[ARM] S3C64XX: GPIO definitions for BANKS D,E,F
[linux-2.6/mini2440.git] / fs / ext3 / inode.c
blobf8424ad8997195f0cdd2d2c1c53196f16651d7c8
1 /*
2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include "xattr.h"
41 #include "acl.h"
43 static int ext3_writepage_trans_blocks(struct inode *inode);
46 * Test whether an inode is a fast symlink.
48 static int ext3_inode_is_fast_symlink(struct inode *inode)
50 int ea_blocks = EXT3_I(inode)->i_file_acl ?
51 (inode->i_sb->s_blocksize >> 9) : 0;
53 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
57 * The ext3 forget function must perform a revoke if we are freeing data
58 * which has been journaled. Metadata (eg. indirect blocks) must be
59 * revoked in all cases.
61 * "bh" may be NULL: a metadata block may have been freed from memory
62 * but there may still be a record of it in the journal, and that record
63 * still needs to be revoked.
65 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
66 struct buffer_head *bh, ext3_fsblk_t blocknr)
68 int err;
70 might_sleep();
72 BUFFER_TRACE(bh, "enter");
74 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
75 "data mode %lx\n",
76 bh, is_metadata, inode->i_mode,
77 test_opt(inode->i_sb, DATA_FLAGS));
79 /* Never use the revoke function if we are doing full data
80 * journaling: there is no need to, and a V1 superblock won't
81 * support it. Otherwise, only skip the revoke on un-journaled
82 * data blocks. */
84 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
85 (!is_metadata && !ext3_should_journal_data(inode))) {
86 if (bh) {
87 BUFFER_TRACE(bh, "call journal_forget");
88 return ext3_journal_forget(handle, bh);
90 return 0;
94 * data!=journal && (is_metadata || should_journal_data(inode))
96 BUFFER_TRACE(bh, "call ext3_journal_revoke");
97 err = ext3_journal_revoke(handle, blocknr, bh);
98 if (err)
99 ext3_abort(inode->i_sb, __func__,
100 "error %d when attempting revoke", err);
101 BUFFER_TRACE(bh, "exit");
102 return err;
106 * Work out how many blocks we need to proceed with the next chunk of a
107 * truncate transaction.
109 static unsigned long blocks_for_truncate(struct inode *inode)
111 unsigned long needed;
113 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115 /* Give ourselves just enough room to cope with inodes in which
116 * i_blocks is corrupt: we've seen disk corruptions in the past
117 * which resulted in random data in an inode which looked enough
118 * like a regular file for ext3 to try to delete it. Things
119 * will go a bit crazy if that happens, but at least we should
120 * try not to panic the whole kernel. */
121 if (needed < 2)
122 needed = 2;
124 /* But we need to bound the transaction so we don't overflow the
125 * journal. */
126 if (needed > EXT3_MAX_TRANS_DATA)
127 needed = EXT3_MAX_TRANS_DATA;
129 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
133 * Truncate transactions can be complex and absolutely huge. So we need to
134 * be able to restart the transaction at a conventient checkpoint to make
135 * sure we don't overflow the journal.
137 * start_transaction gets us a new handle for a truncate transaction,
138 * and extend_transaction tries to extend the existing one a bit. If
139 * extend fails, we need to propagate the failure up and restart the
140 * transaction in the top-level truncate loop. --sct
142 static handle_t *start_transaction(struct inode *inode)
144 handle_t *result;
146 result = ext3_journal_start(inode, blocks_for_truncate(inode));
147 if (!IS_ERR(result))
148 return result;
150 ext3_std_error(inode->i_sb, PTR_ERR(result));
151 return result;
155 * Try to extend this transaction for the purposes of truncation.
157 * Returns 0 if we managed to create more room. If we can't create more
158 * room, and the transaction must be restarted we return 1.
160 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
162 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
163 return 0;
164 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
165 return 0;
166 return 1;
170 * Restart the transaction associated with *handle. This does a commit,
171 * so before we call here everything must be consistently dirtied against
172 * this transaction.
174 static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
176 jbd_debug(2, "restarting handle %p\n", handle);
177 return ext3_journal_restart(handle, blocks_for_truncate(inode));
181 * Called at the last iput() if i_nlink is zero.
183 void ext3_delete_inode (struct inode * inode)
185 handle_t *handle;
187 truncate_inode_pages(&inode->i_data, 0);
189 if (is_bad_inode(inode))
190 goto no_delete;
192 handle = start_transaction(inode);
193 if (IS_ERR(handle)) {
195 * If we're going to skip the normal cleanup, we still need to
196 * make sure that the in-core orphan linked list is properly
197 * cleaned up.
199 ext3_orphan_del(NULL, inode);
200 goto no_delete;
203 if (IS_SYNC(inode))
204 handle->h_sync = 1;
205 inode->i_size = 0;
206 if (inode->i_blocks)
207 ext3_truncate(inode);
209 * Kill off the orphan record which ext3_truncate created.
210 * AKPM: I think this can be inside the above `if'.
211 * Note that ext3_orphan_del() has to be able to cope with the
212 * deletion of a non-existent orphan - this is because we don't
213 * know if ext3_truncate() actually created an orphan record.
214 * (Well, we could do this if we need to, but heck - it works)
216 ext3_orphan_del(handle, inode);
217 EXT3_I(inode)->i_dtime = get_seconds();
220 * One subtle ordering requirement: if anything has gone wrong
221 * (transaction abort, IO errors, whatever), then we can still
222 * do these next steps (the fs will already have been marked as
223 * having errors), but we can't free the inode if the mark_dirty
224 * fails.
226 if (ext3_mark_inode_dirty(handle, inode))
227 /* If that failed, just do the required in-core inode clear. */
228 clear_inode(inode);
229 else
230 ext3_free_inode(handle, inode);
231 ext3_journal_stop(handle);
232 return;
233 no_delete:
234 clear_inode(inode); /* We must guarantee clearing of inode... */
237 typedef struct {
238 __le32 *p;
239 __le32 key;
240 struct buffer_head *bh;
241 } Indirect;
243 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
245 p->key = *(p->p = v);
246 p->bh = bh;
249 static int verify_chain(Indirect *from, Indirect *to)
251 while (from <= to && from->key == *from->p)
252 from++;
253 return (from > to);
257 * ext3_block_to_path - parse the block number into array of offsets
258 * @inode: inode in question (we are only interested in its superblock)
259 * @i_block: block number to be parsed
260 * @offsets: array to store the offsets in
261 * @boundary: set this non-zero if the referred-to block is likely to be
262 * followed (on disk) by an indirect block.
264 * To store the locations of file's data ext3 uses a data structure common
265 * for UNIX filesystems - tree of pointers anchored in the inode, with
266 * data blocks at leaves and indirect blocks in intermediate nodes.
267 * This function translates the block number into path in that tree -
268 * return value is the path length and @offsets[n] is the offset of
269 * pointer to (n+1)th node in the nth one. If @block is out of range
270 * (negative or too large) warning is printed and zero returned.
272 * Note: function doesn't find node addresses, so no IO is needed. All
273 * we need to know is the capacity of indirect blocks (taken from the
274 * inode->i_sb).
278 * Portability note: the last comparison (check that we fit into triple
279 * indirect block) is spelled differently, because otherwise on an
280 * architecture with 32-bit longs and 8Kb pages we might get into trouble
281 * if our filesystem had 8Kb blocks. We might use long long, but that would
282 * kill us on x86. Oh, well, at least the sign propagation does not matter -
283 * i_block would have to be negative in the very beginning, so we would not
284 * get there at all.
287 static int ext3_block_to_path(struct inode *inode,
288 long i_block, int offsets[4], int *boundary)
290 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
291 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
292 const long direct_blocks = EXT3_NDIR_BLOCKS,
293 indirect_blocks = ptrs,
294 double_blocks = (1 << (ptrs_bits * 2));
295 int n = 0;
296 int final = 0;
298 if (i_block < 0) {
299 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
300 } else if (i_block < direct_blocks) {
301 offsets[n++] = i_block;
302 final = direct_blocks;
303 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
304 offsets[n++] = EXT3_IND_BLOCK;
305 offsets[n++] = i_block;
306 final = ptrs;
307 } else if ((i_block -= indirect_blocks) < double_blocks) {
308 offsets[n++] = EXT3_DIND_BLOCK;
309 offsets[n++] = i_block >> ptrs_bits;
310 offsets[n++] = i_block & (ptrs - 1);
311 final = ptrs;
312 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
313 offsets[n++] = EXT3_TIND_BLOCK;
314 offsets[n++] = i_block >> (ptrs_bits * 2);
315 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
316 offsets[n++] = i_block & (ptrs - 1);
317 final = ptrs;
318 } else {
319 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
321 if (boundary)
322 *boundary = final - 1 - (i_block & (ptrs - 1));
323 return n;
327 * ext3_get_branch - read the chain of indirect blocks leading to data
328 * @inode: inode in question
329 * @depth: depth of the chain (1 - direct pointer, etc.)
330 * @offsets: offsets of pointers in inode/indirect blocks
331 * @chain: place to store the result
332 * @err: here we store the error value
334 * Function fills the array of triples <key, p, bh> and returns %NULL
335 * if everything went OK or the pointer to the last filled triple
336 * (incomplete one) otherwise. Upon the return chain[i].key contains
337 * the number of (i+1)-th block in the chain (as it is stored in memory,
338 * i.e. little-endian 32-bit), chain[i].p contains the address of that
339 * number (it points into struct inode for i==0 and into the bh->b_data
340 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
341 * block for i>0 and NULL for i==0. In other words, it holds the block
342 * numbers of the chain, addresses they were taken from (and where we can
343 * verify that chain did not change) and buffer_heads hosting these
344 * numbers.
346 * Function stops when it stumbles upon zero pointer (absent block)
347 * (pointer to last triple returned, *@err == 0)
348 * or when it gets an IO error reading an indirect block
349 * (ditto, *@err == -EIO)
350 * or when it notices that chain had been changed while it was reading
351 * (ditto, *@err == -EAGAIN)
352 * or when it reads all @depth-1 indirect blocks successfully and finds
353 * the whole chain, all way to the data (returns %NULL, *err == 0).
355 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
356 Indirect chain[4], int *err)
358 struct super_block *sb = inode->i_sb;
359 Indirect *p = chain;
360 struct buffer_head *bh;
362 *err = 0;
363 /* i_data is not going away, no lock needed */
364 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
365 if (!p->key)
366 goto no_block;
367 while (--depth) {
368 bh = sb_bread(sb, le32_to_cpu(p->key));
369 if (!bh)
370 goto failure;
371 /* Reader: pointers */
372 if (!verify_chain(chain, p))
373 goto changed;
374 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
375 /* Reader: end */
376 if (!p->key)
377 goto no_block;
379 return NULL;
381 changed:
382 brelse(bh);
383 *err = -EAGAIN;
384 goto no_block;
385 failure:
386 *err = -EIO;
387 no_block:
388 return p;
392 * ext3_find_near - find a place for allocation with sufficient locality
393 * @inode: owner
394 * @ind: descriptor of indirect block.
396 * This function returns the preferred place for block allocation.
397 * It is used when heuristic for sequential allocation fails.
398 * Rules are:
399 * + if there is a block to the left of our position - allocate near it.
400 * + if pointer will live in indirect block - allocate near that block.
401 * + if pointer will live in inode - allocate in the same
402 * cylinder group.
404 * In the latter case we colour the starting block by the callers PID to
405 * prevent it from clashing with concurrent allocations for a different inode
406 * in the same block group. The PID is used here so that functionally related
407 * files will be close-by on-disk.
409 * Caller must make sure that @ind is valid and will stay that way.
411 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
413 struct ext3_inode_info *ei = EXT3_I(inode);
414 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
415 __le32 *p;
416 ext3_fsblk_t bg_start;
417 ext3_grpblk_t colour;
419 /* Try to find previous block */
420 for (p = ind->p - 1; p >= start; p--) {
421 if (*p)
422 return le32_to_cpu(*p);
425 /* No such thing, so let's try location of indirect block */
426 if (ind->bh)
427 return ind->bh->b_blocknr;
430 * It is going to be referred to from the inode itself? OK, just put it
431 * into the same cylinder group then.
433 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
434 colour = (current->pid % 16) *
435 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
436 return bg_start + colour;
440 * ext3_find_goal - find a preferred place for allocation.
441 * @inode: owner
442 * @block: block we want
443 * @partial: pointer to the last triple within a chain
445 * Normally this function find the preferred place for block allocation,
446 * returns it.
