 err
= __bprm_mm_init(bprm
);
368 * count() counts the number of strings in array ARGV.
370 static int count(char __user
* __user
* argv
, int max
)
378 if (get_user(p
, argv
))
392 * 'copy_strings()' copies argument/environment strings from the old
393 * processes's memory to the new process's stack. The call to get_user_pages()
394 * ensures the destination page is created and not swapped out.
396 static int copy_strings(int argc
, char __user
* __user
* argv
,
397 struct linux_binprm
*bprm
)
399 struct page
*kmapped_page
= NULL
;
401 unsigned long kpos
= 0;
409 if (get_user(str
, argv
+argc
) ||
410 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
415 if (!valid_arg_len(bprm
, len
)) {
420 /* We're going to work our way backwords. */
426 int offset
, bytes_to_copy
;
428 offset
= pos
% PAGE_SIZE
;
432 bytes_to_copy
= offset
;
433 if (bytes_to_copy
> len
)
436 offset
-= bytes_to_copy
;
437 pos
-= bytes_to_copy
;
438 str
-= bytes_to_copy
;
439 len
-= bytes_to_copy
;
441 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
444 page
= get_arg_page(bprm
, pos
, 1);
451 flush_kernel_dcache_page(kmapped_page
);
452 kunmap(kmapped_page
);
453 put_arg_page(kmapped_page
);
456 kaddr
= kmap(kmapped_page
);
457 kpos
= pos
& PAGE_MASK
;
458 flush_arg_page(bprm
, kpos
, kmapped_page
);
460 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
469 flush_kernel_dcache_page(kmapped_page
);
470 kunmap(kmapped_page
);
471 put_arg_page(kmapped_page
);
477 * Like copy_strings, but get argv and its values from kernel memory.
479 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
482 mm_segment_t oldfs
= get_fs();
484 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
488 EXPORT_SYMBOL(copy_strings_kernel
);
493 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
494 * the binfmt code determines where the new stack should reside, we shift it to
495 * its final location. The process proceeds as follows:
497 * 1) Use shift to calculate the new vma endpoints.
498 * 2) Extend vma to cover both the old and new ranges. This ensures the
499 * arguments passed to subsequent functions are consistent.
500 * 3) Move vma's page tables to the new range.
501 * 4) Free up any cleared pgd range.
502 * 5) Shrink the vma to cover only the new range.
504 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
506 struct mm_struct
*mm
= vma
->vm_mm
;
507 unsigned long old_start
= vma
->vm_start
;
508 unsigned long old_end
= vma
->vm_end
;
509 unsigned long length
= old_end
- old_start
;
510 unsigned long new_start
= old_start
- shift
;
511 unsigned long new_end
= old_end
- shift
;
512 struct mmu_gather
*tlb
;
514 BUG_ON(new_start
> new_end
);
517 * ensure there are no vmas between where we want to go
520 if (vma
!= find_vma(mm
, new_start
))
524 * cover the whole range: [new_start, old_end)
526 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
529 * move the page tables downwards, on failure we rely on
530 * process cleanup to remove whatever mess we made.
532 if (length
!= move_page_tables(vma
, old_start
,
533 vma
, new_start
, length
))
537 tlb
= tlb_gather_mmu(mm
, 0);
538 if (new_end
> old_start
) {
540 * when the old and new regions overlap clear from new_end.
542 free_pgd_range(tlb
, new_end
, old_end
, new_end
,
543 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
546 * otherwise, clean from old_start; this is done to not touch
547 * the address space in [new_end, old_start) some architectures
548 * have constraints on va-space that make this illegal (IA64) -
549 * for the others its just a little faster.
551 free_pgd_range(tlb
, old_start
, old_end
, new_end
,
552 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
554 tlb_finish_mmu(tlb
, new_end
, old_end
);
557 * shrink the vma to just the new range.
559 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
564 #define EXTRA_STACK_VM_PAGES 20 /* random */
567 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
568 * the stack is optionally relocated, and some extra space is added.
