[CPUFREQ] Remove preempt_disable from powernow-k8
[linux-2.6/mini2440.git] / arch / i386 / kernel / cpu / cpufreq / powernow-k8.c
blobe2e03eebedf6ba1254c325b5bcbd7de8c2c19018
1 /*
2 * (c) 2003, 2004, 2005 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Support : mark.langsdorf@amd.com
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
23 * Tables for specific CPUs can be infrerred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
36 #include <asm/msr.h>
37 #include <asm/io.h>
38 #include <asm/delay.h>
40 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
41 #include <linux/acpi.h>
42 #include <acpi/processor.h>
43 #endif
45 #define PFX "powernow-k8: "
46 #define BFX PFX "BIOS error: "
47 #define VERSION "version 1.50.3"
48 #include "powernow-k8.h"
50 /* serialize freq changes */
51 static DECLARE_MUTEX(fidvid_sem);
53 static struct powernow_k8_data *powernow_data[NR_CPUS];
55 #ifndef CONFIG_SMP
56 static cpumask_t cpu_core_map[1];
57 #endif
59 /* Return a frequency in MHz, given an input fid */
60 static u32 find_freq_from_fid(u32 fid)
62 return 800 + (fid * 100);
65 /* Return a frequency in KHz, given an input fid */
66 static u32 find_khz_freq_from_fid(u32 fid)
68 return 1000 * find_freq_from_fid(fid);
71 /* Return a voltage in miliVolts, given an input vid */
72 static u32 find_millivolts_from_vid(struct powernow_k8_data *data, u32 vid)
74 return 1550-vid*25;
77 /* Return the vco fid for an input fid
79 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
80 * only from corresponding high fids. This returns "high" fid corresponding to
81 * "low" one.
83 static u32 convert_fid_to_vco_fid(u32 fid)
85 if (fid < HI_FID_TABLE_BOTTOM) {
86 return 8 + (2 * fid);
87 } else {
88 return fid;
93 * Return 1 if the pending bit is set. Unless we just instructed the processor
94 * to transition to a new state, seeing this bit set is really bad news.
96 static int pending_bit_stuck(void)
98 u32 lo, hi;
100 rdmsr(MSR_FIDVID_STATUS, lo, hi);
101 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
105 * Update the global current fid / vid values from the status msr.
106 * Returns 1 on error.
108 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
110 u32 lo, hi;
111 u32 i = 0;
113 do {
114 if (i++ > 0x1000000) {
115 printk(KERN_ERR PFX "detected change pending stuck\n");
116 return 1;
118 rdmsr(MSR_FIDVID_STATUS, lo, hi);
119 } while (lo & MSR_S_LO_CHANGE_PENDING);
121 data->currvid = hi & MSR_S_HI_CURRENT_VID;
122 data->currfid = lo & MSR_S_LO_CURRENT_FID;
124 return 0;
127 /* the isochronous relief time */
128 static void count_off_irt(struct powernow_k8_data *data)
130 udelay((1 << data->irt) * 10);
131 return;
134 /* the voltage stabalization time */
135 static void count_off_vst(struct powernow_k8_data *data)
137 udelay(data->vstable * VST_UNITS_20US);
138 return;
141 /* need to init the control msr to a safe value (for each cpu) */
142 static void fidvid_msr_init(void)
144 u32 lo, hi;
145 u8 fid, vid;
147 rdmsr(MSR_FIDVID_STATUS, lo, hi);
148 vid = hi & MSR_S_HI_CURRENT_VID;
149 fid = lo & MSR_S_LO_CURRENT_FID;
150 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
151 hi = MSR_C_HI_STP_GNT_BENIGN;
152 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
153 wrmsr(MSR_FIDVID_CTL, lo, hi);
157 /* write the new fid value along with the other control fields to the msr */
158 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
160 u32 lo;
161 u32 savevid = data->currvid;
163 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
164 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
165 return 1;
168 lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
170 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
171 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
173 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
175 if (query_current_values_with_pending_wait(data))
176 return 1;
178 count_off_irt(data);
180 if (savevid != data->currvid) {
181 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
182 savevid, data->currvid);
183 return 1;
186 if (fid != data->currfid) {
187 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
188 data->currfid);
189 return 1;
192 return 0;
195 /* Write a new vid to the hardware */
196 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
198 u32 lo;
199 u32 savefid = data->currfid;
201 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
202 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
203 return 1;
206 lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
208 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
209 vid, lo, STOP_GRANT_5NS);
211 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
213 if (query_current_values_with_pending_wait(data))
214 return 1;
216 if (savefid != data->currfid) {
217 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
218 savefid, data->currfid);
219 return 1;
222 if (vid != data->currvid) {
223 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
224 data->currvid);
225 return 1;
228 return 0;
232 * Reduce the vid by the max of step or reqvid.
