[PATCH] inode-diet: Eliminate i_blksize from the inode structure
[linux-2.6/mini2440.git] / fs / reiserfs / inode.c
blob8810fda0da469aa14ebf69ea51aeaedb2686e0f5
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/smp_lock.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <asm/uaccess.h>
14 #include <asm/unaligned.h>
15 #include <linux/buffer_head.h>
16 #include <linux/mpage.h>
17 #include <linux/writeback.h>
18 #include <linux/quotaops.h>
20 static int reiserfs_commit_write(struct file *f, struct page *page,
21 unsigned from, unsigned to);
22 static int reiserfs_prepare_write(struct file *f, struct page *page,
23 unsigned from, unsigned to);
25 void reiserfs_delete_inode(struct inode *inode)
27 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 int jbegin_count =
29 JOURNAL_PER_BALANCE_CNT * 2 +
30 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 struct reiserfs_transaction_handle th;
32 int err;
34 truncate_inode_pages(&inode->i_data, 0);
36 reiserfs_write_lock(inode->i_sb);
38 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
39 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
40 reiserfs_delete_xattrs(inode);
42 if (journal_begin(&th, inode->i_sb, jbegin_count))
43 goto out;
44 reiserfs_update_inode_transaction(inode);
46 err = reiserfs_delete_object(&th, inode);
48 /* Do quota update inside a transaction for journaled quotas. We must do that
49 * after delete_object so that quota updates go into the same transaction as
50 * stat data deletion */
51 if (!err)
52 DQUOT_FREE_INODE(inode);
54 if (journal_end(&th, inode->i_sb, jbegin_count))
55 goto out;
57 /* check return value from reiserfs_delete_object after
58 * ending the transaction
60 if (err)
61 goto out;
63 /* all items of file are deleted, so we can remove "save" link */
64 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
65 * about an error here */
66 } else {
67 /* no object items are in the tree */
70 out:
71 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
72 inode->i_blocks = 0;
73 reiserfs_write_unlock(inode->i_sb);
76 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
77 __u32 objectid, loff_t offset, int type, int length)
79 key->version = version;
81 key->on_disk_key.k_dir_id = dirid;
82 key->on_disk_key.k_objectid = objectid;
83 set_cpu_key_k_offset(key, offset);
84 set_cpu_key_k_type(key, type);
85 key->key_length = length;
88 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
89 offset and type of key */
90 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
91 int type, int length)
93 _make_cpu_key(key, get_inode_item_key_version(inode),
94 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
95 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
96 length);
100 // when key is 0, do not set version and short key
102 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
103 int version,
104 loff_t offset, int type, int length,
105 int entry_count /*or ih_free_space */ )
107 if (key) {
108 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
109 ih->ih_key.k_objectid =
110 cpu_to_le32(key->on_disk_key.k_objectid);
112 put_ih_version(ih, version);
113 set_le_ih_k_offset(ih, offset);
114 set_le_ih_k_type(ih, type);
115 put_ih_item_len(ih, length);
116 /* set_ih_free_space (ih, 0); */
117 // for directory items it is entry count, for directs and stat
118 // datas - 0xffff, for indirects - 0
119 put_ih_entry_count(ih, entry_count);
123 // FIXME: we might cache recently accessed indirect item
125 // Ugh. Not too eager for that....
126 // I cut the code until such time as I see a convincing argument (benchmark).
127 // I don't want a bloated inode struct..., and I don't like code complexity....
129 /* cutting the code is fine, since it really isn't in use yet and is easy
130 ** to add back in. But, Vladimir has a really good idea here. Think
131 ** about what happens for reading a file. For each page,
132 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
133 ** an indirect item. This indirect item has X number of pointers, where
134 ** X is a big number if we've done the block allocation right. But,
135 ** we only use one or two of these pointers during each call to readpage,
136 ** needlessly researching again later on.
138 ** The size of the cache could be dynamic based on the size of the file.
140 ** I'd also like to see us cache the location the stat data item, since
141 ** we are needlessly researching for that frequently.
143 ** --chris
146 /* If this page has a file tail in it, and
147 ** it was read in by get_block_create_0, the page data is valid,
148 ** but tail is still sitting in a direct item, and we can't write to
149 ** it. So, look through this page, and check all the mapped buffers
150 ** to make sure they have valid block numbers. Any that don't need
151 ** to be unmapped, so that block_prepare_write will correctly call
152 ** reiserfs_get_block to convert the tail into an unformatted node
154 static inline void fix_tail_page_for_writing(struct page *page)
156 struct buffer_head *head, *next, *bh;
158 if (page && page_has_buffers(page)) {
159 head = page_buffers(page);
160 bh = head;
161 do {
162 next = bh->b_this_page;
163 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
164 reiserfs_unmap_buffer(bh);
166 bh = next;
167 } while (bh != head);
171 /* reiserfs_get_block does not need to allocate a block only if it has been
172 done already or non-hole position has been found in the indirect item */
173 static inline int allocation_needed(int retval, b_blocknr_t allocated,
174 struct item_head *ih,
175 __le32 * item, int pos_in_item)
177 if (allocated)
178 return 0;
179 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
180 get_block_num(item, pos_in_item))
181 return 0;
182 return 1;
185 static inline int indirect_item_found(int retval, struct item_head *ih)
187 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
190 static inline void set_block_dev_mapped(struct buffer_head *bh,
191 b_blocknr_t block, struct inode *inode)
193 map_bh(bh, inode->i_sb, block);
197 // files which were created in the earlier version can not be longer,
198 // than 2 gb
200 static int file_capable(struct inode *inode, long block)
202 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
203 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
204 return 1;
206 return 0;
209 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
210 struct inode *inode, struct path *path)
212 struct super_block *s = th->t_super;
213 int len = th->t_blocks_allocated;
214 int err;
216 BUG_ON(!th->t_trans_id);
217 BUG_ON(!th->t_refcount);
219 /* we cannot restart while nested */
220 if (th->t_refcount > 1) {
221 return 0;
223 pathrelse(path);
224 reiserfs_update_sd(th, inode);
225 err = journal_end(th, s, len);
226 if (!err) {
227 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
228 if (!err)
229 reiserfs_update_inode_transaction(inode);
231 return err;
234 // it is called by get_block when create == 0. Returns block number
235 // for 'block'-th logical block of file. When it hits direct item it
236 // returns 0 (being called from bmap) or read direct item into piece
237 // of page (bh_result)
239 // Please improve the english/clarity in the comment above, as it is
240 // hard to understand.
242 static int _get_block_create_0(struct inode *inode, long block,
243 struct buffer_head *bh_result, int args)
245 INITIALIZE_PATH(path);
246 struct cpu_key key;
247 struct buffer_head *bh;
248 struct item_head *ih, tmp_ih;
249 int fs_gen;
250 int blocknr;
251 char *p = NULL;
252 int chars;
253 int ret;
254 int result;
255 int done = 0;
256 unsigned long offset;
258 // prepare the key to look for the 'block'-th block of file
259 make_cpu_key(&key, inode,
260 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
263 research:
264 result = search_for_position_by_key(inode->i_sb, &key, &path);
265 if (result != POSITION_FOUND) {
266 pathrelse(&path);
267 if (p)
268 kunmap(bh_result->b_page);
269 if (result == IO_ERROR)
270 return -EIO;
271 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
272 // That there is some MMAPED data associated with it that is yet to be written to disk.
273 if ((args & GET_BLOCK_NO_HOLE)
274 && !PageUptodate(bh_result->b_page)) {
275 return -ENOENT;
277 return 0;
280 bh = get_last_bh(&path);
281 ih = get_ih(&path);
282 if (is_indirect_le_ih(ih)) {
283 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
285 /* FIXME: here we could cache indirect item or part of it in
286 the inode to avoid search_by_key in case of subsequent
287 access to file */
288 blocknr = get_block_num(ind_item, path.pos_in_item);
289 ret = 0;
290 if (blocknr) {
291 map_bh(bh_result, inode->i_sb, blocknr);
292 if (path.pos_in_item ==
293 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
294 set_buffer_boundary(bh_result);
296 } else
297 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
298 // That there is some MMAPED data associated with it that is yet to be written to disk.
299 if ((args & GET_BLOCK_NO_HOLE)
300 && !PageUptodate(bh_result->b_page)) {
301 ret = -ENOENT;
304 pathrelse(&path);
305 if (p)
306 kunmap(bh_result->b_page);
307 return ret;
309 // requested data are in direct item(s)
310 if (!(args & GET_BLOCK_READ_DIRECT)) {
311 // we are called by bmap. FIXME: we can not map block of file
312 // when it is stored in direct item(s)
313 pathrelse(&path);
314 if (p)
315 kunmap(bh_result->b_page);
316 return -ENOENT;
319 /* if we've got a direct item, and the buffer or page was uptodate,
320 ** we don't want to pull data off disk again. skip to the
321 ** end, where we map the buffer and return
323 if (buffer_uptodate(bh_result)) {
324 goto finished;
325 } else
327 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
328 ** pages without any buffers. If the page is up to date, we don't want
329 ** read old data off disk. Set the up to date bit on the buffer instead
330 ** and jump to the end
332 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
333 set_buffer_uptodate(bh_result);
334 goto finished;
336 // read file tail into part of page
337 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
338 fs_gen = get_generation(inode->i_sb);
339 copy_item_head(&tmp_ih, ih);
341 /* we only want to kmap if we are reading the tail into the page.
342 ** this is not the common case, so we don't kmap until we are
343 ** sure we need to. But, this means the item might move if
344 ** kmap schedules
346 if (!p) {
347 p = (char *)kmap(bh_result->b_page);
348 if (fs_changed(fs_gen, inode->i_sb)
349 && item_moved(&tmp_ih, &path)) {
350 goto research;
353 p += offset;
354 memset(p, 0, inode->i_sb->s_blocksize);
355 do {
356 if (!is_direct_le_ih(ih)) {
357 BUG();
359 /* make sure we don't read more bytes than actually exist in
360 ** the file. This can happen in odd cases where i_size isn't
361 ** correct, and when direct item padding results in a few
362 ** extra bytes at the end of the direct item
364 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
365 break;
366 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
367 chars =
368 inode->i_size - (le_ih_k_offset(ih) - 1) -
369 path.pos_in_item;
370 done = 1;
371 } else {
372 chars = ih_item_len(ih) - path.pos_in_item;
374 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
376 if (done)
377 break;
379 p += chars;
381 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
382 // we done, if read direct item is not the last item of
383 // node FIXME: we could try to check right delimiting key
384 // to see whether direct item continues in the right
385 // neighbor or rely on i_size
386 break;
388 // update key to look for the next piece
389 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
390 result = search_for_position_by_key(inode->i_sb, &key, &path);
391 if (result != POSITION_FOUND)
392 // i/o error most likely
393 break;
394 bh = get_last_bh(&path);
395 ih = get_ih(&path);
396 } while (1);
398 flush_dcache_page(bh_result->b_page);
399 kunmap(bh_result->b_page);
401 finished:
402 pathrelse(&path);
404 if (result == IO_ERROR)
405 return -EIO;
407 /* this buffer has valid data, but isn't valid for io. mapping it to
408 * block #0 tells the rest of reiserfs it just has a tail in it
410 map_bh(bh_result, inode->i_sb, 0);
411 set_buffer_uptodate(bh_result);
412 return 0;
415 // this is called to create file map. So, _get_block_create_0 will not
416 // read direct item
417 static int reiserfs_bmap(struct inode *inode, sector_t block,
418 struct buffer_head *bh_result, int create)
420 if (!file_capable(inode, block))
421 return -EFBIG;
423 reiserfs_write_lock(inode->i_sb);
424 /* do not read the direct item */
425 _get_block_create_0(inode, block, bh_result, 0);
426 reiserfs_write_unlock(inode->i_sb);
427 return 0;
430 /* special version of get_block that is only used by grab_tail_page right
431 ** now. It is sent to block_prepare_write, and when you try to get a
432 ** block past the end of the file (or a block from a hole) it returns
433 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
434 ** be able to do i/o on the buffers returned, unless an error value
435 ** is also returned.