570 int setup_arg_pages(struct linux_binprm
*bprm
,
571 unsigned long stack_top
,
572 int executable_stack
)
575 unsigned long stack_shift
;
576 struct mm_struct
*mm
= current
->mm
;
577 struct vm_area_struct
*vma
= bprm
->vma
;
578 struct vm_area_struct
*prev
= NULL
;
579 unsigned long vm_flags
;
580 unsigned long stack_base
;
582 #ifdef CONFIG_STACK_GROWSUP
583 /* Limit stack size to 1GB */
584 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
585 if (stack_base
> (1 << 30))
586 stack_base
= 1 << 30;
588 /* Make sure we didn't let the argument array grow too large. */
589 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
592 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
594 stack_shift
= vma
->vm_start
- stack_base
;
595 mm
->arg_start
= bprm
->p
- stack_shift
;
596 bprm
->p
= vma
->vm_end
- stack_shift
;
598 stack_top
= arch_align_stack(stack_top
);
599 stack_top
= PAGE_ALIGN(stack_top
);
600 stack_shift
= vma
->vm_end
- stack_top
;
602 bprm
->p
-= stack_shift
;
603 mm
->arg_start
= bprm
->p
;
607 bprm
->loader
-= stack_shift
;
608 bprm
->exec
-= stack_shift
;
610 down_write(&mm
->mmap_sem
);
611 vm_flags
= VM_STACK_FLAGS
;
614 * Adjust stack execute permissions; explicitly enable for
615 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
616 * (arch default) otherwise.
618 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
620 else if (executable_stack
== EXSTACK_DISABLE_X
)
621 vm_flags
&= ~VM_EXEC
;
622 vm_flags
|= mm
->def_flags
;
624 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
630 /* Move stack pages down in memory. */
632 ret
= shift_arg_pages(vma
, stack_shift
);
634 up_write(&mm
->mmap_sem
);
639 #ifdef CONFIG_STACK_GROWSUP
640 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
642 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
644 ret
= expand_stack(vma
, stack_base
);
649 up_write(&mm
->mmap_sem
);
652 EXPORT_SYMBOL(setup_arg_pages
);
654 #endif /* CONFIG_MMU */
656 struct file
*open_exec(const char *name
)
662 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
666 struct inode
*inode
= nd
.path
.dentry
->d_inode
;
667 file
= ERR_PTR(-EACCES
);
668 if (S_ISREG(inode
->i_mode
)) {
669 int err
= vfs_permission(&nd
, MAY_EXEC
);
672 file
= nameidata_to_filp(&nd
,
673 O_RDONLY
|O_LARGEFILE
);
675 err
= deny_write_access(file
);
685 release_open_intent(&nd
);
691 EXPORT_SYMBOL(open_exec
);
693 int kernel_read(struct file
*file
, unsigned long offset
,
694 char *addr
, unsigned long count
)
702 /* The cast to a user pointer is valid due to the set_fs() */
703 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
708 EXPORT_SYMBOL(kernel_read
);
710 static int exec_mmap(struct mm_struct
*mm
)
712 struct task_struct
*tsk
;
713 struct mm_struct
* old_mm
, *active_mm
;
715 /* Notify parent that we're no longer interested in the old VM */
717 old_mm
= current
->mm
;
718 mm_release(tsk
, old_mm
);
722 * Make sure that if there is a core dump in progress
723 * for the old mm, we get out and die instead of going
724 * through with the exec. We must hold mmap_sem around
725 * checking core_waiters and changing tsk->mm. The
726 * core-inducing thread will increment core_waiters for
727 * each thread whose ->mm == old_mm.
729 down_read(&old_mm
->mmap_sem
);
730 if (unlikely(old_mm
->core_waiters
)) {
731 up_read(&old_mm
->mmap_sem
);
736 active_mm
= tsk
->active_mm
;
739 activate_mm(active_mm
, mm
);
741 mm_update_next_owner(old_mm
);
742 arch_pick_mmap_layout(mm
);
744 up_read(&old_mm
->mmap_sem
);
745 BUG_ON(active_mm
!= old_mm
);
754 * This function makes sure the current process has its own signal table,
755 * so that flush_signal_handlers can later reset the handlers without
756 * disturbing other processes. (Other processes might share the signal
757 * table via the CLONE_SIGHAND option to clone().)
