4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak
)) sched_clock(void)
75 return (unsigned long long)jiffies
* (1000000000 / HZ
);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
122 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
131 sg
->__cpu_power
+= val
;
132 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
143 static unsigned int static_prio_timeslice(int static_prio
)
145 if (static_prio
== NICE_TO_PRIO(19))
148 if (static_prio
< NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE
* 4, static_prio
);
151 return SCALE_PRIO(DEF_TIMESLICE
, static_prio
);
154 static inline int rt_policy(int policy
)
156 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
161 static inline int task_has_rt_policy(struct task_struct
*p
)
163 return rt_policy(p
->policy
);
167 * This is the priority-queue data structure of the RT scheduling class:
169 struct rt_prio_array
{
170 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
171 struct list_head queue
[MAX_RT_PRIO
];
174 #ifdef CONFIG_FAIR_GROUP_SCHED
178 /* task group related information */
180 /* schedulable entities of this group on each cpu */
181 struct sched_entity
**se
;
182 /* runqueue "owned" by this group on each cpu */
183 struct cfs_rq
**cfs_rq
;
184 unsigned long shares
;
187 /* Default task group's sched entity on each cpu */
188 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
189 /* Default task group's cfs_rq on each cpu */
190 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
192 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
193 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
195 /* Default task group.
196 * Every task in system belong to this group at bootup.
198 struct task_grp init_task_grp
= {
199 .se
= init_sched_entity_p
,
200 .cfs_rq
= init_cfs_rq_p
,
203 #ifdef CONFIG_FAIR_USER_SCHED
204 #define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
206 #define INIT_TASK_GRP_LOAD NICE_0_LOAD
209 static int init_task_grp_load
= INIT_TASK_GRP_LOAD
;
211 /* return group to which a task belongs */
212 static inline struct task_grp
*task_grp(struct task_struct
*p
)
216 #ifdef CONFIG_FAIR_USER_SCHED
225 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
226 static inline void set_task_cfs_rq(struct task_struct
*p
)
228 p
->se
.cfs_rq
= task_grp(p
)->cfs_rq
[task_cpu(p
)];
229 p
->se
.parent
= task_grp(p
)->se
[task_cpu(p
)];
234 static inline void set_task_cfs_rq(struct task_struct
*p
) { }
236 #endif /* CONFIG_FAIR_GROUP_SCHED */
238 /* CFS-related fields in a runqueue */
240 struct load_weight load
;
241 unsigned long nr_running
;
246 struct rb_root tasks_timeline
;
247 struct rb_node
*rb_leftmost
;
248 struct rb_node
*rb_load_balance_curr
;
249 /* 'curr' points to currently running entity on this cfs_rq.
250 * It is set to NULL otherwise (i.e when none are currently running).
252 struct sched_entity
*curr
;
253 #ifdef CONFIG_FAIR_GROUP_SCHED
254 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
256 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
257 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
258 * (like users, containers etc.)
260 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
261 * list is used during load balance.
263 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
264 struct task_grp
*tg
; /* group that "owns" this runqueue */
269 /* Real-Time classes' related field in a runqueue: */
271 struct rt_prio_array active
;
272 int rt_load_balance_idx
;
273 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
277 * This is the main, per-CPU runqueue data structure.
279 * Locking rule: those places that want to lock multiple runqueues
280 * (such as the load balancing or the thread migration code), lock
281 * acquire operations must be ordered by ascending &runqueue.
284 spinlock_t lock
; /* runqueue lock */
287 * nr_running and cpu_load should be in the same cacheline because
288 * remote CPUs use both these fields when doing load calculation.
290 unsigned long nr_running
;
291 #define CPU_LOAD_IDX_MAX 5
292 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
293 unsigned char idle_at_tick
;
295 unsigned char in_nohz_recently
;
297 struct load_weight load
; /* capture load from *all* tasks on this cpu */
298 unsigned long nr_load_updates
;
302 #ifdef CONFIG_FAIR_GROUP_SCHED
303 struct list_head leaf_cfs_rq_list
; /* list of leaf cfs_rq on this cpu */
308 * This is part of a global counter where only the total sum
309 * over all CPUs matters. A task can increase this counter on
310 * one CPU and if it got migrated afterwards it may decrease
311 * it on another CPU. Always updated under the runqueue lock:
313 unsigned long nr_uninterruptible
;
315 struct task_struct
*curr
, *idle
;
316 unsigned long next_balance
;
317 struct mm_struct
*prev_mm
;
319 u64 clock
, prev_clock_raw
;
322 unsigned int clock_warps
, clock_overflows
;
324 unsigned int clock_deep_idle_events
;
330 struct sched_domain
*sd
;
332 /* For active balancing */
335 int cpu
; /* cpu of this runqueue */
337 struct task_struct
*migration_thread
;
338 struct list_head migration_queue
;
341 #ifdef CONFIG_SCHEDSTATS
343 struct sched_info rq_sched_info
;
345 /* sys_sched_yield() stats */
346 unsigned long yld_exp_empty
;
347 unsigned long yld_act_empty
;
348 unsigned long yld_both_empty
;
349 unsigned long yld_cnt
;
351 /* schedule() stats */
352 unsigned long sched_switch
;
353 unsigned long sched_cnt
;
354 unsigned long sched_goidle
;
356 /* try_to_wake_up() stats */
357 unsigned long ttwu_cnt
;
358 unsigned long ttwu_local
;
361 unsigned long bkl_cnt
;
363 struct lock_class_key rq_lock_key
;
366 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
367 static DEFINE_MUTEX(sched_hotcpu_mutex
);
369 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
371 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
374 static inline int cpu_of(struct rq
*rq
)
384 * Update the per-runqueue clock, as finegrained as the platform can give
385 * us, but without assuming monotonicity, etc.:
387 static void __update_rq_clock(struct rq
*rq
)
389 u64 prev_raw
= rq
->prev_clock_raw
;
390 u64 now
= sched_clock();
391 s64 delta
= now
- prev_raw
;
392 u64 clock
= rq
->clock
;
394 #ifdef CONFIG_SCHED_DEBUG
395 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
398 * Protect against sched_clock() occasionally going backwards:
400 if (unlikely(delta
< 0)) {
405 * Catch too large forward jumps too:
407 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
408 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
409 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
412 rq
->clock_overflows
++;
414 if (unlikely(delta
> rq
->clock_max_delta
))
415 rq
->clock_max_delta
= delta
;
420 rq
->prev_clock_raw
= now
;
424 static void update_rq_clock(struct rq
*rq
)
426 if (likely(smp_processor_id() == cpu_of(rq
)))
427 __update_rq_clock(rq
);
431 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
432 * See detach_destroy_domains: synchronize_sched for details.
434 * The domain tree of any CPU may only be accessed from within
435 * preempt-disabled sections.
437 #define for_each_domain(cpu, __sd) \
438 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
440 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
441 #define this_rq() (&__get_cpu_var(runqueues))
442 #define task_rq(p) cpu_rq(task_cpu(p))
443 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
446 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
448 #ifdef CONFIG_SCHED_DEBUG
449 # define const_debug __read_mostly
451 # define const_debug static const
455 * Debugging: various feature bits
458 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
459 SCHED_FEAT_START_DEBIT
= 2,
460 SCHED_FEAT_USE_TREE_AVG
= 4,
461 SCHED_FEAT_APPROX_AVG
= 8,
464 const_debug
unsigned int sysctl_sched_features
=
465 SCHED_FEAT_NEW_FAIR_SLEEPERS
*1 |
466 SCHED_FEAT_START_DEBIT
*1 |
467 SCHED_FEAT_USE_TREE_AVG
*0 |
468 SCHED_FEAT_APPROX_AVG
*0;
470 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
473 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
474 * clock constructed from sched_clock():
476 unsigned long long cpu_clock(int cpu
)
478 unsigned long long now
;
482 local_irq_save(flags
);
486 local_irq_restore(flags
);
491 #ifndef prepare_arch_switch
492 # define prepare_arch_switch(next) do { } while (0)
494 #ifndef finish_arch_switch
495 # define finish_arch_switch(prev) do { } while (0)
498 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
499 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
501 return rq
->curr
== p
;
504 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
508 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
510 #ifdef CONFIG_DEBUG_SPINLOCK
511 /* this is a valid case when another task releases the spinlock */
512 rq
->lock
.owner
= current
;
515 * If we are tracking spinlock dependencies then we have to
516 * fix up the runqueue lock - which gets 'carried over' from
519 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
521 spin_unlock_irq(&rq
->lock
);
524 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
525 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
530 return rq
->curr
== p
;
534 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
538 * We can optimise this out completely for !SMP, because the
539 * SMP rebalancing from interrupt is the only thing that cares
544 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
545 spin_unlock_irq(&rq
->lock
);
547 spin_unlock(&rq
->lock
);
551 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
555 * After ->oncpu is cleared, the task can be moved to a different CPU.
556 * We must ensure this doesn't happen until the switch is completely
562 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
566 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
569 * __task_rq_lock - lock the runqueue a given task resides on.
570 * Must be called interrupts disabled.
572 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
579 spin_lock(&rq
->lock
);
580 if (unlikely(rq
!= task_rq(p
))) {
581 spin_unlock(&rq
->lock
);
582 goto repeat_lock_task
;
588 * task_rq_lock - lock the runqueue a given task resides on and disable
589 * interrupts. Note the ordering: we can safely lookup the task_rq without
590 * explicitly disabling preemption.
592 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
598 local_irq_save(*flags
);
600 spin_lock(&rq
->lock
);
601 if (unlikely(rq
!= task_rq(p
))) {
602 spin_unlock_irqrestore(&rq
->lock
, *flags
);
603 goto repeat_lock_task
;
608 static inline void __task_rq_unlock(struct rq
*rq
)
611 spin_unlock(&rq
->lock
);
614 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
617 spin_unlock_irqrestore(&rq
->lock
, *flags
);
621 * this_rq_lock - lock this runqueue and disable interrupts.
623 static inline struct rq
*this_rq_lock(void)
630 spin_lock(&rq
->lock
);
636 * We are going deep-idle (irqs are disabled):
638 void sched_clock_idle_sleep_event(void)
640 struct rq
*rq
= cpu_rq(smp_processor_id());
642 spin_lock(&rq
->lock
);
643 __update_rq_clock(rq
);
644 spin_unlock(&rq
->lock
);
645 rq
->clock_deep_idle_events
++;
647 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
650 * We just idled delta nanoseconds (called with irqs disabled):
652 void sched_clock_idle_wakeup_event(u64 delta_ns
)
654 struct rq
*rq
= cpu_rq(smp_processor_id());
655 u64 now
= sched_clock();
657 rq
->idle_clock
+= delta_ns
;
659 * Override the previous timestamp and ignore all
660 * sched_clock() deltas that occured while we idled,
661 * and use the PM-provided delta_ns to advance the
664 spin_lock(&rq
->lock
);
665 rq
->prev_clock_raw
= now
;
666 rq
->clock
+= delta_ns
;
667 spin_unlock(&rq
->lock
);
669 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
672 * resched_task - mark a task 'to be rescheduled now'.