449 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
450 Indirect *partial)
452 struct ext3_block_alloc_info *block_i;
454 block_i = EXT3_I(inode)->i_block_alloc_info;
457 * try the heuristic for sequential allocation,
458 * failing that at least try to get decent locality.
460 if (block_i && (block == block_i->last_alloc_logical_block + 1)
461 && (block_i->last_alloc_physical_block != 0)) {
462 return block_i->last_alloc_physical_block + 1;
465 return ext3_find_near(inode, partial);
469 * ext3_blks_to_allocate: Look up the block map and count the number
470 * of direct blocks need to be allocated for the given branch.
472 * @branch: chain of indirect blocks
473 * @k: number of blocks need for indirect blocks
474 * @blks: number of data blocks to be mapped.
475 * @blocks_to_boundary: the offset in the indirect block
477 * return the total number of blocks to be allocate, including the
478 * direct and indirect blocks.
480 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
481 int blocks_to_boundary)
483 unsigned long count = 0;
486 * Simple case, [t,d]Indirect block(s) has not allocated yet
487 * then it's clear blocks on that path have not allocated
489 if (k > 0) {
490 /* right now we don't handle cross boundary allocation */
491 if (blks < blocks_to_boundary + 1)
492 count += blks;
493 else
494 count += blocks_to_boundary + 1;
495 return count;
498 count++;
499 while (count < blks && count <= blocks_to_boundary &&
500 le32_to_cpu(*(branch[0].p + count)) == 0) {
501 count++;
503 return count;
507 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
508 * @indirect_blks: the number of blocks need to allocate for indirect
509 * blocks
511 * @new_blocks: on return it will store the new block numbers for
512 * the indirect blocks(if needed) and the first direct block,
513 * @blks: on return it will store the total number of allocated
514 * direct blocks
516 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
517 ext3_fsblk_t goal, int indirect_blks, int blks,
518 ext3_fsblk_t new_blocks[4], int *err)
520 int target, i;
521 unsigned long count = 0;
522 int index = 0;
523 ext3_fsblk_t current_block = 0;
524 int ret = 0;
527 * Here we try to allocate the requested multiple blocks at once,
528 * on a best-effort basis.
529 * To build a branch, we should allocate blocks for
530 * the indirect blocks(if not allocated yet), and at least
531 * the first direct block of this branch. That's the
532 * minimum number of blocks need to allocate(required)
534 target = blks + indirect_blks;
536 while (1) {
537 count = target;
538 /* allocating blocks for indirect blocks and direct blocks */
539 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
540 if (*err)
541 goto failed_out;
543 target -= count;
544 /* allocate blocks for indirect blocks */
545 while (index < indirect_blks && count) {
546 new_blocks[index++] = current_block++;
547 count--;
550 if (count > 0)
551 break;
554 /* save the new block number for the first direct block */
555 new_blocks[index] = current_block;
557 /* total number of blocks allocated for direct blocks */
558 ret = count;
559 *err = 0;
560 return ret;
561 failed_out:
562 for (i = 0; i <index; i++)
563 ext3_free_blocks(handle, inode, new_blocks[i], 1);
564 return ret;
568 * ext3_alloc_branch - allocate and set up a chain of blocks.
569 * @inode: owner
570 * @indirect_blks: number of allocated indirect blocks
571 * @blks: number of allocated direct blocks
572 * @offsets: offsets (in the blocks) to store the pointers to next.
573 * @branch: place to store the chain in.
575 * This function allocates blocks, zeroes out all but the last one,
576 * links them into chain and (if we are synchronous) writes them to disk.
577 * In other words, it prepares a branch that can be spliced onto the
578 * inode. It stores the information about that chain in the branch[], in
579 * the same format as ext3_get_branch() would do. We are calling it after
580 * we had read the existing part of chain and partial points to the last
581 * triple of that (one with zero ->key). Upon the exit we have the same
582 * picture as after the successful ext3_get_block(), except that in one
583 * place chain is disconnected - *branch->p is still zero (we did not
584 * set the last link), but branch->key contains the number that should
585 * be placed into *branch->p to fill that gap.
587 * If allocation fails we free all blocks we've allocated (and forget
588 * their buffer_heads) and return the error value the from failed
589 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
590 * as described above and return 0.
592 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
593 int indirect_blks, int *blks, ext3_fsblk_t goal,
594 int *offsets, Indirect *branch)
596 int blocksize = inode->i_sb->s_blocksize;
597 int i, n = 0;
598 int err = 0;
599 struct buffer_head *bh;
600 int num;
601 ext3_fsblk_t new_blocks[4];
602 ext3_fsblk_t current_block;
604 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
605 *blks, new_blocks, &err);
606 if (err)
607 return err;
609 branch[0].key = cpu_to_le32(new_blocks[0]);
611 * metadata blocks and data blocks are allocated.
613 for (n = 1; n <= indirect_blks; n++) {
615 * Get buffer_head for parent block, zero it out
616 * and set the pointer to new one, then send
617 * parent to disk.
619 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
620 branch[n].bh = bh;
621 lock_buffer(bh);
622 BUFFER_TRACE(bh, "call get_create_access");
623 err = ext3_journal_get_create_access(handle, bh);
624 if (err) {
625 unlock_buffer(bh);
626 brelse(bh);
627 goto failed;
630 memset(bh->b_data, 0, blocksize);
631 branch[n].p = (__le32 *) bh->b_data + offsets[n];
632 branch[n].key = cpu_to_le32(new_blocks[n]);
633 *branch[n].p = branch[n].key;
634 if ( n == indirect_blks) {
635 current_block = new_blocks[n];
637 * End of chain, update the last new metablock of
638 * the chain to point to the new allocated
639 * data blocks numbers
641 for (i=1; i < num; i++)
642 *(branch[n].p + i) = cpu_to_le32(++current_block);
644 BUFFER_TRACE(bh, "marking uptodate");
645 set_buffer_uptodate(bh);
646 unlock_buffer(bh);
648 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
649 err = ext3_journal_dirty_metadata(handle, bh);
650 if (err)
651 goto failed;
653 *blks = num;
654 return err;
655 failed:
656 /* Allocation failed, free what we already allocated */
657 for (i = 1; i <= n ; i++) {
658 BUFFER_TRACE(branch[i].bh, "call journal_forget");
659 ext3_journal_forget(handle, branch[i].bh);
661 for (i = 0; i <indirect_blks; i++)
662 ext3_free_blocks(handle, inode, new_blocks[i], 1);
664 ext3_free_blocks(handle, inode, new_blocks[i], num);
666 return err;
670 * ext3_splice_branch - splice the allocated branch onto inode.
671 * @inode: owner
672 * @block: (logical) number of block we are adding
673 * @chain: chain of indirect blocks (with a missing link - see
674 * ext3_alloc_branch)
675 * @where: location of missing link
676 * @num: number of indirect blocks we are adding
677 * @blks: number of direct blocks we are adding
679 * This function fills the missing link and does all housekeeping needed in
680 * inode (->i_blocks, etc.). In case of success we end up with the full
681 * chain to new block and return 0.
683 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
684 long block, Indirect *where, int num, int blks)
686 int i;
687 int err = 0;
688 struct ext3_block_alloc_info *block_i;
689 ext3_fsblk_t current_block;
691 block_i = EXT3_I(inode)->i_block_alloc_info;
693 * If we're splicing into a [td]indirect block (as opposed to the
694 * inode) then we need to get write access to the [td]indirect block
695 * before the splice.
697 if (where->bh) {
698 BUFFER_TRACE(where->bh, "get_write_access");
699 err = ext3_journal_get_write_access(handle, where->bh);
700 if (err)
701 goto err_out;
703 /* That's it */
705 *where->p = where->key;
708 * Update the host buffer_head or inode to point to more just allocated
709 * direct blocks blocks
711 if (num == 0 && blks > 1) {
712 current_block = le32_to_cpu(where->key) + 1;
713 for (i = 1; i < blks; i++)
714 *(where->p + i ) = cpu_to_le32(current_block++);
718 * update the most recently allocated logical & physical block
719 * in i_block_alloc_info, to assist find the proper goal block for next
720 * allocation
722 if (block_i) {
723 block_i->last_alloc_logical_block = block + blks - 1;
724 block_i->last_alloc_physical_block =
725 le32_to_cpu(where[num].key) + blks - 1;
728 /* We are done with atomic stuff, now do the rest of housekeeping */
730 inode->i_ctime = CURRENT_TIME_SEC;
731 ext3_mark_inode_dirty(handle, inode);
733 /* had we spliced it onto indirect block? */
734 if (where->bh) {
736 * If we spliced it onto an indirect block, we haven't
737 * altered the inode. Note however that if it is being spliced
738 * onto an indirect block at the very end of the file (the
739 * file is growing) then we *will* alter the inode to reflect
740 * the new i_size. But that is not done here - it is done in
741 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
743 jbd_debug(5, "splicing indirect only\n");
744 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
745 err = ext3_journal_dirty_metadata(handle, where->bh);
746 if (err)
747 goto err_out;
748 } else {
750 * OK, we spliced it into the inode itself on a direct block.
751 * Inode was dirtied above.
753 jbd_debug(5, "splicing direct\n");
755 return err;
757 err_out:
758 for (i = 1; i <= num; i++) {
759 BUFFER_TRACE(where[i].bh, "call journal_forget");
760 ext3_journal_forget(handle, where[i].bh);
761 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
763 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
765 return err;
769 * Allocation strategy is simple: if we have to allocate something, we will
770 * have to go the whole way to leaf. So let's do it before attaching anything
771 * to tree, set linkage between the newborn blocks, write them if sync is
772 * required, recheck the path, free and repeat if check fails, otherwise
773 * set the last missing link (that will protect us from any truncate-generated
774 * removals - all blocks on the path are immune now) and possibly force the
775 * write on the parent block.
776 * That has a nice additional property: no special recovery from the failed
777 * allocations is needed - we simply release blocks and do not touch anything
778 * reachable from inode.
780 * `handle' can be NULL if create == 0.
782 * The BKL may not be held on entry here. Be sure to take it early.
783 * return > 0, # of blocks mapped or allocated.
784 * return = 0, if plain lookup failed.
785 * return < 0, error case.
787 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
788 sector_t iblock, unsigned long maxblocks,
789 struct buffer_head *bh_result,
790 int create, int extend_disksize)
792 int err = -EIO;
793 int offsets[4];
794 Indirect chain[4];
795 Indirect *partial;
796 ext3_fsblk_t goal;
797 int indirect_blks;
798 int blocks_to_boundary = 0;
799 int depth;
800 struct ext3_inode_info *ei = EXT3_I(inode);
801 int count = 0;
802 ext3_fsblk_t first_block = 0;
805 J_ASSERT(handle != NULL || create == 0);
806 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
808 if (depth == 0)
809 goto out;
811 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
813 /* Simplest case - block found, no allocation needed */
814 if (!partial) {
815 first_block = le32_to_cpu(chain[depth - 1].key);
816 clear_buffer_new(bh_result);
817 count++;
818 /*map more blocks*/
819 while (count < maxblocks && count <= blocks_to_boundary) {
820 ext3_fsblk_t blk;
822 if (!verify_chain(chain, partial)) {
824 * Indirect block might be removed by
825 * truncate while we were reading it.
826 * Handling of that case: forget what we've
827 * got now. Flag the err as EAGAIN, so it
828 * will reread.
830 err = -EAGAIN;
831 count = 0;
832 break;
834 blk = le32_to_cpu(*(chain[depth-1].p + count));
836 if (blk == first_block + count)
837 count++;
838 else
839 break;
841 if (err != -EAGAIN)
842 goto got_it;
845 /* Next simple case - plain lookup or failed read of indirect block */
846 if (!create || err == -EIO)
847 goto cleanup;
849 mutex_lock(&ei->truncate_mutex);
852 * If the indirect block is missing while we are reading
853 * the chain(ext3_get_branch() returns -EAGAIN err), or
854 * if the chain has been changed after we grab the semaphore,
855 * (either because another process truncated this branch, or
856 * another get_block allocated this branch) re-grab the chain to see if
857 * the request block has been allocated or not.
859 * Since we already block the truncate/other get_block
860 * at this point, we will have the current copy of the chain when we
861 * splice the branch into the tree.