759 static int de_thread(struct task_struct
*tsk
)
761 struct signal_struct
*sig
= tsk
->signal
;
762 struct sighand_struct
*oldsighand
= tsk
->sighand
;
763 spinlock_t
*lock
= &oldsighand
->siglock
;
764 struct task_struct
*leader
= NULL
;
767 if (thread_group_empty(tsk
))
768 goto no_thread_group
;
771 * Kill all other threads in the thread group.
774 if (signal_group_exit(sig
)) {
776 * Another group action in progress, just
777 * return so that the signal is processed.
779 spin_unlock_irq(lock
);
782 sig
->group_exit_task
= tsk
;
783 zap_other_threads(tsk
);
785 /* Account for the thread group leader hanging around: */
786 count
= thread_group_leader(tsk
) ? 1 : 2;
787 sig
->notify_count
= count
;
788 while (atomic_read(&sig
->count
) > count
) {
789 __set_current_state(TASK_UNINTERRUPTIBLE
);
790 spin_unlock_irq(lock
);
794 spin_unlock_irq(lock
);
797 * At this point all other threads have exited, all we have to
798 * do is to wait for the thread group leader to become inactive,
799 * and to assume its PID:
801 if (!thread_group_leader(tsk
)) {
802 leader
= tsk
->group_leader
;
804 sig
->notify_count
= -1; /* for exit_notify() */
806 write_lock_irq(&tasklist_lock
);
807 if (likely(leader
->exit_state
))
809 __set_current_state(TASK_UNINTERRUPTIBLE
);
810 write_unlock_irq(&tasklist_lock
);
814 if (unlikely(task_child_reaper(tsk
) == leader
))
815 task_active_pid_ns(tsk
)->child_reaper
= tsk
;
817 * The only record we have of the real-time age of a
818 * process, regardless of execs it's done, is start_time.
819 * All the past CPU time is accumulated in signal_struct
820 * from sister threads now dead. But in this non-leader
821 * exec, nothing survives from the original leader thread,
822 * whose birth marks the true age of this process now.
823 * When we take on its identity by switching to its PID, we
824 * also take its birthdate (always earlier than our own).
826 tsk
->start_time
= leader
->start_time
;
828 BUG_ON(!same_thread_group(leader
, tsk
));
829 BUG_ON(has_group_leader_pid(tsk
));
831 * An exec() starts a new thread group with the
832 * TGID of the previous thread group. Rehash the
833 * two threads with a switched PID, and release
834 * the former thread group leader:
837 /* Become a process group leader with the old leader's pid.
838 * The old leader becomes a thread of the this thread group.
839 * Note: The old leader also uses this pid until release_task
840 * is called. Odd but simple and correct.
842 detach_pid(tsk
, PIDTYPE_PID
);
843 tsk
->pid
= leader
->pid
;
844 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
845 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
846 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
847 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
849 tsk
->group_leader
= tsk
;
850 leader
->group_leader
= tsk
;
852 tsk
->exit_signal
= SIGCHLD
;
854 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
855 leader
->exit_state
= EXIT_DEAD
;
857 write_unlock_irq(&tasklist_lock
);
860 sig
->group_exit_task
= NULL
;
861 sig
->notify_count
= 0;
865 flush_itimer_signals();
867 release_task(leader
);
869 if (atomic_read(&oldsighand
->count
) != 1) {
870 struct sighand_struct
*newsighand
;
872 * This ->sighand is shared with the CLONE_SIGHAND
873 * but not CLONE_THREAD task, switch to the new one.
875 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
879 atomic_set(&newsighand
->count
, 1);
880 memcpy(newsighand
->action
, oldsighand
->action
,
881 sizeof(newsighand
->action
));
883 write_lock_irq(&tasklist_lock
);
884 spin_lock(&oldsighand
->siglock
);
885 rcu_assign_pointer(tsk
->sighand
, newsighand
);
886 spin_unlock(&oldsighand
->siglock
);
887 write_unlock_irq(&tasklist_lock
);
889 __cleanup_sighand(oldsighand
);
892 BUG_ON(!thread_group_leader(tsk
));
897 * These functions flushes out all traces of the currently running executable
898 * so that a new one can be started
900 static void flush_old_files(struct files_struct
* files
)
905 spin_lock(&files
->file_lock
);
907 unsigned long set
, i
;
911 fdt
= files_fdtable(files
);
912 if (i
>= fdt
->max_fds
)
914 set
= fdt
->close_on_exec
->fds_bits
[j
];
917 fdt
->close_on_exec
->fds_bits
[j
] = 0;
918 spin_unlock(&files
->file_lock
);
919 for ( ; set
; i
++,set
>>= 1) {
924 spin_lock(&files
->file_lock
);
927 spin_unlock(&files
->file_lock
);
930 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
932 /* buf must be at least sizeof(tsk->comm) in size */
934 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
939 void set_task_comm(struct task_struct
*tsk
, char *buf
)
942 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
946 int flush_old_exec(struct linux_binprm
* bprm
)
950 char tcomm
[sizeof(current
->comm
)];
953 * Make sure we have a private signal table and that
954 * we are unassociated from the previous thread group.