674 * On UP this means the setting of the need_resched flag, on SMP it
675 * might also involve a cross-CPU call to trigger the scheduler on
680 #ifndef tsk_is_polling
681 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
684 static void resched_task(struct task_struct
*p
)
688 assert_spin_locked(&task_rq(p
)->lock
);
690 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
693 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
696 if (cpu
== smp_processor_id())
699 /* NEED_RESCHED must be visible before we test polling */
701 if (!tsk_is_polling(p
))
702 smp_send_reschedule(cpu
);
705 static void resched_cpu(int cpu
)
707 struct rq
*rq
= cpu_rq(cpu
);
710 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
712 resched_task(cpu_curr(cpu
));
713 spin_unlock_irqrestore(&rq
->lock
, flags
);
716 static inline void resched_task(struct task_struct
*p
)
718 assert_spin_locked(&task_rq(p
)->lock
);
719 set_tsk_need_resched(p
);
723 #if BITS_PER_LONG == 32
724 # define WMULT_CONST (~0UL)
726 # define WMULT_CONST (1UL << 32)
729 #define WMULT_SHIFT 32
732 * Shift right and round:
734 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
737 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
738 struct load_weight
*lw
)
742 if (unlikely(!lw
->inv_weight
))
743 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
745 tmp
= (u64
)delta_exec
* weight
;
747 * Check whether we'd overflow the 64-bit multiplication:
749 if (unlikely(tmp
> WMULT_CONST
))
750 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
753 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
755 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
758 static inline unsigned long
759 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
761 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
764 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
769 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
775 * To aid in avoiding the subversion of "niceness" due to uneven distribution
776 * of tasks with abnormal "nice" values across CPUs the contribution that
777 * each task makes to its run queue's load is weighted according to its
778 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
779 * scaled version of the new time slice allocation that they receive on time
783 #define WEIGHT_IDLEPRIO 2
784 #define WMULT_IDLEPRIO (1 << 31)
787 * Nice levels are multiplicative, with a gentle 10% change for every
788 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
789 * nice 1, it will get ~10% less CPU time than another CPU-bound task
790 * that remained on nice 0.
792 * The "10% effect" is relative and cumulative: from _any_ nice level,
793 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
794 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
795 * If a task goes up by ~10% and another task goes down by ~10% then
796 * the relative distance between them is ~25%.)
798 static const int prio_to_weight
[40] = {
799 /* -20 */ 88761, 71755, 56483, 46273, 36291,
800 /* -15 */ 29154, 23254, 18705, 14949, 11916,
801 /* -10 */ 9548, 7620, 6100, 4904, 3906,
802 /* -5 */ 3121, 2501, 1991, 1586, 1277,
803 /* 0 */ 1024, 820, 655, 526, 423,
804 /* 5 */ 335, 272, 215, 172, 137,
805 /* 10 */ 110, 87, 70, 56, 45,
806 /* 15 */ 36, 29, 23, 18, 15,
810 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
812 * In cases where the weight does not change often, we can use the
813 * precalculated inverse to speed up arithmetics by turning divisions
814 * into multiplications:
816 static const u32 prio_to_wmult
[40] = {
817 /* -20 */ 48388, 59856, 76040, 92818, 118348,
818 /* -15 */ 147320, 184698, 229616, 287308, 360437,
819 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
820 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
821 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
822 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
823 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
824 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
827 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
830 * runqueue iterator, to support SMP load-balancing between different
831 * scheduling classes, without having to expose their internal data
832 * structures to the load-balancing proper:
836 struct task_struct
*(*start
)(void *);
837 struct task_struct
*(*next
)(void *);
840 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
841 unsigned long max_nr_move
, unsigned long max_load_move
,
842 struct sched_domain
*sd
, enum cpu_idle_type idle
,
843 int *all_pinned
, unsigned long *load_moved
,
844 int *this_best_prio
, struct rq_iterator
*iterator
);
846 #include "sched_stats.h"
847 #include "sched_rt.c"
848 #include "sched_fair.c"
849 #include "sched_idletask.c"
850 #ifdef CONFIG_SCHED_DEBUG
851 # include "sched_debug.c"
854 #define sched_class_highest (&rt_sched_class)
857 * Update delta_exec, delta_fair fields for rq.
859 * delta_fair clock advances at a rate inversely proportional to
860 * total load (rq->load.weight) on the runqueue, while
861 * delta_exec advances at the same rate as wall-clock (provided
864 * delta_exec / delta_fair is a measure of the (smoothened) load on this
865 * runqueue over any given interval. This (smoothened) load is used
866 * during load balance.
868 * This function is called /before/ updating rq->load
869 * and when switching tasks.
871 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
873 update_load_add(&rq
->load
, p
->se
.load
.weight
);
876 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
878 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
881 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
887 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
893 static void set_load_weight(struct task_struct
*p
)
895 if (task_has_rt_policy(p
)) {
896 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
897 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
902 * SCHED_IDLE tasks get minimal weight:
904 if (p
->policy
== SCHED_IDLE
) {
905 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
906 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
910 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
911 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
914 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
916 sched_info_queued(p
);
917 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
921 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
923 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
928 * __normal_prio - return the priority that is based on the static prio
930 static inline int __normal_prio(struct task_struct
*p
)
932 return p
->static_prio
;
936 * Calculate the expected normal priority: i.e. priority
937 * without taking RT-inheritance into account. Might be
938 * boosted by interactivity modifiers. Changes upon fork,
939 * setprio syscalls, and whenever the interactivity
940 * estimator recalculates.
942 static inline int normal_prio(struct task_struct
*p
)
946 if (task_has_rt_policy(p
))
947 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
949 prio
= __normal_prio(p
);
954 * Calculate the current priority, i.e. the priority
955 * taken into account by the scheduler. This value might
956 * be boosted by RT tasks, or might be boosted by
957 * interactivity modifiers. Will be RT if the task got
958 * RT-boosted. If not then it returns p->normal_prio.
960 static int effective_prio(struct task_struct
*p
)
962 p
->normal_prio
= normal_prio(p
);
964 * If we are RT tasks or we were boosted to RT priority,
965 * keep the priority unchanged. Otherwise, update priority
966 * to the normal priority:
968 if (!rt_prio(p
->prio
))
969 return p
->normal_prio
;
974 * activate_task - move a task to the runqueue.
976 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
978 if (p
->state
== TASK_UNINTERRUPTIBLE
)
979 rq
->nr_uninterruptible
--;
981 enqueue_task(rq
, p
, wakeup
);
982 inc_nr_running(p
, rq
);
986 * activate_idle_task - move idle task to the _front_ of runqueue.
988 static inline void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
992 if (p
->state
== TASK_UNINTERRUPTIBLE
)
993 rq
->nr_uninterruptible
--;
995 enqueue_task(rq
, p
, 0);
996 inc_nr_running(p
, rq
);
1000 * deactivate_task - remove a task from the runqueue.
1002 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1004 if (p
->state
== TASK_UNINTERRUPTIBLE
)
1005 rq
->nr_uninterruptible
++;
1007 dequeue_task(rq
, p
, sleep
);
1008 dec_nr_running(p
, rq
);
1012 * task_curr - is this task currently executing on a CPU?
1013 * @p: the task in question.
1015 inline int task_curr(const struct task_struct
*p
)
1017 return cpu_curr(task_cpu(p
)) == p
;
1020 /* Used instead of source_load when we know the type == 0 */
1021 unsigned long weighted_cpuload(const int cpu
)
1023 return cpu_rq(cpu
)->load
.weight
;
1026 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1029 task_thread_info(p
)->cpu
= cpu
;
1036 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1038 int old_cpu
= task_cpu(p
);
1039 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1042 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1044 #ifdef CONFIG_SCHEDSTATS
1045 if (p
->se
.wait_start
)
1046 p
->se
.wait_start
-= clock_offset
;
1047 if (p
->se
.sleep_start
)
1048 p
->se
.sleep_start
-= clock_offset
;
1049 if (p
->se
.block_start
)
1050 p
->se
.block_start
-= clock_offset
;
1052 if (likely(new_rq
->cfs
.min_vruntime
))
1053 p
->se
.vruntime
-= old_rq
->cfs
.min_vruntime
-
1054 new_rq
->cfs
.min_vruntime
;
1056 __set_task_cpu(p
, new_cpu
);
1059 struct migration_req
{
1060 struct list_head list
;
1062 struct task_struct
*task
;
1065 struct completion done
;
1069 * The task's runqueue lock must be held.
1070 * Returns true if you have to wait for migration thread.
1073 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1075 struct rq
*rq
= task_rq(p
);
1078 * If the task is not on a runqueue (and not running), then
1079 * it is sufficient to simply update the task's cpu field.
1081 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1082 set_task_cpu(p
, dest_cpu
);
1086 init_completion(&req
->done
);
1088 req
->dest_cpu
= dest_cpu
;
1089 list_add(&req
->list
, &rq
->migration_queue
);
1095 * wait_task_inactive - wait for a thread to unschedule.
1097 * The caller must ensure that the task *will* unschedule sometime soon,
1098 * else this function might spin for a *long* time. This function can't
1099 * be called with interrupts off, or it may introduce deadlock with
1100 * smp_call_function() if an IPI is sent by the same process we are
1101 * waiting to become inactive.
1103 void wait_task_inactive(struct task_struct
*p
)
1105 unsigned long flags
;
1111 * We do the initial early heuristics without holding
1112 * any task-queue locks at all. We'll only try to get
1113 * the runqueue lock when things look like they will
1119 * If the task is actively running on another CPU
1120 * still, just relax and busy-wait without holding
1123 * NOTE! Since we don't hold any locks, it's not
1124 * even sure that "rq" stays as the right runqueue!
1125 * But we don't care, since "task_running()" will
1126 * return false if the runqueue has changed and p
1127 * is actually now running somewhere else!
1129 while (task_running(rq
, p
))
1133 * Ok, time to look more closely! We need the rq
1134 * lock now, to be *sure*. If we're wrong, we'll
1135 * just go back and repeat.
1137 rq
= task_rq_lock(p
, &flags
);
1138 running
= task_running(rq
, p
);
1139 on_rq
= p
->se
.on_rq
;
1140 task_rq_unlock(rq
, &flags
);
1143 * Was it really running after all now that we
1144 * checked with the proper locks actually held?
1146 * Oops. Go back and try again..
1148 if (unlikely(running
)) {
1154 * It's not enough that it's not actively running,
1155 * it must be off the runqueue _entirely_, and not
1158 * So if it wa still runnable (but just not actively
1159 * running right now), it's preempted, and we should
1160 * yield - it could be a while.
1162 if (unlikely(on_rq
)) {
1168 * Ahh, all good. It wasn't running, and it wasn't
1169 * runnable, which means that it will never become
1170 * running in the future either. We're all done!
1175 * kick_process - kick a running thread to enter/exit the kernel
1176 * @p: the to-be-kicked thread
1178 * Cause a process which is running on another CPU to enter
1179 * kernel-mode, without any delay. (to get signals handled.)
1181 * NOTE: this function doesnt have to take the runqueue lock,
1182 * because all it wants to ensure is that the remote task enters
1183 * the kernel. If the IPI races and the task has been migrated
1184 * to another CPU then no harm is done and the purpose has been
1187 void kick_process(struct task_struct
*p
)
1193 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1194 smp_send_reschedule(cpu
);
1199 * Return a low guess at the load of a migration-source cpu weighted
1200 * according to the scheduling class and "nice" value.
1202 * We want to under-estimate the load of migration sources, to
1203 * balance conservatively.
1205 static inline unsigned long source_load(int cpu
, int type
)
1207 struct rq
*rq
= cpu_rq(cpu
);
1208 unsigned long total
= weighted_cpuload(cpu
);
1213 return min(rq
->cpu_load
[type
-1], total
);
1217 * Return a high guess at the load of a migration-target cpu weighted
1218 * according to the scheduling class and "nice" value.
1220 static inline unsigned long target_load(int cpu
, int type
)
1222 struct rq
*rq
= cpu_rq(cpu
);
1223 unsigned long total
= weighted_cpuload(cpu
);
1228 return max(rq
->cpu_load
[type
-1], total
);
1232 * Return the average load per task on the cpu's run queue
1234 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1236 struct rq
*rq
= cpu_rq(cpu
);
1237 unsigned long total
= weighted_cpuload(cpu
);
1238 unsigned long n
= rq
->nr_running
;
1240 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1244 * find_idlest_group finds and returns the least busy CPU group within the
1247 static struct sched_group
*
1248 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1250 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1251 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1252 int load_idx
= sd
->forkexec_idx
;
1253 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1256 unsigned long load
, avg_load
;
1260 /* Skip over this group if it has no CPUs allowed */
1261 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1264 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1266 /* Tally up the load of all CPUs in the group */
1269 for_each_cpu_mask(i
, group
->cpumask
) {
1270 /* Bias balancing toward cpus of our domain */
1272 load
= source_load(i
, load_idx
);
1274 load
= target_load(i
, load_idx
);
1279 /* Adjust by relative CPU power of the group */
1280 avg_load
= sg_div_cpu_power(group
,
1281 avg_load
* SCHED_LOAD_SCALE
);
1284 this_load
= avg_load
;
1286 } else if (avg_load
< min_load
) {
1287 min_load
= avg_load
;
1291 group
= group
->next
;
1292 } while (group
!= sd
->groups
);
1294 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1300 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1303 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1306 unsigned long load
, min_load
= ULONG_MAX
;
1310 /* Traverse only the allowed CPUs */
1311 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1313 for_each_cpu_mask(i
, tmp
) {
1314 load
= weighted_cpuload(i
);
1316 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1326 * sched_balance_self: balance the current task (running on cpu) in domains
1327 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1330 * Balance, ie. select the least loaded group.