863 if (err == -EAGAIN || !verify_chain(chain, partial)) {
864 while (partial > chain) {
865 brelse(partial->bh);
866 partial--;
868 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
869 if (!partial) {
870 count++;
871 mutex_unlock(&ei->truncate_mutex);
872 if (err)
873 goto cleanup;
874 clear_buffer_new(bh_result);
875 goto got_it;
880 * Okay, we need to do block allocation. Lazily initialize the block
881 * allocation info here if necessary
883 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
884 ext3_init_block_alloc_info(inode);
886 goal = ext3_find_goal(inode, iblock, partial);
888 /* the number of blocks need to allocate for [d,t]indirect blocks */
889 indirect_blks = (chain + depth) - partial - 1;
892 * Next look up the indirect map to count the totoal number of
893 * direct blocks to allocate for this branch.
895 count = ext3_blks_to_allocate(partial, indirect_blks,
896 maxblocks, blocks_to_boundary);
898 * Block out ext3_truncate while we alter the tree
900 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
901 offsets + (partial - chain), partial);
904 * The ext3_splice_branch call will free and forget any buffers
905 * on the new chain if there is a failure, but that risks using
906 * up transaction credits, especially for bitmaps where the
907 * credits cannot be returned. Can we handle this somehow? We
908 * may need to return -EAGAIN upwards in the worst case. --sct
910 if (!err)
911 err = ext3_splice_branch(handle, inode, iblock,
912 partial, indirect_blks, count);
914 * i_disksize growing is protected by truncate_mutex. Don't forget to
915 * protect it if you're about to implement concurrent
916 * ext3_get_block() -bzzz
918 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
919 ei->i_disksize = inode->i_size;
920 mutex_unlock(&ei->truncate_mutex);
921 if (err)
922 goto cleanup;
924 set_buffer_new(bh_result);
925 got_it:
926 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
927 if (count > blocks_to_boundary)
928 set_buffer_boundary(bh_result);
929 err = count;
930 /* Clean up and exit */
931 partial = chain + depth - 1; /* the whole chain */
932 cleanup:
933 while (partial > chain) {
934 BUFFER_TRACE(partial->bh, "call brelse");
935 brelse(partial->bh);
936 partial--;
938 BUFFER_TRACE(bh_result, "returned");
939 out:
940 return err;
943 /* Maximum number of blocks we map for direct IO at once. */
944 #define DIO_MAX_BLOCKS 4096
946 * Number of credits we need for writing DIO_MAX_BLOCKS:
947 * We need sb + group descriptor + bitmap + inode -> 4
948 * For B blocks with A block pointers per block we need:
949 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
950 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
952 #define DIO_CREDITS 25
954 static int ext3_get_block(struct inode *inode, sector_t iblock,
955 struct buffer_head *bh_result, int create)
957 handle_t *handle = ext3_journal_current_handle();
958 int ret = 0, started = 0;
959 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
961 if (create && !handle) { /* Direct IO write... */
962 if (max_blocks > DIO_MAX_BLOCKS)
963 max_blocks = DIO_MAX_BLOCKS;
964 handle = ext3_journal_start(inode, DIO_CREDITS +
965 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
966 if (IS_ERR(handle)) {
967 ret = PTR_ERR(handle);
968 goto out;
970 started = 1;
973 ret = ext3_get_blocks_handle(handle, inode, iblock,
974 max_blocks, bh_result, create, 0);
975 if (ret > 0) {
976 bh_result->b_size = (ret << inode->i_blkbits);
977 ret = 0;
979 if (started)
980 ext3_journal_stop(handle);
981 out:
982 return ret;
985 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
986 u64 start, u64 len)
988 return generic_block_fiemap(inode, fieinfo, start, len,
989 ext3_get_block);
993 * `handle' can be NULL if create is zero
995 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
996 long block, int create, int *errp)
998 struct buffer_head dummy;
999 int fatal = 0, err;
1001 J_ASSERT(handle != NULL || create == 0);
1003 dummy.b_state = 0;
1004 dummy.b_blocknr = -1000;
1005 buffer_trace_init(&dummy.b_history);
1006 err = ext3_get_blocks_handle(handle, inode, block, 1,
1007 &dummy, create, 1);
1009 * ext3_get_blocks_handle() returns number of blocks
1010 * mapped. 0 in case of a HOLE.
1012 if (err > 0) {
1013 if (err > 1)
1014 WARN_ON(1);
1015 err = 0;
1017 *errp = err;
1018 if (!err && buffer_mapped(&dummy)) {
1019 struct buffer_head *bh;
1020 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1021 if (!bh) {
1022 *errp = -EIO;
1023 goto err;
1025 if (buffer_new(&dummy)) {
1026 J_ASSERT(create != 0);
1027 J_ASSERT(handle != NULL);
1030 * Now that we do not always journal data, we should
1031 * keep in mind whether this should always journal the
1032 * new buffer as metadata. For now, regular file
1033 * writes use ext3_get_block instead, so it's not a
1034 * problem.
1036 lock_buffer(bh);
1037 BUFFER_TRACE(bh, "call get_create_access");
1038 fatal = ext3_journal_get_create_access(handle, bh);
1039 if (!fatal && !buffer_uptodate(bh)) {
1040 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1041 set_buffer_uptodate(bh);
1043 unlock_buffer(bh);
1044 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1045 err = ext3_journal_dirty_metadata(handle, bh);
1046 if (!fatal)
1047 fatal = err;
1048 } else {
1049 BUFFER_TRACE(bh, "not a new buffer");
1051 if (fatal) {
1052 *errp = fatal;
1053 brelse(bh);
1054 bh = NULL;
1056 return bh;
1058 err:
1059 return NULL;
1062 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1063 int block, int create, int *err)
1065 struct buffer_head * bh;
1067 bh = ext3_getblk(handle, inode, block, create, err);
1068 if (!bh)
1069 return bh;
1070 if (buffer_uptodate(bh))
1071 return bh;
1072 ll_rw_block(READ_META, 1, &bh);
1073 wait_on_buffer(bh);
1074 if (buffer_uptodate(bh))
1075 return bh;
1076 put_bh(bh);
1077 *err = -EIO;
1078 return NULL;
1081 static int walk_page_buffers( handle_t *handle,
1082 struct buffer_head *head,
1083 unsigned from,
1084 unsigned to,
1085 int *partial,
1086 int (*fn)( handle_t *handle,
1087 struct buffer_head *bh))
1089 struct buffer_head *bh;
1090 unsigned block_start, block_end;
1091 unsigned blocksize = head->b_size;
1092 int err, ret = 0;
1093 struct buffer_head *next;
1095 for ( bh = head, block_start = 0;
1096 ret == 0 && (bh != head || !block_start);
1097 block_start = block_end, bh = next)
1099 next = bh->b_this_page;
1100 block_end = block_start + blocksize;
1101 if (block_end <= from || block_start >= to) {
1102 if (partial && !buffer_uptodate(bh))
1103 *partial = 1;
1104 continue;
1106 err = (*fn)(handle, bh);
1107 if (!ret)
1108 ret = err;
1110 return ret;
1114 * To preserve ordering, it is essential that the hole instantiation and
1115 * the data write be encapsulated in a single transaction. We cannot
1116 * close off a transaction and start a new one between the ext3_get_block()
1117 * and the commit_write(). So doing the journal_start at the start of
1118 * prepare_write() is the right place.
1120 * Also, this function can nest inside ext3_writepage() ->
1121 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1122 * has generated enough buffer credits to do the whole page. So we won't
1123 * block on the journal in that case, which is good, because the caller may
1124 * be PF_MEMALLOC.
1126 * By accident, ext3 can be reentered when a transaction is open via
1127 * quota file writes. If we were to commit the transaction while thus
1128 * reentered, there can be a deadlock - we would be holding a quota
1129 * lock, and the commit would never complete if another thread had a
1130 * transaction open and was blocking on the quota lock - a ranking
1131 * violation.
1133 * So what we do is to rely on the fact that journal_stop/journal_start
1134 * will _not_ run commit under these circumstances because handle->h_ref
1135 * is elevated. We'll still have enough credits for the tiny quotafile
1136 * write.
1138 static int do_journal_get_write_access(handle_t *handle,
1139 struct buffer_head *bh)
1141 if (!buffer_mapped(bh) || buffer_freed(bh))
1142 return 0;
1143 return ext3_journal_get_write_access(handle, bh);
1146 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1147 loff_t pos, unsigned len, unsigned flags,
1148 struct page **pagep, void **fsdata)
1150 struct inode *inode = mapping->host;
1151 int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1152 handle_t *handle;
1153 int retries = 0;
1154 struct page *page;
1155 pgoff_t index;
1156 unsigned from, to;
1158 index = pos >> PAGE_CACHE_SHIFT;
1159 from = pos & (PAGE_CACHE_SIZE - 1);
1160 to = from + len;
1162 retry:
1163 page = __grab_cache_page(mapping, index);
1164 if (!page)
1165 return -ENOMEM;
1166 *pagep = page;
1168 handle = ext3_journal_start(inode, needed_blocks);
1169 if (IS_ERR(handle)) {
1170 unlock_page(page);
1171 page_cache_release(page);
1172 ret = PTR_ERR(handle);
1173 goto out;
1175 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1176 ext3_get_block);
1177 if (ret)
1178 goto write_begin_failed;
1180 if (ext3_should_journal_data(inode)) {
1181 ret = walk_page_buffers(handle, page_buffers(page),
1182 from, to, NULL, do_journal_get_write_access);
1184 write_begin_failed:
1185 if (ret) {
1186 ext3_journal_stop(handle);
1187 unlock_page(page);
1188 page_cache_release(page);
1190 * block_write_begin may have instantiated a few blocks
1191 * outside i_size. Trim these off again. Don't need
1192 * i_size_read because we hold i_mutex.
1194 if (pos + len > inode->i_size)
1195 vmtruncate(inode, inode->i_size);
1197 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1198 goto retry;
1199 out:
1200 return ret;
1204 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1206 int err = journal_dirty_data(handle, bh);
1207 if (err)
1208 ext3_journal_abort_handle(__func__, __func__,
1209 bh, handle, err);
1210 return err;
1213 /* For write_end() in data=journal mode */
1214 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1216 if (!buffer_mapped(bh) || buffer_freed(bh))
1217 return 0;
1218 set_buffer_uptodate(bh);
1219 return ext3_journal_dirty_metadata(handle, bh);
1223 * Generic write_end handler for ordered and writeback ext3 journal modes.
1224 * We can't use generic_write_end, because that unlocks the page and we need to
1225 * unlock the page after ext3_journal_stop, but ext3_journal_stop must run
1226 * after block_write_end.
1228 static int ext3_generic_write_end(struct file *file,
1229 struct address_space *mapping,
1230 loff_t pos, unsigned len, unsigned copied,
1231 struct page *page, void *fsdata)
1233 struct inode *inode = file->f_mapping->host;
1235 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1237 if (pos+copied > inode->i_size) {
1238 i_size_write(inode, pos+copied);
1239 mark_inode_dirty(inode);
1242 return copied;
1246 * We need to pick up the new inode size which generic_commit_write gave us
1247 * `file' can be NULL - eg, when called from page_symlink().
1249 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1250 * buffers are managed internally.
1252 static int ext3_ordered_write_end(struct file *file,
1253 struct address_space *mapping,
1254 loff_t pos, unsigned len, unsigned copied,
1255 struct page *page, void *fsdata)
1257 handle_t *handle = ext3_journal_current_handle();
1258 struct inode *inode = file->f_mapping->host;
1259 unsigned from, to;
1260 int ret = 0, ret2;
1262 from = pos & (PAGE_CACHE_SIZE - 1);
1263 to = from + len;
1265 ret = walk_page_buffers(handle, page_buffers(page),
1266 from, to, NULL, ext3_journal_dirty_data);
1268 if (ret == 0) {
1270 * generic_write_end() will run mark_inode_dirty() if i_size
1271 * changes. So let's piggyback the i_disksize mark_inode_dirty
1272 * into that.