956 retval
= de_thread(current
);
960 set_mm_exe_file(bprm
->mm
, bprm
->file
);
963 * Release all of the old mmap stuff
965 retval
= exec_mmap(bprm
->mm
);
969 bprm
->mm
= NULL
; /* We're using it now */
971 /* This is the point of no return */
972 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
974 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
975 set_dumpable(current
->mm
, 1);
977 set_dumpable(current
->mm
, suid_dumpable
);
979 name
= bprm
->filename
;
981 /* Copies the binary name from after last slash */
982 for (i
=0; (ch
= *(name
++)) != '\0';) {
984 i
= 0; /* overwrite what we wrote */
986 if (i
< (sizeof(tcomm
) - 1))
990 set_task_comm(current
, tcomm
);
992 current
->flags
&= ~PF_RANDOMIZE
;
995 /* Set the new mm task size. We have to do that late because it may
996 * depend on TIF_32BIT which is only updated in flush_thread() on
997 * some architectures like powerpc
999 current
->mm
->task_size
= TASK_SIZE
;
1001 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
) {
1003 set_dumpable(current
->mm
, suid_dumpable
);
1004 current
->pdeath_signal
= 0;
1005 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1006 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
1008 set_dumpable(current
->mm
, suid_dumpable
);
1011 /* An exec changes our domain. We are no longer part of the thread
1014 current
->self_exec_id
++;
1016 flush_signal_handlers(current
, 0);
1017 flush_old_files(current
->files
);
1025 EXPORT_SYMBOL(flush_old_exec
);
1028 * Fill the binprm structure from the inode.
1029 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1031 int prepare_binprm(struct linux_binprm
*bprm
)
1034 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1037 mode
= inode
->i_mode
;
1038 if (bprm
->file
->f_op
== NULL
)
1041 bprm
->e_uid
= current
->euid
;
1042 bprm
->e_gid
= current
->egid
;
1044 if(!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1046 if (mode
& S_ISUID
) {
1047 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1048 bprm
->e_uid
= inode
->i_uid
;
1053 * If setgid is set but no group execute bit then this
1054 * is a candidate for mandatory locking, not a setgid
1057 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1058 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1059 bprm
->e_gid
= inode
->i_gid
;
1063 /* fill in binprm security blob */
1064 retval
= security_bprm_set(bprm
);
1068 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
1069 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
1072 EXPORT_SYMBOL(prepare_binprm
);
1074 static int unsafe_exec(struct task_struct
*p
)
1077 if (p
->ptrace
& PT_PTRACED
) {
1078 if (p
->ptrace
& PT_PTRACE_CAP
)
1079 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1081 unsafe
|= LSM_UNSAFE_PTRACE
;
1083 if (atomic_read(&p
->fs
->count
) > 1 ||
1084 atomic_read(&p
->files
->count
) > 1 ||
1085 atomic_read(&p
->sighand
->count
) > 1)
1086 unsafe
|= LSM_UNSAFE_SHARE
;
1091 void compute_creds(struct linux_binprm
*bprm
)
1095 if (bprm
->e_uid
!= current
->uid
) {
1097 current
->pdeath_signal
= 0;
1102 unsafe
= unsafe_exec(current
);
1103 security_bprm_apply_creds(bprm
, unsafe
);
1104 task_unlock(current
);
1105 security_bprm_post_apply_creds(bprm
);
1107 EXPORT_SYMBOL(compute_creds
);
1110 * Arguments are '\0' separated strings found at the location bprm->p
1111 * points to; chop off the first by relocating brpm->p to right after
1112 * the first '\0' encountered.