1332 * Returns the target CPU number, or the same CPU if no balancing is needed.
1334 * preempt must be disabled.
1336 static int sched_balance_self(int cpu
, int flag
)
1338 struct task_struct
*t
= current
;
1339 struct sched_domain
*tmp
, *sd
= NULL
;
1341 for_each_domain(cpu
, tmp
) {
1343 * If power savings logic is enabled for a domain, stop there.
1345 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1347 if (tmp
->flags
& flag
)
1353 struct sched_group
*group
;
1354 int new_cpu
, weight
;
1356 if (!(sd
->flags
& flag
)) {
1362 group
= find_idlest_group(sd
, t
, cpu
);
1368 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1369 if (new_cpu
== -1 || new_cpu
== cpu
) {
1370 /* Now try balancing at a lower domain level of cpu */
1375 /* Now try balancing at a lower domain level of new_cpu */
1378 weight
= cpus_weight(span
);
1379 for_each_domain(cpu
, tmp
) {
1380 if (weight
<= cpus_weight(tmp
->span
))
1382 if (tmp
->flags
& flag
)
1385 /* while loop will break here if sd == NULL */
1391 #endif /* CONFIG_SMP */
1394 * wake_idle() will wake a task on an idle cpu if task->cpu is
1395 * not idle and an idle cpu is available. The span of cpus to
1396 * search starts with cpus closest then further out as needed,
1397 * so we always favor a closer, idle cpu.
1399 * Returns the CPU we should wake onto.
1401 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1402 static int wake_idle(int cpu
, struct task_struct
*p
)
1405 struct sched_domain
*sd
;
1409 * If it is idle, then it is the best cpu to run this task.
1411 * This cpu is also the best, if it has more than one task already.
1412 * Siblings must be also busy(in most cases) as they didn't already
1413 * pickup the extra load from this cpu and hence we need not check
1414 * sibling runqueue info. This will avoid the checks and cache miss
1415 * penalities associated with that.
1417 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1420 for_each_domain(cpu
, sd
) {
1421 if (sd
->flags
& SD_WAKE_IDLE
) {
1422 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1423 for_each_cpu_mask(i
, tmp
) {
1434 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1441 * try_to_wake_up - wake up a thread
1442 * @p: the to-be-woken-up thread
1443 * @state: the mask of task states that can be woken
1444 * @sync: do a synchronous wakeup?
1446 * Put it on the run-queue if it's not already there. The "current"
1447 * thread is always on the run-queue (except when the actual
1448 * re-schedule is in progress), and as such you're allowed to do
1449 * the simpler "current->state = TASK_RUNNING" to mark yourself
1450 * runnable without the overhead of this.
1452 * returns failure only if the task is already active.
1454 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1456 int cpu
, this_cpu
, success
= 0;
1457 unsigned long flags
;
1461 struct sched_domain
*sd
, *this_sd
= NULL
;
1462 unsigned long load
, this_load
;
1466 rq
= task_rq_lock(p
, &flags
);
1467 old_state
= p
->state
;
1468 if (!(old_state
& state
))
1475 this_cpu
= smp_processor_id();
1478 if (unlikely(task_running(rq
, p
)))
1483 schedstat_inc(rq
, ttwu_cnt
);
1484 if (cpu
== this_cpu
) {
1485 schedstat_inc(rq
, ttwu_local
);
1489 for_each_domain(this_cpu
, sd
) {
1490 if (cpu_isset(cpu
, sd
->span
)) {
1491 schedstat_inc(sd
, ttwu_wake_remote
);
1497 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1501 * Check for affine wakeup and passive balancing possibilities.
1504 int idx
= this_sd
->wake_idx
;
1505 unsigned int imbalance
;
1507 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1509 load
= source_load(cpu
, idx
);
1510 this_load
= target_load(this_cpu
, idx
);
1512 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1514 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1515 unsigned long tl
= this_load
;
1516 unsigned long tl_per_task
;
1518 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1521 * If sync wakeup then subtract the (maximum possible)
1522 * effect of the currently running task from the load
1523 * of the current CPU:
1526 tl
-= current
->se
.load
.weight
;
1529 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1530 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1532 * This domain has SD_WAKE_AFFINE and
1533 * p is cache cold in this domain, and
1534 * there is no bad imbalance.
1536 schedstat_inc(this_sd
, ttwu_move_affine
);
1542 * Start passive balancing when half the imbalance_pct
1545 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1546 if (imbalance
*this_load
<= 100*load
) {
1547 schedstat_inc(this_sd
, ttwu_move_balance
);
1553 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1555 new_cpu
= wake_idle(new_cpu
, p
);
1556 if (new_cpu
!= cpu
) {
1557 set_task_cpu(p
, new_cpu
);
1558 task_rq_unlock(rq
, &flags
);
1559 /* might preempt at this point */
1560 rq
= task_rq_lock(p
, &flags
);
1561 old_state
= p
->state
;
1562 if (!(old_state
& state
))
1567 this_cpu
= smp_processor_id();
1572 #endif /* CONFIG_SMP */
1573 update_rq_clock(rq
);
1574 activate_task(rq
, p
, 1);
1576 * Sync wakeups (i.e. those types of wakeups where the waker
1577 * has indicated that it will leave the CPU in short order)
1578 * don't trigger a preemption, if the woken up task will run on
1579 * this cpu. (in this case the 'I will reschedule' promise of
1580 * the waker guarantees that the freshly woken up task is going
1581 * to be considered on this CPU.)
1583 if (!sync
|| cpu
!= this_cpu
)
1584 check_preempt_curr(rq
, p
);
1588 p
->state
= TASK_RUNNING
;
1590 task_rq_unlock(rq
, &flags
);
1595 int fastcall
wake_up_process(struct task_struct
*p
)
1597 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1598 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1600 EXPORT_SYMBOL(wake_up_process
);
1602 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1604 return try_to_wake_up(p
, state
, 0);
1608 * Perform scheduler related setup for a newly forked process p.
1609 * p is forked by current.
1611 * __sched_fork() is basic setup used by init_idle() too:
1613 static void __sched_fork(struct task_struct
*p
)
1615 p
->se
.exec_start
= 0;
1616 p
->se
.sum_exec_runtime
= 0;
1617 p
->se
.prev_sum_exec_runtime
= 0;
1619 #ifdef CONFIG_SCHEDSTATS
1620 p
->se
.wait_start
= 0;
1621 p
->se
.sum_sleep_runtime
= 0;
1622 p
->se
.sleep_start
= 0;
1623 p
->se
.block_start
= 0;
1624 p
->se
.sleep_max
= 0;
1625 p
->se
.block_max
= 0;
1627 p
->se
.slice_max
= 0;
1631 INIT_LIST_HEAD(&p
->run_list
);
1634 #ifdef CONFIG_PREEMPT_NOTIFIERS
1635 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1639 * We mark the process as running here, but have not actually
1640 * inserted it onto the runqueue yet. This guarantees that
1641 * nobody will actually run it, and a signal or other external
1642 * event cannot wake it up and insert it on the runqueue either.
1644 p
->state
= TASK_RUNNING
;
1648 * fork()/clone()-time setup:
1650 void sched_fork(struct task_struct
*p
, int clone_flags
)
1652 int cpu
= get_cpu();
1657 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1659 __set_task_cpu(p
, cpu
);
1662 * Make sure we do not leak PI boosting priority to the child:
1664 p
->prio
= current
->normal_prio
;
1666 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1667 if (likely(sched_info_on()))
1668 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1670 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1673 #ifdef CONFIG_PREEMPT
1674 /* Want to start with kernel preemption disabled. */
1675 task_thread_info(p
)->preempt_count
= 1;
1681 * wake_up_new_task - wake up a newly created task for the first time.
1683 * This function will do some initial scheduler statistics housekeeping
1684 * that must be done for every newly created context, then puts the task
1685 * on the runqueue and wakes it.
1687 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1689 unsigned long flags
;
1693 rq
= task_rq_lock(p
, &flags
);
1694 BUG_ON(p
->state
!= TASK_RUNNING
);
1695 this_cpu
= smp_processor_id(); /* parent's CPU */
1696 update_rq_clock(rq
);
1698 p
->prio
= effective_prio(p
);
1700 if (rt_prio(p
->prio
))
1701 p
->sched_class
= &rt_sched_class
;
1703 p
->sched_class
= &fair_sched_class
;
1705 if (task_cpu(p
) != this_cpu
|| !p
->sched_class
->task_new
||
1706 !current
->se
.on_rq
) {
1707 activate_task(rq
, p
, 0);
1710 * Let the scheduling class do new task startup
1711 * management (if any):
1713 p
->sched_class
->task_new(rq
, p
);
1714 inc_nr_running(p
, rq
);
1716 check_preempt_curr(rq
, p
);
1717 task_rq_unlock(rq
, &flags
);
1720 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1724 * @notifier: notifier struct to register
1726 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1728 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1730 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1733 * preempt_notifier_unregister - no longer interested in preemption notifications
1734 * @notifier: notifier struct to unregister
1736 * This is safe to call from within a preemption notifier.
1738 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1740 hlist_del(¬ifier
->link
);
1742 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1744 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1746 struct preempt_notifier
*notifier
;
1747 struct hlist_node
*node
;
1749 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1750 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1754 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1755 struct task_struct
*next
)
1757 struct preempt_notifier
*notifier
;
1758 struct hlist_node
*node
;
1760 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1761 notifier
->ops
->sched_out(notifier
, next
);
1766 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1771 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1772 struct task_struct
*next
)
1779 * prepare_task_switch - prepare to switch tasks
1780 * @rq: the runqueue preparing to switch
1781 * @prev: the current task that is being switched out
1782 * @next: the task we are going to switch to.
1784 * This is called with the rq lock held and interrupts off. It must
1785 * be paired with a subsequent finish_task_switch after the context
1788 * prepare_task_switch sets up locking and calls architecture specific
1792 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1793 struct task_struct
*next
)
1795 fire_sched_out_preempt_notifiers(prev
, next
);
1796 prepare_lock_switch(rq
, next
);
1797 prepare_arch_switch(next
);
1801 * finish_task_switch - clean up after a task-switch
1802 * @rq: runqueue associated with task-switch
1803 * @prev: the thread we just switched away from.
1805 * finish_task_switch must be called after the context switch, paired
1806 * with a prepare_task_switch call before the context switch.
1807 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1808 * and do any other architecture-specific cleanup actions.
1810 * Note that we may have delayed dropping an mm in context_switch(). If
1811 * so, we finish that here outside of the runqueue lock. (Doing it
1812 * with the lock held can cause deadlocks; see schedule() for
1815 static inline void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1816 __releases(rq
->lock
)
1818 struct mm_struct
*mm
= rq
->prev_mm
;
1824 * A task struct has one reference for the use as "current".
1825 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1826 * schedule one last time. The schedule call will never return, and
1827 * the scheduled task must drop that reference.
1828 * The test for TASK_DEAD must occur while the runqueue locks are
1829 * still held, otherwise prev could be scheduled on another cpu, die
1830 * there before we look at prev->state, and then the reference would
1832 * Manfred Spraul <manfred@colorfullife.com>
1834 prev_state
= prev
->state
;
1835 finish_arch_switch(prev
);
1836 finish_lock_switch(rq
, prev
);
1837 fire_sched_in_preempt_notifiers(current
);
1840 if (unlikely(prev_state
== TASK_DEAD
)) {
1842 * Remove function-return probe instances associated with this
1843 * task and put them back on the free list.