437 ** So, this allows block_prepare_write to be used for reading a single block
438 ** in a page. Where it does not produce a valid page for holes, or past the
439 ** end of the file. This turns out to be exactly what we need for reading
440 ** tails for conversion.
442 ** The point of the wrapper is forcing a certain value for create, even
443 ** though the VFS layer is calling this function with create==1. If you
444 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
445 ** don't use this function.
447 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
448 struct buffer_head *bh_result,
449 int create)
451 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
454 /* This is special helper for reiserfs_get_block in case we are executing
455 direct_IO request. */
456 static int reiserfs_get_blocks_direct_io(struct inode *inode,
457 sector_t iblock,
458 struct buffer_head *bh_result,
459 int create)
461 int ret;
463 bh_result->b_page = NULL;
465 /* We set the b_size before reiserfs_get_block call since it is
466 referenced in convert_tail_for_hole() that may be called from
467 reiserfs_get_block() */
468 bh_result->b_size = (1 << inode->i_blkbits);
470 ret = reiserfs_get_block(inode, iblock, bh_result,
471 create | GET_BLOCK_NO_DANGLE);
472 if (ret)
473 goto out;
475 /* don't allow direct io onto tail pages */
476 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
477 /* make sure future calls to the direct io funcs for this offset
478 ** in the file fail by unmapping the buffer
480 clear_buffer_mapped(bh_result);
481 ret = -EINVAL;
483 /* Possible unpacked tail. Flush the data before pages have
484 disappeared */
485 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
486 int err;
487 lock_kernel();
488 err = reiserfs_commit_for_inode(inode);
489 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
490 unlock_kernel();
491 if (err < 0)
492 ret = err;
494 out:
495 return ret;
499 ** helper function for when reiserfs_get_block is called for a hole
500 ** but the file tail is still in a direct item
501 ** bh_result is the buffer head for the hole
502 ** tail_offset is the offset of the start of the tail in the file
504 ** This calls prepare_write, which will start a new transaction
505 ** you should not be in a transaction, or have any paths held when you
506 ** call this.
508 static int convert_tail_for_hole(struct inode *inode,
509 struct buffer_head *bh_result,
510 loff_t tail_offset)
512 unsigned long index;
513 unsigned long tail_end;
514 unsigned long tail_start;
515 struct page *tail_page;
516 struct page *hole_page = bh_result->b_page;
517 int retval = 0;
519 if ((tail_offset & (bh_result->b_size - 1)) != 1)
520 return -EIO;
522 /* always try to read until the end of the block */
523 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
524 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
526 index = tail_offset >> PAGE_CACHE_SHIFT;
527 /* hole_page can be zero in case of direct_io, we are sure
528 that we cannot get here if we write with O_DIRECT into
529 tail page */
530 if (!hole_page || index != hole_page->index) {
531 tail_page = grab_cache_page(inode->i_mapping, index);
532 retval = -ENOMEM;
533 if (!tail_page) {
534 goto out;
536 } else {
537 tail_page = hole_page;
540 /* we don't have to make sure the conversion did not happen while
541 ** we were locking the page because anyone that could convert
542 ** must first take i_mutex.
544 ** We must fix the tail page for writing because it might have buffers
545 ** that are mapped, but have a block number of 0. This indicates tail
546 ** data that has been read directly into the page, and block_prepare_write
547 ** won't trigger a get_block in this case.
549 fix_tail_page_for_writing(tail_page);
550 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
551 if (retval)
552 goto unlock;
554 /* tail conversion might change the data in the page */
555 flush_dcache_page(tail_page);
557 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
559 unlock:
560 if (tail_page != hole_page) {
561 unlock_page(tail_page);
562 page_cache_release(tail_page);
564 out:
565 return retval;
568 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
569 long block,
570 struct inode *inode,
571 b_blocknr_t * allocated_block_nr,
572 struct path *path, int flags)
574 BUG_ON(!th->t_trans_id);
576 #ifdef REISERFS_PREALLOCATE
577 if (!(flags & GET_BLOCK_NO_IMUX)) {
578 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
579 path, block);
581 #endif
582 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
583 block);
586 int reiserfs_get_block(struct inode *inode, sector_t block,
587 struct buffer_head *bh_result, int create)
589 int repeat, retval = 0;
590 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
591 INITIALIZE_PATH(path);
592 int pos_in_item;
593 struct cpu_key key;
594 struct buffer_head *bh, *unbh = NULL;
595 struct item_head *ih, tmp_ih;
596 __le32 *item;
597 int done;
598 int fs_gen;
599 struct reiserfs_transaction_handle *th = NULL;
600 /* space reserved in transaction batch:
601 . 3 balancings in direct->indirect conversion
602 . 1 block involved into reiserfs_update_sd()
603 XXX in practically impossible worst case direct2indirect()
604 can incur (much) more than 3 balancings.
605 quota update for user, group */
606 int jbegin_count =
607 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
608 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
609 int version;
610 int dangle = 1;
611 loff_t new_offset =
612 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
614 /* bad.... */
615 reiserfs_write_lock(inode->i_sb);
616 version = get_inode_item_key_version(inode);
618 if (!file_capable(inode, block)) {
619 reiserfs_write_unlock(inode->i_sb);
620 return -EFBIG;
623 /* if !create, we aren't changing the FS, so we don't need to
624 ** log anything, so we don't need to start a transaction
626 if (!(create & GET_BLOCK_CREATE)) {
627 int ret;
628 /* find number of block-th logical block of the file */
629 ret = _get_block_create_0(inode, block, bh_result,
630 create | GET_BLOCK_READ_DIRECT);
631 reiserfs_write_unlock(inode->i_sb);
632 return ret;
635 * if we're already in a transaction, make sure to close
636 * any new transactions we start in this func
638 if ((create & GET_BLOCK_NO_DANGLE) ||
639 reiserfs_transaction_running(inode->i_sb))
640 dangle = 0;
642 /* If file is of such a size, that it might have a tail and tails are enabled
643 ** we should mark it as possibly needing tail packing on close
645 if ((have_large_tails(inode->i_sb)
646 && inode->i_size < i_block_size(inode) * 4)
647 || (have_small_tails(inode->i_sb)
648 && inode->i_size < i_block_size(inode)))
649 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
651 /* set the key of the first byte in the 'block'-th block of file */
652 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
653 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
654 start_trans:
655 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
656 if (!th) {
657 retval = -ENOMEM;
658 goto failure;
660 reiserfs_update_inode_transaction(inode);
662 research:
664 retval = search_for_position_by_key(inode->i_sb, &key, &path);
665 if (retval == IO_ERROR) {
666 retval = -EIO;
667 goto failure;
670 bh = get_last_bh(&path);
671 ih = get_ih(&path);
672 item = get_item(&path);
673 pos_in_item = path.pos_in_item;
675 fs_gen = get_generation(inode->i_sb);
676 copy_item_head(&tmp_ih, ih);
678 if (allocation_needed
679 (retval, allocated_block_nr, ih, item, pos_in_item)) {
680 /* we have to allocate block for the unformatted node */
681 if (!th) {
682 pathrelse(&path);
683 goto start_trans;
686 repeat =
687 _allocate_block(th, block, inode, &allocated_block_nr,
688 &path, create);
690 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
691 /* restart the transaction to give the journal a chance to free
692 ** some blocks. releases the path, so we have to go back to
693 ** research if we succeed on the second try
695 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
696 retval = restart_transaction(th, inode, &path);
697 if (retval)
698 goto failure;
699 repeat =
700 _allocate_block(th, block, inode,
701 &allocated_block_nr, NULL, create);
703 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
704 goto research;
706 if (repeat == QUOTA_EXCEEDED)
707 retval = -EDQUOT;
708 else
709 retval = -ENOSPC;
710 goto failure;
713 if (fs_changed(fs_gen, inode->i_sb)
714 && item_moved(&tmp_ih, &path)) {
715 goto research;
719 if (indirect_item_found(retval, ih)) {
720 b_blocknr_t unfm_ptr;
721 /* 'block'-th block is in the file already (there is
722 corresponding cell in some indirect item). But it may be
723 zero unformatted node pointer (hole) */
724 unfm_ptr = get_block_num(item, pos_in_item);
725 if (unfm_ptr == 0) {
726 /* use allocated block to plug the hole */
727 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
728 if (fs_changed(fs_gen, inode->i_sb)
729 && item_moved(&tmp_ih, &path)) {
730 reiserfs_restore_prepared_buffer(inode->i_sb,
731 bh);
732 goto research;
734 set_buffer_new(bh_result);
735 if (buffer_dirty(bh_result)
736 && reiserfs_data_ordered(inode->i_sb))
737 reiserfs_add_ordered_list(inode, bh_result);
738 put_block_num(item, pos_in_item, allocated_block_nr);
739 unfm_ptr = allocated_block_nr;
740 journal_mark_dirty(th, inode->i_sb, bh);
741 reiserfs_update_sd(th, inode);
743 set_block_dev_mapped(bh_result, unfm_ptr, inode);
744 pathrelse(&path);
745 retval = 0;
746 if (!dangle && th)
747 retval = reiserfs_end_persistent_transaction(th);
749 reiserfs_write_unlock(inode->i_sb);
751 /* the item was found, so new blocks were not added to the file
752 ** there is no need to make sure the inode is updated with this
753 ** transaction
755 return retval;
758 if (!th) {
759 pathrelse(&path);
760 goto start_trans;
763 /* desired position is not found or is in the direct item. We have
764 to append file with holes up to 'block'-th block converting
765 direct items to indirect one if necessary */
766 done = 0;
767 do {
768 if (is_statdata_le_ih(ih)) {
769 __le32 unp = 0;
770 struct cpu_key tmp_key;
772 /* indirect item has to be inserted */
773 make_le_item_head(&tmp_ih, &key, version, 1,
774 TYPE_INDIRECT, UNFM_P_SIZE,
775 0 /* free_space */ );
777 if (cpu_key_k_offset(&key) == 1) {
778 /* we are going to add 'block'-th block to the file. Use
779 allocated block for that */
780 unp = cpu_to_le32(allocated_block_nr);
781 set_block_dev_mapped(bh_result,
782 allocated_block_nr, inode);
783 set_buffer_new(bh_result);
784 done = 1;
786 tmp_key = key; // ;)
787 set_cpu_key_k_offset(&tmp_key, 1);
788 PATH_LAST_POSITION(&path)++;
790 retval =
791 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
792 inode, (char *)&unp);
793 if (retval) {
794 reiserfs_free_block(th, inode,
795 allocated_block_nr, 1);
796 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
798 //mark_tail_converted (inode);
799 } else if (is_direct_le_ih(ih)) {
800 /* direct item has to be converted */
801 loff_t tail_offset;
803 tail_offset =