1114 int remove_arg_zero(struct linux_binprm
*bprm
)
1117 unsigned long offset
;
1125 offset
= bprm
->p
& ~PAGE_MASK
;
1126 page
= get_arg_page(bprm
, bprm
->p
, 0);
1131 kaddr
= kmap_atomic(page
, KM_USER0
);
1133 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1134 offset
++, bprm
->p
++)
1137 kunmap_atomic(kaddr
, KM_USER0
);
1140 if (offset
== PAGE_SIZE
)
1141 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1142 } while (offset
== PAGE_SIZE
);
1151 EXPORT_SYMBOL(remove_arg_zero
);
1154 * cycle the list of binary formats handler, until one recognizes the image
1156 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1159 struct linux_binfmt
*fmt
;
1161 /* handle /sbin/loader.. */
1163 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1165 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1166 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1169 unsigned long loader
;
1171 allow_write_access(bprm
->file
);
1175 loader
= bprm
->vma
->vm_end
- sizeof(void *);
1177 file
= open_exec("/sbin/loader");
1178 retval
= PTR_ERR(file
);
1182 /* Remember if the application is TASO. */
1183 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1186 bprm
->loader
= loader
;
1187 retval
= prepare_binprm(bprm
);
1190 /* should call search_binary_handler recursively here,
1191 but it does not matter */
1195 retval
= security_bprm_check(bprm
);
1199 /* kernel module loader fixup */
1200 /* so we don't try to load run modprobe in kernel space. */
1203 retval
= audit_bprm(bprm
);
1208 for (try=0; try<2; try++) {
1209 read_lock(&binfmt_lock
);
1210 list_for_each_entry(fmt
, &formats
, lh
) {
1211 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1214 if (!try_module_get(fmt
->module
))
1216 read_unlock(&binfmt_lock
);
1217 retval
= fn(bprm
, regs
);
1220 allow_write_access(bprm
->file
);
1224 current
->did_exec
= 1;
1225 proc_exec_connector(current
);
1228 read_lock(&binfmt_lock
);
1230 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1233 read_unlock(&binfmt_lock
);
1237 read_unlock(&binfmt_lock
);
1238 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1242 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1243 if (printable(bprm
->buf
[0]) &&
1244 printable(bprm
->buf
[1]) &&
1245 printable(bprm
->buf
[2]) &&
1246 printable(bprm
->buf
[3]))
1247 break; /* -ENOEXEC */
1248 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1255 EXPORT_SYMBOL(search_binary_handler
);
1257 void free_bprm(struct linux_binprm
*bprm
)
1259 free_arg_pages(bprm
);
1264 * sys_execve() executes a new program.
1266 int do_execve(char * filename
,
1267 char __user
*__user
*argv
,
1268 char __user
*__user
*envp
,
1269 struct pt_regs
* regs
)
1271 struct linux_binprm
*bprm
;
1273 struct files_struct
*displaced
;
1276 retval
= unshare_files(&displaced
);
1281 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1285 file
= open_exec(filename
);
1286 retval
= PTR_ERR(file
);
1293 bprm
->filename
= filename
;
1294 bprm
->interp
= filename
;
1296 retval
= bprm_mm_init(bprm
);
1300 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1301 if ((retval
= bprm
->argc
) < 0)
1304 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1305 if ((retval
= bprm
->envc
) < 0)
1308 retval
= security_bprm_alloc(bprm
);
1312 retval
= prepare_binprm(bprm
);
1316 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1320 bprm
->exec
= bprm
->p
;
1321 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1325 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1329 retval
= search_binary_handler(bprm
,regs
);
1331 /* execve success */
1332 security_bprm_free(bprm
);
1333 acct_update_integrals(current
);
1336 put_files_struct(displaced
);
1342 security_bprm_free(bprm
);
1350 allow_write_access(bprm
->file
);
1358 reset_files_struct(displaced
);
1363 int set_binfmt(struct linux_binfmt
*new)
1365 struct linux_binfmt
*old
= current
->binfmt
;
1368 if (!try_module_get(new->module
))
1371 current
->binfmt
= new;
1373 module_put(old
->module
);
1377 EXPORT_SYMBOL(set_binfmt
);
1379 /* format_corename will inspect the pattern parameter, and output a
1380 * name into corename, which must have space for at least
1381 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1383 static int format_corename(char *corename
, const char *pattern