233 * Decreasing vid codes represent increasing voltages:
234 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
236 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
238 if ((data->currvid - reqvid) > step)
239 reqvid = data->currvid - step;
241 if (write_new_vid(data, reqvid))
242 return 1;
244 count_off_vst(data);
246 return 0;
249 /* Change the fid and vid, by the 3 phases. */
250 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
252 if (core_voltage_pre_transition(data, reqvid))
253 return 1;
255 if (core_frequency_transition(data, reqfid))
256 return 1;
258 if (core_voltage_post_transition(data, reqvid))
259 return 1;
261 if (query_current_values_with_pending_wait(data))
262 return 1;
264 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
265 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
266 smp_processor_id(),
267 reqfid, reqvid, data->currfid, data->currvid);
268 return 1;
271 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
272 smp_processor_id(), data->currfid, data->currvid);
274 return 0;
277 /* Phase 1 - core voltage transition ... setup voltage */
278 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
280 u32 rvosteps = data->rvo;
281 u32 savefid = data->currfid;
282 u32 maxvid, lo;
284 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
285 smp_processor_id(),
286 data->currfid, data->currvid, reqvid, data->rvo);
288 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
289 maxvid = 0x1f & (maxvid >> 16);
290 dprintk("ph1 maxvid=0x%x\n", maxvid);
291 if (reqvid < maxvid) /* lower numbers are higher voltages */
292 reqvid = maxvid;
294 while (data->currvid > reqvid) {
295 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
296 data->currvid, reqvid);
297 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
298 return 1;
301 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
302 if (data->currvid == maxvid) {
303 rvosteps = 0;
304 } else {
305 dprintk("ph1: changing vid for rvo, req 0x%x\n",
306 data->currvid - 1);
307 if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
308 return 1;
309 rvosteps--;
313 if (query_current_values_with_pending_wait(data))
314 return 1;
316 if (savefid != data->currfid) {
317 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
318 return 1;
321 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
322 data->currfid, data->currvid);
324 return 0;
327 /* Phase 2 - core frequency transition */
328 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
330 u32 vcoreqfid, vcocurrfid, vcofiddiff, savevid = data->currvid;
332 if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
333 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
334 reqfid, data->currfid);
335 return 1;
338 if (data->currfid == reqfid) {
339 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
340 return 0;
343 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
344 smp_processor_id(),
345 data->currfid, data->currvid, reqfid);
347 vcoreqfid = convert_fid_to_vco_fid(reqfid);
348 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
349 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
350 : vcoreqfid - vcocurrfid;
352 while (vcofiddiff > 2) {
353 if (reqfid > data->currfid) {
354 if (data->currfid > LO_FID_TABLE_TOP) {
355 if (write_new_fid(data, data->currfid + 2)) {
356 return 1;
358 } else {
359 if (write_new_fid
360 (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
361 return 1;
364 } else {
365 if (write_new_fid(data, data->currfid - 2))
366 return 1;
369 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
370 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
371 : vcoreqfid - vcocurrfid;
374 if (write_new_fid(data, reqfid))
375 return 1;
377 if (query_current_values_with_pending_wait(data))
378 return 1;
380 if (data->currfid != reqfid) {
381 printk(KERN_ERR PFX
382 "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
383 data->currfid, reqfid);
384 return 1;
387 if (savevid != data->currvid) {