1845 kprobe_flush_task(prev
);
1846 put_task_struct(prev
);
1851 * schedule_tail - first thing a freshly forked thread must call.
1852 * @prev: the thread we just switched away from.
1854 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1855 __releases(rq
->lock
)
1857 struct rq
*rq
= this_rq();
1859 finish_task_switch(rq
, prev
);
1860 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1861 /* In this case, finish_task_switch does not reenable preemption */
1864 if (current
->set_child_tid
)
1865 put_user(current
->pid
, current
->set_child_tid
);
1869 * context_switch - switch to the new MM and the new
1870 * thread's register state.
1873 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1874 struct task_struct
*next
)
1876 struct mm_struct
*mm
, *oldmm
;
1878 prepare_task_switch(rq
, prev
, next
);
1880 oldmm
= prev
->active_mm
;
1882 * For paravirt, this is coupled with an exit in switch_to to
1883 * combine the page table reload and the switch backend into
1886 arch_enter_lazy_cpu_mode();
1888 if (unlikely(!mm
)) {
1889 next
->active_mm
= oldmm
;
1890 atomic_inc(&oldmm
->mm_count
);
1891 enter_lazy_tlb(oldmm
, next
);
1893 switch_mm(oldmm
, mm
, next
);
1895 if (unlikely(!prev
->mm
)) {
1896 prev
->active_mm
= NULL
;
1897 rq
->prev_mm
= oldmm
;
1900 * Since the runqueue lock will be released by the next
1901 * task (which is an invalid locking op but in the case
1902 * of the scheduler it's an obvious special-case), so we
1903 * do an early lockdep release here:
1905 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1906 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1909 /* Here we just switch the register state and the stack. */
1910 switch_to(prev
, next
, prev
);
1914 * this_rq must be evaluated again because prev may have moved
1915 * CPUs since it called schedule(), thus the 'rq' on its stack
1916 * frame will be invalid.
1918 finish_task_switch(this_rq(), prev
);
1922 * nr_running, nr_uninterruptible and nr_context_switches:
1924 * externally visible scheduler statistics: current number of runnable
1925 * threads, current number of uninterruptible-sleeping threads, total
1926 * number of context switches performed since bootup.
1928 unsigned long nr_running(void)
1930 unsigned long i
, sum
= 0;
1932 for_each_online_cpu(i
)
1933 sum
+= cpu_rq(i
)->nr_running
;
1938 unsigned long nr_uninterruptible(void)
1940 unsigned long i
, sum
= 0;
1942 for_each_possible_cpu(i
)
1943 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1946 * Since we read the counters lockless, it might be slightly
1947 * inaccurate. Do not allow it to go below zero though:
1949 if (unlikely((long)sum
< 0))
1955 unsigned long long nr_context_switches(void)
1958 unsigned long long sum
= 0;
1960 for_each_possible_cpu(i
)
1961 sum
+= cpu_rq(i
)->nr_switches
;
1966 unsigned long nr_iowait(void)
1968 unsigned long i
, sum
= 0;
1970 for_each_possible_cpu(i
)
1971 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1976 unsigned long nr_active(void)
1978 unsigned long i
, running
= 0, uninterruptible
= 0;
1980 for_each_online_cpu(i
) {
1981 running
+= cpu_rq(i
)->nr_running
;
1982 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1985 if (unlikely((long)uninterruptible
< 0))
1986 uninterruptible
= 0;
1988 return running
+ uninterruptible
;
1992 * Update rq->cpu_load[] statistics. This function is usually called every
1993 * scheduler tick (TICK_NSEC).
1995 static void update_cpu_load(struct rq
*this_rq
)
1997 unsigned long this_load
= this_rq
->load
.weight
;
2000 this_rq
->nr_load_updates
++;
2002 /* Update our load: */
2003 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2004 unsigned long old_load
, new_load
;
2006 /* scale is effectively 1 << i now, and >> i divides by scale */
2008 old_load
= this_rq
->cpu_load
[i
];
2009 new_load
= this_load
;
2011 * Round up the averaging division if load is increasing. This
2012 * prevents us from getting stuck on 9 if the load is 10, for
2015 if (new_load
> old_load
)
2016 new_load
+= scale
-1;
2017 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2024 * double_rq_lock - safely lock two runqueues
2026 * Note this does not disable interrupts like task_rq_lock,
2027 * you need to do so manually before calling.
2029 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2030 __acquires(rq1
->lock
)
2031 __acquires(rq2
->lock
)
2033 BUG_ON(!irqs_disabled());
2035 spin_lock(&rq1
->lock
);
2036 __acquire(rq2
->lock
); /* Fake it out ;) */
2039 spin_lock(&rq1
->lock
);
2040 spin_lock(&rq2
->lock
);
2042 spin_lock(&rq2
->lock
);
2043 spin_lock(&rq1
->lock
);
2046 update_rq_clock(rq1
);
2047 update_rq_clock(rq2
);
2051 * double_rq_unlock - safely unlock two runqueues
2053 * Note this does not restore interrupts like task_rq_unlock,
2054 * you need to do so manually after calling.
2056 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2057 __releases(rq1
->lock
)
2058 __releases(rq2
->lock
)
2060 spin_unlock(&rq1
->lock
);
2062 spin_unlock(&rq2
->lock
);
2064 __release(rq2
->lock
);
2068 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2070 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2071 __releases(this_rq
->lock
)
2072 __acquires(busiest
->lock
)
2073 __acquires(this_rq
->lock
)
2075 if (unlikely(!irqs_disabled())) {
2076 /* printk() doesn't work good under rq->lock */
2077 spin_unlock(&this_rq
->lock
);
2080 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2081 if (busiest
< this_rq
) {
2082 spin_unlock(&this_rq
->lock
);
2083 spin_lock(&busiest
->lock
);
2084 spin_lock(&this_rq
->lock
);
2086 spin_lock(&busiest
->lock
);
2091 * If dest_cpu is allowed for this process, migrate the task to it.
2092 * This is accomplished by forcing the cpu_allowed mask to only
2093 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2094 * the cpu_allowed mask is restored.
2096 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2098 struct migration_req req
;
2099 unsigned long flags
;
2102 rq
= task_rq_lock(p
, &flags
);
2103 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2104 || unlikely(cpu_is_offline(dest_cpu
)))
2107 /* force the process onto the specified CPU */
2108 if (migrate_task(p
, dest_cpu
, &req
)) {
2109 /* Need to wait for migration thread (might exit: take ref). */
2110 struct task_struct
*mt
= rq
->migration_thread
;
2112 get_task_struct(mt
);
2113 task_rq_unlock(rq
, &flags
);
2114 wake_up_process(mt
);
2115 put_task_struct(mt
);
2116 wait_for_completion(&req
.done
);
2121 task_rq_unlock(rq
, &flags
);
2125 * sched_exec - execve() is a valuable balancing opportunity, because at
2126 * this point the task has the smallest effective memory and cache footprint.
2128 void sched_exec(void)
2130 int new_cpu
, this_cpu
= get_cpu();
2131 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2133 if (new_cpu
!= this_cpu
)
2134 sched_migrate_task(current
, new_cpu
);
2138 * pull_task - move a task from a remote runqueue to the local runqueue.
2139 * Both runqueues must be locked.
2141 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2142 struct rq
*this_rq
, int this_cpu
)
2144 deactivate_task(src_rq
, p
, 0);
2145 set_task_cpu(p
, this_cpu
);
2146 activate_task(this_rq
, p
, 0);
2148 * Note that idle threads have a prio of MAX_PRIO, for this test
2149 * to be always true for them.
2151 check_preempt_curr(this_rq
, p
);
2155 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2158 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2159 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2163 * We do not migrate tasks that are:
2164 * 1) running (obviously), or
2165 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2166 * 3) are cache-hot on their current CPU.
2168 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
2172 if (task_running(rq
, p
))
2178 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2179 unsigned long max_nr_move
, unsigned long max_load_move
,
2180 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2181 int *all_pinned
, unsigned long *load_moved
,
2182 int *this_best_prio
, struct rq_iterator
*iterator
)
2184 int pulled
= 0, pinned
= 0, skip_for_load
;
2185 struct task_struct
*p
;
2186 long rem_load_move
= max_load_move
;
2188 if (max_nr_move
== 0 || max_load_move
== 0)
2194 * Start the load-balancing iterator:
2196 p
= iterator
->start(iterator
->arg
);
2201 * To help distribute high priority tasks accross CPUs we don't
2202 * skip a task if it will be the highest priority task (i.e. smallest
2203 * prio value) on its new queue regardless of its load weight
2205 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2206 SCHED_LOAD_SCALE_FUZZ
;
2207 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2208 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2209 p
= iterator
->next(iterator
->arg
);
2213 pull_task(busiest
, p
, this_rq
, this_cpu
);
2215 rem_load_move
-= p
->se
.load
.weight
;
2218 * We only want to steal up to the prescribed number of tasks
2219 * and the prescribed amount of weighted load.
2221 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2222 if (p
->prio
< *this_best_prio
)
2223 *this_best_prio
= p
->prio
;
2224 p
= iterator
->next(iterator
->arg
);
2229 * Right now, this is the only place pull_task() is called,
2230 * so we can safely collect pull_task() stats here rather than
2231 * inside pull_task().
2233 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2236 *all_pinned
= pinned
;
2237 *load_moved
= max_load_move
- rem_load_move
;
2242 * move_tasks tries to move up to max_load_move weighted load from busiest to
2243 * this_rq, as part of a balancing operation within domain "sd".
2244 * Returns 1 if successful and 0 otherwise.
2246 * Called with both runqueues locked.
2248 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2249 unsigned long max_load_move
,
2250 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2253 struct sched_class
*class = sched_class_highest
;
2254 unsigned long total_load_moved
= 0;
2255 int this_best_prio
= this_rq
->curr
->prio
;
2259 class->load_balance(this_rq
, this_cpu
, busiest
,
2260 ULONG_MAX
, max_load_move
- total_load_moved
,
2261 sd
, idle
, all_pinned
, &this_best_prio
);
2262 class = class->next
;
2263 } while (class && max_load_move
> total_load_moved
);
2265 return total_load_moved
> 0;
2269 * move_one_task tries to move exactly one task from busiest to this_rq, as
2270 * part of active balancing operations within "domain".
2271 * Returns 1 if successful and 0 otherwise.
2273 * Called with both runqueues locked.
2275 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2276 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2278 struct sched_class
*class;
2279 int this_best_prio
= MAX_PRIO
;
2281 for (class = sched_class_highest
; class; class = class->next
)
2282 if (class->load_balance(this_rq
, this_cpu
, busiest
,
2283 1, ULONG_MAX
, sd
, idle
, NULL
,
2291 * find_busiest_group finds and returns the busiest CPU group within the
2292 * domain. It calculates and returns the amount of weighted load which
2293 * should be moved to restore balance via the imbalance parameter.
2295 static struct sched_group
*
2296 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2297 unsigned long *imbalance
, enum cpu_idle_type idle
,
2298 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2300 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2301 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2302 unsigned long max_pull
;
2303 unsigned long busiest_load_per_task
, busiest_nr_running
;
2304 unsigned long this_load_per_task
, this_nr_running
;
2306 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2307 int power_savings_balance
= 1;
2308 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2309 unsigned long min_nr_running
= ULONG_MAX
;
2310 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2313 max_load
= this_load
= total_load
= total_pwr
= 0;
2314 busiest_load_per_task
= busiest_nr_running
= 0;
2315 this_load_per_task
= this_nr_running
= 0;
2316 if (idle
== CPU_NOT_IDLE
)
2317 load_idx
= sd
->busy_idx
;
2318 else if (idle
== CPU_NEWLY_IDLE
)
2319 load_idx
= sd
->newidle_idx
;
2321 load_idx
= sd
->idle_idx
;
2324 unsigned long load
, group_capacity
;
2327 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2328 unsigned long sum_nr_running
, sum_weighted_load
;
2330 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2333 balance_cpu
= first_cpu(group
->cpumask
);
2335 /* Tally up the load of all CPUs in the group */
2336 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2338 for_each_cpu_mask(i
, group
->cpumask
) {
2341 if (!cpu_isset(i
, *cpus
))
2346 if (*sd_idle
&& rq
->nr_running
)
2349 /* Bias balancing toward cpus of our domain */
2351 if (idle_cpu(i
) && !first_idle_cpu
) {
2356 load
= target_load(i
, load_idx
);
2358 load
= source_load(i
, load_idx
);
2361 sum_nr_running
+= rq
->nr_running
;
2362 sum_weighted_load
+= weighted_cpuload(i
);
2366 * First idle cpu or the first cpu(busiest) in this sched group
2367 * is eligible for doing load balancing at this and above
2368 * domains. In the newly idle case, we will allow all the cpu's
2369 * to do the newly idle load balance.