804 ((le_ih_k_offset(ih) -
805 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
806 if (tail_offset == cpu_key_k_offset(&key)) {
807 /* direct item we just found fits into block we have
808 to map. Convert it into unformatted node: use
809 bh_result for the conversion */
810 set_block_dev_mapped(bh_result,
811 allocated_block_nr, inode);
812 unbh = bh_result;
813 done = 1;
814 } else {
815 /* we have to padd file tail stored in direct item(s)
816 up to block size and convert it to unformatted
817 node. FIXME: this should also get into page cache */
819 pathrelse(&path);
821 * ugly, but we can only end the transaction if
822 * we aren't nested
824 BUG_ON(!th->t_refcount);
825 if (th->t_refcount == 1) {
826 retval =
827 reiserfs_end_persistent_transaction
828 (th);
829 th = NULL;
830 if (retval)
831 goto failure;
834 retval =
835 convert_tail_for_hole(inode, bh_result,
836 tail_offset);
837 if (retval) {
838 if (retval != -ENOSPC)
839 reiserfs_warning(inode->i_sb,
840 "clm-6004: convert tail failed inode %lu, error %d",
841 inode->i_ino,
842 retval);
843 if (allocated_block_nr) {
844 /* the bitmap, the super, and the stat data == 3 */
845 if (!th)
846 th = reiserfs_persistent_transaction(inode->i_sb, 3);
847 if (th)
848 reiserfs_free_block(th,
849 inode,
850 allocated_block_nr,
853 goto failure;
855 goto research;
857 retval =
858 direct2indirect(th, inode, &path, unbh,
859 tail_offset);
860 if (retval) {
861 reiserfs_unmap_buffer(unbh);
862 reiserfs_free_block(th, inode,
863 allocated_block_nr, 1);
864 goto failure;
866 /* it is important the set_buffer_uptodate is done after
867 ** the direct2indirect. The buffer might contain valid
868 ** data newer than the data on disk (read by readpage, changed,
869 ** and then sent here by writepage). direct2indirect needs
870 ** to know if unbh was already up to date, so it can decide
871 ** if the data in unbh needs to be replaced with data from
872 ** the disk
874 set_buffer_uptodate(unbh);
876 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
877 buffer will disappear shortly, so it should not be added to
879 if (unbh->b_page) {
880 /* we've converted the tail, so we must
881 ** flush unbh before the transaction commits
883 reiserfs_add_tail_list(inode, unbh);
885 /* mark it dirty now to prevent commit_write from adding
886 ** this buffer to the inode's dirty buffer list
889 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
890 * It's still atomic, but it sets the page dirty too,
891 * which makes it eligible for writeback at any time by the
892 * VM (which was also the case with __mark_buffer_dirty())
894 mark_buffer_dirty(unbh);
896 } else {
897 /* append indirect item with holes if needed, when appending
898 pointer to 'block'-th block use block, which is already
899 allocated */
900 struct cpu_key tmp_key;
901 unp_t unf_single = 0; // We use this in case we need to allocate only
902 // one block which is a fastpath
903 unp_t *un;
904 __u64 max_to_insert =
905 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
906 UNFM_P_SIZE;
907 __u64 blocks_needed;
909 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
910 "vs-804: invalid position for append");
911 /* indirect item has to be appended, set up key of that position */
912 make_cpu_key(&tmp_key, inode,
913 le_key_k_offset(version,
914 &(ih->ih_key)) +
915 op_bytes_number(ih,
916 inode->i_sb->s_blocksize),
917 //pos_in_item * inode->i_sb->s_blocksize,
918 TYPE_INDIRECT, 3); // key type is unimportant
920 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
921 "green-805: invalid offset");
922 blocks_needed =
924 ((cpu_key_k_offset(&key) -
925 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
926 s_blocksize_bits);
928 if (blocks_needed == 1) {
929 un = &unf_single;
930 } else {
931 un = kmalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling.
932 if (!un) {
933 un = &unf_single;
934 blocks_needed = 1;
935 max_to_insert = 0;
936 } else
937 memset(un, 0,
938 UNFM_P_SIZE * min(blocks_needed,
939 max_to_insert));
941 if (blocks_needed <= max_to_insert) {
942 /* we are going to add target block to the file. Use allocated
943 block for that */
944 un[blocks_needed - 1] =
945 cpu_to_le32(allocated_block_nr);
946 set_block_dev_mapped(bh_result,
947 allocated_block_nr, inode);
948 set_buffer_new(bh_result);
949 done = 1;
950 } else {
951 /* paste hole to the indirect item */
952 /* If kmalloc failed, max_to_insert becomes zero and it means we
953 only have space for one block */
954 blocks_needed =
955 max_to_insert ? max_to_insert : 1;
957 retval =
958 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
959 (char *)un,
960 UNFM_P_SIZE *
961 blocks_needed);
963 if (blocks_needed != 1)
964 kfree(un);
966 if (retval) {
967 reiserfs_free_block(th, inode,
968 allocated_block_nr, 1);
969 goto failure;
971 if (!done) {
972 /* We need to mark new file size in case this function will be
973 interrupted/aborted later on. And we may do this only for
974 holes. */
975 inode->i_size +=
976 inode->i_sb->s_blocksize * blocks_needed;
980 if (done == 1)
981 break;
983 /* this loop could log more blocks than we had originally asked
984 ** for. So, we have to allow the transaction to end if it is
985 ** too big or too full. Update the inode so things are
986 ** consistent if we crash before the function returns
988 ** release the path so that anybody waiting on the path before
989 ** ending their transaction will be able to continue.
991 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
992 retval = restart_transaction(th, inode, &path);
993 if (retval)
994 goto failure;
996 /* inserting indirect pointers for a hole can take a
997 ** long time. reschedule if needed
999 cond_resched();
1001 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1002 if (retval == IO_ERROR) {
1003 retval = -EIO;
1004 goto failure;
1006 if (retval == POSITION_FOUND) {
1007 reiserfs_warning(inode->i_sb,
1008 "vs-825: reiserfs_get_block: "
1009 "%K should not be found", &key);
1010 retval = -EEXIST;
1011 if (allocated_block_nr)
1012 reiserfs_free_block(th, inode,
1013 allocated_block_nr, 1);
1014 pathrelse(&path);
1015 goto failure;
1017 bh = get_last_bh(&path);
1018 ih = get_ih(&path);
1019 item = get_item(&path);
1020 pos_in_item = path.pos_in_item;
1021 } while (1);
1023 retval = 0;
1025 failure:
1026 if (th && (!dangle || (retval && !th->t_trans_id))) {
1027 int err;
1028 if (th->t_trans_id)
1029 reiserfs_update_sd(th, inode);
1030 err = reiserfs_end_persistent_transaction(th);
1031 if (err)
1032 retval = err;
1035 reiserfs_write_unlock(inode->i_sb);
1036 reiserfs_check_path(&path);
1037 return retval;
1040 static int
1041 reiserfs_readpages(struct file *file, struct address_space *mapping,
1042 struct list_head *pages, unsigned nr_pages)
1044 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1047 /* Compute real number of used bytes by file
1048 * Following three functions can go away when we'll have enough space in stat item
1050 static int real_space_diff(struct inode *inode, int sd_size)
1052 int bytes;
1053 loff_t blocksize = inode->i_sb->s_blocksize;
1055 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1056 return sd_size;
1058 /* End of file is also in full block with indirect reference, so round
1059 ** up to the next block.
1061 ** there is just no way to know if the tail is actually packed
1062 ** on the file, so we have to assume it isn't. When we pack the
1063 ** tail, we add 4 bytes to pretend there really is an unformatted
1064 ** node pointer
1066 bytes =
1067 ((inode->i_size +
1068 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1069 sd_size;
1070 return bytes;
1073 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1074 int sd_size)
1076 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1077 return inode->i_size +
1078 (loff_t) (real_space_diff(inode, sd_size));
1080 return ((loff_t) real_space_diff(inode, sd_size)) +
1081 (((loff_t) blocks) << 9);
1084 /* Compute number of blocks used by file in ReiserFS counting */
1085 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1087 loff_t bytes = inode_get_bytes(inode);
1088 loff_t real_space = real_space_diff(inode, sd_size);
1090 /* keeps fsck and non-quota versions of reiserfs happy */
1091 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1092 bytes += (loff_t) 511;
1095 /* files from before the quota patch might i_blocks such that
1096 ** bytes < real_space. Deal with that here to prevent it from
1097 ** going negative.
1099 if (bytes < real_space)
1100 return 0;
1101 return (bytes - real_space) >> 9;
1105 // BAD: new directories have stat data of new type and all other items
1106 // of old type. Version stored in the inode says about body items, so
1107 // in update_stat_data we can not rely on inode, but have to check
1108 // item version directly
1111 // called by read_locked_inode
1112 static void init_inode(struct inode *inode, struct path *path)
1114 struct buffer_head *bh;
1115 struct item_head *ih;
1116 __u32 rdev;
1117 //int version = ITEM_VERSION_1;
1119 bh = PATH_PLAST_BUFFER(path);
1120 ih = PATH_PITEM_HEAD(path);
1122 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1124 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1125 REISERFS_I(inode)->i_flags = 0;
1126 REISERFS_I(inode)->i_prealloc_block = 0;
1127 REISERFS_I(inode)->i_prealloc_count = 0;
1128 REISERFS_I(inode)->i_trans_id = 0;
1129 REISERFS_I(inode)->i_jl = NULL;
1130 REISERFS_I(inode)->i_acl_access = NULL;
1131 REISERFS_I(inode)->i_acl_default = NULL;
1132 init_rwsem(&REISERFS_I(inode)->xattr_sem);
1134 if (stat_data_v1(ih)) {
1135 struct stat_data_v1 *sd =
1136 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1137 unsigned long blocks;
1139 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1140 set_inode_sd_version(inode, STAT_DATA_V1);
1141 inode->i_mode = sd_v1_mode(sd);
1142 inode->i_nlink = sd_v1_nlink(sd);
1143 inode->i_uid = sd_v1_uid(sd);
1144 inode->i_gid = sd_v1_gid(sd);
1145 inode->i_size = sd_v1_size(sd);
1146 inode->i_atime.tv_sec = sd_v1_atime(sd);
1147 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1148 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1149 inode->i_atime.tv_nsec = 0;
1150 inode->i_ctime.tv_nsec = 0;
1151 inode->i_mtime.tv_nsec = 0;
1153 inode->i_blocks = sd_v1_blocks(sd);
1154 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1155 blocks = (inode->i_size + 511) >> 9;
1156 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1157 if (inode->i_blocks > blocks) {
1158 // there was a bug in <=3.5.23 when i_blocks could take negative
1159 // values. Starting from 3.5.17 this value could even be stored in
1160 // stat data. For such files we set i_blocks based on file
1161 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1162 // only updated if file's inode will ever change
1163 inode->i_blocks = blocks;
1166 rdev = sd_v1_rdev(sd);
1167 REISERFS_I(inode)->i_first_direct_byte =
1168 sd_v1_first_direct_byte(sd);
1169 /* an early bug in the quota code can give us an odd number for the
1170 ** block count. This is incorrect, fix it here.