388 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
389 savevid, data->currvid);
390 return 1;
393 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
394 data->currfid, data->currvid);
396 return 0;
399 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
400 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
402 u32 savefid = data->currfid;
403 u32 savereqvid = reqvid;
405 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
406 smp_processor_id(),
407 data->currfid, data->currvid);
409 if (reqvid != data->currvid) {
410 if (write_new_vid(data, reqvid))
411 return 1;
413 if (savefid != data->currfid) {
414 printk(KERN_ERR PFX
415 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
416 savefid, data->currfid);
417 return 1;
420 if (data->currvid != reqvid) {
421 printk(KERN_ERR PFX
422 "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
423 reqvid, data->currvid);
424 return 1;
428 if (query_current_values_with_pending_wait(data))
429 return 1;
431 if (savereqvid != data->currvid) {
432 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
433 return 1;
436 if (savefid != data->currfid) {
437 dprintk("ph3 failed, currfid changed 0x%x\n",
438 data->currfid);
439 return 1;
442 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
443 data->currfid, data->currvid);
445 return 0;
448 static int check_supported_cpu(unsigned int cpu)
450 cpumask_t oldmask = CPU_MASK_ALL;
451 u32 eax, ebx, ecx, edx;
452 unsigned int rc = 0;
454 oldmask = current->cpus_allowed;
455 set_cpus_allowed(current, cpumask_of_cpu(cpu));
457 if (smp_processor_id() != cpu) {
458 printk(KERN_ERR "limiting to cpu %u failed\n", cpu);
459 goto out;
462 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
463 goto out;
465 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
466 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
467 ((eax & CPUID_XFAM) != CPUID_XFAM_K8) ||
468 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_F)) {
469 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
470 goto out;
473 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
474 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
475 printk(KERN_INFO PFX
476 "No frequency change capabilities detected\n");
477 goto out;
480 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
481 if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
482 printk(KERN_INFO PFX "Power state transitions not supported\n");
483 goto out;
486 rc = 1;
488 out:
489 set_cpus_allowed(current, oldmask);
490 return rc;
493 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
495 unsigned int j;
496 u8 lastfid = 0xff;
498 for (j = 0; j < data->numps; j++) {
499 if (pst[j].vid > LEAST_VID) {
500 printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
501 return -EINVAL;
503 if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */
504 printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
505 return -ENODEV;
507 if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */
508 printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
509 return -ENODEV;
511 if ((pst[j].fid > MAX_FID)
512 || (pst[j].fid & 1)
513 || (j && (pst[j].fid < HI_FID_TABLE_BOTTOM))) {
514 /* Only first fid is allowed to be in "low" range */
515 printk(KERN_ERR PFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
516 return -EINVAL;
518 if (pst[j].fid < lastfid)
519 lastfid = pst[j].fid;
521 if (lastfid & 1) {
522 printk(KERN_ERR PFX "lastfid invalid\n");
523 return -EINVAL;
525 if (lastfid > LO_FID_TABLE_TOP)
526 printk(KERN_INFO PFX "first fid not from lo freq table\n");
528 return 0;
531 static void print_basics(struct powernow_k8_data *data)
533 int j;
534 for (j = 0; j < data->numps; j++) {
535 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID)
536 printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x (%d mV)\n", j,
537 data->powernow_table[j].index & 0xff,
538 data->powernow_table[j].frequency/1000,
539 data->powernow_table[j].index >> 8,