, long signr
)
1385 const char *pat_ptr
= pattern
;
1386 char *out_ptr
= corename
;
1387 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1389 int pid_in_pattern
= 0;
1392 if (*pattern
== '|')
1395 /* Repeat as long as we have more pattern to process and more output
1398 if (*pat_ptr
!= '%') {
1399 if (out_ptr
== out_end
)
1401 *out_ptr
++ = *pat_ptr
++;
1403 switch (*++pat_ptr
) {
1406 /* Double percent, output one percent */
1408 if (out_ptr
== out_end
)
1415 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1416 "%d", task_tgid_vnr(current
));
1417 if (rc
> out_end
- out_ptr
)
1423 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1424 "%d", current
->uid
);
1425 if (rc
> out_end
- out_ptr
)
1431 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1432 "%d", current
->gid
);
1433 if (rc
> out_end
- out_ptr
)
1437 /* signal that caused the coredump */
1439 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1441 if (rc
> out_end
- out_ptr
)
1445 /* UNIX time of coredump */
1448 do_gettimeofday(&tv
);
1449 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1451 if (rc
> out_end
- out_ptr
)
1458 down_read(&uts_sem
);
1459 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1460 "%s", utsname()->nodename
);
1462 if (rc
> out_end
- out_ptr
)
1468 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1469 "%s", current
->comm
);
1470 if (rc
> out_end
- out_ptr
)
1474 /* core limit size */
1476 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1477 "%lu", current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
);
1478 if (rc
> out_end
- out_ptr
)
1488 /* Backward compatibility with core_uses_pid:
1490 * If core_pattern does not include a %p (as is the default)
1491 * and core_uses_pid is set, then .%pid will be appended to
1492 * the filename. Do not do this for piped commands. */
1493 if (!ispipe
&& !pid_in_pattern
1494 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1495 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1496 ".%d", task_tgid_vnr(current
));
1497 if (rc
> out_end
- out_ptr
)
1506 static void zap_process(struct task_struct
*start
)
1508 struct task_struct
*t
;
1510 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1511 start
->signal
->group_stop_count
= 0;
1515 if (t
!= current
&& t
->mm
) {
1516 t
->mm
->core_waiters
++;
1517 sigaddset(&t
->pending
.signal
, SIGKILL
);
1518 signal_wake_up(t
, 1);
1520 } while ((t
= next_thread(t
)) != start
);
1523 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1526 struct task_struct
*g
, *p
;
1527 unsigned long flags
;
1530 spin_lock_irq(&tsk
->sighand
->siglock
);
1531 if (!signal_group_exit(tsk
->signal
)) {
1532 tsk
->signal
->group_exit_code
= exit_code
;
1536 spin_unlock_irq(&tsk
->sighand
->siglock
);
1540 if (atomic_read(&mm
->mm_users
) == mm
->core_waiters
+ 1)
1544 for_each_process(g
) {
1545 if (g
== tsk
->group_leader
)
1553 * p->sighand can't disappear, but
1554 * may be changed by de_thread()
1556 lock_task_sighand(p
, &flags
);
1558 unlock_task_sighand(p
, &flags
);
1562 } while ((p
= next_thread(p
)) != g
);
1566 return mm
->core_waiters
;
1569 static int coredump_wait(int exit_code
)
1571 struct task_struct
*tsk
= current
;
1572 struct mm_struct
*mm
= tsk
->mm
;
1573 struct completion startup_done
;
1574 struct completion
*vfork_done
;
1577 init_completion(&mm
->core_done
);
1578 init_completion(&startup_done
);
1579 mm
->core_startup_done
= &startup_done
;
1581 core_waiters
= zap_threads(tsk
, mm
, exit_code
);
1582 up_write(&mm
->mmap_sem
);
1584 if (unlikely(core_waiters
< 0))
1588 * Make sure nobody is waiting for us to release the VM,
1589 * otherwise we can deadlock when we wait on each other
1591 vfork_done
= tsk
->vfork_done
;
1593 tsk
->vfork_done
= NULL
;
1594 complete(vfork_done
);
1598 wait_for_completion(&startup_done
);
1600 BUG_ON(mm
->core_waiters
);
1601 return core_waiters
;
1605 * set_dumpable converts traditional three-value dumpable to two flags and
1606 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1607 * these bits are not changed atomically. So get_dumpable can observe the
1608 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1609 * return either old dumpable or new one by paying attention to the order of
1610 * modifying the bits.