1172 if (inode->i_blocks & 1) {
1173 inode->i_blocks++;
1175 inode_set_bytes(inode,
1176 to_real_used_space(inode, inode->i_blocks,
1177 SD_V1_SIZE));
1178 /* nopack is initially zero for v1 objects. For v2 objects,
1179 nopack is initialised from sd_attrs */
1180 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1181 } else {
1182 // new stat data found, but object may have old items
1183 // (directories and symlinks)
1184 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1186 inode->i_mode = sd_v2_mode(sd);
1187 inode->i_nlink = sd_v2_nlink(sd);
1188 inode->i_uid = sd_v2_uid(sd);
1189 inode->i_size = sd_v2_size(sd);
1190 inode->i_gid = sd_v2_gid(sd);
1191 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1192 inode->i_atime.tv_sec = sd_v2_atime(sd);
1193 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1194 inode->i_ctime.tv_nsec = 0;
1195 inode->i_mtime.tv_nsec = 0;
1196 inode->i_atime.tv_nsec = 0;
1197 inode->i_blocks = sd_v2_blocks(sd);
1198 rdev = sd_v2_rdev(sd);
1199 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1200 inode->i_generation =
1201 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1202 else
1203 inode->i_generation = sd_v2_generation(sd);
1205 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1206 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1207 else
1208 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1209 REISERFS_I(inode)->i_first_direct_byte = 0;
1210 set_inode_sd_version(inode, STAT_DATA_V2);
1211 inode_set_bytes(inode,
1212 to_real_used_space(inode, inode->i_blocks,
1213 SD_V2_SIZE));
1214 /* read persistent inode attributes from sd and initalise
1215 generic inode flags from them */
1216 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1217 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1220 pathrelse(path);
1221 if (S_ISREG(inode->i_mode)) {
1222 inode->i_op = &reiserfs_file_inode_operations;
1223 inode->i_fop = &reiserfs_file_operations;
1224 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1225 } else if (S_ISDIR(inode->i_mode)) {
1226 inode->i_op = &reiserfs_dir_inode_operations;
1227 inode->i_fop = &reiserfs_dir_operations;
1228 } else if (S_ISLNK(inode->i_mode)) {
1229 inode->i_op = &reiserfs_symlink_inode_operations;
1230 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1231 } else {
1232 inode->i_blocks = 0;
1233 inode->i_op = &reiserfs_special_inode_operations;
1234 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1238 // update new stat data with inode fields
1239 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1241 struct stat_data *sd_v2 = (struct stat_data *)sd;
1242 __u16 flags;
1244 set_sd_v2_mode(sd_v2, inode->i_mode);
1245 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1246 set_sd_v2_uid(sd_v2, inode->i_uid);
1247 set_sd_v2_size(sd_v2, size);
1248 set_sd_v2_gid(sd_v2, inode->i_gid);
1249 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1250 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1251 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1252 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1253 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1254 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1255 else
1256 set_sd_v2_generation(sd_v2, inode->i_generation);
1257 flags = REISERFS_I(inode)->i_attrs;
1258 i_attrs_to_sd_attrs(inode, &flags);
1259 set_sd_v2_attrs(sd_v2, flags);
1262 // used to copy inode's fields to old stat data
1263 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1265 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1267 set_sd_v1_mode(sd_v1, inode->i_mode);
1268 set_sd_v1_uid(sd_v1, inode->i_uid);
1269 set_sd_v1_gid(sd_v1, inode->i_gid);
1270 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1271 set_sd_v1_size(sd_v1, size);
1272 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1273 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1274 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1276 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1277 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1278 else
1279 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1281 // Sigh. i_first_direct_byte is back
1282 set_sd_v1_first_direct_byte(sd_v1,
1283 REISERFS_I(inode)->i_first_direct_byte);
1286 /* NOTE, you must prepare the buffer head before sending it here,
1287 ** and then log it after the call
1289 static void update_stat_data(struct path *path, struct inode *inode,
1290 loff_t size)
1292 struct buffer_head *bh;
1293 struct item_head *ih;
1295 bh = PATH_PLAST_BUFFER(path);
1296 ih = PATH_PITEM_HEAD(path);
1298 if (!is_statdata_le_ih(ih))
1299 reiserfs_panic(inode->i_sb,
1300 "vs-13065: update_stat_data: key %k, found item %h",
1301 INODE_PKEY(inode), ih);
1303 if (stat_data_v1(ih)) {
1304 // path points to old stat data
1305 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1306 } else {
1307 inode2sd(B_I_PITEM(bh, ih), inode, size);
1310 return;
1313 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1314 struct inode *inode, loff_t size)
1316 struct cpu_key key;
1317 INITIALIZE_PATH(path);
1318 struct buffer_head *bh;
1319 int fs_gen;
1320 struct item_head *ih, tmp_ih;
1321 int retval;
1323 BUG_ON(!th->t_trans_id);
1325 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1327 for (;;) {
1328 int pos;
1329 /* look for the object's stat data */
1330 retval = search_item(inode->i_sb, &key, &path);
1331 if (retval == IO_ERROR) {
1332 reiserfs_warning(inode->i_sb,
1333 "vs-13050: reiserfs_update_sd: "
1334 "i/o failure occurred trying to update %K stat data",
1335 &key);
1336 return;
1338 if (retval == ITEM_NOT_FOUND) {
1339 pos = PATH_LAST_POSITION(&path);
1340 pathrelse(&path);
1341 if (inode->i_nlink == 0) {
1342 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1343 return;
1345 reiserfs_warning(inode->i_sb,
1346 "vs-13060: reiserfs_update_sd: "
1347 "stat data of object %k (nlink == %d) not found (pos %d)",
1348 INODE_PKEY(inode), inode->i_nlink,
1349 pos);
1350 reiserfs_check_path(&path);
1351 return;
1354 /* sigh, prepare_for_journal might schedule. When it schedules the
1355 ** FS might change. We have to detect that, and loop back to the
1356 ** search if the stat data item has moved
1358 bh = get_last_bh(&path);
1359 ih = get_ih(&path);
1360 copy_item_head(&tmp_ih, ih);
1361 fs_gen = get_generation(inode->i_sb);
1362 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1363 if (fs_changed(fs_gen, inode->i_sb)
1364 && item_moved(&tmp_ih, &path)) {
1365 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1366 continue; /* Stat_data item has been moved after scheduling. */
1368 break;
1370 update_stat_data(&path, inode, size);
1371 journal_mark_dirty(th, th->t_super, bh);
1372 pathrelse(&path);
1373 return;
1376 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1377 ** does a make_bad_inode when things go wrong. But, we need to make sure
1378 ** and clear the key in the private portion of the inode, otherwise a
1379 ** corresponding iput might try to delete whatever object the inode last
1380 ** represented.
1382 static void reiserfs_make_bad_inode(struct inode *inode)
1384 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1385 make_bad_inode(inode);
1389 // initially this function was derived from minix or ext2's analog and
1390 // evolved as the prototype did
1393 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1395 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1396 inode->i_ino = args->objectid;
1397 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1398 return 0;
1401 /* looks for stat data in the tree, and fills up the fields of in-core
1402 inode stat data fields */
1403 void reiserfs_read_locked_inode(struct inode *inode,
1404 struct reiserfs_iget_args *args)
1406 INITIALIZE_PATH(path_to_sd);
1407 struct cpu_key key;
1408 unsigned long dirino;
1409 int retval;
1411 dirino = args->dirid;
1413 /* set version 1, version 2 could be used too, because stat data
1414 key is the same in both versions */
1415 key.version = KEY_FORMAT_3_5;
1416 key.on_disk_key.k_dir_id = dirino;
1417 key.on_disk_key.k_objectid = inode->i_ino;
1418 key.on_disk_key.k_offset = 0;
1419 key.on_disk_key.k_type = 0;
1421 /* look for the object's stat data */
1422 retval = search_item(inode->i_sb, &key, &path_to_sd);
1423 if (retval == IO_ERROR) {
1424 reiserfs_warning(inode->i_sb,
1425 "vs-13070: reiserfs_read_locked_inode: "
1426 "i/o failure occurred trying to find stat data of %K",
1427 &key);
1428 reiserfs_make_bad_inode(inode);
1429 return;
1431 if (retval != ITEM_FOUND) {
1432 /* a stale NFS handle can trigger this without it being an error */
1433 pathrelse(&path_to_sd);
1434 reiserfs_make_bad_inode(inode);
1435 inode->i_nlink = 0;
1436 return;
1439 init_inode(inode, &path_to_sd);
1441 /* It is possible that knfsd is trying to access inode of a file
1442 that is being removed from the disk by some other thread. As we
1443 update sd on unlink all that is required is to check for nlink
1444 here. This bug was first found by Sizif when debugging
1445 SquidNG/Butterfly, forgotten, and found again after Philippe
1446 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1448 More logical fix would require changes in fs/inode.c:iput() to
1449 remove inode from hash-table _after_ fs cleaned disk stuff up and
1450 in iget() to return NULL if I_FREEING inode is found in
1451 hash-table. */
1452 /* Currently there is one place where it's ok to meet inode with
1453 nlink==0: processing of open-unlinked and half-truncated files
1454 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1455 if ((inode->i_nlink == 0) &&
1456 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1457 reiserfs_warning(inode->i_sb,
1458 "vs-13075: reiserfs_read_locked_inode: "
1459 "dead inode read from disk %K. "
1460 "This is likely to be race with knfsd. Ignore",
1461 &key);
1462 reiserfs_make_bad_inode(inode);
1465 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1470 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1472 * @inode: inode from hash table to check
1473 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1475 * This function is called by iget5_locked() to distinguish reiserfs inodes
1476 * having the same inode numbers. Such inodes can only exist due to some
1477 * error condition. One of them should be bad. Inodes with identical
1478 * inode numbers (objectids) are distinguished by parent directory ids.