540 find_millivolts_from_vid(data, data->powernow_table[j].index >> 8));
542 if (data->batps)
543 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
546 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
548 struct cpufreq_frequency_table *powernow_table;
549 unsigned int j;
551 if (data->batps) { /* use ACPI support to get full speed on mains power */
552 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
553 data->numps = data->batps;
556 for ( j=1; j<data->numps; j++ ) {
557 if (pst[j-1].fid >= pst[j].fid) {
558 printk(KERN_ERR PFX "PST out of sequence\n");
559 return -EINVAL;
563 if (data->numps < 2) {
564 printk(KERN_ERR PFX "no p states to transition\n");
565 return -ENODEV;
568 if (check_pst_table(data, pst, maxvid))
569 return -EINVAL;
571 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
572 * (data->numps + 1)), GFP_KERNEL);
573 if (!powernow_table) {
574 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
575 return -ENOMEM;
578 for (j = 0; j < data->numps; j++) {
579 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
580 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
581 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
583 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
584 powernow_table[data->numps].index = 0;
586 if (query_current_values_with_pending_wait(data)) {
587 kfree(powernow_table);
588 return -EIO;
591 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
592 data->powernow_table = powernow_table;
593 print_basics(data);
595 for (j = 0; j < data->numps; j++)
596 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
597 return 0;
599 dprintk("currfid/vid do not match PST, ignoring\n");
600 return 0;
603 /* Find and validate the PSB/PST table in BIOS. */
604 static int find_psb_table(struct powernow_k8_data *data)
606 struct psb_s *psb;
607 unsigned int i;
608 u32 mvs;
609 u8 maxvid;
610 u32 cpst = 0;
611 u32 thiscpuid;
613 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
614 /* Scan BIOS looking for the signature. */
615 /* It can not be at ffff0 - it is too big. */
617 psb = phys_to_virt(i);
618 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
619 continue;
621 dprintk("found PSB header at 0x%p\n", psb);
623 dprintk("table vers: 0x%x\n", psb->tableversion);
624 if (psb->tableversion != PSB_VERSION_1_4) {
625 printk(KERN_INFO BFX "PSB table is not v1.4\n");
626 return -ENODEV;
629 dprintk("flags: 0x%x\n", psb->flags1);
630 if (psb->flags1) {
631 printk(KERN_ERR BFX "unknown flags\n");
632 return -ENODEV;
635 data->vstable = psb->vstable;
636 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
638 dprintk("flags2: 0x%x\n", psb->flags2);
639 data->rvo = psb->flags2 & 3;
640 data->irt = ((psb->flags2) >> 2) & 3;
641 mvs = ((psb->flags2) >> 4) & 3;
642 data->vidmvs = 1 << mvs;
643 data->batps = ((psb->flags2) >> 6) & 3;
645 dprintk("ramp voltage offset: %d\n", data->rvo);
646 dprintk("isochronous relief time: %d\n", data->irt);
647 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
649 dprintk("numpst: 0x%x\n", psb->num_tables);
650 cpst = psb->num_tables;
651 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
652 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
653 if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
654 cpst = 1;
657 if (cpst != 1) {
658 printk(KERN_ERR BFX "numpst must be 1\n");
659 return -ENODEV;
662 data->plllock = psb->plllocktime;
663 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
664 dprintk("maxfid: 0x%x\n", psb->maxfid);
665 dprintk("maxvid: 0x%x\n", psb->maxvid);
666 maxvid = psb->maxvid;
668 data->numps = psb->numps;
669 dprintk("numpstates: 0x%x\n", data->numps);
670 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
673 * If you see this message, complain to BIOS manufacturer. If
674 * he tells you "we do not support Linux" or some similar
675 * nonsense, remember that Windows 2000 uses the same legacy
676 * mechanism that the old Linux PSB driver uses. Tell them it
677 * is broken with Windows 2000.