2371 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2372 balance_cpu
!= this_cpu
&& balance
) {
2377 total_load
+= avg_load
;
2378 total_pwr
+= group
->__cpu_power
;
2380 /* Adjust by relative CPU power of the group */
2381 avg_load
= sg_div_cpu_power(group
,
2382 avg_load
* SCHED_LOAD_SCALE
);
2384 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2387 this_load
= avg_load
;
2389 this_nr_running
= sum_nr_running
;
2390 this_load_per_task
= sum_weighted_load
;
2391 } else if (avg_load
> max_load
&&
2392 sum_nr_running
> group_capacity
) {
2393 max_load
= avg_load
;
2395 busiest_nr_running
= sum_nr_running
;
2396 busiest_load_per_task
= sum_weighted_load
;
2399 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2401 * Busy processors will not participate in power savings
2404 if (idle
== CPU_NOT_IDLE
||
2405 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2409 * If the local group is idle or completely loaded
2410 * no need to do power savings balance at this domain
2412 if (local_group
&& (this_nr_running
>= group_capacity
||
2414 power_savings_balance
= 0;
2417 * If a group is already running at full capacity or idle,
2418 * don't include that group in power savings calculations
2420 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2425 * Calculate the group which has the least non-idle load.
2426 * This is the group from where we need to pick up the load
2429 if ((sum_nr_running
< min_nr_running
) ||
2430 (sum_nr_running
== min_nr_running
&&
2431 first_cpu(group
->cpumask
) <
2432 first_cpu(group_min
->cpumask
))) {
2434 min_nr_running
= sum_nr_running
;
2435 min_load_per_task
= sum_weighted_load
/
2440 * Calculate the group which is almost near its
2441 * capacity but still has some space to pick up some load
2442 * from other group and save more power
2444 if (sum_nr_running
<= group_capacity
- 1) {
2445 if (sum_nr_running
> leader_nr_running
||
2446 (sum_nr_running
== leader_nr_running
&&
2447 first_cpu(group
->cpumask
) >
2448 first_cpu(group_leader
->cpumask
))) {
2449 group_leader
= group
;
2450 leader_nr_running
= sum_nr_running
;
2455 group
= group
->next
;
2456 } while (group
!= sd
->groups
);
2458 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2461 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2463 if (this_load
>= avg_load
||
2464 100*max_load
<= sd
->imbalance_pct
*this_load
)
2467 busiest_load_per_task
/= busiest_nr_running
;
2469 * We're trying to get all the cpus to the average_load, so we don't
2470 * want to push ourselves above the average load, nor do we wish to
2471 * reduce the max loaded cpu below the average load, as either of these
2472 * actions would just result in more rebalancing later, and ping-pong
2473 * tasks around. Thus we look for the minimum possible imbalance.
2474 * Negative imbalances (*we* are more loaded than anyone else) will
2475 * be counted as no imbalance for these purposes -- we can't fix that
2476 * by pulling tasks to us. Be careful of negative numbers as they'll
2477 * appear as very large values with unsigned longs.
2479 if (max_load
<= busiest_load_per_task
)
2483 * In the presence of smp nice balancing, certain scenarios can have
2484 * max load less than avg load(as we skip the groups at or below
2485 * its cpu_power, while calculating max_load..)
2487 if (max_load
< avg_load
) {
2489 goto small_imbalance
;
2492 /* Don't want to pull so many tasks that a group would go idle */
2493 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2495 /* How much load to actually move to equalise the imbalance */
2496 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2497 (avg_load
- this_load
) * this->__cpu_power
)
2501 * if *imbalance is less than the average load per runnable task
2502 * there is no gaurantee that any tasks will be moved so we'll have
2503 * a think about bumping its value to force at least one task to be
2506 if (*imbalance
< busiest_load_per_task
) {
2507 unsigned long tmp
, pwr_now
, pwr_move
;
2511 pwr_move
= pwr_now
= 0;
2513 if (this_nr_running
) {
2514 this_load_per_task
/= this_nr_running
;
2515 if (busiest_load_per_task
> this_load_per_task
)
2518 this_load_per_task
= SCHED_LOAD_SCALE
;
2520 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2521 busiest_load_per_task
* imbn
) {
2522 *imbalance
= busiest_load_per_task
;
2527 * OK, we don't have enough imbalance to justify moving tasks,
2528 * however we may be able to increase total CPU power used by
2532 pwr_now
+= busiest
->__cpu_power
*
2533 min(busiest_load_per_task
, max_load
);
2534 pwr_now
+= this->__cpu_power
*
2535 min(this_load_per_task
, this_load
);
2536 pwr_now
/= SCHED_LOAD_SCALE
;
2538 /* Amount of load we'd subtract */
2539 tmp
= sg_div_cpu_power(busiest
,
2540 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2542 pwr_move
+= busiest
->__cpu_power
*
2543 min(busiest_load_per_task
, max_load
- tmp
);
2545 /* Amount of load we'd add */
2546 if (max_load
* busiest
->__cpu_power
<
2547 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2548 tmp
= sg_div_cpu_power(this,
2549 max_load
* busiest
->__cpu_power
);
2551 tmp
= sg_div_cpu_power(this,
2552 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2553 pwr_move
+= this->__cpu_power
*
2554 min(this_load_per_task
, this_load
+ tmp
);
2555 pwr_move
/= SCHED_LOAD_SCALE
;
2557 /* Move if we gain throughput */
2558 if (pwr_move
> pwr_now
)
2559 *imbalance
= busiest_load_per_task
;
2565 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2566 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2569 if (this == group_leader
&& group_leader
!= group_min
) {
2570 *imbalance
= min_load_per_task
;
2580 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2583 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2584 unsigned long imbalance
, cpumask_t
*cpus
)
2586 struct rq
*busiest
= NULL
, *rq
;
2587 unsigned long max_load
= 0;
2590 for_each_cpu_mask(i
, group
->cpumask
) {
2593 if (!cpu_isset(i
, *cpus
))
2597 wl
= weighted_cpuload(i
);
2599 if (rq
->nr_running
== 1 && wl
> imbalance
)
2602 if (wl
> max_load
) {
2612 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2613 * so long as it is large enough.
2615 #define MAX_PINNED_INTERVAL 512
2618 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2619 * tasks if there is an imbalance.
2621 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2622 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2625 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2626 struct sched_group
*group
;
2627 unsigned long imbalance
;
2629 cpumask_t cpus
= CPU_MASK_ALL
;
2630 unsigned long flags
;
2633 * When power savings policy is enabled for the parent domain, idle
2634 * sibling can pick up load irrespective of busy siblings. In this case,
2635 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2636 * portraying it as CPU_NOT_IDLE.
2638 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2639 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2642 schedstat_inc(sd
, lb_cnt
[idle
]);
2645 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2652 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2656 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2658 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2662 BUG_ON(busiest
== this_rq
);
2664 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2667 if (busiest
->nr_running
> 1) {
2669 * Attempt to move tasks. If find_busiest_group has found
2670 * an imbalance but busiest->nr_running <= 1, the group is
2671 * still unbalanced. ld_moved simply stays zero, so it is
2672 * correctly treated as an imbalance.
2674 local_irq_save(flags
);
2675 double_rq_lock(this_rq
, busiest
);
2676 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2677 imbalance
, sd
, idle
, &all_pinned
);
2678 double_rq_unlock(this_rq
, busiest
);
2679 local_irq_restore(flags
);
2682 * some other cpu did the load balance for us.
2684 if (ld_moved
&& this_cpu
!= smp_processor_id())
2685 resched_cpu(this_cpu
);
2687 /* All tasks on this runqueue were pinned by CPU affinity */
2688 if (unlikely(all_pinned
)) {
2689 cpu_clear(cpu_of(busiest
), cpus
);
2690 if (!cpus_empty(cpus
))
2697 schedstat_inc(sd
, lb_failed
[idle
]);
2698 sd
->nr_balance_failed
++;
2700 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2702 spin_lock_irqsave(&busiest
->lock
, flags
);
2704 /* don't kick the migration_thread, if the curr
2705 * task on busiest cpu can't be moved to this_cpu
2707 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2708 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2710 goto out_one_pinned
;
2713 if (!busiest
->active_balance
) {
2714 busiest
->active_balance
= 1;
2715 busiest
->push_cpu
= this_cpu
;
2718 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2720 wake_up_process(busiest
->migration_thread
);
2723 * We've kicked active balancing, reset the failure
2726 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2729 sd
->nr_balance_failed
= 0;
2731 if (likely(!active_balance
)) {
2732 /* We were unbalanced, so reset the balancing interval */
2733 sd
->balance_interval
= sd
->min_interval
;
2736 * If we've begun active balancing, start to back off. This
2737 * case may not be covered by the all_pinned logic if there
2738 * is only 1 task on the busy runqueue (because we don't call
2741 if (sd
->balance_interval
< sd
->max_interval
)
2742 sd
->balance_interval
*= 2;
2745 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2746 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2751 schedstat_inc(sd
, lb_balanced
[idle
]);
2753 sd
->nr_balance_failed
= 0;
2756 /* tune up the balancing interval */
2757 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2758 (sd
->balance_interval
< sd
->max_interval
))
2759 sd
->balance_interval
*= 2;
2761 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2762 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2768 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2769 * tasks if there is an imbalance.
2771 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2772 * this_rq is locked.
2775 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2777 struct sched_group
*group
;
2778 struct rq
*busiest
= NULL
;
2779 unsigned long imbalance
;
2783 cpumask_t cpus
= CPU_MASK_ALL
;
2786 * When power savings policy is enabled for the parent domain, idle
2787 * sibling can pick up load irrespective of busy siblings. In this case,
2788 * let the state of idle sibling percolate up as IDLE, instead of
2789 * portraying it as CPU_NOT_IDLE.
2791 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2792 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2795 schedstat_inc(sd
, lb_cnt
[CPU_NEWLY_IDLE
]);
2797 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2798 &sd_idle
, &cpus
, NULL
);
2800 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2804 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2807 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2811 BUG_ON(busiest
== this_rq
);
2813 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2816 if (busiest
->nr_running
> 1) {
2817 /* Attempt to move tasks */
2818 double_lock_balance(this_rq
, busiest
);
2819 /* this_rq->clock is already updated */
2820 update_rq_clock(busiest
);
2821 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2822 imbalance
, sd
, CPU_NEWLY_IDLE
,
2824 spin_unlock(&busiest
->lock
);
2826 if (unlikely(all_pinned
)) {
2827 cpu_clear(cpu_of(busiest
), cpus
);
2828 if (!cpus_empty(cpus
))
2834 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2835 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2836 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2839 sd
->nr_balance_failed
= 0;
2844 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2845 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2846 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2848 sd
->nr_balance_failed
= 0;
2854 * idle_balance is called by schedule() if this_cpu is about to become
2855 * idle. Attempts to pull tasks from other CPUs.
2857 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2859 struct sched_domain
*sd
;
2860 int pulled_task
= -1;
2861 unsigned long next_balance
= jiffies
+ HZ
;
2863 for_each_domain(this_cpu
, sd
) {
2864 unsigned long interval
;
2866 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2869 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2870 /* If we've pulled tasks over stop searching: */
2871 pulled_task
= load_balance_newidle(this_cpu
,
2874 interval
= msecs_to_jiffies(sd
->balance_interval
);
2875 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2876 next_balance
= sd
->last_balance
+ interval
;
2880 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2882 * We are going idle. next_balance may be set based on
2883 * a busy processor. So reset next_balance.