1481 int reiserfs_find_actor(struct inode *inode, void *opaque)
1483 struct reiserfs_iget_args *args;
1485 args = opaque;
1486 /* args is already in CPU order */
1487 return (inode->i_ino == args->objectid) &&
1488 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1491 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1493 struct inode *inode;
1494 struct reiserfs_iget_args args;
1496 args.objectid = key->on_disk_key.k_objectid;
1497 args.dirid = key->on_disk_key.k_dir_id;
1498 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1499 reiserfs_find_actor, reiserfs_init_locked_inode,
1500 (void *)(&args));
1501 if (!inode)
1502 return ERR_PTR(-ENOMEM);
1504 if (inode->i_state & I_NEW) {
1505 reiserfs_read_locked_inode(inode, &args);
1506 unlock_new_inode(inode);
1509 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1510 /* either due to i/o error or a stale NFS handle */
1511 iput(inode);
1512 inode = NULL;
1514 return inode;
1517 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1519 __u32 *data = vobjp;
1520 struct cpu_key key;
1521 struct dentry *result;
1522 struct inode *inode;
1524 key.on_disk_key.k_objectid = data[0];
1525 key.on_disk_key.k_dir_id = data[1];
1526 reiserfs_write_lock(sb);
1527 inode = reiserfs_iget(sb, &key);
1528 if (inode && !IS_ERR(inode) && data[2] != 0 &&
1529 data[2] != inode->i_generation) {
1530 iput(inode);
1531 inode = NULL;
1533 reiserfs_write_unlock(sb);
1534 if (!inode)
1535 inode = ERR_PTR(-ESTALE);
1536 if (IS_ERR(inode))
1537 return ERR_PTR(PTR_ERR(inode));
1538 result = d_alloc_anon(inode);
1539 if (!result) {
1540 iput(inode);
1541 return ERR_PTR(-ENOMEM);
1543 return result;
1546 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1547 int len, int fhtype,
1548 int (*acceptable) (void *contect,
1549 struct dentry * de),
1550 void *context)
1552 __u32 obj[3], parent[3];
1554 /* fhtype happens to reflect the number of u32s encoded.
1555 * due to a bug in earlier code, fhtype might indicate there
1556 * are more u32s then actually fitted.
1557 * so if fhtype seems to be more than len, reduce fhtype.
1558 * Valid types are:
1559 * 2 - objectid + dir_id - legacy support
1560 * 3 - objectid + dir_id + generation
1561 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1562 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1563 * 6 - as above plus generation of directory
1564 * 6 does not fit in NFSv2 handles
1566 if (fhtype > len) {
1567 if (fhtype != 6 || len != 5)
1568 reiserfs_warning(sb,
1569 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1570 fhtype, len);
1571 fhtype = 5;
1574 obj[0] = data[0];
1575 obj[1] = data[1];
1576 if (fhtype == 3 || fhtype >= 5)
1577 obj[2] = data[2];
1578 else
1579 obj[2] = 0; /* generation number */
1581 if (fhtype >= 4) {
1582 parent[0] = data[fhtype >= 5 ? 3 : 2];
1583 parent[1] = data[fhtype >= 5 ? 4 : 3];
1584 if (fhtype == 6)
1585 parent[2] = data[5];
1586 else
1587 parent[2] = 0;
1589 return sb->s_export_op->find_exported_dentry(sb, obj,
1590 fhtype < 4 ? NULL : parent,
1591 acceptable, context);
1594 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1595 int need_parent)
1597 struct inode *inode = dentry->d_inode;
1598 int maxlen = *lenp;
1600 if (maxlen < 3)
1601 return 255;
1603 data[0] = inode->i_ino;
1604 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1605 data[2] = inode->i_generation;
1606 *lenp = 3;
1607 /* no room for directory info? return what we've stored so far */
1608 if (maxlen < 5 || !need_parent)
1609 return 3;
1611 spin_lock(&dentry->d_lock);
1612 inode = dentry->d_parent->d_inode;
1613 data[3] = inode->i_ino;
1614 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1615 *lenp = 5;
1616 if (maxlen >= 6) {
1617 data[5] = inode->i_generation;
1618 *lenp = 6;
1620 spin_unlock(&dentry->d_lock);
1621 return *lenp;
1624 /* looks for stat data, then copies fields to it, marks the buffer
1625 containing stat data as dirty */
1626 /* reiserfs inodes are never really dirty, since the dirty inode call
1627 ** always logs them. This call allows the VFS inode marking routines
1628 ** to properly mark inodes for datasync and such, but only actually
1629 ** does something when called for a synchronous update.
1631 int reiserfs_write_inode(struct inode *inode, int do_sync)
1633 struct reiserfs_transaction_handle th;
1634 int jbegin_count = 1;
1636 if (inode->i_sb->s_flags & MS_RDONLY)
1637 return -EROFS;
1638 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1639 ** these cases are just when the system needs ram, not when the
1640 ** inode needs to reach disk for safety, and they can safely be
1641 ** ignored because the altered inode has already been logged.
1643 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1644 reiserfs_write_lock(inode->i_sb);
1645 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1646 reiserfs_update_sd(&th, inode);
1647 journal_end_sync(&th, inode->i_sb, jbegin_count);
1649 reiserfs_write_unlock(inode->i_sb);
1651 return 0;
1654 /* stat data of new object is inserted already, this inserts the item
1655 containing "." and ".." entries */
1656 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1657 struct inode *inode,
1658 struct item_head *ih, struct path *path,
1659 struct inode *dir)
1661 struct super_block *sb = th->t_super;
1662 char empty_dir[EMPTY_DIR_SIZE];
1663 char *body = empty_dir;
1664 struct cpu_key key;
1665 int retval;
1667 BUG_ON(!th->t_trans_id);
1669 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1670 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1671 TYPE_DIRENTRY, 3 /*key length */ );
1673 /* compose item head for new item. Directories consist of items of
1674 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1675 is done by reiserfs_new_inode */
1676 if (old_format_only(sb)) {
1677 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1678 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1680 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1681 ih->ih_key.k_objectid,
1682 INODE_PKEY(dir)->k_dir_id,
1683 INODE_PKEY(dir)->k_objectid);
1684 } else {
1685 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1686 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1688 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1689 ih->ih_key.k_objectid,
1690 INODE_PKEY(dir)->k_dir_id,
1691 INODE_PKEY(dir)->k_objectid);
1694 /* look for place in the tree for new item */
1695 retval = search_item(sb, &key, path);
1696 if (retval == IO_ERROR) {
1697 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1698 "i/o failure occurred creating new directory");
1699 return -EIO;
1701 if (retval == ITEM_FOUND) {
1702 pathrelse(path);
1703 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1704 "object with this key exists (%k)",
1705 &(ih->ih_key));
1706 return -EEXIST;
1709 /* insert item, that is empty directory item */
1710 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1713 /* stat data of object has been inserted, this inserts the item
1714 containing the body of symlink */
1715 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1716 struct item_head *ih,
1717 struct path *path, const char *symname,
1718 int item_len)
1720 struct super_block *sb = th->t_super;
1721 struct cpu_key key;
1722 int retval;
1724 BUG_ON(!th->t_trans_id);
1726 _make_cpu_key(&key, KEY_FORMAT_3_5,
1727 le32_to_cpu(ih->ih_key.k_dir_id),
1728 le32_to_cpu(ih->ih_key.k_objectid),
1729 1, TYPE_DIRECT, 3 /*key length */ );
1731 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1732 0 /*free_space */ );
1734 /* look for place in the tree for new item */
1735 retval = search_item(sb, &key, path);
1736 if (retval == IO_ERROR) {
1737 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1738 "i/o failure occurred creating new symlink");
1739 return -EIO;
1741 if (retval == ITEM_FOUND) {
1742 pathrelse(path);
1743 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1744 "object with this key exists (%k)",
1745 &(ih->ih_key));
1746 return -EEXIST;
1749 /* insert item, that is body of symlink */
1750 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1753 /* inserts the stat data into the tree, and then calls
1754 reiserfs_new_directory (to insert ".", ".." item if new object is
1755 directory) or reiserfs_new_symlink (to insert symlink body if new
1756 object is symlink) or nothing (if new object is regular file)
1758 NOTE! uid and gid must already be set in the inode. If we return
1759 non-zero due to an error, we have to drop the quota previously allocated
1760 for the fresh inode. This can only be done outside a transaction, so
1761 if we return non-zero, we also end the transaction. */
1762 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1763 struct inode *dir, int mode, const char *symname,
1764 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1765 strlen (symname) for symlinks) */
1766 loff_t i_size, struct dentry *dentry,
1767 struct inode *inode)
1769 struct super_block *sb;
1770 INITIALIZE_PATH(path_to_key);
1771 struct cpu_key key;
1772 struct item_head ih;
1773 struct stat_data sd;
1774 int retval;
1775 int err;
1777 BUG_ON(!th->t_trans_id);
1779 if (DQUOT_ALLOC_INODE(inode)) {
1780 err = -EDQUOT;
1781 goto out_end_trans;
1783 if (!dir || !dir->i_nlink) {
1784 err = -EPERM;
1785 goto out_bad_inode;
1788 sb = dir->i_sb;
1790 /* item head of new item */
1791 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1792 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1793 if (!ih.ih_key.k_objectid) {
1794 err = -ENOMEM;
1795 goto out_bad_inode;
1797 if (old_format_only(sb))
1798 /* not a perfect generation count, as object ids can be reused, but
1799 ** this is as good as reiserfs can do right now.
1800 ** note that the private part of inode isn't filled in yet, we have
1801 ** to use the directory.
1803 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1804 else
1805 #if defined( USE_INODE_GENERATION_COUNTER )
1806 inode->i_generation =
1807 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1808 #else
1809 inode->i_generation = ++event;
1810 #endif
1812 /* fill stat data */
1813 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1815 /* uid and gid must already be set by the caller for quota init */
1817 /* symlink cannot be immutable or append only, right? */
1818 if (S_ISLNK(inode->i_mode))
1819 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1821 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1822 inode->i_size = i_size;
1823 inode->i_blocks = 0;
1824 inode->i_bytes = 0;
1825 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1826 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1828 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1829 REISERFS_I(inode)->i_flags = 0;
1830 REISERFS_I(inode)->i_prealloc_block = 0;
1831 REISERFS_I(inode)->i_prealloc_count = 0;
1832 REISERFS_I(inode)->i_trans_id = 0;
1833 REISERFS_I(inode)->i_jl = NULL;
1834 REISERFS_I(inode)->i_attrs =
1835 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1836 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1837 REISERFS_I(inode)->i_acl_access = NULL;
1838 REISERFS_I(inode)->i_acl_default = NULL;
1839 init_rwsem(&REISERFS_I(inode)->xattr_sem);
1841 if (old_format_only(sb))
1842 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1843 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1844 else
1845 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1846 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1848 /* key to search for correct place for new stat data */
1849 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1850 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1851 TYPE_STAT_DATA, 3 /*key length */ );
1853 /* find proper place for inserting of stat data */
1854 retval = search_item(sb, &key, &path_to_key);
1855 if (retval == IO_ERROR) {
1856 err = -EIO;
1857 goto out_bad_inode;
1859 if (retval == ITEM_FOUND) {
1860 pathrelse(&path_to_key);
1861 err = -EEXIST;
1862 goto out_bad_inode;
1864 if (old_format_only(sb)) {
1865 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1866 pathrelse(&path_to_key);
1867 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1868 err = -EINVAL;
1869 goto out_bad_inode;
1871 inode2sd_v1(&sd, inode, inode->i_size);
1872 } else {
1873 inode2sd(&sd, inode, inode->i_size);
1875 // these do not go to on-disk stat data
1876 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1878 // store in in-core inode the key of stat data and version all
1879 // object items will have (directory items will have old offset
1880 // format, other new objects will consist of new items)
1881 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1882 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1883 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1884 else
1885 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1886 if (old_format_only(sb))
1887 set_inode_sd_version(inode, STAT_DATA_V1);
1888 else
1889 set_inode_sd_version(inode, STAT_DATA_V2);
1891 /* insert the stat data into the tree */
1892 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1893 if (REISERFS_I(dir)->new_packing_locality)
1894 th->displace_new_blocks = 1;
1895 #endif
1896 retval =
1897 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1898 (char *)(&sd));
1899 if (retval) {
1900 err = retval;
1901 reiserfs_check_path(&path_to_key);
1902 goto out_bad_inode;
1904 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1905 if (!th->displace_new_blocks)
1906 REISERFS_I(dir)->new_packing_locality = 0;
1907 #endif
1908 if (S_ISDIR(mode)) {
1909 /* insert item with "." and ".." */
1910 retval =
1911 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1914 if (S_ISLNK(mode)) {
1915 /* insert body of symlink */
1916 if (!old_format_only(sb))
1917 i_size = ROUND_UP(i_size);
1918 retval =
1919 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1920 i_size);
1922 if (retval) {
1923 err = retval;
1924 reiserfs_check_path(&path_to_key);
1925 journal_end(th, th->t_super, th->t_blocks_allocated);
1926 goto out_inserted_sd;
1929 /* XXX CHECK THIS */
1930 if (reiserfs_posixacl(inode->i_sb)) {
1931 retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1932 if (retval) {
1933 err = retval;
1934 reiserfs_check_path(&path_to_key);
1935 journal_end(th, th->t_super, th->t_blocks_allocated);
1936 goto out_inserted_sd;
1938 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1939 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1940 "but vfs thinks they are!");
1941 } else if (is_reiserfs_priv_object(dir)) {
1942 reiserfs_mark_inode_private(inode);
1945 insert_inode_hash(inode);
1946 reiserfs_update_sd(th, inode);
1947 reiserfs_check_path(&path_to_key);
1949 return 0;
1951 /* it looks like you can easily compress these two goto targets into
1952 * one. Keeping it like this doesn't actually hurt anything, and they
1953 * are place holders for what the quota code actually needs.