679 * The reference to the AMD documentation is chapter 9 in the
680 * BIOS and Kernel Developer's Guide, which is available on
681 * www.amd.com
683 printk(KERN_INFO PFX "BIOS error - no PSB or ACPI _PSS objects\n");
684 return -ENODEV;
687 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
688 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
690 if (!data->acpi_data.state_count)
691 return;
693 data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
694 data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
695 data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
696 data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
697 data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
698 data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
701 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
703 int i;
704 int cntlofreq = 0;
705 struct cpufreq_frequency_table *powernow_table;
707 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
708 dprintk("register performance failed: bad ACPI data\n");
709 return -EIO;
712 /* verify the data contained in the ACPI structures */
713 if (data->acpi_data.state_count <= 1) {
714 dprintk("No ACPI P-States\n");
715 goto err_out;
718 if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
719 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
720 dprintk("Invalid control/status registers (%x - %x)\n",
721 data->acpi_data.control_register.space_id,
722 data->acpi_data.status_register.space_id);
723 goto err_out;
726 /* fill in data->powernow_table */
727 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
728 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
729 if (!powernow_table) {
730 dprintk("powernow_table memory alloc failure\n");
731 goto err_out;
734 for (i = 0; i < data->acpi_data.state_count; i++) {
735 u32 fid;
736 u32 vid;
738 if (data->exttype) {
739 fid = data->acpi_data.states[i].status & FID_MASK;
740 vid = (data->acpi_data.states[i].status >> VID_SHIFT) & VID_MASK;
741 } else {
742 fid = data->acpi_data.states[i].control & FID_MASK;
743 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
746 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
748 powernow_table[i].index = fid; /* lower 8 bits */
749 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
750 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
752 /* verify frequency is OK */
753 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
754 (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
755 dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
756 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
757 continue;
760 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
761 if (vid == VID_OFF) {
762 dprintk("invalid vid %u, ignoring\n", vid);
763 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
764 continue;
767 /* verify only 1 entry from the lo frequency table */
768 if (fid < HI_FID_TABLE_BOTTOM) {
769 if (cntlofreq) {
770 /* if both entries are the same, ignore this
771 * one...
773 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
774 (powernow_table[i].index != powernow_table[cntlofreq].index)) {
775 printk(KERN_ERR PFX "Too many lo freq table entries\n");
776 goto err_out_mem;
779 dprintk("double low frequency table entry, ignoring it.\n");
780 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
781 continue;
782 } else
783 cntlofreq = i;
786 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
787 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
788 powernow_table[i].frequency,
789 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
790 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
791 continue;
795 powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
796 powernow_table[data->acpi_data.state_count].index = 0;
797 data->powernow_table = powernow_table;
799 /* fill in data */
800 data->numps = data->acpi_data.state_count;
801 print_basics(data);
802 powernow_k8_acpi_pst_values(data, 0);
804 /* notify BIOS that we exist */
805 acpi_processor_notify_smm(THIS_MODULE);
807 return 0;
809 err_out_mem:
810 kfree(powernow_table);
812 err_out:
813 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
815 /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
816 data->acpi_data.state_count = 0;
818 return -ENODEV;
821 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
823 if (data->acpi_data.state_count)
824 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
827 #else
828 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
829 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
830 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
831 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
833 /* Take a frequency, and issue the fid/vid transition command */
834 static int transition_frequency(struct powernow_k8_data *data, unsigned int index)
836 u32 fid;
837 u32 vid;
838 int res, i;
839 struct cpufreq_freqs freqs;
841 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
843 /* fid are the lower 8 bits of the index we stored into
844 * the cpufreq frequency table in find_psb_table, vid are
845 * the upper 8 bits.