2885 this_rq
->next_balance
= next_balance
;
2890 * active_load_balance is run by migration threads. It pushes running tasks
2891 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2892 * running on each physical CPU where possible, and avoids physical /
2893 * logical imbalances.
2895 * Called with busiest_rq locked.
2897 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2899 int target_cpu
= busiest_rq
->push_cpu
;
2900 struct sched_domain
*sd
;
2901 struct rq
*target_rq
;
2903 /* Is there any task to move? */
2904 if (busiest_rq
->nr_running
<= 1)
2907 target_rq
= cpu_rq(target_cpu
);
2910 * This condition is "impossible", if it occurs
2911 * we need to fix it. Originally reported by
2912 * Bjorn Helgaas on a 128-cpu setup.
2914 BUG_ON(busiest_rq
== target_rq
);
2916 /* move a task from busiest_rq to target_rq */
2917 double_lock_balance(busiest_rq
, target_rq
);
2918 update_rq_clock(busiest_rq
);
2919 update_rq_clock(target_rq
);
2921 /* Search for an sd spanning us and the target CPU. */
2922 for_each_domain(target_cpu
, sd
) {
2923 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2924 cpu_isset(busiest_cpu
, sd
->span
))
2929 schedstat_inc(sd
, alb_cnt
);
2931 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
2933 schedstat_inc(sd
, alb_pushed
);
2935 schedstat_inc(sd
, alb_failed
);
2937 spin_unlock(&target_rq
->lock
);
2942 atomic_t load_balancer
;
2944 } nohz ____cacheline_aligned
= {
2945 .load_balancer
= ATOMIC_INIT(-1),
2946 .cpu_mask
= CPU_MASK_NONE
,
2950 * This routine will try to nominate the ilb (idle load balancing)
2951 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2952 * load balancing on behalf of all those cpus. If all the cpus in the system
2953 * go into this tickless mode, then there will be no ilb owner (as there is
2954 * no need for one) and all the cpus will sleep till the next wakeup event
2957 * For the ilb owner, tick is not stopped. And this tick will be used
2958 * for idle load balancing. ilb owner will still be part of
2961 * While stopping the tick, this cpu will become the ilb owner if there
2962 * is no other owner. And will be the owner till that cpu becomes busy
2963 * or if all cpus in the system stop their ticks at which point
2964 * there is no need for ilb owner.
2966 * When the ilb owner becomes busy, it nominates another owner, during the
2967 * next busy scheduler_tick()
2969 int select_nohz_load_balancer(int stop_tick
)
2971 int cpu
= smp_processor_id();
2974 cpu_set(cpu
, nohz
.cpu_mask
);
2975 cpu_rq(cpu
)->in_nohz_recently
= 1;
2978 * If we are going offline and still the leader, give up!
2980 if (cpu_is_offline(cpu
) &&
2981 atomic_read(&nohz
.load_balancer
) == cpu
) {
2982 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2987 /* time for ilb owner also to sleep */
2988 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
2989 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2990 atomic_set(&nohz
.load_balancer
, -1);
2994 if (atomic_read(&nohz
.load_balancer
) == -1) {
2995 /* make me the ilb owner */
2996 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
2998 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3001 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3004 cpu_clear(cpu
, nohz
.cpu_mask
);
3006 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3007 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3014 static DEFINE_SPINLOCK(balancing
);
3017 * It checks each scheduling domain to see if it is due to be balanced,
3018 * and initiates a balancing operation if so.
3020 * Balancing parameters are set up in arch_init_sched_domains.
3022 static inline void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3025 struct rq
*rq
= cpu_rq(cpu
);
3026 unsigned long interval
;
3027 struct sched_domain
*sd
;
3028 /* Earliest time when we have to do rebalance again */
3029 unsigned long next_balance
= jiffies
+ 60*HZ
;
3030 int update_next_balance
= 0;
3032 for_each_domain(cpu
, sd
) {
3033 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3036 interval
= sd
->balance_interval
;
3037 if (idle
!= CPU_IDLE
)
3038 interval
*= sd
->busy_factor
;
3040 /* scale ms to jiffies */
3041 interval
= msecs_to_jiffies(interval
);
3042 if (unlikely(!interval
))
3044 if (interval
> HZ
*NR_CPUS
/10)
3045 interval
= HZ
*NR_CPUS
/10;
3048 if (sd
->flags
& SD_SERIALIZE
) {
3049 if (!spin_trylock(&balancing
))
3053 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3054 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3056 * We've pulled tasks over so either we're no
3057 * longer idle, or one of our SMT siblings is
3060 idle
= CPU_NOT_IDLE
;
3062 sd
->last_balance
= jiffies
;
3064 if (sd
->flags
& SD_SERIALIZE
)
3065 spin_unlock(&balancing
);
3067 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3068 next_balance
= sd
->last_balance
+ interval
;
3069 update_next_balance
= 1;
3073 * Stop the load balance at this level. There is another
3074 * CPU in our sched group which is doing load balancing more
3082 * next_balance will be updated only when there is a need.
3083 * When the cpu is attached to null domain for ex, it will not be
3086 if (likely(update_next_balance
))
3087 rq
->next_balance
= next_balance
;
3091 * run_rebalance_domains is triggered when needed from the scheduler tick.
3092 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3093 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3095 static void run_rebalance_domains(struct softirq_action
*h
)
3097 int this_cpu
= smp_processor_id();
3098 struct rq
*this_rq
= cpu_rq(this_cpu
);
3099 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3100 CPU_IDLE
: CPU_NOT_IDLE
;
3102 rebalance_domains(this_cpu
, idle
);
3106 * If this cpu is the owner for idle load balancing, then do the
3107 * balancing on behalf of the other idle cpus whose ticks are
3110 if (this_rq
->idle_at_tick
&&
3111 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3112 cpumask_t cpus
= nohz
.cpu_mask
;
3116 cpu_clear(this_cpu
, cpus
);
3117 for_each_cpu_mask(balance_cpu
, cpus
) {
3119 * If this cpu gets work to do, stop the load balancing
3120 * work being done for other cpus. Next load
3121 * balancing owner will pick it up.
3126 rebalance_domains(balance_cpu
, CPU_IDLE
);
3128 rq
= cpu_rq(balance_cpu
);
3129 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3130 this_rq
->next_balance
= rq
->next_balance
;
3137 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3139 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3140 * idle load balancing owner or decide to stop the periodic load balancing,
3141 * if the whole system is idle.
3143 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3147 * If we were in the nohz mode recently and busy at the current
3148 * scheduler tick, then check if we need to nominate new idle
3151 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3152 rq
->in_nohz_recently
= 0;
3154 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3155 cpu_clear(cpu
, nohz
.cpu_mask
);
3156 atomic_set(&nohz
.load_balancer
, -1);
3159 if (atomic_read(&nohz
.load_balancer
) == -1) {
3161 * simple selection for now: Nominate the
3162 * first cpu in the nohz list to be the next
3165 * TBD: Traverse the sched domains and nominate
3166 * the nearest cpu in the nohz.cpu_mask.
3168 int ilb
= first_cpu(nohz
.cpu_mask
);
3176 * If this cpu is idle and doing idle load balancing for all the
3177 * cpus with ticks stopped, is it time for that to stop?
3179 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3180 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3186 * If this cpu is idle and the idle load balancing is done by
3187 * someone else, then no need raise the SCHED_SOFTIRQ
3189 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3190 cpu_isset(cpu
, nohz
.cpu_mask
))
3193 if (time_after_eq(jiffies
, rq
->next_balance
))
3194 raise_softirq(SCHED_SOFTIRQ
);
3197 #else /* CONFIG_SMP */
3200 * on UP we do not need to balance between CPUs:
3202 static inline void idle_balance(int cpu
, struct rq
*rq
)
3206 /* Avoid "used but not defined" warning on UP */
3207 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3208 unsigned long max_nr_move
, unsigned long max_load_move
,
3209 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3210 int *all_pinned
, unsigned long *load_moved
,
3211 int *this_best_prio
, struct rq_iterator
*iterator
)
3220 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3222 EXPORT_PER_CPU_SYMBOL(kstat
);
3225 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3226 * that have not yet been banked in case the task is currently running.
3228 unsigned long long task_sched_runtime(struct task_struct
*p
)
3230 unsigned long flags
;
3234 rq
= task_rq_lock(p
, &flags
);
3235 ns
= p
->se
.sum_exec_runtime
;
3236 if (rq
->curr
== p
) {
3237 update_rq_clock(rq
);
3238 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3239 if ((s64
)delta_exec
> 0)
3242 task_rq_unlock(rq
, &flags
);
3248 * Account user cpu time to a process.
3249 * @p: the process that the cpu time gets accounted to
3250 * @hardirq_offset: the offset to subtract from hardirq_count()
3251 * @cputime: the cpu time spent in user space since the last update
3253 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3255 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3258 p
->utime
= cputime_add(p
->utime
, cputime
);
3260 /* Add user time to cpustat. */
3261 tmp
= cputime_to_cputime64(cputime
);
3262 if (TASK_NICE(p
) > 0)
3263 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3265 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3269 * Account system cpu time to a process.
3270 * @p: the process that the cpu time gets accounted to
3271 * @hardirq_offset: the offset to subtract from hardirq_count()
3272 * @cputime: the cpu time spent in kernel space since the last update
3274 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3277 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3278 struct rq
*rq
= this_rq();
3281 p
->stime
= cputime_add(p
->stime
, cputime
);
3283 /* Add system time to cpustat. */
3284 tmp
= cputime_to_cputime64(cputime
);
3285 if (hardirq_count() - hardirq_offset
)
3286 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3287 else if (softirq_count())
3288 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3289 else if (p
!= rq
->idle
)
3290 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3291 else if (atomic_read(&rq
->nr_iowait
) > 0)
3292 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3294 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3295 /* Account for system time used */
3296 acct_update_integrals(p
);
3300 * Account for involuntary wait time.
3301 * @p: the process from which the cpu time has been stolen
3302 * @steal: the cpu time spent in involuntary wait
3304 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3306 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3307 cputime64_t tmp
= cputime_to_cputime64(steal
);
3308 struct rq
*rq
= this_rq();
3310 if (p
== rq
->idle
) {
3311 p
->stime
= cputime_add(p
->stime
, steal
);
3312 if (atomic_read(&rq
->nr_iowait
) > 0)
3313 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3315 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3317 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3321 * This function gets called by the timer code, with HZ frequency.
3322 * We call it with interrupts disabled.
3324 * It also gets called by the fork code, when changing the parent's
3327 void scheduler_tick(void)
3329 int cpu
= smp_processor_id();
3330 struct rq
*rq
= cpu_rq(cpu
);
3331 struct task_struct
*curr
= rq
->curr
;
3332 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3334 spin_lock(&rq
->lock
);
3335 __update_rq_clock(rq
);
3337 * Let rq->clock advance by at least TICK_NSEC:
3339 if (unlikely(rq
->clock
< next_tick
))
3340 rq
->clock
= next_tick
;
3341 rq
->tick_timestamp
= rq
->clock
;
3342 update_cpu_load(rq
);
3343 if (curr
!= rq
->idle
) /* FIXME: needed? */
3344 curr
->sched_class
->task_tick(rq
, curr
);
3345 spin_unlock(&rq
->lock
);
3348 rq
->idle_at_tick
= idle_cpu(cpu
);
3349 trigger_load_balance(rq
, cpu
);
3353 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3355 void fastcall
add_preempt_count(int val
)
3360 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3362 preempt_count() += val
;
3364 * Spinlock count overflowing soon?
3366 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3369 EXPORT_SYMBOL(add_preempt_count
);
3371 void fastcall
sub_preempt_count(int val
)
3376 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3379 * Is the spinlock portion underflowing?