1274 loff_t new_i_size;
1276 new_i_size = pos + copied;
1277 if (new_i_size > EXT3_I(inode)->i_disksize)
1278 EXT3_I(inode)->i_disksize = new_i_size;
1279 ret2 = ext3_generic_write_end(file, mapping, pos, len, copied,
1280 page, fsdata);
1281 copied = ret2;
1282 if (ret2 < 0)
1283 ret = ret2;
1285 ret2 = ext3_journal_stop(handle);
1286 if (!ret)
1287 ret = ret2;
1288 unlock_page(page);
1289 page_cache_release(page);
1291 return ret ? ret : copied;
1294 static int ext3_writeback_write_end(struct file *file,
1295 struct address_space *mapping,
1296 loff_t pos, unsigned len, unsigned copied,
1297 struct page *page, void *fsdata)
1299 handle_t *handle = ext3_journal_current_handle();
1300 struct inode *inode = file->f_mapping->host;
1301 int ret = 0, ret2;
1302 loff_t new_i_size;
1304 new_i_size = pos + copied;
1305 if (new_i_size > EXT3_I(inode)->i_disksize)
1306 EXT3_I(inode)->i_disksize = new_i_size;
1308 ret2 = ext3_generic_write_end(file, mapping, pos, len, copied,
1309 page, fsdata);
1310 copied = ret2;
1311 if (ret2 < 0)
1312 ret = ret2;
1314 ret2 = ext3_journal_stop(handle);
1315 if (!ret)
1316 ret = ret2;
1317 unlock_page(page);
1318 page_cache_release(page);
1320 return ret ? ret : copied;
1323 static int ext3_journalled_write_end(struct file *file,
1324 struct address_space *mapping,
1325 loff_t pos, unsigned len, unsigned copied,
1326 struct page *page, void *fsdata)
1328 handle_t *handle = ext3_journal_current_handle();
1329 struct inode *inode = mapping->host;
1330 int ret = 0, ret2;
1331 int partial = 0;
1332 unsigned from, to;
1334 from = pos & (PAGE_CACHE_SIZE - 1);
1335 to = from + len;
1337 if (copied < len) {
1338 if (!PageUptodate(page))
1339 copied = 0;
1340 page_zero_new_buffers(page, from+copied, to);
1343 ret = walk_page_buffers(handle, page_buffers(page), from,
1344 to, &partial, write_end_fn);
1345 if (!partial)
1346 SetPageUptodate(page);
1347 if (pos+copied > inode->i_size)
1348 i_size_write(inode, pos+copied);
1349 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1350 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1351 EXT3_I(inode)->i_disksize = inode->i_size;
1352 ret2 = ext3_mark_inode_dirty(handle, inode);
1353 if (!ret)
1354 ret = ret2;
1357 ret2 = ext3_journal_stop(handle);
1358 if (!ret)
1359 ret = ret2;
1360 unlock_page(page);
1361 page_cache_release(page);
1363 return ret ? ret : copied;
1367 * bmap() is special. It gets used by applications such as lilo and by
1368 * the swapper to find the on-disk block of a specific piece of data.
1370 * Naturally, this is dangerous if the block concerned is still in the
1371 * journal. If somebody makes a swapfile on an ext3 data-journaling
1372 * filesystem and enables swap, then they may get a nasty shock when the
1373 * data getting swapped to that swapfile suddenly gets overwritten by
1374 * the original zero's written out previously to the journal and
1375 * awaiting writeback in the kernel's buffer cache.
1377 * So, if we see any bmap calls here on a modified, data-journaled file,
1378 * take extra steps to flush any blocks which might be in the cache.
1380 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1382 struct inode *inode = mapping->host;
1383 journal_t *journal;
1384 int err;
1386 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1388 * This is a REALLY heavyweight approach, but the use of
1389 * bmap on dirty files is expected to be extremely rare:
1390 * only if we run lilo or swapon on a freshly made file
1391 * do we expect this to happen.
1393 * (bmap requires CAP_SYS_RAWIO so this does not
1394 * represent an unprivileged user DOS attack --- we'd be
1395 * in trouble if mortal users could trigger this path at
1396 * will.)
1398 * NB. EXT3_STATE_JDATA is not set on files other than
1399 * regular files. If somebody wants to bmap a directory
1400 * or symlink and gets confused because the buffer
1401 * hasn't yet been flushed to disk, they deserve
1402 * everything they get.
1405 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1406 journal = EXT3_JOURNAL(inode);
1407 journal_lock_updates(journal);
1408 err = journal_flush(journal);
1409 journal_unlock_updates(journal);
1411 if (err)
1412 return 0;
1415 return generic_block_bmap(mapping,block,ext3_get_block);
1418 static int bget_one(handle_t *handle, struct buffer_head *bh)
1420 get_bh(bh);
1421 return 0;
1424 static int bput_one(handle_t *handle, struct buffer_head *bh)
1426 put_bh(bh);
1427 return 0;
1430 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1432 if (buffer_mapped(bh))
1433 return ext3_journal_dirty_data(handle, bh);
1434 return 0;
1438 * Note that we always start a transaction even if we're not journalling
1439 * data. This is to preserve ordering: any hole instantiation within
1440 * __block_write_full_page -> ext3_get_block() should be journalled
1441 * along with the data so we don't crash and then get metadata which
1442 * refers to old data.
1444 * In all journalling modes block_write_full_page() will start the I/O.
1446 * Problem:
1448 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1449 * ext3_writepage()
1451 * Similar for:
1453 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1455 * Same applies to ext3_get_block(). We will deadlock on various things like
1456 * lock_journal and i_truncate_mutex.
1458 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1459 * allocations fail.
1461 * 16May01: If we're reentered then journal_current_handle() will be
1462 * non-zero. We simply *return*.
1464 * 1 July 2001: @@@ FIXME:
1465 * In journalled data mode, a data buffer may be metadata against the
1466 * current transaction. But the same file is part of a shared mapping
1467 * and someone does a writepage() on it.
1469 * We will move the buffer onto the async_data list, but *after* it has
1470 * been dirtied. So there's a small window where we have dirty data on
1471 * BJ_Metadata.
1473 * Note that this only applies to the last partial page in the file. The
1474 * bit which block_write_full_page() uses prepare/commit for. (That's
1475 * broken code anyway: it's wrong for msync()).
1477 * It's a rare case: affects the final partial page, for journalled data
1478 * where the file is subject to bith write() and writepage() in the same
1479 * transction. To fix it we'll need a custom block_write_full_page().
1480 * We'll probably need that anyway for journalling writepage() output.
1482 * We don't honour synchronous mounts for writepage(). That would be
1483 * disastrous. Any write() or metadata operation will sync the fs for
1484 * us.
1486 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1487 * we don't need to open a transaction here.
1489 static int ext3_ordered_writepage(struct page *page,
1490 struct writeback_control *wbc)
1492 struct inode *inode = page->mapping->host;
1493 struct buffer_head *page_bufs;
1494 handle_t *handle = NULL;
1495 int ret = 0;
1496 int err;
1498 J_ASSERT(PageLocked(page));
1501 * We give up here if we're reentered, because it might be for a
1502 * different filesystem.
1504 if (ext3_journal_current_handle())
1505 goto out_fail;
1507 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1509 if (IS_ERR(handle)) {
1510 ret = PTR_ERR(handle);
1511 goto out_fail;
1514 if (!page_has_buffers(page)) {
1515 create_empty_buffers(page, inode->i_sb->s_blocksize,
1516 (1 << BH_Dirty)|(1 << BH_Uptodate));
1518 page_bufs = page_buffers(page);
1519 walk_page_buffers(handle, page_bufs, 0,
1520 PAGE_CACHE_SIZE, NULL, bget_one);
1522 ret = block_write_full_page(page, ext3_get_block, wbc);
1525 * The page can become unlocked at any point now, and
1526 * truncate can then come in and change things. So we
1527 * can't touch *page from now on. But *page_bufs is
1528 * safe due to elevated refcount.
1532 * And attach them to the current transaction. But only if
1533 * block_write_full_page() succeeded. Otherwise they are unmapped,
1534 * and generally junk.
1536 if (ret == 0) {
1537 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1538 NULL, journal_dirty_data_fn);
1539 if (!ret)
1540 ret = err;
1542 walk_page_buffers(handle, page_bufs, 0,
1543 PAGE_CACHE_SIZE, NULL, bput_one);
1544 err = ext3_journal_stop(handle);
1545 if (!ret)
1546 ret = err;
1547 return ret;
1549 out_fail:
1550 redirty_page_for_writepage(wbc, page);
1551 unlock_page(page);
1552 return ret;
1555 static int ext3_writeback_writepage(struct page *page,
1556 struct writeback_control *wbc)
1558 struct inode *inode = page->mapping->host;
1559 handle_t *handle = NULL;
1560 int ret = 0;
1561 int err;
1563 if (ext3_journal_current_handle())
1564 goto out_fail;
1566 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1567 if (IS_ERR(handle)) {
1568 ret = PTR_ERR(handle);
1569 goto out_fail;
1572 if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1573 ret = nobh_writepage(page, ext3_get_block, wbc);
1574 else
1575 ret = block_write_full_page(page, ext3_get_block, wbc);
1577 err = ext3_journal_stop(handle);
1578 if (!ret)
1579 ret = err;
1580 return ret;
1582 out_fail:
1583 redirty_page_for_writepage(wbc, page);
1584 unlock_page(page);
1585 return ret;
1588 static int ext3_journalled_writepage(struct page *page,
1589 struct writeback_control *wbc)
1591 struct inode *inode = page->mapping->host;
1592 handle_t *handle = NULL;
1593 int ret = 0;
1594 int err;
1596 if (ext3_journal_current_handle())
1597 goto no_write;
1599 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1600 if (IS_ERR(handle)) {
1601 ret = PTR_ERR(handle);
1602 goto no_write;
1605 if (!page_has_buffers(page) || PageChecked(page)) {
1607 * It's mmapped pagecache. Add buffers and journal it. There
1608 * doesn't seem much point in redirtying the page here.
1610 ClearPageChecked(page);
1611 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1612 ext3_get_block);
1613 if (ret != 0) {
1614 ext3_journal_stop(handle);
1615 goto out_unlock;
1617 ret = walk_page_buffers(handle, page_buffers(page), 0,
1618 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1620 err = walk_page_buffers(handle, page_buffers(page), 0,
1621 PAGE_CACHE_SIZE, NULL, write_end_fn);
1622 if (ret == 0)
1623 ret = err;
1624 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1625 unlock_page(page);
1626 } else {
1628 * It may be a page full of checkpoint-mode buffers. We don't
1629 * really know unless we go poke around in the buffer_heads.
1630 * But block_write_full_page will do the right thing.
1632 ret = block_write_full_page(page, ext3_get_block, wbc);
1634 err = ext3_journal_stop(handle);
1635 if (!ret)
1636 ret = err;
1637 out:
1638 return ret;
1640 no_write:
1641 redirty_page_for_writepage(wbc, page);
1642 out_unlock:
1643 unlock_page(page);
1644 goto out;
1647 static int ext3_readpage(struct file *file, struct page *page)
1649 return mpage_readpage(page, ext3_get_block);
1652 static int
1653 ext3_readpages(struct file *file, struct address_space *mapping,
1654 struct list_head *pages, unsigned nr_pages)
1656 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1659 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1661 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1664 * If it's a full truncate we just forget about the pending dirtying
1666 if (offset == 0)
1667 ClearPageChecked(page);
1669 journal_invalidatepage(journal, page, offset);
1672 static int ext3_releasepage(struct page *page, gfp_t wait)
1674 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1676 WARN_ON(PageChecked(page));
1677 if (!page_has_buffers(page))
1678 return 0;
1679 return journal_try_to_free_buffers(journal, page, wait);
1683 * If the O_DIRECT write will extend the file then add this inode to the
1684 * orphan list. So recovery will truncate it back to the original size
1685 * if the machine crashes during the write.
1687 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1688 * crashes then stale disk data _may_ be exposed inside the file. But current
1689 * VFS code falls back into buffered path in that case so we are safe.
1691 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1692 const struct iovec *iov, loff_t offset,
1693 unsigned long nr_segs)
1695 struct file *file = iocb->ki_filp;
1696 struct inode *inode = file->f_mapping->host;
1697 struct ext3_inode_info *ei = EXT3_I(inode);
1698 handle_t *handle;
1699 ssize_t ret;
1700 int orphan = 0;
1701 size_t count = iov_length(iov, nr_segs);
1703 if (rw == WRITE) {
1704 loff_t final_size = offset + count;
1706 if (final_size > inode->i_size) {
1707 /* Credits for sb + inode write */
1708 handle = ext3_journal_start(inode, 2);
1709 if (IS_ERR(handle)) {
1710 ret = PTR_ERR(handle);
1711 goto out;
1713 ret = ext3_orphan_add(handle, inode);
1714 if (ret) {
1715 ext3_journal_stop(handle);
1716 goto out;
1718 orphan = 1;
1719 ei->i_disksize = inode->i_size;
1720 ext3_journal_stop(handle);
1724 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1725 offset, nr_segs,
1726 ext3_get_block, NULL);
1728 if (orphan) {
1729 int err;
1731 /* Credits for sb + inode write */
1732 handle = ext3_journal_start(inode, 2);
1733 if (IS_ERR(handle)) {
1734 /* This is really bad luck. We've written the data
1735 * but cannot extend i_size. Bail out and pretend
1736 * the write failed... */
1737 ret = PTR_ERR(handle);
1738 goto out;
1740 if (inode->i_nlink)
1741 ext3_orphan_del(handle, inode);
1742 if (ret > 0) {
1743 loff_t end = offset + ret;
1744 if (end > inode->i_size) {
1745 ei->i_disksize = end;
1746 i_size_write(inode, end);
1748 * We're going to return a positive `ret'
1749 * here due to non-zero-length I/O, so there's
1750 * no way of reporting error returns from
1751 * ext3_mark_inode_dirty() to userspace. So
1752 * ignore it.