848 fid = data->powernow_table[index].index & 0xFF;
849 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
851 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
853 if (query_current_values_with_pending_wait(data))
854 return 1;
856 if ((data->currvid == vid) && (data->currfid == fid)) {
857 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
858 fid, vid);
859 return 0;
862 if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
863 printk(KERN_ERR PFX
864 "ignoring illegal change in lo freq table-%x to 0x%x\n",
865 data->currfid, fid);
866 return 1;
869 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
870 smp_processor_id(), fid, vid);
872 freqs.cpu = data->cpu;
873 freqs.old = find_khz_freq_from_fid(data->currfid);
874 freqs.new = find_khz_freq_from_fid(fid);
875 for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
876 freqs.cpu = i;
877 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
880 res = transition_fid_vid(data, fid, vid);
882 freqs.new = find_khz_freq_from_fid(data->currfid);
883 for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
884 freqs.cpu = i;
885 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
887 return res;
890 /* Driver entry point to switch to the target frequency */
891 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
893 cpumask_t oldmask = CPU_MASK_ALL;
894 struct powernow_k8_data *data = powernow_data[pol->cpu];
895 u32 checkfid = data->currfid;
896 u32 checkvid = data->currvid;
897 unsigned int newstate;
898 int ret = -EIO;
899 int i;
901 /* only run on specific CPU from here on */
902 oldmask = current->cpus_allowed;
903 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
905 if (smp_processor_id() != pol->cpu) {
906 printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu);
907 goto err_out;
910 if (pending_bit_stuck()) {
911 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
912 goto err_out;
915 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
916 pol->cpu, targfreq, pol->min, pol->max, relation);
918 if (query_current_values_with_pending_wait(data)) {
919 ret = -EIO;
920 goto err_out;
923 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
924 data->currfid, data->currvid);
926 if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
927 printk(KERN_INFO PFX
928 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
929 checkfid, data->currfid, checkvid, data->currvid);
932 if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
933 goto err_out;
935 down(&fidvid_sem);
937 powernow_k8_acpi_pst_values(data, newstate);
939 if (transition_frequency(data, newstate)) {
940 printk(KERN_ERR PFX "transition frequency failed\n");
941 ret = 1;
942 up(&fidvid_sem);
943 goto err_out;
946 /* Update all the fid/vids of our siblings */
947 for_each_cpu_mask(i, cpu_core_map[pol->cpu]) {
948 powernow_data[i]->currvid = data->currvid;
949 powernow_data[i]->currfid = data->currfid;
951 up(&fidvid_sem);
953 pol->cur = find_khz_freq_from_fid(data->currfid);
954 ret = 0;
956 err_out:
957 set_cpus_allowed(current, oldmask);
958 return ret;
961 /* Driver entry point to verify the policy and range of frequencies */
962 static int powernowk8_verify(struct cpufreq_policy *pol)
964 struct powernow_k8_data *data = powernow_data[pol->cpu];
966 return cpufreq_frequency_table_verify(pol, data->powernow_table);
969 /* per CPU init entry point to the driver */
970 static int __init powernowk8_cpu_init(struct cpufreq_policy *pol)
972 struct powernow_k8_data *data;
973 cpumask_t oldmask = CPU_MASK_ALL;
974 int rc, i;
976 if (!check_supported_cpu(pol->cpu))
977 return -ENODEV;
979 data = kmalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
980 if (!data) {
981 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
982 return -ENOMEM;
984 memset(data,0,sizeof(struct powernow_k8_data));
986 data->cpu = pol->cpu;
988 if (powernow_k8_cpu_init_acpi(data)) {
990 * Use the PSB BIOS structure. This is only availabe on
991 * an UP version, and is deprecated by AMD.
994 if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) {
995 printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
996 kfree(data);
997 return -ENODEV;
999 if (pol->cpu != 0) {
1000 printk(KERN_ERR PFX "init not cpu 0\n");
1001 kfree(data);
1002 return -ENODEV;
1004 rc = find_psb_table(data);
1005 if (rc) {
1006 kfree(data);
1007 return -ENODEV;
1011 /* only run on specific CPU from here on */
1012 oldmask = current->cpus_allowed;
1013 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1015 if (smp_processor_id() != pol->cpu) {
1016 printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu);
1017 goto err_out;
1020 if (pending_bit_stuck()) {
1021 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1022 goto err_out;
1025 if (query_current_values_with_pending_wait(data))
1026 goto err_out;
1028 fidvid_msr_init();
1030 /* run on any CPU again */
1031 set_cpus_allowed(current, oldmask);
1033 pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
1034 pol->cpus = cpu_core_map[pol->cpu];
1036 /* Take a crude guess here.