3381 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3382 !(preempt_count() & PREEMPT_MASK
)))
3385 preempt_count() -= val
;
3387 EXPORT_SYMBOL(sub_preempt_count
);
3392 * Print scheduling while atomic bug:
3394 static noinline
void __schedule_bug(struct task_struct
*prev
)
3396 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3397 prev
->comm
, preempt_count(), prev
->pid
);
3398 debug_show_held_locks(prev
);
3399 if (irqs_disabled())
3400 print_irqtrace_events(prev
);
3405 * Various schedule()-time debugging checks and statistics:
3407 static inline void schedule_debug(struct task_struct
*prev
)
3410 * Test if we are atomic. Since do_exit() needs to call into
3411 * schedule() atomically, we ignore that path for now.
3412 * Otherwise, whine if we are scheduling when we should not be.
3414 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3415 __schedule_bug(prev
);
3417 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3419 schedstat_inc(this_rq(), sched_cnt
);
3420 #ifdef CONFIG_SCHEDSTATS
3421 if (unlikely(prev
->lock_depth
>= 0)) {
3422 schedstat_inc(this_rq(), bkl_cnt
);
3423 schedstat_inc(prev
, sched_info
.bkl_cnt
);
3429 * Pick up the highest-prio task:
3431 static inline struct task_struct
*
3432 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3434 struct sched_class
*class;
3435 struct task_struct
*p
;
3438 * Optimization: we know that if all tasks are in
3439 * the fair class we can call that function directly:
3441 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3442 p
= fair_sched_class
.pick_next_task(rq
);
3447 class = sched_class_highest
;
3449 p
= class->pick_next_task(rq
);
3453 * Will never be NULL as the idle class always
3454 * returns a non-NULL p:
3456 class = class->next
;
3461 * schedule() is the main scheduler function.
3463 asmlinkage
void __sched
schedule(void)
3465 struct task_struct
*prev
, *next
;
3472 cpu
= smp_processor_id();
3476 switch_count
= &prev
->nivcsw
;
3478 release_kernel_lock(prev
);
3479 need_resched_nonpreemptible
:
3481 schedule_debug(prev
);
3483 spin_lock_irq(&rq
->lock
);
3484 clear_tsk_need_resched(prev
);
3485 __update_rq_clock(rq
);
3487 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3488 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3489 unlikely(signal_pending(prev
)))) {
3490 prev
->state
= TASK_RUNNING
;
3492 deactivate_task(rq
, prev
, 1);
3494 switch_count
= &prev
->nvcsw
;
3497 if (unlikely(!rq
->nr_running
))
3498 idle_balance(cpu
, rq
);
3500 prev
->sched_class
->put_prev_task(rq
, prev
);
3501 next
= pick_next_task(rq
, prev
);
3503 sched_info_switch(prev
, next
);
3505 if (likely(prev
!= next
)) {
3510 context_switch(rq
, prev
, next
); /* unlocks the rq */
3512 spin_unlock_irq(&rq
->lock
);
3514 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3515 cpu
= smp_processor_id();
3517 goto need_resched_nonpreemptible
;
3519 preempt_enable_no_resched();
3520 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3523 EXPORT_SYMBOL(schedule
);
3525 #ifdef CONFIG_PREEMPT
3527 * this is the entry point to schedule() from in-kernel preemption
3528 * off of preempt_enable. Kernel preemptions off return from interrupt
3529 * occur there and call schedule directly.
3531 asmlinkage
void __sched
preempt_schedule(void)
3533 struct thread_info
*ti
= current_thread_info();
3534 #ifdef CONFIG_PREEMPT_BKL
3535 struct task_struct
*task
= current
;
3536 int saved_lock_depth
;
3539 * If there is a non-zero preempt_count or interrupts are disabled,
3540 * we do not want to preempt the current task. Just return..
3542 if (likely(ti
->preempt_count
|| irqs_disabled()))
3546 add_preempt_count(PREEMPT_ACTIVE
);
3548 * We keep the big kernel semaphore locked, but we
3549 * clear ->lock_depth so that schedule() doesnt
3550 * auto-release the semaphore:
3552 #ifdef CONFIG_PREEMPT_BKL
3553 saved_lock_depth
= task
->lock_depth
;
3554 task
->lock_depth
= -1;
3557 #ifdef CONFIG_PREEMPT_BKL
3558 task
->lock_depth
= saved_lock_depth
;
3560 sub_preempt_count(PREEMPT_ACTIVE
);
3562 /* we could miss a preemption opportunity between schedule and now */
3564 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3567 EXPORT_SYMBOL(preempt_schedule
);
3570 * this is the entry point to schedule() from kernel preemption
3571 * off of irq context.
3572 * Note, that this is called and return with irqs disabled. This will
3573 * protect us against recursive calling from irq.
3575 asmlinkage
void __sched
preempt_schedule_irq(void)
3577 struct thread_info
*ti
= current_thread_info();
3578 #ifdef CONFIG_PREEMPT_BKL
3579 struct task_struct
*task
= current
;
3580 int saved_lock_depth
;
3582 /* Catch callers which need to be fixed */
3583 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3586 add_preempt_count(PREEMPT_ACTIVE
);
3588 * We keep the big kernel semaphore locked, but we
3589 * clear ->lock_depth so that schedule() doesnt
3590 * auto-release the semaphore:
3592 #ifdef CONFIG_PREEMPT_BKL
3593 saved_lock_depth
= task
->lock_depth
;
3594 task
->lock_depth
= -1;
3598 local_irq_disable();
3599 #ifdef CONFIG_PREEMPT_BKL
3600 task
->lock_depth
= saved_lock_depth
;
3602 sub_preempt_count(PREEMPT_ACTIVE
);
3604 /* we could miss a preemption opportunity between schedule and now */
3606 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3610 #endif /* CONFIG_PREEMPT */
3612 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3615 return try_to_wake_up(curr
->private, mode
, sync
);
3617 EXPORT_SYMBOL(default_wake_function
);
3620 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3621 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3622 * number) then we wake all the non-exclusive tasks and one exclusive task.
3624 * There are circumstances in which we can try to wake a task which has already
3625 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3626 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3628 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3629 int nr_exclusive
, int sync
, void *key
)
3631 wait_queue_t
*curr
, *next
;
3633 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3634 unsigned flags
= curr
->flags
;
3636 if (curr
->func(curr
, mode
, sync
, key
) &&
3637 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3643 * __wake_up - wake up threads blocked on a waitqueue.
3645 * @mode: which threads
3646 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3647 * @key: is directly passed to the wakeup function
3649 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3650 int nr_exclusive
, void *key
)
3652 unsigned long flags
;
3654 spin_lock_irqsave(&q
->lock
, flags
);
3655 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3656 spin_unlock_irqrestore(&q
->lock
, flags
);
3658 EXPORT_SYMBOL(__wake_up
);
3661 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3663 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3665 __wake_up_common(q
, mode
, 1, 0, NULL
);
3669 * __wake_up_sync - wake up threads blocked on a waitqueue.
3671 * @mode: which threads
3672 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3674 * The sync wakeup differs that the waker knows that it will schedule
3675 * away soon, so while the target thread will be woken up, it will not
3676 * be migrated to another CPU - ie. the two threads are 'synchronized'
3677 * with each other. This can prevent needless bouncing between CPUs.
3679 * On UP it can prevent extra preemption.
3682 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3684 unsigned long flags
;
3690 if (unlikely(!nr_exclusive
))
3693 spin_lock_irqsave(&q
->lock
, flags
);
3694 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3695 spin_unlock_irqrestore(&q
->lock
, flags
);
3697 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3699 void fastcall
complete(struct completion
*x
)
3701 unsigned long flags
;
3703 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3705 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3707 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3709 EXPORT_SYMBOL(complete
);
3711 void fastcall
complete_all(struct completion
*x
)
3713 unsigned long flags
;
3715 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3716 x
->done
+= UINT_MAX
/2;
3717 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3719 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3721 EXPORT_SYMBOL(complete_all
);
3723 void fastcall __sched
wait_for_completion(struct completion
*x
)
3727 spin_lock_irq(&x
->wait
.lock
);
3729 DECLARE_WAITQUEUE(wait
, current
);
3731 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3732 __add_wait_queue_tail(&x
->wait
, &wait
);
3734 __set_current_state(TASK_UNINTERRUPTIBLE
);
3735 spin_unlock_irq(&x
->wait
.lock
);
3737 spin_lock_irq(&x
->wait
.lock
);
3739 __remove_wait_queue(&x
->wait
, &wait
);
3742 spin_unlock_irq(&x
->wait
.lock
);
3744 EXPORT_SYMBOL(wait_for_completion
);
3746 unsigned long fastcall __sched
3747 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3751 spin_lock_irq(&x
->wait
.lock
);
3753 DECLARE_WAITQUEUE(wait
, current
);
3755 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3756 __add_wait_queue_tail(&x
->wait
, &wait
);
3758 __set_current_state(TASK_UNINTERRUPTIBLE
);
3759 spin_unlock_irq(&x
->wait
.lock
);
3760 timeout
= schedule_timeout(timeout
);
3761 spin_lock_irq(&x
->wait
.lock
);
3763 __remove_wait_queue(&x
->wait
, &wait
);
3767 __remove_wait_queue(&x
->wait
, &wait
);
3771 spin_unlock_irq(&x
->wait
.lock
);
3774 EXPORT_SYMBOL(wait_for_completion_timeout
);
3776 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3782 spin_lock_irq(&x
->wait
.lock
);
3784 DECLARE_WAITQUEUE(wait
, current
);
3786 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3787 __add_wait_queue_tail(&x
->wait
, &wait
);
3789 if (signal_pending(current
)) {
3791 __remove_wait_queue(&x
->wait
, &wait
);
3794 __set_current_state(TASK_INTERRUPTIBLE
);
3795 spin_unlock_irq(&x
->wait
.lock
);
3797 spin_lock_irq(&x
->wait
.lock
);
3799 __remove_wait_queue(&x
->wait
, &wait
);
3803 spin_unlock_irq(&x
->wait
.lock
);
3807 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3809 unsigned long fastcall __sched
3810 wait_for_completion_interruptible_timeout(struct completion
*x
,
3811 unsigned long timeout
)
3815 spin_lock_irq(&x
->wait
.lock
);
3817 DECLARE_WAITQUEUE(wait
, current
);
3819 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3820 __add_wait_queue_tail(&x
->wait
, &wait
);
3822 if (signal_pending(current
)) {
3823 timeout
= -ERESTARTSYS
;
3824 __remove_wait_queue(&x
->wait
, &wait
);
3827 __set_current_state(TASK_INTERRUPTIBLE
);
3828 spin_unlock_irq(&x
->wait
.lock
);
3829 timeout
= schedule_timeout(timeout
);
3830 spin_lock_irq(&x
->wait
.lock
);
3832 __remove_wait_queue(&x
->wait
, &wait
);
3836 __remove_wait_queue(&x
->wait
, &wait
);
3840 spin_unlock_irq(&x
->wait
.lock
);
3843 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3846 sleep_on_head(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3848 spin_lock_irqsave(&q
->lock
, *flags
);
3849 __add_wait_queue(q
, wait
);
3850 spin_unlock(&q
->lock
);
3854 sleep_on_tail(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3856 spin_lock_irq(&q
->lock
);
3857 __remove_wait_queue(q
, wait
);
3858 spin_unlock_irqrestore(&q
->lock
, *flags
);
3861 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3863 unsigned long flags
;
3866 init_waitqueue_entry(&wait
, current
);
3868 current
->state
= TASK_INTERRUPTIBLE
;
3870 sleep_on_head(q
, &wait
, &flags
);
3872 sleep_on_tail(q
, &wait
, &flags
);
3874 EXPORT_SYMBOL(interruptible_sleep_on
);
3877 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3879 unsigned long flags
;
3882 init_waitqueue_entry(&wait
, current
);
3884 current
->state
= TASK_INTERRUPTIBLE
;
3886 sleep_on_head(q
, &wait
, &flags
);
3887 timeout
= schedule_timeout(timeout
);
3888 sleep_on_tail(q
, &wait
, &flags
);
3892 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3894 void __sched
sleep_on(wait_queue_head_t
*q
)
3896 unsigned long flags
;
3899 init_waitqueue_entry(&wait
, current
);
3901 current
->state
= TASK_UNINTERRUPTIBLE
;
3903 sleep_on_head(q
, &wait
, &flags
);
3905 sleep_on_tail(q
, &wait
, &flags
);
3907 EXPORT_SYMBOL(sleep_on
);
3909 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3911 unsigned long flags
;
3914 init_waitqueue_entry(&wait
, current
);
3916 current
->state
= TASK_UNINTERRUPTIBLE
;
3918 sleep_on_head(q
, &wait
, &flags
);
3919 timeout
= schedule_timeout(timeout
);
3920 sleep_on_tail(q
, &wait
, &flags
);
3924 EXPORT_SYMBOL(sleep_on_timeout
);
3926 #ifdef CONFIG_RT_MUTEXES
3929 * rt_mutex_setprio - set the current priority of a task
3931 * @prio: prio value (kernel-internal form)
3933 * This function changes the 'effective' priority of a task. It does
3934 * not touch ->normal_prio like __setscheduler().