1754 ext3_mark_inode_dirty(handle, inode);
1757 err = ext3_journal_stop(handle);
1758 if (ret == 0)
1759 ret = err;
1761 out:
1762 return ret;
1766 * Pages can be marked dirty completely asynchronously from ext3's journalling
1767 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1768 * much here because ->set_page_dirty is called under VFS locks. The page is
1769 * not necessarily locked.
1771 * We cannot just dirty the page and leave attached buffers clean, because the
1772 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1773 * or jbddirty because all the journalling code will explode.
1775 * So what we do is to mark the page "pending dirty" and next time writepage
1776 * is called, propagate that into the buffers appropriately.
1778 static int ext3_journalled_set_page_dirty(struct page *page)
1780 SetPageChecked(page);
1781 return __set_page_dirty_nobuffers(page);
1784 static const struct address_space_operations ext3_ordered_aops = {
1785 .readpage = ext3_readpage,
1786 .readpages = ext3_readpages,
1787 .writepage = ext3_ordered_writepage,
1788 .sync_page = block_sync_page,
1789 .write_begin = ext3_write_begin,
1790 .write_end = ext3_ordered_write_end,
1791 .bmap = ext3_bmap,
1792 .invalidatepage = ext3_invalidatepage,
1793 .releasepage = ext3_releasepage,
1794 .direct_IO = ext3_direct_IO,
1795 .migratepage = buffer_migrate_page,
1796 .is_partially_uptodate = block_is_partially_uptodate,
1799 static const struct address_space_operations ext3_writeback_aops = {
1800 .readpage = ext3_readpage,
1801 .readpages = ext3_readpages,
1802 .writepage = ext3_writeback_writepage,
1803 .sync_page = block_sync_page,
1804 .write_begin = ext3_write_begin,
1805 .write_end = ext3_writeback_write_end,
1806 .bmap = ext3_bmap,
1807 .invalidatepage = ext3_invalidatepage,
1808 .releasepage = ext3_releasepage,
1809 .direct_IO = ext3_direct_IO,
1810 .migratepage = buffer_migrate_page,
1811 .is_partially_uptodate = block_is_partially_uptodate,
1814 static const struct address_space_operations ext3_journalled_aops = {
1815 .readpage = ext3_readpage,
1816 .readpages = ext3_readpages,
1817 .writepage = ext3_journalled_writepage,
1818 .sync_page = block_sync_page,
1819 .write_begin = ext3_write_begin,
1820 .write_end = ext3_journalled_write_end,
1821 .set_page_dirty = ext3_journalled_set_page_dirty,
1822 .bmap = ext3_bmap,
1823 .invalidatepage = ext3_invalidatepage,
1824 .releasepage = ext3_releasepage,
1825 .is_partially_uptodate = block_is_partially_uptodate,
1828 void ext3_set_aops(struct inode *inode)
1830 if (ext3_should_order_data(inode))
1831 inode->i_mapping->a_ops = &ext3_ordered_aops;
1832 else if (ext3_should_writeback_data(inode))
1833 inode->i_mapping->a_ops = &ext3_writeback_aops;
1834 else
1835 inode->i_mapping->a_ops = &ext3_journalled_aops;
1839 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1840 * up to the end of the block which corresponds to `from'.
1841 * This required during truncate. We need to physically zero the tail end
1842 * of that block so it doesn't yield old data if the file is later grown.
1844 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1845 struct address_space *mapping, loff_t from)
1847 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1848 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1849 unsigned blocksize, iblock, length, pos;
1850 struct inode *inode = mapping->host;
1851 struct buffer_head *bh;
1852 int err = 0;
1854 blocksize = inode->i_sb->s_blocksize;
1855 length = blocksize - (offset & (blocksize - 1));
1856 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1859 * For "nobh" option, we can only work if we don't need to
1860 * read-in the page - otherwise we create buffers to do the IO.
1862 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1863 ext3_should_writeback_data(inode) && PageUptodate(page)) {
1864 zero_user(page, offset, length);
1865 set_page_dirty(page);
1866 goto unlock;
1869 if (!page_has_buffers(page))
1870 create_empty_buffers(page, blocksize, 0);
1872 /* Find the buffer that contains "offset" */
1873 bh = page_buffers(page);
1874 pos = blocksize;
1875 while (offset >= pos) {
1876 bh = bh->b_this_page;
1877 iblock++;
1878 pos += blocksize;
1881 err = 0;
1882 if (buffer_freed(bh)) {
1883 BUFFER_TRACE(bh, "freed: skip");
1884 goto unlock;
1887 if (!buffer_mapped(bh)) {
1888 BUFFER_TRACE(bh, "unmapped");
1889 ext3_get_block(inode, iblock, bh, 0);
1890 /* unmapped? It's a hole - nothing to do */
1891 if (!buffer_mapped(bh)) {
1892 BUFFER_TRACE(bh, "still unmapped");
1893 goto unlock;
1897 /* Ok, it's mapped. Make sure it's up-to-date */
1898 if (PageUptodate(page))
1899 set_buffer_uptodate(bh);
1901 if (!buffer_uptodate(bh)) {
1902 err = -EIO;
1903 ll_rw_block(READ, 1, &bh);
1904 wait_on_buffer(bh);
1905 /* Uhhuh. Read error. Complain and punt. */
1906 if (!buffer_uptodate(bh))
1907 goto unlock;
1910 if (ext3_should_journal_data(inode)) {
1911 BUFFER_TRACE(bh, "get write access");
1912 err = ext3_journal_get_write_access(handle, bh);
1913 if (err)
1914 goto unlock;
1917 zero_user(page, offset, length);
1918 BUFFER_TRACE(bh, "zeroed end of block");
1920 err = 0;
1921 if (ext3_should_journal_data(inode)) {
1922 err = ext3_journal_dirty_metadata(handle, bh);
1923 } else {
1924 if (ext3_should_order_data(inode))
1925 err = ext3_journal_dirty_data(handle, bh);
1926 mark_buffer_dirty(bh);
1929 unlock:
1930 unlock_page(page);
1931 page_cache_release(page);
1932 return err;
1936 * Probably it should be a library function... search for first non-zero word
1937 * or memcmp with zero_page, whatever is better for particular architecture.
1938 * Linus?
1940 static inline int all_zeroes(__le32 *p, __le32 *q)
1942 while (p < q)
1943 if (*p++)
1944 return 0;
1945 return 1;
1949 * ext3_find_shared - find the indirect blocks for partial truncation.
1950 * @inode: inode in question
1951 * @depth: depth of the affected branch
1952 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1953 * @chain: place to store the pointers to partial indirect blocks
1954 * @top: place to the (detached) top of branch
1956 * This is a helper function used by ext3_truncate().
1958 * When we do truncate() we may have to clean the ends of several
1959 * indirect blocks but leave the blocks themselves alive. Block is
1960 * partially truncated if some data below the new i_size is refered
1961 * from it (and it is on the path to the first completely truncated
1962 * data block, indeed). We have to free the top of that path along
1963 * with everything to the right of the path. Since no allocation
1964 * past the truncation point is possible until ext3_truncate()
1965 * finishes, we may safely do the latter, but top of branch may
1966 * require special attention - pageout below the truncation point
1967 * might try to populate it.
1969 * We atomically detach the top of branch from the tree, store the
1970 * block number of its root in *@top, pointers to buffer_heads of
1971 * partially truncated blocks - in @chain[].bh and pointers to
1972 * their last elements that should not be removed - in
1973 * @chain[].p. Return value is the pointer to last filled element
1974 * of @chain.
1976 * The work left to caller to do the actual freeing of subtrees:
1977 * a) free the subtree starting from *@top
1978 * b) free the subtrees whose roots are stored in
1979 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1980 * c) free the subtrees growing from the inode past the @chain[0].
1981 * (no partially truncated stuff there). */
1983 static Indirect *ext3_find_shared(struct inode *inode, int depth,
1984 int offsets[4], Indirect chain[4], __le32 *top)
1986 Indirect *partial, *p;
1987 int k, err;
1989 *top = 0;
1990 /* Make k index the deepest non-null offest + 1 */
1991 for (k = depth; k > 1 && !offsets[k-1]; k--)
1993 partial = ext3_get_branch(inode, k, offsets, chain, &err);
1994 /* Writer: pointers */
1995 if (!partial)
1996 partial = chain + k-1;
1998 * If the branch acquired continuation since we've looked at it -
1999 * fine, it should all survive and (new) top doesn't belong to us.
2001 if (!partial->key && *partial->p)
2002 /* Writer: end */
2003 goto no_top;
2004 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2007 * OK, we've found the last block that must survive. The rest of our
2008 * branch should be detached before unlocking. However, if that rest
2009 * of branch is all ours and does not grow immediately from the inode
2010 * it's easier to cheat and just decrement partial->p.
2012 if (p == chain + k - 1 && p > chain) {
2013 p->p--;
2014 } else {
2015 *top = *p->p;
2016 /* Nope, don't do this in ext3. Must leave the tree intact */
2017 #if 0
2018 *p->p = 0;
2019 #endif
2021 /* Writer: end */
2023 while(partial > p) {
2024 brelse(partial->bh);
2025 partial--;
2027 no_top:
2028 return partial;
2032 * Zero a number of block pointers in either an inode or an indirect block.
2033 * If we restart the transaction we must again get write access to the
2034 * indirect block for further modification.
2036 * We release `count' blocks on disk, but (last - first) may be greater
2037 * than `count' because there can be holes in there.
2039 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2040 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2041 unsigned long count, __le32 *first, __le32 *last)
2043 __le32 *p;
2044 if (try_to_extend_transaction(handle, inode)) {
2045 if (bh) {
2046 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2047 ext3_journal_dirty_metadata(handle, bh);
2049 ext3_mark_inode_dirty(handle, inode);
2050 ext3_journal_test_restart(handle, inode);
2051 if (bh) {
2052 BUFFER_TRACE(bh, "retaking write access");
2053 ext3_journal_get_write_access(handle, bh);
2058 * Any buffers which are on the journal will be in memory. We find
2059 * them on the hash table so journal_revoke() will run journal_forget()
2060 * on them. We've already detached each block from the file, so
2061 * bforget() in journal_forget() should be safe.
2063 * AKPM: turn on bforget in journal_forget()!!!
2065 for (p = first; p < last; p++) {
2066 u32 nr = le32_to_cpu(*p);
2067 if (nr) {
2068 struct buffer_head *bh;
2070 *p = 0;
2071 bh = sb_find_get_block(inode->i_sb, nr);
2072 ext3_forget(handle, 0, inode, bh, nr);
2076 ext3_free_blocks(handle, inode, block_to_free, count);
2080 * ext3_free_data - free a list of data blocks
2081 * @handle: handle for this transaction
2082 * @inode: inode we are dealing with
2083 * @this_bh: indirect buffer_head which contains *@first and *@last
2084 * @first: array of block numbers
2085 * @last: points immediately past the end of array
2087 * We are freeing all blocks refered from that array (numbers are stored as
2088 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2090 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2091 * blocks are contiguous then releasing them at one time will only affect one
2092 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2093 * actually use a lot of journal space.
2095 * @this_bh will be %NULL if @first and @last point into the inode's direct
2096 * block pointers.