1955 out_bad_inode:
1956 /* Invalidate the object, nothing was inserted yet */
1957 INODE_PKEY(inode)->k_objectid = 0;
1959 /* Quota change must be inside a transaction for journaling */
1960 DQUOT_FREE_INODE(inode);
1962 out_end_trans:
1963 journal_end(th, th->t_super, th->t_blocks_allocated);
1964 /* Drop can be outside and it needs more credits so it's better to have it outside */
1965 DQUOT_DROP(inode);
1966 inode->i_flags |= S_NOQUOTA;
1967 make_bad_inode(inode);
1969 out_inserted_sd:
1970 inode->i_nlink = 0;
1971 th->t_trans_id = 0; /* so the caller can't use this handle later */
1973 /* If we were inheriting an ACL, we need to release the lock so that
1974 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1975 * code really needs to be reworked, but this will take care of it
1976 * for now. -jeffm */
1977 if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1978 reiserfs_write_unlock_xattrs(dir->i_sb);
1979 iput(inode);
1980 reiserfs_write_lock_xattrs(dir->i_sb);
1981 } else
1982 iput(inode);
1983 return err;
1987 ** finds the tail page in the page cache,
1988 ** reads the last block in.
1990 ** On success, page_result is set to a locked, pinned page, and bh_result
1991 ** is set to an up to date buffer for the last block in the file. returns 0.
1993 ** tail conversion is not done, so bh_result might not be valid for writing
1994 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1995 ** trying to write the block.
1997 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1999 static int grab_tail_page(struct inode *p_s_inode,
2000 struct page **page_result,
2001 struct buffer_head **bh_result)
2004 /* we want the page with the last byte in the file,
2005 ** not the page that will hold the next byte for appending
2007 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2008 unsigned long pos = 0;
2009 unsigned long start = 0;
2010 unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2011 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2012 struct buffer_head *bh;
2013 struct buffer_head *head;
2014 struct page *page;
2015 int error;
2017 /* we know that we are only called with inode->i_size > 0.
2018 ** we also know that a file tail can never be as big as a block
2019 ** If i_size % blocksize == 0, our file is currently block aligned
2020 ** and it won't need converting or zeroing after a truncate.
2022 if ((offset & (blocksize - 1)) == 0) {
2023 return -ENOENT;
2025 page = grab_cache_page(p_s_inode->i_mapping, index);
2026 error = -ENOMEM;
2027 if (!page) {
2028 goto out;
2030 /* start within the page of the last block in the file */
2031 start = (offset / blocksize) * blocksize;
2033 error = block_prepare_write(page, start, offset,
2034 reiserfs_get_block_create_0);
2035 if (error)
2036 goto unlock;
2038 head = page_buffers(page);
2039 bh = head;
2040 do {
2041 if (pos >= start) {
2042 break;
2044 bh = bh->b_this_page;
2045 pos += blocksize;
2046 } while (bh != head);
2048 if (!buffer_uptodate(bh)) {
2049 /* note, this should never happen, prepare_write should
2050 ** be taking care of this for us. If the buffer isn't up to date,
2051 ** I've screwed up the code to find the buffer, or the code to
2052 ** call prepare_write
2054 reiserfs_warning(p_s_inode->i_sb,
2055 "clm-6000: error reading block %lu on dev %s",
2056 bh->b_blocknr,
2057 reiserfs_bdevname(p_s_inode->i_sb));
2058 error = -EIO;
2059 goto unlock;
2061 *bh_result = bh;
2062 *page_result = page;
2064 out:
2065 return error;
2067 unlock:
2068 unlock_page(page);
2069 page_cache_release(page);
2070 return error;
2074 ** vfs version of truncate file. Must NOT be called with
2075 ** a transaction already started.
2077 ** some code taken from block_truncate_page
2079 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2081 struct reiserfs_transaction_handle th;
2082 /* we want the offset for the first byte after the end of the file */
2083 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2084 unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2085 unsigned length;
2086 struct page *page = NULL;
2087 int error;
2088 struct buffer_head *bh = NULL;
2089 int err2;
2091 reiserfs_write_lock(p_s_inode->i_sb);
2093 if (p_s_inode->i_size > 0) {
2094 if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2095 // -ENOENT means we truncated past the end of the file,
2096 // and get_block_create_0 could not find a block to read in,
2097 // which is ok.
2098 if (error != -ENOENT)
2099 reiserfs_warning(p_s_inode->i_sb,
2100 "clm-6001: grab_tail_page failed %d",
2101 error);
2102 page = NULL;
2103 bh = NULL;
2107 /* so, if page != NULL, we have a buffer head for the offset at
2108 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2109 ** then we have an unformatted node. Otherwise, we have a direct item,
2110 ** and no zeroing is required on disk. We zero after the truncate,
2111 ** because the truncate might pack the item anyway
2112 ** (it will unmap bh if it packs).
2114 /* it is enough to reserve space in transaction for 2 balancings:
2115 one for "save" link adding and another for the first
2116 cut_from_item. 1 is for update_sd */
2117 error = journal_begin(&th, p_s_inode->i_sb,
2118 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2119 if (error)
2120 goto out;
2121 reiserfs_update_inode_transaction(p_s_inode);
2122 if (update_timestamps)
2123 /* we are doing real truncate: if the system crashes before the last
2124 transaction of truncating gets committed - on reboot the file
2125 either appears truncated properly or not truncated at all */
2126 add_save_link(&th, p_s_inode, 1);
2127 err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2128 error =
2129 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2130 if (error)
2131 goto out;
2133 /* check reiserfs_do_truncate after ending the transaction */
2134 if (err2) {
2135 error = err2;
2136 goto out;
2139 if (update_timestamps) {
2140 error = remove_save_link(p_s_inode, 1 /* truncate */ );
2141 if (error)
2142 goto out;
2145 if (page) {
2146 length = offset & (blocksize - 1);
2147 /* if we are not on a block boundary */
2148 if (length) {
2149 char *kaddr;
2151 length = blocksize - length;
2152 kaddr = kmap_atomic(page, KM_USER0);
2153 memset(kaddr + offset, 0, length);
2154 flush_dcache_page(page);
2155 kunmap_atomic(kaddr, KM_USER0);
2156 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2157 mark_buffer_dirty(bh);
2160 unlock_page(page);
2161 page_cache_release(page);
2164 reiserfs_write_unlock(p_s_inode->i_sb);
2165 return 0;
2166 out:
2167 if (page) {
2168 unlock_page(page);
2169 page_cache_release(page);
2171 reiserfs_write_unlock(p_s_inode->i_sb);
2172 return error;
2175 static int map_block_for_writepage(struct inode *inode,
2176 struct buffer_head *bh_result,
2177 unsigned long block)
2179 struct reiserfs_transaction_handle th;
2180 int fs_gen;
2181 struct item_head tmp_ih;
2182 struct item_head *ih;
2183 struct buffer_head *bh;
2184 __le32 *item;
2185 struct cpu_key key;
2186 INITIALIZE_PATH(path);
2187 int pos_in_item;
2188 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2189 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2190 int retval;
2191 int use_get_block = 0;
2192 int bytes_copied = 0;
2193 int copy_size;
2194 int trans_running = 0;
2196 /* catch places below that try to log something without starting a trans */
2197 th.t_trans_id = 0;
2199 if (!buffer_uptodate(bh_result)) {
2200 return -EIO;
2203 kmap(bh_result->b_page);
2204 start_over:
2205 reiserfs_write_lock(inode->i_sb);
2206 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2208 research:
2209 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2210 if (retval != POSITION_FOUND) {
2211 use_get_block = 1;
2212 goto out;
2215 bh = get_last_bh(&path);
2216 ih = get_ih(&path);
2217 item = get_item(&path);
2218 pos_in_item = path.pos_in_item;
2220 /* we've found an unformatted node */
2221 if (indirect_item_found(retval, ih)) {
2222 if (bytes_copied > 0) {
2223 reiserfs_warning(inode->i_sb,
2224 "clm-6002: bytes_copied %d",
2225 bytes_copied);
2227 if (!get_block_num(item, pos_in_item)) {
2228 /* crap, we are writing to a hole */
2229 use_get_block = 1;
2230 goto out;
2232 set_block_dev_mapped(bh_result,
2233 get_block_num(item, pos_in_item), inode);
2234 } else if (is_direct_le_ih(ih)) {
2235 char *p;
2236 p = page_address(bh_result->b_page);
2237 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2238 copy_size = ih_item_len(ih) - pos_in_item;
2240 fs_gen = get_generation(inode->i_sb);
2241 copy_item_head(&tmp_ih, ih);
2243 if (!trans_running) {
2244 /* vs-3050 is gone, no need to drop the path */
2245 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2246 if (retval)
2247 goto out;
2248 reiserfs_update_inode_transaction(inode);
2249 trans_running = 1;
2250 if (fs_changed(fs_gen, inode->i_sb)
2251 && item_moved(&tmp_ih, &path)) {
2252 reiserfs_restore_prepared_buffer(inode->i_sb,
2253 bh);
2254 goto research;
2258 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2260 if (fs_changed(fs_gen, inode->i_sb)
2261 && item_moved(&tmp_ih, &path)) {
2262 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2263 goto research;
2266 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2267 copy_size);
2269 journal_mark_dirty(&th, inode->i_sb, bh);
2270 bytes_copied += copy_size;
2271 set_block_dev_mapped(bh_result, 0, inode);
2273 /* are there still bytes left? */
2274 if (bytes_copied < bh_result->b_size &&
2275 (byte_offset + bytes_copied) < inode->i_size) {
2276 set_cpu_key_k_offset(&key,
2277 cpu_key_k_offset(&key) +
2278 copy_size);
2279 goto research;
2281 } else {
2282 reiserfs_warning(inode->i_sb,
2283 "clm-6003: bad item inode %lu, device %s",
2284 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2285 retval = -EIO;
2286 goto out;
2288 retval = 0;
2290 out:
2291 pathrelse(&path);
2292 if (trans_running) {
2293 int err = journal_end(&th, inode->i_sb, jbegin_count);
2294 if (err)
2295 retval = err;
2296 trans_running = 0;
2298 reiserfs_write_unlock(inode->i_sb);
2300 /* this is where we fill in holes in the file. */
2301 if (use_get_block) {
2302 retval = reiserfs_get_block(inode, block, bh_result,
2303 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2304 | GET_BLOCK_NO_DANGLE);
2305 if (!retval) {
2306 if (!buffer_mapped(bh_result)
2307 || bh_result->b_blocknr == 0) {
2308 /* get_block failed to find a mapped unformatted node. */
2309 use_get_block = 0;
2310 goto start_over;
2314 kunmap(bh_result->b_page);
2316 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2317 /* we've copied data from the page into the direct item, so the
2318 * buffer in the page is now clean, mark it to reflect that.