1037 * That guess was in microseconds, so multiply with 1000 */
1038 pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1039 + (3 * (1 << data->irt) * 10)) * 1000;
1041 pol->cur = find_khz_freq_from_fid(data->currfid);
1042 dprintk("policy current frequency %d kHz\n", pol->cur);
1044 /* min/max the cpu is capable of */
1045 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1046 printk(KERN_ERR PFX "invalid powernow_table\n");
1047 powernow_k8_cpu_exit_acpi(data);
1048 kfree(data->powernow_table);
1049 kfree(data);
1050 return -EINVAL;
1053 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1055 printk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1056 data->currfid, data->currvid);
1058 for_each_cpu_mask(i, cpu_core_map[pol->cpu]) {
1059 powernow_data[i] = data;
1062 return 0;
1064 err_out:
1065 set_cpus_allowed(current, oldmask);
1066 powernow_k8_cpu_exit_acpi(data);
1068 kfree(data);
1069 return -ENODEV;
1072 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1074 struct powernow_k8_data *data = powernow_data[pol->cpu];
1076 if (!data)
1077 return -EINVAL;
1079 powernow_k8_cpu_exit_acpi(data);
1081 cpufreq_frequency_table_put_attr(pol->cpu);
1083 kfree(data->powernow_table);
1084 kfree(data);
1086 return 0;
1089 static unsigned int powernowk8_get (unsigned int cpu)
1091 struct powernow_k8_data *data = powernow_data[cpu];
1092 cpumask_t oldmask = current->cpus_allowed;
1093 unsigned int khz = 0;
1095 set_cpus_allowed(current, cpumask_of_cpu(cpu));
1096 if (smp_processor_id() != cpu) {
1097 printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu);
1098 set_cpus_allowed(current, oldmask);
1099 return 0;
1102 if (query_current_values_with_pending_wait(data))
1103 goto out;
1105 khz = find_khz_freq_from_fid(data->currfid);
1107 out:
1108 set_cpus_allowed(current, oldmask);
1109 return khz;
1112 static struct freq_attr* powernow_k8_attr[] = {
1113 &cpufreq_freq_attr_scaling_available_freqs,
1114 NULL,
1117 static struct cpufreq_driver cpufreq_amd64_driver = {
1118 .verify = powernowk8_verify,
1119 .target = powernowk8_target,
1120 .init = powernowk8_cpu_init,
1121 .exit = __devexit_p(powernowk8_cpu_exit),
1122 .get = powernowk8_get,
1123 .name = "powernow-k8",
1124 .owner = THIS_MODULE,
1125 .attr = powernow_k8_attr,
1128 /* driver entry point for init */
1129 static int __init powernowk8_init(void)
1131 unsigned int i, supported_cpus = 0;
1133 for (i=0; i<NR_CPUS; i++) {
1134 if (!cpu_online(i))
1135 continue;
1136 if (check_supported_cpu(i))
1137 supported_cpus++;
1140 if (supported_cpus == num_online_cpus()) {
1141 printk(KERN_INFO PFX "Found %d AMD Athlon 64 / Opteron processors (" VERSION ")\n",
1142 supported_cpus);
1143 return cpufreq_register_driver(&cpufreq_amd64_driver);
1146 return -ENODEV;
1149 /* driver entry point for term */
1150 static void __exit powernowk8_exit(void)
1152 dprintk("exit\n");
1154 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1157 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com.");
1158 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1159 MODULE_LICENSE("GPL");
1161 late_initcall(powernowk8_init);
1162 module_exit(powernowk8_exit);