2098 static void ext3_free_data(handle_t *handle, struct inode *inode,
2099 struct buffer_head *this_bh,
2100 __le32 *first, __le32 *last)
2102 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
2103 unsigned long count = 0; /* Number of blocks in the run */
2104 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2105 corresponding to
2106 block_to_free */
2107 ext3_fsblk_t nr; /* Current block # */
2108 __le32 *p; /* Pointer into inode/ind
2109 for current block */
2110 int err;
2112 if (this_bh) { /* For indirect block */
2113 BUFFER_TRACE(this_bh, "get_write_access");
2114 err = ext3_journal_get_write_access(handle, this_bh);
2115 /* Important: if we can't update the indirect pointers
2116 * to the blocks, we can't free them. */
2117 if (err)
2118 return;
2121 for (p = first; p < last; p++) {
2122 nr = le32_to_cpu(*p);
2123 if (nr) {
2124 /* accumulate blocks to free if they're contiguous */
2125 if (count == 0) {
2126 block_to_free = nr;
2127 block_to_free_p = p;
2128 count = 1;
2129 } else if (nr == block_to_free + count) {
2130 count++;
2131 } else {
2132 ext3_clear_blocks(handle, inode, this_bh,
2133 block_to_free,
2134 count, block_to_free_p, p);
2135 block_to_free = nr;
2136 block_to_free_p = p;
2137 count = 1;
2142 if (count > 0)
2143 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2144 count, block_to_free_p, p);
2146 if (this_bh) {
2147 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2150 * The buffer head should have an attached journal head at this
2151 * point. However, if the data is corrupted and an indirect
2152 * block pointed to itself, it would have been detached when
2153 * the block was cleared. Check for this instead of OOPSing.
2155 if (bh2jh(this_bh))
2156 ext3_journal_dirty_metadata(handle, this_bh);
2157 else
2158 ext3_error(inode->i_sb, "ext3_free_data",
2159 "circular indirect block detected, "
2160 "inode=%lu, block=%llu",
2161 inode->i_ino,
2162 (unsigned long long)this_bh->b_blocknr);
2167 * ext3_free_branches - free an array of branches
2168 * @handle: JBD handle for this transaction
2169 * @inode: inode we are dealing with
2170 * @parent_bh: the buffer_head which contains *@first and *@last
2171 * @first: array of block numbers
2172 * @last: pointer immediately past the end of array
2173 * @depth: depth of the branches to free
2175 * We are freeing all blocks refered from these branches (numbers are
2176 * stored as little-endian 32-bit) and updating @inode->i_blocks
2177 * appropriately.
2179 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2180 struct buffer_head *parent_bh,
2181 __le32 *first, __le32 *last, int depth)
2183 ext3_fsblk_t nr;
2184 __le32 *p;
2186 if (is_handle_aborted(handle))
2187 return;
2189 if (depth--) {
2190 struct buffer_head *bh;
2191 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2192 p = last;
2193 while (--p >= first) {
2194 nr = le32_to_cpu(*p);
2195 if (!nr)
2196 continue; /* A hole */
2198 /* Go read the buffer for the next level down */
2199 bh = sb_bread(inode->i_sb, nr);
2202 * A read failure? Report error and clear slot
2203 * (should be rare).
2205 if (!bh) {
2206 ext3_error(inode->i_sb, "ext3_free_branches",
2207 "Read failure, inode=%lu, block="E3FSBLK,
2208 inode->i_ino, nr);
2209 continue;
2212 /* This zaps the entire block. Bottom up. */
2213 BUFFER_TRACE(bh, "free child branches");
2214 ext3_free_branches(handle, inode, bh,
2215 (__le32*)bh->b_data,
2216 (__le32*)bh->b_data + addr_per_block,
2217 depth);
2220 * We've probably journalled the indirect block several
2221 * times during the truncate. But it's no longer
2222 * needed and we now drop it from the transaction via
2223 * journal_revoke().
2225 * That's easy if it's exclusively part of this
2226 * transaction. But if it's part of the committing
2227 * transaction then journal_forget() will simply
2228 * brelse() it. That means that if the underlying
2229 * block is reallocated in ext3_get_block(),
2230 * unmap_underlying_metadata() will find this block
2231 * and will try to get rid of it. damn, damn.
2233 * If this block has already been committed to the
2234 * journal, a revoke record will be written. And
2235 * revoke records must be emitted *before* clearing
2236 * this block's bit in the bitmaps.
2238 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2241 * Everything below this this pointer has been
2242 * released. Now let this top-of-subtree go.
2244 * We want the freeing of this indirect block to be
2245 * atomic in the journal with the updating of the
2246 * bitmap block which owns it. So make some room in
2247 * the journal.
2249 * We zero the parent pointer *after* freeing its
2250 * pointee in the bitmaps, so if extend_transaction()
2251 * for some reason fails to put the bitmap changes and
2252 * the release into the same transaction, recovery
2253 * will merely complain about releasing a free block,
2254 * rather than leaking blocks.
2256 if (is_handle_aborted(handle))
2257 return;
2258 if (try_to_extend_transaction(handle, inode)) {
2259 ext3_mark_inode_dirty(handle, inode);
2260 ext3_journal_test_restart(handle, inode);
2263 ext3_free_blocks(handle, inode, nr, 1);
2265 if (parent_bh) {
2267 * The block which we have just freed is
2268 * pointed to by an indirect block: journal it
2270 BUFFER_TRACE(parent_bh, "get_write_access");
2271 if (!ext3_journal_get_write_access(handle,
2272 parent_bh)){
2273 *p = 0;
2274 BUFFER_TRACE(parent_bh,
2275 "call ext3_journal_dirty_metadata");
2276 ext3_journal_dirty_metadata(handle,
2277 parent_bh);
2281 } else {
2282 /* We have reached the bottom of the tree. */
2283 BUFFER_TRACE(parent_bh, "free data blocks");
2284 ext3_free_data(handle, inode, parent_bh, first, last);
2288 int ext3_can_truncate(struct inode *inode)
2290 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2291 return 0;
2292 if (S_ISREG(inode->i_mode))
2293 return 1;
2294 if (S_ISDIR(inode->i_mode))
2295 return 1;
2296 if (S_ISLNK(inode->i_mode))
2297 return !ext3_inode_is_fast_symlink(inode);
2298 return 0;
2302 * ext3_truncate()
2304 * We block out ext3_get_block() block instantiations across the entire
2305 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2306 * simultaneously on behalf of the same inode.
2308 * As we work through the truncate and commmit bits of it to the journal there
2309 * is one core, guiding principle: the file's tree must always be consistent on
2310 * disk. We must be able to restart the truncate after a crash.
2312 * The file's tree may be transiently inconsistent in memory (although it
2313 * probably isn't), but whenever we close off and commit a journal transaction,
2314 * the contents of (the filesystem + the journal) must be consistent and
2315 * restartable. It's pretty simple, really: bottom up, right to left (although
2316 * left-to-right works OK too).
2318 * Note that at recovery time, journal replay occurs *before* the restart of
2319 * truncate against the orphan inode list.
2321 * The committed inode has the new, desired i_size (which is the same as
2322 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2323 * that this inode's truncate did not complete and it will again call
2324 * ext3_truncate() to have another go. So there will be instantiated blocks
2325 * to the right of the truncation point in a crashed ext3 filesystem. But
2326 * that's fine - as long as they are linked from the inode, the post-crash
2327 * ext3_truncate() run will find them and release them.
2329 void ext3_truncate(struct inode *inode)
2331 handle_t *handle;
2332 struct ext3_inode_info *ei = EXT3_I(inode);
2333 __le32 *i_data = ei->i_data;
2334 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2335 struct address_space *mapping = inode->i_mapping;
2336 int offsets[4];
2337 Indirect chain[4];
2338 Indirect *partial;
2339 __le32 nr = 0;
2340 int n;
2341 long last_block;
2342 unsigned blocksize = inode->i_sb->s_blocksize;
2343 struct page *page;
2345 if (!ext3_can_truncate(inode))
2346 return;
2349 * We have to lock the EOF page here, because lock_page() nests
2350 * outside journal_start().
2352 if ((inode->i_size & (blocksize - 1)) == 0) {
2353 /* Block boundary? Nothing to do */
2354 page = NULL;
2355 } else {
2356 page = grab_cache_page(mapping,
2357 inode->i_size >> PAGE_CACHE_SHIFT);
2358 if (!page)
2359 return;
2362 handle = start_transaction(inode);
2363 if (IS_ERR(handle)) {
2364 if (page) {
2365 clear_highpage(page);
2366 flush_dcache_page(page);
2367 unlock_page(page);
2368 page_cache_release(page);
2370 return; /* AKPM: return what? */
2373 last_block = (inode->i_size + blocksize-1)
2374 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2376 if (page)
2377 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2379 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2380 if (n == 0)
2381 goto out_stop; /* error */
2384 * OK. This truncate is going to happen. We add the inode to the
2385 * orphan list, so that if this truncate spans multiple transactions,
2386 * and we crash, we will resume the truncate when the filesystem
2387 * recovers. It also marks the inode dirty, to catch the new size.
2389 * Implication: the file must always be in a sane, consistent
2390 * truncatable state while each transaction commits.
2392 if (ext3_orphan_add(handle, inode))
2393 goto out_stop;
2396 * The orphan list entry will now protect us from any crash which
2397 * occurs before the truncate completes, so it is now safe to propagate
2398 * the new, shorter inode size (held for now in i_size) into the
2399 * on-disk inode. We do this via i_disksize, which is the value which
2400 * ext3 *really* writes onto the disk inode.
2402 ei->i_disksize = inode->i_size;
2405 * From here we block out all ext3_get_block() callers who want to
2406 * modify the block allocation tree.
2408 mutex_lock(&ei->truncate_mutex);
2410 if (n == 1) { /* direct blocks */
2411 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2412 i_data + EXT3_NDIR_BLOCKS);
2413 goto do_indirects;
2416 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2417 /* Kill the top of shared branch (not detached) */
2418 if (nr) {
2419 if (partial == chain) {
2420 /* Shared branch grows from the inode */
2421 ext3_free_branches(handle, inode, NULL,
2422 &nr, &nr+1, (chain+n-1) - partial);
2423 *partial->p = 0;
2425 * We mark the inode dirty prior to restart,
2426 * and prior to stop. No need for it here.
2428 } else {
2429 /* Shared branch grows from an indirect block */
2430 BUFFER_TRACE(partial->bh, "get_write_access");
2431 ext3_free_branches(handle, inode, partial->bh,
2432 partial->p,
2433 partial->p+1, (chain+n-1) - partial);
2436 /* Clear the ends of indirect blocks on the shared branch */
2437 while (partial > chain) {
2438 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2439 (__le32*)partial->bh->b_data+addr_per_block,
2440 (chain+n-1) - partial);
2441 BUFFER_TRACE(partial->bh, "call brelse");
2442 brelse (partial->bh);
2443 partial--;
2445 do_indirects:
2446 /* Kill the remaining (whole) subtrees */
2447 switch (offsets[0]) {
2448 default:
2449 nr = i_data[EXT3_IND_BLOCK];
2450 if (nr) {
2451 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2452 i_data[EXT3_IND_BLOCK] = 0;
2454 case EXT3_IND_BLOCK:
2455 nr = i_data[EXT3_DIND_BLOCK];
2456 if (nr) {
2457 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2458 i_data[EXT3_DIND_BLOCK] = 0;
2460 case EXT3_DIND_BLOCK:
2461 nr = i_data[EXT3_TIND_BLOCK];
2462 if (nr) {
2463 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2464 i_data[EXT3_TIND_BLOCK] = 0;
2466 case EXT3_TIND_BLOCK:
2470 ext3_discard_reservation(inode);
2472 mutex_unlock(&ei->truncate_mutex);
2473 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2474 ext3_mark_inode_dirty(handle, inode);
2477 * In a multi-transaction truncate, we only make the final transaction
2478 * synchronous
2480 if (IS_SYNC(inode))
2481 handle->h_sync = 1;
2482 out_stop:
2484 * If this was a simple ftruncate(), and the file will remain alive
2485 * then we need to clear up the orphan record which we created above.
2486 * However, if this was a real unlink then we were called by
2487 * ext3_delete_inode(), and we allow that function to clean up the
2488 * orphan info for us.
2490 if (inode->i_nlink)
2491 ext3_orphan_del(handle, inode);
2493 ext3_journal_stop(handle);
2496 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2497 unsigned long ino, struct ext3_iloc *iloc)
2499 unsigned long block_group;
2500 unsigned long offset;
2501 ext3_fsblk_t block;
2502 struct ext3_group_desc *gdp;
2504 if (!ext3_valid_inum(sb, ino)) {
2506 * This error is already checked for in namei.c unless we are
2507 * looking at an NFS filehandle, in which case no error
2508 * report is needed
2510 return 0;
2513 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2514 gdp = ext3_get_group_desc(sb, block_group, NULL);
2515 if (!gdp)
2516 return 0;
2518 * Figure out the offset within the block group inode table
2520 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2521 EXT3_INODE_SIZE(sb);
2522 block = le32_to_cpu(gdp->bg_inode_table) +
2523 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2525 iloc->block_group = block_group;
2526 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2527 return block;
2531 * ext3_get_inode_loc returns with an extra refcount against the inode's
2532 * underlying buffer_head on success. If 'in_mem' is true, we have all
2533 * data in memory that is needed to recreate the on-disk version of this
2534 * inode.