2320 lock_buffer(bh_result);
2321 clear_buffer_dirty(bh_result);
2322 unlock_buffer(bh_result);
2324 return retval;
2328 * mason@suse.com: updated in 2.5.54 to follow the same general io
2329 * start/recovery path as __block_write_full_page, along with special
2330 * code to handle reiserfs tails.
2332 static int reiserfs_write_full_page(struct page *page,
2333 struct writeback_control *wbc)
2335 struct inode *inode = page->mapping->host;
2336 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2337 int error = 0;
2338 unsigned long block;
2339 sector_t last_block;
2340 struct buffer_head *head, *bh;
2341 int partial = 0;
2342 int nr = 0;
2343 int checked = PageChecked(page);
2344 struct reiserfs_transaction_handle th;
2345 struct super_block *s = inode->i_sb;
2346 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2347 th.t_trans_id = 0;
2349 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2350 if (checked && (current->flags & PF_MEMALLOC)) {
2351 redirty_page_for_writepage(wbc, page);
2352 unlock_page(page);
2353 return 0;
2356 /* The page dirty bit is cleared before writepage is called, which
2357 * means we have to tell create_empty_buffers to make dirty buffers
2358 * The page really should be up to date at this point, so tossing
2359 * in the BH_Uptodate is just a sanity check.
2361 if (!page_has_buffers(page)) {
2362 create_empty_buffers(page, s->s_blocksize,
2363 (1 << BH_Dirty) | (1 << BH_Uptodate));
2365 head = page_buffers(page);
2367 /* last page in the file, zero out any contents past the
2368 ** last byte in the file
2370 if (page->index >= end_index) {
2371 char *kaddr;
2372 unsigned last_offset;
2374 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2375 /* no file contents in this page */
2376 if (page->index >= end_index + 1 || !last_offset) {
2377 unlock_page(page);
2378 return 0;
2380 kaddr = kmap_atomic(page, KM_USER0);
2381 memset(kaddr + last_offset, 0, PAGE_CACHE_SIZE - last_offset);
2382 flush_dcache_page(page);
2383 kunmap_atomic(kaddr, KM_USER0);
2385 bh = head;
2386 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2387 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2388 /* first map all the buffers, logging any direct items we find */
2389 do {
2390 if (block > last_block) {
2392 * This can happen when the block size is less than
2393 * the page size. The corresponding bytes in the page
2394 * were zero filled above
2396 clear_buffer_dirty(bh);
2397 set_buffer_uptodate(bh);
2398 } else if ((checked || buffer_dirty(bh)) &&
2399 (!buffer_mapped(bh) || (buffer_mapped(bh)
2400 && bh->b_blocknr ==
2401 0))) {
2402 /* not mapped yet, or it points to a direct item, search
2403 * the btree for the mapping info, and log any direct
2404 * items found
2406 if ((error = map_block_for_writepage(inode, bh, block))) {
2407 goto fail;
2410 bh = bh->b_this_page;
2411 block++;
2412 } while (bh != head);
2415 * we start the transaction after map_block_for_writepage,
2416 * because it can create holes in the file (an unbounded operation).
2417 * starting it here, we can make a reliable estimate for how many
2418 * blocks we're going to log
2420 if (checked) {
2421 ClearPageChecked(page);
2422 reiserfs_write_lock(s);
2423 error = journal_begin(&th, s, bh_per_page + 1);
2424 if (error) {
2425 reiserfs_write_unlock(s);
2426 goto fail;
2428 reiserfs_update_inode_transaction(inode);
2430 /* now go through and lock any dirty buffers on the page */
2431 do {
2432 get_bh(bh);
2433 if (!buffer_mapped(bh))
2434 continue;
2435 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2436 continue;
2438 if (checked) {
2439 reiserfs_prepare_for_journal(s, bh, 1);
2440 journal_mark_dirty(&th, s, bh);
2441 continue;
2443 /* from this point on, we know the buffer is mapped to a
2444 * real block and not a direct item
2446 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2447 lock_buffer(bh);
2448 } else {
2449 if (test_set_buffer_locked(bh)) {
2450 redirty_page_for_writepage(wbc, page);
2451 continue;
2454 if (test_clear_buffer_dirty(bh)) {
2455 mark_buffer_async_write(bh);
2456 } else {
2457 unlock_buffer(bh);
2459 } while ((bh = bh->b_this_page) != head);
2461 if (checked) {
2462 error = journal_end(&th, s, bh_per_page + 1);
2463 reiserfs_write_unlock(s);
2464 if (error)
2465 goto fail;
2467 BUG_ON(PageWriteback(page));
2468 set_page_writeback(page);
2469 unlock_page(page);
2472 * since any buffer might be the only dirty buffer on the page,
2473 * the first submit_bh can bring the page out of writeback.
2474 * be careful with the buffers.
2476 do {
2477 struct buffer_head *next = bh->b_this_page;
2478 if (buffer_async_write(bh)) {
2479 submit_bh(WRITE, bh);
2480 nr++;
2482 put_bh(bh);
2483 bh = next;
2484 } while (bh != head);
2486 error = 0;
2487 done:
2488 if (nr == 0) {
2490 * if this page only had a direct item, it is very possible for
2491 * no io to be required without there being an error. Or,
2492 * someone else could have locked them and sent them down the
2493 * pipe without locking the page
2495 bh = head;
2496 do {
2497 if (!buffer_uptodate(bh)) {
2498 partial = 1;
2499 break;
2501 bh = bh->b_this_page;
2502 } while (bh != head);
2503 if (!partial)
2504 SetPageUptodate(page);
2505 end_page_writeback(page);
2507 return error;
2509 fail:
2510 /* catches various errors, we need to make sure any valid dirty blocks
2511 * get to the media. The page is currently locked and not marked for
2512 * writeback
2514 ClearPageUptodate(page);
2515 bh = head;
2516 do {
2517 get_bh(bh);
2518 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2519 lock_buffer(bh);
2520 mark_buffer_async_write(bh);
2521 } else {
2523 * clear any dirty bits that might have come from getting
2524 * attached to a dirty page
2526 clear_buffer_dirty(bh);
2528 bh = bh->b_this_page;
2529 } while (bh != head);
2530 SetPageError(page);
2531 BUG_ON(PageWriteback(page));
2532 set_page_writeback(page);
2533 unlock_page(page);
2534 do {
2535 struct buffer_head *next = bh->b_this_page;
2536 if (buffer_async_write(bh)) {
2537 clear_buffer_dirty(bh);
2538 submit_bh(WRITE, bh);
2539 nr++;
2541 put_bh(bh);
2542 bh = next;
2543 } while (bh != head);
2544 goto done;
2547 static int reiserfs_readpage(struct file *f, struct page *page)
2549 return block_read_full_page(page, reiserfs_get_block);
2552 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2554 struct inode *inode = page->mapping->host;
2555 reiserfs_wait_on_write_block(inode->i_sb);
2556 return reiserfs_write_full_page(page, wbc);
2559 static int reiserfs_prepare_write(struct file *f, struct page *page,
2560 unsigned from, unsigned to)
2562 struct inode *inode = page->mapping->host;
2563 int ret;
2564 int old_ref = 0;
2566 reiserfs_wait_on_write_block(inode->i_sb);
2567 fix_tail_page_for_writing(page);
2568 if (reiserfs_transaction_running(inode->i_sb)) {
2569 struct reiserfs_transaction_handle *th;
2570 th = (struct reiserfs_transaction_handle *)current->
2571 journal_info;
2572 BUG_ON(!th->t_refcount);
2573 BUG_ON(!th->t_trans_id);
2574 old_ref = th->t_refcount;
2575 th->t_refcount++;
2578 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2579 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2580 struct reiserfs_transaction_handle *th = current->journal_info;
2581 /* this gets a little ugly. If reiserfs_get_block returned an
2582 * error and left a transacstion running, we've got to close it,
2583 * and we've got to free handle if it was a persistent transaction.
2585 * But, if we had nested into an existing transaction, we need
2586 * to just drop the ref count on the handle.
2588 * If old_ref == 0, the transaction is from reiserfs_get_block,
2589 * and it was a persistent trans. Otherwise, it was nested above.
2591 if (th->t_refcount > old_ref) {
2592 if (old_ref)
2593 th->t_refcount--;
2594 else {
2595 int err;
2596 reiserfs_write_lock(inode->i_sb);
2597 err = reiserfs_end_persistent_transaction(th);
2598 reiserfs_write_unlock(inode->i_sb);
2599 if (err)
2600 ret = err;
2604 return ret;
2608 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2610 return generic_block_bmap(as, block, reiserfs_bmap);
2613 static int reiserfs_commit_write(struct file *f, struct page *page,
2614 unsigned from, unsigned to)
2616 struct inode *inode = page->mapping->host;
2617 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2618 int ret = 0;
2619 int update_sd = 0;
2620 struct reiserfs_transaction_handle *th = NULL;
2622 reiserfs_wait_on_write_block(inode->i_sb);
2623 if (reiserfs_transaction_running(inode->i_sb)) {
2624 th = current->journal_info;
2626 reiserfs_commit_page(inode, page, from, to);
2628 /* generic_commit_write does this for us, but does not update the
2629 ** transaction tracking stuff when the size changes. So, we have
2630 ** to do the i_size updates here.