1612 * dumpable | mm->flags (binary)
1613 * old new | initial interim final
1614 * ---------+-----------------------
1622 * (*) get_dumpable regards interim value of 10 as 11.
1624 void set_dumpable(struct mm_struct
*mm
, int value
)
1628 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1630 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1633 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1635 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1638 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1640 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1645 int get_dumpable(struct mm_struct
*mm
)
1649 ret
= mm
->flags
& 0x3;
1650 return (ret
>= 2) ? 2 : ret
;
1653 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1655 char corename
[CORENAME_MAX_SIZE
+ 1];
1656 struct mm_struct
*mm
= current
->mm
;
1657 struct linux_binfmt
* binfmt
;
1658 struct inode
* inode
;
1661 int fsuid
= current
->fsuid
;
1664 unsigned long core_limit
= current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
;
1665 char **helper_argv
= NULL
;
1666 int helper_argc
= 0;
1669 audit_core_dumps(signr
);
1671 binfmt
= current
->binfmt
;
1672 if (!binfmt
|| !binfmt
->core_dump
)
1674 down_write(&mm
->mmap_sem
);
1676 * If another thread got here first, or we are not dumpable, bail out.
1678 if (mm
->core_waiters
|| !get_dumpable(mm
)) {
1679 up_write(&mm
->mmap_sem
);
1684 * We cannot trust fsuid as being the "true" uid of the
1685 * process nor do we know its entire history. We only know it
1686 * was tainted so we dump it as root in mode 2.
1688 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1689 flag
= O_EXCL
; /* Stop rewrite attacks */
1690 current
->fsuid
= 0; /* Dump root private */
1693 retval
= coredump_wait(exit_code
);
1698 * Clear any false indication of pending signals that might
1699 * be seen by the filesystem code called to write the core file.
1701 clear_thread_flag(TIF_SIGPENDING
);
1704 * lock_kernel() because format_corename() is controlled by sysctl, which
1705 * uses lock_kernel()
1708 ispipe
= format_corename(corename
, core_pattern
, signr
);
1711 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1712 * to a pipe. Since we're not writing directly to the filesystem
1713 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1714 * created unless the pipe reader choses to write out the core file
1715 * at which point file size limits and permissions will be imposed
1716 * as it does with any other process
1718 if ((!ispipe
) && (core_limit
< binfmt
->min_coredump
))
1722 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, &helper_argc
);
1723 /* Terminate the string before the first option */
1724 delimit
= strchr(corename
, ' ');
1727 delimit
= strrchr(helper_argv
[0], '/');
1731 delimit
= helper_argv
[0];
1732 if (!strcmp(delimit
, current
->comm
)) {
1733 printk(KERN_NOTICE
"Recursive core dump detected, "
1738 core_limit
= RLIM_INFINITY
;
1740 /* SIGPIPE can happen, but it's just never processed */
1741 if (call_usermodehelper_pipe(corename
+1, helper_argv
, NULL
,
1743 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1748 file
= filp_open(corename
,
1749 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1753 inode
= file
->f_path
.dentry
->d_inode
;
1754 if (inode
->i_nlink
> 1)
1755 goto close_fail
; /* multiple links - don't dump */
1756 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1759 /* AK: actually i see no reason to not allow this for named pipes etc.,
1760 but keep the previous behaviour for now. */
1761 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1764 * Dont allow local users get cute and trick others to coredump
1765 * into their pre-created files:
1767 if (inode
->i_uid
!= current
->fsuid
)
1771 if (!file
->f_op
->write
)
1773 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1776 retval
= binfmt
->core_dump(signr
, regs
, file
, core_limit
);
1779 current
->signal
->group_exit_code
|= 0x80;
1781 filp_close(file
, NULL
);
1784 argv_free(helper_argv
);
1786 current
->fsuid
= fsuid
;
1787 complete_all(&mm
->core_done
);