2536 static int __ext3_get_inode_loc(struct inode *inode,
2537 struct ext3_iloc *iloc, int in_mem)
2539 ext3_fsblk_t block;
2540 struct buffer_head *bh;
2542 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2543 if (!block)
2544 return -EIO;
2546 bh = sb_getblk(inode->i_sb, block);
2547 if (!bh) {
2548 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2549 "unable to read inode block - "
2550 "inode=%lu, block="E3FSBLK,
2551 inode->i_ino, block);
2552 return -EIO;
2554 if (!buffer_uptodate(bh)) {
2555 lock_buffer(bh);
2558 * If the buffer has the write error flag, we have failed
2559 * to write out another inode in the same block. In this
2560 * case, we don't have to read the block because we may
2561 * read the old inode data successfully.
2563 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2564 set_buffer_uptodate(bh);
2566 if (buffer_uptodate(bh)) {
2567 /* someone brought it uptodate while we waited */
2568 unlock_buffer(bh);
2569 goto has_buffer;
2573 * If we have all information of the inode in memory and this
2574 * is the only valid inode in the block, we need not read the
2575 * block.
2577 if (in_mem) {
2578 struct buffer_head *bitmap_bh;
2579 struct ext3_group_desc *desc;
2580 int inodes_per_buffer;
2581 int inode_offset, i;
2582 int block_group;
2583 int start;
2585 block_group = (inode->i_ino - 1) /
2586 EXT3_INODES_PER_GROUP(inode->i_sb);
2587 inodes_per_buffer = bh->b_size /
2588 EXT3_INODE_SIZE(inode->i_sb);
2589 inode_offset = ((inode->i_ino - 1) %
2590 EXT3_INODES_PER_GROUP(inode->i_sb));
2591 start = inode_offset & ~(inodes_per_buffer - 1);
2593 /* Is the inode bitmap in cache? */
2594 desc = ext3_get_group_desc(inode->i_sb,
2595 block_group, NULL);
2596 if (!desc)
2597 goto make_io;
2599 bitmap_bh = sb_getblk(inode->i_sb,
2600 le32_to_cpu(desc->bg_inode_bitmap));
2601 if (!bitmap_bh)
2602 goto make_io;
2605 * If the inode bitmap isn't in cache then the
2606 * optimisation may end up performing two reads instead
2607 * of one, so skip it.
2609 if (!buffer_uptodate(bitmap_bh)) {
2610 brelse(bitmap_bh);
2611 goto make_io;
2613 for (i = start; i < start + inodes_per_buffer; i++) {
2614 if (i == inode_offset)
2615 continue;
2616 if (ext3_test_bit(i, bitmap_bh->b_data))
2617 break;
2619 brelse(bitmap_bh);
2620 if (i == start + inodes_per_buffer) {
2621 /* all other inodes are free, so skip I/O */
2622 memset(bh->b_data, 0, bh->b_size);
2623 set_buffer_uptodate(bh);
2624 unlock_buffer(bh);
2625 goto has_buffer;
2629 make_io:
2631 * There are other valid inodes in the buffer, this inode
2632 * has in-inode xattrs, or we don't have this inode in memory.
2633 * Read the block from disk.
2635 get_bh(bh);
2636 bh->b_end_io = end_buffer_read_sync;
2637 submit_bh(READ_META, bh);
2638 wait_on_buffer(bh);
2639 if (!buffer_uptodate(bh)) {
2640 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2641 "unable to read inode block - "
2642 "inode=%lu, block="E3FSBLK,
2643 inode->i_ino, block);
2644 brelse(bh);
2645 return -EIO;
2648 has_buffer:
2649 iloc->bh = bh;
2650 return 0;
2653 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2655 /* We have all inode data except xattrs in memory here. */
2656 return __ext3_get_inode_loc(inode, iloc,
2657 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2660 void ext3_set_inode_flags(struct inode *inode)
2662 unsigned int flags = EXT3_I(inode)->i_flags;
2664 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2665 if (flags & EXT3_SYNC_FL)
2666 inode->i_flags |= S_SYNC;
2667 if (flags & EXT3_APPEND_FL)
2668 inode->i_flags |= S_APPEND;
2669 if (flags & EXT3_IMMUTABLE_FL)
2670 inode->i_flags |= S_IMMUTABLE;
2671 if (flags & EXT3_NOATIME_FL)
2672 inode->i_flags |= S_NOATIME;
2673 if (flags & EXT3_DIRSYNC_FL)
2674 inode->i_flags |= S_DIRSYNC;
2677 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2678 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2680 unsigned int flags = ei->vfs_inode.i_flags;
2682 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2683 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2684 if (flags & S_SYNC)
2685 ei->i_flags |= EXT3_SYNC_FL;
2686 if (flags & S_APPEND)
2687 ei->i_flags |= EXT3_APPEND_FL;
2688 if (flags & S_IMMUTABLE)
2689 ei->i_flags |= EXT3_IMMUTABLE_FL;
2690 if (flags & S_NOATIME)
2691 ei->i_flags |= EXT3_NOATIME_FL;
2692 if (flags & S_DIRSYNC)
2693 ei->i_flags |= EXT3_DIRSYNC_FL;
2696 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2698 struct ext3_iloc iloc;
2699 struct ext3_inode *raw_inode;
2700 struct ext3_inode_info *ei;
2701 struct buffer_head *bh;
2702 struct inode *inode;
2703 long ret;
2704 int block;
2706 inode = iget_locked(sb, ino);
2707 if (!inode)
2708 return ERR_PTR(-ENOMEM);
2709 if (!(inode->i_state & I_NEW))
2710 return inode;
2712 ei = EXT3_I(inode);
2713 #ifdef CONFIG_EXT3_FS_POSIX_ACL
2714 ei->i_acl = EXT3_ACL_NOT_CACHED;
2715 ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2716 #endif
2717 ei->i_block_alloc_info = NULL;
2719 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2720 if (ret < 0)
2721 goto bad_inode;
2722 bh = iloc.bh;
2723 raw_inode = ext3_raw_inode(&iloc);
2724 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2725 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2726 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2727 if(!(test_opt (inode->i_sb, NO_UID32))) {
2728 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2729 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2731 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2732 inode->i_size = le32_to_cpu(raw_inode->i_size);
2733 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2734 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2735 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2736 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2738 ei->i_state = 0;
2739 ei->i_dir_start_lookup = 0;
2740 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2741 /* We now have enough fields to check if the inode was active or not.
2742 * This is needed because nfsd might try to access dead inodes
2743 * the test is that same one that e2fsck uses
2744 * NeilBrown 1999oct15
2746 if (inode->i_nlink == 0) {
2747 if (inode->i_mode == 0 ||
2748 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2749 /* this inode is deleted */
2750 brelse (bh);
2751 ret = -ESTALE;
2752 goto bad_inode;
2754 /* The only unlinked inodes we let through here have
2755 * valid i_mode and are being read by the orphan
2756 * recovery code: that's fine, we're about to complete
2757 * the process of deleting those. */
2759 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2760 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2761 #ifdef EXT3_FRAGMENTS
2762 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2763 ei->i_frag_no = raw_inode->i_frag;
2764 ei->i_frag_size = raw_inode->i_fsize;
2765 #endif
2766 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2767 if (!S_ISREG(inode->i_mode)) {
2768 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2769 } else {
2770 inode->i_size |=
2771 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2773 ei->i_disksize = inode->i_size;
2774 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2775 ei->i_block_group = iloc.block_group;
2777 * NOTE! The in-memory inode i_data array is in little-endian order
2778 * even on big-endian machines: we do NOT byteswap the block numbers!
2780 for (block = 0; block < EXT3_N_BLOCKS; block++)
2781 ei->i_data[block] = raw_inode->i_block[block];
2782 INIT_LIST_HEAD(&ei->i_orphan);
2784 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2785 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2787 * When mke2fs creates big inodes it does not zero out
2788 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2789 * so ignore those first few inodes.
2791 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2792 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2793 EXT3_INODE_SIZE(inode->i_sb)) {
2794 brelse (bh);
2795 ret = -EIO;
2796 goto bad_inode;
2798 if (ei->i_extra_isize == 0) {
2799 /* The extra space is currently unused. Use it. */
2800 ei->i_extra_isize = sizeof(struct ext3_inode) -
2801 EXT3_GOOD_OLD_INODE_SIZE;
2802 } else {
2803 __le32 *magic = (void *)raw_inode +
2804 EXT3_GOOD_OLD_INODE_SIZE +
2805 ei->i_extra_isize;
2806 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2807 ei->i_state |= EXT3_STATE_XATTR;
2809 } else
2810 ei->i_extra_isize = 0;
2812 if (S_ISREG(inode->i_mode)) {
2813 inode->i_op = &ext3_file_inode_operations;
2814 inode->i_fop = &ext3_file_operations;
2815 ext3_set_aops(inode);
2816 } else if (S_ISDIR(inode->i_mode)) {
2817 inode->i_op = &ext3_dir_inode_operations;
2818 inode->i_fop = &ext3_dir_operations;
2819 } else if (S_ISLNK(inode->i_mode)) {
2820 if (ext3_inode_is_fast_symlink(inode))
2821 inode->i_op = &ext3_fast_symlink_inode_operations;
2822 else {
2823 inode->i_op = &ext3_symlink_inode_operations;
2824 ext3_set_aops(inode);
2826 } else {
2827 inode->i_op = &ext3_special_inode_operations;
2828 if (raw_inode->i_block[0])
2829 init_special_inode(inode, inode->i_mode,
2830 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2831 else
2832 init_special_inode(inode, inode->i_mode,
2833 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2835 brelse (iloc.bh);
2836 ext3_set_inode_flags(inode);
2837 unlock_new_inode(inode);
2838 return inode;
2840 bad_inode:
2841 iget_failed(inode);
2842 return ERR_PTR(ret);
2846 * Post the struct inode info into an on-disk inode location in the
2847 * buffer-cache. This gobbles the caller's reference to the
2848 * buffer_head in the inode location struct.
2850 * The caller must have write access to iloc->bh.
2852 static int ext3_do_update_inode(handle_t *handle,
2853 struct inode *inode,
2854 struct ext3_iloc *iloc)
2856 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2857 struct ext3_inode_info *ei = EXT3_I(inode);
2858 struct buffer_head *bh = iloc->bh;
2859 int err = 0, rc, block;
2861 /* For fields not not tracking in the in-memory inode,
2862 * initialise them to zero for new inodes. */
2863 if (ei->i_state & EXT3_STATE_NEW)
2864 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2866 ext3_get_inode_flags(ei);
2867 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2868 if(!(test_opt(inode->i_sb, NO_UID32))) {
2869 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2870 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2872 * Fix up interoperability with old kernels. Otherwise, old inodes get
2873 * re-used with the upper 16 bits of the uid/gid intact
2875 if(!ei->i_dtime) {
2876 raw_inode->i_uid_high =
2877 cpu_to_le16(high_16_bits(inode->i_uid));
2878 raw_inode->i_gid_high =
2879 cpu_to_le16(high_16_bits(inode->i_gid));
2880 } else {
2881 raw_inode->i_uid_high = 0;
2882 raw_inode->i_gid_high = 0;
2884 } else {
2885 raw_inode->i_uid_low =
2886 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2887 raw_inode->i_gid_low =
2888 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2889 raw_inode->i_uid_high = 0;
2890 raw_inode->i_gid_high = 0;
2892 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2893 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2894 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2895 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2896 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2897 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2898 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2899 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2900 #ifdef EXT3_FRAGMENTS
2901 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2902 raw_inode->i_frag = ei->i_frag_no;
2903 raw_inode->i_fsize = ei->i_frag_size;
2904 #endif
2905 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2906 if (!S_ISREG(inode->i_mode)) {
2907 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2908 } else {
2909 raw_inode->i_size_high =
2910 cpu_to_le32(ei->i_disksize >> 32);
2911 if (ei->i_disksize > 0x7fffffffULL) {
2912 struct super_block *sb = inode->i_sb;
2913 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2914 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2915 EXT3_SB(sb)->s_es->s_rev_level ==
2916 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2917 /* If this is the first large file
2918 * created, add a flag to the superblock.