2632 if (pos > inode->i_size) {
2633 struct reiserfs_transaction_handle myth;
2634 reiserfs_write_lock(inode->i_sb);
2635 /* If the file have grown beyond the border where it
2636 can have a tail, unmark it as needing a tail
2637 packing */
2638 if ((have_large_tails(inode->i_sb)
2639 && inode->i_size > i_block_size(inode) * 4)
2640 || (have_small_tails(inode->i_sb)
2641 && inode->i_size > i_block_size(inode)))
2642 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2644 ret = journal_begin(&myth, inode->i_sb, 1);
2645 if (ret) {
2646 reiserfs_write_unlock(inode->i_sb);
2647 goto journal_error;
2649 reiserfs_update_inode_transaction(inode);
2650 inode->i_size = pos;
2652 * this will just nest into our transaction. It's important
2653 * to use mark_inode_dirty so the inode gets pushed around on the
2654 * dirty lists, and so that O_SYNC works as expected
2656 mark_inode_dirty(inode);
2657 reiserfs_update_sd(&myth, inode);
2658 update_sd = 1;
2659 ret = journal_end(&myth, inode->i_sb, 1);
2660 reiserfs_write_unlock(inode->i_sb);
2661 if (ret)
2662 goto journal_error;
2664 if (th) {
2665 reiserfs_write_lock(inode->i_sb);
2666 if (!update_sd)
2667 mark_inode_dirty(inode);
2668 ret = reiserfs_end_persistent_transaction(th);
2669 reiserfs_write_unlock(inode->i_sb);
2670 if (ret)
2671 goto out;
2674 out:
2675 return ret;
2677 journal_error:
2678 if (th) {
2679 reiserfs_write_lock(inode->i_sb);
2680 if (!update_sd)
2681 reiserfs_update_sd(th, inode);
2682 ret = reiserfs_end_persistent_transaction(th);
2683 reiserfs_write_unlock(inode->i_sb);
2686 return ret;
2689 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2691 if (reiserfs_attrs(inode->i_sb)) {
2692 if (sd_attrs & REISERFS_SYNC_FL)
2693 inode->i_flags |= S_SYNC;
2694 else
2695 inode->i_flags &= ~S_SYNC;
2696 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2697 inode->i_flags |= S_IMMUTABLE;
2698 else
2699 inode->i_flags &= ~S_IMMUTABLE;
2700 if (sd_attrs & REISERFS_APPEND_FL)
2701 inode->i_flags |= S_APPEND;
2702 else
2703 inode->i_flags &= ~S_APPEND;
2704 if (sd_attrs & REISERFS_NOATIME_FL)
2705 inode->i_flags |= S_NOATIME;
2706 else
2707 inode->i_flags &= ~S_NOATIME;
2708 if (sd_attrs & REISERFS_NOTAIL_FL)
2709 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2710 else
2711 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2715 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2717 if (reiserfs_attrs(inode->i_sb)) {
2718 if (inode->i_flags & S_IMMUTABLE)
2719 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2720 else
2721 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2722 if (inode->i_flags & S_SYNC)
2723 *sd_attrs |= REISERFS_SYNC_FL;
2724 else
2725 *sd_attrs &= ~REISERFS_SYNC_FL;
2726 if (inode->i_flags & S_NOATIME)
2727 *sd_attrs |= REISERFS_NOATIME_FL;
2728 else
2729 *sd_attrs &= ~REISERFS_NOATIME_FL;
2730 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2731 *sd_attrs |= REISERFS_NOTAIL_FL;
2732 else
2733 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2737 /* decide if this buffer needs to stay around for data logging or ordered
2738 ** write purposes
2740 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2742 int ret = 1;
2743 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2745 lock_buffer(bh);
2746 spin_lock(&j->j_dirty_buffers_lock);
2747 if (!buffer_mapped(bh)) {
2748 goto free_jh;
2750 /* the page is locked, and the only places that log a data buffer
2751 * also lock the page.
2753 if (reiserfs_file_data_log(inode)) {
2755 * very conservative, leave the buffer pinned if
2756 * anyone might need it.
2758 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2759 ret = 0;
2761 } else if (buffer_dirty(bh)) {
2762 struct reiserfs_journal_list *jl;
2763 struct reiserfs_jh *jh = bh->b_private;
2765 /* why is this safe?
2766 * reiserfs_setattr updates i_size in the on disk
2767 * stat data before allowing vmtruncate to be called.
2769 * If buffer was put onto the ordered list for this
2770 * transaction, we know for sure either this transaction
2771 * or an older one already has updated i_size on disk,
2772 * and this ordered data won't be referenced in the file
2773 * if we crash.
2775 * if the buffer was put onto the ordered list for an older
2776 * transaction, we need to leave it around
2778 if (jh && (jl = jh->jl)
2779 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2780 ret = 0;
2782 free_jh:
2783 if (ret && bh->b_private) {
2784 reiserfs_free_jh(bh);
2786 spin_unlock(&j->j_dirty_buffers_lock);
2787 unlock_buffer(bh);
2788 return ret;
2791 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2792 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2794 struct buffer_head *head, *bh, *next;
2795 struct inode *inode = page->mapping->host;
2796 unsigned int curr_off = 0;
2797 int ret = 1;
2799 BUG_ON(!PageLocked(page));
2801 if (offset == 0)
2802 ClearPageChecked(page);
2804 if (!page_has_buffers(page))
2805 goto out;
2807 head = page_buffers(page);
2808 bh = head;
2809 do {
2810 unsigned int next_off = curr_off + bh->b_size;
2811 next = bh->b_this_page;
2814 * is this block fully invalidated?
2816 if (offset <= curr_off) {
2817 if (invalidatepage_can_drop(inode, bh))
2818 reiserfs_unmap_buffer(bh);
2819 else
2820 ret = 0;
2822 curr_off = next_off;
2823 bh = next;
2824 } while (bh != head);
2827 * We release buffers only if the entire page is being invalidated.
2828 * The get_block cached value has been unconditionally invalidated,
2829 * so real IO is not possible anymore.
2831 if (!offset && ret) {
2832 ret = try_to_release_page(page, 0);
2833 /* maybe should BUG_ON(!ret); - neilb */
2835 out:
2836 return;
2839 static int reiserfs_set_page_dirty(struct page *page)
2841 struct inode *inode = page->mapping->host;
2842 if (reiserfs_file_data_log(inode)) {
2843 SetPageChecked(page);
2844 return __set_page_dirty_nobuffers(page);
2846 return __set_page_dirty_buffers(page);
2850 * Returns 1 if the page's buffers were dropped. The page is locked.
2852 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2853 * in the buffers at page_buffers(page).
2855 * even in -o notail mode, we can't be sure an old mount without -o notail
2856 * didn't create files with tails.
2858 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
2860 struct inode *inode = page->mapping->host;
2861 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2862 struct buffer_head *head;
2863 struct buffer_head *bh;
2864 int ret = 1;
2866 WARN_ON(PageChecked(page));
2867 spin_lock(&j->j_dirty_buffers_lock);
2868 head = page_buffers(page);
2869 bh = head;
2870 do {
2871 if (bh->b_private) {
2872 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2873 reiserfs_free_jh(bh);
2874 } else {
2875 ret = 0;
2876 break;
2879 bh = bh->b_this_page;
2880 } while (bh != head);
2881 if (ret)
2882 ret = try_to_free_buffers(page);
2883 spin_unlock(&j->j_dirty_buffers_lock);
2884 return ret;
2887 /* We thank Mingming Cao for helping us understand in great detail what
2888 to do in this section of the code. */
2889 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2890 const struct iovec *iov, loff_t offset,
2891 unsigned long nr_segs)
2893 struct file *file = iocb->ki_filp;
2894 struct inode *inode = file->f_mapping->host;
2896 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2897 offset, nr_segs,
2898 reiserfs_get_blocks_direct_io, NULL);
2901 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
2903 struct inode *inode = dentry->d_inode;
2904 int error;
2905 unsigned int ia_valid = attr->ia_valid;
2906 reiserfs_write_lock(inode->i_sb);
2907 if (attr->ia_valid & ATTR_SIZE) {
2908 /* version 2 items will be caught by the s_maxbytes check
2909 ** done for us in vmtruncate
2911 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2912 attr->ia_size > MAX_NON_LFS) {
2913 error = -EFBIG;
2914 goto out;
2916 /* fill in hole pointers in the expanding truncate case. */
2917 if (attr->ia_size > inode->i_size) {
2918 error = generic_cont_expand(inode, attr->ia_size);
2919 if (REISERFS_I(inode)->i_prealloc_count > 0) {
2920 int err;
2921 struct reiserfs_transaction_handle th;
2922 /* we're changing at most 2 bitmaps, inode + super */
2923 err = journal_begin(&th, inode->i_sb, 4);
2924 if (!err) {
2925 reiserfs_discard_prealloc(&th, inode);
2926 err = journal_end(&th, inode->i_sb, 4);
2928 if (err)
2929 error = err;
2931 if (error)
2932 goto out;
2934 * file size is changed, ctime and mtime are
2935 * to be updated
2937 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
2941 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2942 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2943 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
2944 /* stat data of format v3.5 has 16 bit uid and gid */
2945 error = -EINVAL;
2946 goto out;
2949 error = inode_change_ok(inode, attr);
2950 if (!error) {
2951 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2952 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2953 error = reiserfs_chown_xattrs(inode, attr);
2955 if (!error) {
2956 struct reiserfs_transaction_handle th;
2957 int jbegin_count =
2959 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
2960 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
2963 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2964 error =
2965 journal_begin(&th, inode->i_sb,
2966 jbegin_count);
2967 if (error)
2968 goto out;
2969 error =
2970 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2971 if (error) {
2972 journal_end(&th, inode->i_sb,
2973 jbegin_count);
2974 goto out;
2976 /* Update corresponding info in inode so that everything is in
2977 * one transaction */
2978 if (attr->ia_valid & ATTR_UID)
2979 inode->i_uid = attr->ia_uid;
2980 if (attr->ia_valid & ATTR_GID)
2981 inode->i_gid = attr->ia_gid;
2982 mark_inode_dirty(inode);
2983 error =
2984 journal_end(&th, inode->i_sb, jbegin_count);
2987 if (!error)
2988 error = inode_setattr(inode, attr);
2991 if (!error && reiserfs_posixacl(inode->i_sb)) {
2992 if (attr->ia_valid & ATTR_MODE)
2993 error = reiserfs_acl_chmod(inode);
2996 out:
2997 reiserfs_write_unlock(inode->i_sb);
2998 return error;
3001 const struct address_space_operations reiserfs_address_space_operations = {
3002 .writepage = reiserfs_writepage,
3003 .readpage = reiserfs_readpage,
3004 .readpages = reiserfs_readpages,
3005 .releasepage = reiserfs_releasepage,
3006 .invalidatepage = reiserfs_invalidatepage,
3007 .sync_page = block_sync_page,
3008 .prepare_write = reiserfs_prepare_write,
3009 .commit_write = reiserfs_commit_write,
3010 .bmap = reiserfs_aop_bmap,
3011 .direct_IO = reiserfs_direct_IO,
3012 .set_page_dirty = reiserfs_set_page_dirty,