2920 err = ext3_journal_get_write_access(handle,
2921 EXT3_SB(sb)->s_sbh);
2922 if (err)
2923 goto out_brelse;
2924 ext3_update_dynamic_rev(sb);
2925 EXT3_SET_RO_COMPAT_FEATURE(sb,
2926 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2927 sb->s_dirt = 1;
2928 handle->h_sync = 1;
2929 err = ext3_journal_dirty_metadata(handle,
2930 EXT3_SB(sb)->s_sbh);
2934 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2935 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2936 if (old_valid_dev(inode->i_rdev)) {
2937 raw_inode->i_block[0] =
2938 cpu_to_le32(old_encode_dev(inode->i_rdev));
2939 raw_inode->i_block[1] = 0;
2940 } else {
2941 raw_inode->i_block[0] = 0;
2942 raw_inode->i_block[1] =
2943 cpu_to_le32(new_encode_dev(inode->i_rdev));
2944 raw_inode->i_block[2] = 0;
2946 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2947 raw_inode->i_block[block] = ei->i_data[block];
2949 if (ei->i_extra_isize)
2950 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2952 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2953 rc = ext3_journal_dirty_metadata(handle, bh);
2954 if (!err)
2955 err = rc;
2956 ei->i_state &= ~EXT3_STATE_NEW;
2958 out_brelse:
2959 brelse (bh);
2960 ext3_std_error(inode->i_sb, err);
2961 return err;
2965 * ext3_write_inode()
2967 * We are called from a few places:
2969 * - Within generic_file_write() for O_SYNC files.
2970 * Here, there will be no transaction running. We wait for any running
2971 * trasnaction to commit.
2973 * - Within sys_sync(), kupdate and such.
2974 * We wait on commit, if tol to.
2976 * - Within prune_icache() (PF_MEMALLOC == true)
2977 * Here we simply return. We can't afford to block kswapd on the
2978 * journal commit.
2980 * In all cases it is actually safe for us to return without doing anything,
2981 * because the inode has been copied into a raw inode buffer in
2982 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2983 * knfsd.
2985 * Note that we are absolutely dependent upon all inode dirtiers doing the
2986 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2987 * which we are interested.
2989 * It would be a bug for them to not do this. The code:
2991 * mark_inode_dirty(inode)
2992 * stuff();
2993 * inode->i_size = expr;
2995 * is in error because a kswapd-driven write_inode() could occur while
2996 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2997 * will no longer be on the superblock's dirty inode list.
2999 int ext3_write_inode(struct inode *inode, int wait)
3001 if (current->flags & PF_MEMALLOC)
3002 return 0;
3004 if (ext3_journal_current_handle()) {
3005 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3006 dump_stack();
3007 return -EIO;
3010 if (!wait)
3011 return 0;
3013 return ext3_force_commit(inode->i_sb);
3017 * ext3_setattr()
3019 * Called from notify_change.
3021 * We want to trap VFS attempts to truncate the file as soon as
3022 * possible. In particular, we want to make sure that when the VFS
3023 * shrinks i_size, we put the inode on the orphan list and modify
3024 * i_disksize immediately, so that during the subsequent flushing of
3025 * dirty pages and freeing of disk blocks, we can guarantee that any
3026 * commit will leave the blocks being flushed in an unused state on
3027 * disk. (On recovery, the inode will get truncated and the blocks will
3028 * be freed, so we have a strong guarantee that no future commit will
3029 * leave these blocks visible to the user.)
3031 * Called with inode->sem down.
3033 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3035 struct inode *inode = dentry->d_inode;
3036 int error, rc = 0;
3037 const unsigned int ia_valid = attr->ia_valid;
3039 error = inode_change_ok(inode, attr);
3040 if (error)
3041 return error;
3043 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3044 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3045 handle_t *handle;
3047 /* (user+group)*(old+new) structure, inode write (sb,
3048 * inode block, ? - but truncate inode update has it) */
3049 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
3050 EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3051 if (IS_ERR(handle)) {
3052 error = PTR_ERR(handle);
3053 goto err_out;
3055 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3056 if (error) {
3057 ext3_journal_stop(handle);
3058 return error;
3060 /* Update corresponding info in inode so that everything is in
3061 * one transaction */
3062 if (attr->ia_valid & ATTR_UID)
3063 inode->i_uid = attr->ia_uid;
3064 if (attr->ia_valid & ATTR_GID)
3065 inode->i_gid = attr->ia_gid;
3066 error = ext3_mark_inode_dirty(handle, inode);
3067 ext3_journal_stop(handle);
3070 if (S_ISREG(inode->i_mode) &&
3071 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3072 handle_t *handle;
3074 handle = ext3_journal_start(inode, 3);
3075 if (IS_ERR(handle)) {
3076 error = PTR_ERR(handle);
3077 goto err_out;
3080 error = ext3_orphan_add(handle, inode);
3081 EXT3_I(inode)->i_disksize = attr->ia_size;
3082 rc = ext3_mark_inode_dirty(handle, inode);
3083 if (!error)
3084 error = rc;
3085 ext3_journal_stop(handle);
3088 rc = inode_setattr(inode, attr);
3090 /* If inode_setattr's call to ext3_truncate failed to get a
3091 * transaction handle at all, we need to clean up the in-core
3092 * orphan list manually. */
3093 if (inode->i_nlink)
3094 ext3_orphan_del(NULL, inode);
3096 if (!rc && (ia_valid & ATTR_MODE))
3097 rc = ext3_acl_chmod(inode);
3099 err_out:
3100 ext3_std_error(inode->i_sb, error);
3101 if (!error)
3102 error = rc;
3103 return error;
3108 * How many blocks doth make a writepage()?
3110 * With N blocks per page, it may be:
3111 * N data blocks
3112 * 2 indirect block
3113 * 2 dindirect
3114 * 1 tindirect
3115 * N+5 bitmap blocks (from the above)
3116 * N+5 group descriptor summary blocks
3117 * 1 inode block
3118 * 1 superblock.
3119 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3121 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3123 * With ordered or writeback data it's the same, less the N data blocks.
3125 * If the inode's direct blocks can hold an integral number of pages then a
3126 * page cannot straddle two indirect blocks, and we can only touch one indirect
3127 * and dindirect block, and the "5" above becomes "3".
3129 * This still overestimates under most circumstances. If we were to pass the
3130 * start and end offsets in here as well we could do block_to_path() on each
3131 * block and work out the exact number of indirects which are touched. Pah.
3134 static int ext3_writepage_trans_blocks(struct inode *inode)
3136 int bpp = ext3_journal_blocks_per_page(inode);
3137 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3138 int ret;
3140 if (ext3_should_journal_data(inode))
3141 ret = 3 * (bpp + indirects) + 2;
3142 else
3143 ret = 2 * (bpp + indirects) + 2;
3145 #ifdef CONFIG_QUOTA
3146 /* We know that structure was already allocated during DQUOT_INIT so
3147 * we will be updating only the data blocks + inodes */
3148 ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
3149 #endif
3151 return ret;
3155 * The caller must have previously called ext3_reserve_inode_write().
3156 * Give this, we know that the caller already has write access to iloc->bh.
3158 int ext3_mark_iloc_dirty(handle_t *handle,
3159 struct inode *inode, struct ext3_iloc *iloc)
3161 int err = 0;
3163 /* the do_update_inode consumes one bh->b_count */
3164 get_bh(iloc->bh);
3166 /* ext3_do_update_inode() does journal_dirty_metadata */
3167 err = ext3_do_update_inode(handle, inode, iloc);
3168 put_bh(iloc->bh);
3169 return err;
3173 * On success, We end up with an outstanding reference count against
3174 * iloc->bh. This _must_ be cleaned up later.
3178 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3179 struct ext3_iloc *iloc)
3181 int err = 0;
3182 if (handle) {
3183 err = ext3_get_inode_loc(inode, iloc);
3184 if (!err) {
3185 BUFFER_TRACE(iloc->bh, "get_write_access");
3186 err = ext3_journal_get_write_access(handle, iloc->bh);
3187 if (err) {
3188 brelse(iloc->bh);
3189 iloc->bh = NULL;
3193 ext3_std_error(inode->i_sb, err);
3194 return err;
3198 * What we do here is to mark the in-core inode as clean with respect to inode
3199 * dirtiness (it may still be data-dirty).
3200 * This means that the in-core inode may be reaped by prune_icache
3201 * without having to perform any I/O. This is a very good thing,
3202 * because *any* task may call prune_icache - even ones which
3203 * have a transaction open against a different journal.
3205 * Is this cheating? Not really. Sure, we haven't written the
3206 * inode out, but prune_icache isn't a user-visible syncing function.
3207 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3208 * we start and wait on commits.
3210 * Is this efficient/effective? Well, we're being nice to the system
3211 * by cleaning up our inodes proactively so they can be reaped
3212 * without I/O. But we are potentially leaving up to five seconds'
3213 * worth of inodes floating about which prune_icache wants us to
3214 * write out. One way to fix that would be to get prune_icache()
3215 * to do a write_super() to free up some memory. It has the desired
3216 * effect.
3218 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3220 struct ext3_iloc iloc;
3221 int err;
3223 might_sleep();
3224 err = ext3_reserve_inode_write(handle, inode, &iloc);
3225 if (!err)
3226 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3227 return err;
3231 * ext3_dirty_inode() is called from __mark_inode_dirty()
3233 * We're really interested in the case where a file is being extended.
3234 * i_size has been changed by generic_commit_write() and we thus need
3235 * to include the updated inode in the current transaction.
3237 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3238 * are allocated to the file.
3240 * If the inode is marked synchronous, we don't honour that here - doing
3241 * so would cause a commit on atime updates, which we don't bother doing.
3242 * We handle synchronous inodes at the highest possible level.
3244 void ext3_dirty_inode(struct inode *inode)
3246 handle_t *current_handle = ext3_journal_current_handle();
3247 handle_t *handle;
3249 handle = ext3_journal_start(inode, 2);
3250 if (IS_ERR(handle))
3251 goto out;
3252 if (current_handle &&
3253 current_handle->h_transaction != handle->h_transaction) {
3254 /* This task has a transaction open against a different fs */
3255 printk(KERN_EMERG "%s: transactions do not match!\n",
3256 __func__);
3257 } else {
3258 jbd_debug(5, "marking dirty. outer handle=%p\n",
3259 current_handle);
3260 ext3_mark_inode_dirty(handle, inode);
3262 ext3_journal_stop(handle);
3263 out:
3264 return;
3267 #if 0
3269 * Bind an inode's backing buffer_head into this transaction, to prevent
3270 * it from being flushed to disk early. Unlike
3271 * ext3_reserve_inode_write, this leaves behind no bh reference and
3272 * returns no iloc structure, so the caller needs to repeat the iloc
3273 * lookup to mark the inode dirty later.
3275 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3277 struct ext3_iloc iloc;
3279 int err = 0;
3280 if (handle) {
3281 err = ext3_get_inode_loc(inode, &iloc);
3282 if (!err) {
3283 BUFFER_TRACE(iloc.bh, "get_write_access");
3284 err = journal_get_write_access(handle, iloc.bh);
3285 if (!err)
3286 err = ext3_journal_dirty_metadata(handle,
3287 iloc.bh);
3288 brelse(iloc.bh);
3291 ext3_std_error(inode->i_sb, err);
3292 return err;
3294 #endif
3296 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3298 journal_t *journal;
3299 handle_t *handle;
3300 int err;
3303 * We have to be very careful here: changing a data block's
3304 * journaling status dynamically is dangerous. If we write a
3305 * data block to the journal, change the status and then delete
3306 * that block, we risk forgetting to revoke the old log record
3307 * from the journal and so a subsequent replay can corrupt data.
3308 * So, first we make sure that the journal is empty and that
3309 * nobody is changing anything.
3312 journal = EXT3_JOURNAL(inode);
3313 if (is_journal_aborted(journal))
3314 return -EROFS;
3316 journal_lock_updates(journal);
3317 journal_flush(journal);
3320 * OK, there are no updates running now, and all cached data is
3321 * synced to disk. We are now in a completely consistent state
3322 * which doesn't have anything in the journal, and we know that
3323 * no filesystem updates are running, so it is safe to modify
3324 * the inode's in-core data-journaling state flag now.
3327 if (val)
3328 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3329 else
3330 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3331 ext3_set_aops(inode);
3333 journal_unlock_updates(journal);
3335 /* Finally we can mark the inode as dirty. */
3337 handle = ext3_journal_start(inode, 1);
3338 if (IS_ERR(handle))
3339 return PTR_ERR(handle);
3341 err = ext3_mark_inode_dirty(handle, inode);
3342 handle->h_sync = 1;
3343 ext3_journal_stop(handle);
3344 ext3_std_error(inode->i_sb, err);
3346 return err;