3936 * Used by the rt_mutex code to implement priority inheritance logic.
3938 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3940 unsigned long flags
;
3941 int oldprio
, on_rq
, running
;
3944 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3946 rq
= task_rq_lock(p
, &flags
);
3947 update_rq_clock(rq
);
3950 on_rq
= p
->se
.on_rq
;
3951 running
= task_running(rq
, p
);
3953 dequeue_task(rq
, p
, 0);
3955 p
->sched_class
->put_prev_task(rq
, p
);
3959 p
->sched_class
= &rt_sched_class
;
3961 p
->sched_class
= &fair_sched_class
;
3967 p
->sched_class
->set_curr_task(rq
);
3968 enqueue_task(rq
, p
, 0);
3970 * Reschedule if we are currently running on this runqueue and
3971 * our priority decreased, or if we are not currently running on
3972 * this runqueue and our priority is higher than the current's
3975 if (p
->prio
> oldprio
)
3976 resched_task(rq
->curr
);
3978 check_preempt_curr(rq
, p
);
3981 task_rq_unlock(rq
, &flags
);
3986 void set_user_nice(struct task_struct
*p
, long nice
)
3988 int old_prio
, delta
, on_rq
;
3989 unsigned long flags
;
3992 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3995 * We have to be careful, if called from sys_setpriority(),
3996 * the task might be in the middle of scheduling on another CPU.
3998 rq
= task_rq_lock(p
, &flags
);
3999 update_rq_clock(rq
);
4001 * The RT priorities are set via sched_setscheduler(), but we still
4002 * allow the 'normal' nice value to be set - but as expected
4003 * it wont have any effect on scheduling until the task is
4004 * SCHED_FIFO/SCHED_RR:
4006 if (task_has_rt_policy(p
)) {
4007 p
->static_prio
= NICE_TO_PRIO(nice
);
4010 on_rq
= p
->se
.on_rq
;
4012 dequeue_task(rq
, p
, 0);
4016 p
->static_prio
= NICE_TO_PRIO(nice
);
4019 p
->prio
= effective_prio(p
);
4020 delta
= p
->prio
- old_prio
;
4023 enqueue_task(rq
, p
, 0);
4026 * If the task increased its priority or is running and
4027 * lowered its priority, then reschedule its CPU:
4029 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4030 resched_task(rq
->curr
);
4033 task_rq_unlock(rq
, &flags
);
4035 EXPORT_SYMBOL(set_user_nice
);
4038 * can_nice - check if a task can reduce its nice value
4042 int can_nice(const struct task_struct
*p
, const int nice
)
4044 /* convert nice value [19,-20] to rlimit style value [1,40] */
4045 int nice_rlim
= 20 - nice
;
4047 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4048 capable(CAP_SYS_NICE
));
4051 #ifdef __ARCH_WANT_SYS_NICE
4054 * sys_nice - change the priority of the current process.
4055 * @increment: priority increment
4057 * sys_setpriority is a more generic, but much slower function that
4058 * does similar things.
4060 asmlinkage
long sys_nice(int increment
)
4065 * Setpriority might change our priority at the same moment.
4066 * We don't have to worry. Conceptually one call occurs first
4067 * and we have a single winner.
4069 if (increment
< -40)
4074 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4080 if (increment
< 0 && !can_nice(current
, nice
))
4083 retval
= security_task_setnice(current
, nice
);
4087 set_user_nice(current
, nice
);
4094 * task_prio - return the priority value of a given task.
4095 * @p: the task in question.
4097 * This is the priority value as seen by users in /proc.
4098 * RT tasks are offset by -200. Normal tasks are centered
4099 * around 0, value goes from -16 to +15.
4101 int task_prio(const struct task_struct
*p
)
4103 return p
->prio
- MAX_RT_PRIO
;
4107 * task_nice - return the nice value of a given task.
4108 * @p: the task in question.
4110 int task_nice(const struct task_struct
*p
)
4112 return TASK_NICE(p
);
4114 EXPORT_SYMBOL_GPL(task_nice
);
4117 * idle_cpu - is a given cpu idle currently?
4118 * @cpu: the processor in question.
4120 int idle_cpu(int cpu
)
4122 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4126 * idle_task - return the idle task for a given cpu.
4127 * @cpu: the processor in question.
4129 struct task_struct
*idle_task(int cpu
)
4131 return cpu_rq(cpu
)->idle
;
4135 * find_process_by_pid - find a process with a matching PID value.
4136 * @pid: the pid in question.
4138 static inline struct task_struct
*find_process_by_pid(pid_t pid
)
4140 return pid
? find_task_by_pid(pid
) : current
;
4143 /* Actually do priority change: must hold rq lock. */
4145 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4147 BUG_ON(p
->se
.on_rq
);
4150 switch (p
->policy
) {
4154 p
->sched_class
= &fair_sched_class
;
4158 p
->sched_class
= &rt_sched_class
;
4162 p
->rt_priority
= prio
;
4163 p
->normal_prio
= normal_prio(p
);
4164 /* we are holding p->pi_lock already */
4165 p
->prio
= rt_mutex_getprio(p
);
4170 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4171 * @p: the task in question.
4172 * @policy: new policy.
4173 * @param: structure containing the new RT priority.
4175 * NOTE that the task may be already dead.
4177 int sched_setscheduler(struct task_struct
*p
, int policy
,
4178 struct sched_param
*param
)
4180 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4181 unsigned long flags
;
4184 /* may grab non-irq protected spin_locks */
4185 BUG_ON(in_interrupt());
4187 /* double check policy once rq lock held */
4189 policy
= oldpolicy
= p
->policy
;
4190 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4191 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4192 policy
!= SCHED_IDLE
)
4195 * Valid priorities for SCHED_FIFO and SCHED_RR are
4196 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4197 * SCHED_BATCH and SCHED_IDLE is 0.
4199 if (param
->sched_priority
< 0 ||
4200 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4201 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4203 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4207 * Allow unprivileged RT tasks to decrease priority:
4209 if (!capable(CAP_SYS_NICE
)) {
4210 if (rt_policy(policy
)) {
4211 unsigned long rlim_rtprio
;
4213 if (!lock_task_sighand(p
, &flags
))
4215 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4216 unlock_task_sighand(p
, &flags
);
4218 /* can't set/change the rt policy */
4219 if (policy
!= p
->policy
&& !rlim_rtprio
)
4222 /* can't increase priority */
4223 if (param
->sched_priority
> p
->rt_priority
&&
4224 param
->sched_priority
> rlim_rtprio
)
4228 * Like positive nice levels, dont allow tasks to
4229 * move out of SCHED_IDLE either:
4231 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4234 /* can't change other user's priorities */
4235 if ((current
->euid
!= p
->euid
) &&
4236 (current
->euid
!= p
->uid
))
4240 retval
= security_task_setscheduler(p
, policy
, param
);
4244 * make sure no PI-waiters arrive (or leave) while we are
4245 * changing the priority of the task:
4247 spin_lock_irqsave(&p
->pi_lock
, flags
);
4249 * To be able to change p->policy safely, the apropriate
4250 * runqueue lock must be held.
4252 rq
= __task_rq_lock(p
);
4253 /* recheck policy now with rq lock held */
4254 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4255 policy
= oldpolicy
= -1;
4256 __task_rq_unlock(rq
);
4257 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4260 update_rq_clock(rq
);
4261 on_rq
= p
->se
.on_rq
;
4262 running
= task_running(rq
, p
);
4264 deactivate_task(rq
, p
, 0);
4266 p
->sched_class
->put_prev_task(rq
, p
);
4270 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4274 p
->sched_class
->set_curr_task(rq
);
4275 activate_task(rq
, p
, 0);
4277 * Reschedule if we are currently running on this runqueue and
4278 * our priority decreased, or if we are not currently running on
4279 * this runqueue and our priority is higher than the current's
4282 if (p
->prio
> oldprio
)
4283 resched_task(rq
->curr
);
4285 check_preempt_curr(rq
, p
);
4288 __task_rq_unlock(rq
);
4289 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4291 rt_mutex_adjust_pi(p
);
4295 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4298 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4300 struct sched_param lparam
;
4301 struct task_struct
*p
;
4304 if (!param
|| pid
< 0)
4306 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4311 p
= find_process_by_pid(pid
);
4313 retval
= sched_setscheduler(p
, policy
, &lparam
);
4320 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4321 * @pid: the pid in question.
4322 * @policy: new policy.
4323 * @param: structure containing the new RT priority.
4325 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4326 struct sched_param __user
*param
)
4328 /* negative values for policy are not valid */
4332 return do_sched_setscheduler(pid
, policy
, param
);
4336 * sys_sched_setparam - set/change the RT priority of a thread
4337 * @pid: the pid in question.
4338 * @param: structure containing the new RT priority.
4340 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4342 return do_sched_setscheduler(pid
, -1, param
);
4346 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4347 * @pid: the pid in question.
4349 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4351 struct task_struct
*p
;
4352 int retval
= -EINVAL
;
4358 read_lock(&tasklist_lock
);
4359 p
= find_process_by_pid(pid
);
4361 retval
= security_task_getscheduler(p
);
4365 read_unlock(&tasklist_lock
);
4372 * sys_sched_getscheduler - get the RT priority of a thread
4373 * @pid: the pid in question.
4374 * @param: structure containing the RT priority.
4376 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4378 struct sched_param lp
;
4379 struct task_struct
*p
;
4380 int retval
= -EINVAL
;
4382 if (!param
|| pid
< 0)
4385 read_lock(&tasklist_lock
);
4386 p
= find_process_by_pid(pid
);
4391 retval
= security_task_getscheduler(p
);
4395 lp
.sched_priority
= p
->rt_priority
;
4396 read_unlock(&tasklist_lock
);
4399 * This one might sleep, we cannot do it with a spinlock held ...
4401 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4407 read_unlock(&tasklist_lock
);
4411 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4413 cpumask_t cpus_allowed
;
4414 struct task_struct
*p
;
4417 mutex_lock(&sched_hotcpu_mutex
);
4418 read_lock(&tasklist_lock
);
4420 p
= find_process_by_pid(pid
);
4422 read_unlock(&tasklist_lock
);
4423 mutex_unlock(&sched_hotcpu_mutex
);
4428 * It is not safe to call set_cpus_allowed with the
4429 * tasklist_lock held. We will bump the task_struct's
4430 * usage count and then drop tasklist_lock.
4433 read_unlock(&tasklist_lock
);
4436 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4437 !capable(CAP_SYS_NICE
))
4440 retval
= security_task_setscheduler(p
, 0, NULL
);
4444 cpus_allowed
= cpuset_cpus_allowed(p
);
4445 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4446 retval
= set_cpus_allowed(p
, new_mask
);
4450 mutex_unlock(&sched_hotcpu_mutex
);
4454 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4455 cpumask_t
*new_mask
)
4457 if (len
< sizeof(cpumask_t
)) {
4458 memset(new_mask
, 0, sizeof(cpumask_t
));
4459 } else if (len
> sizeof(cpumask_t
)) {
4460 len
= sizeof(cpumask_t
);
4462 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4466 * sys_sched_setaffinity - set the cpu affinity of a process
4467 * @pid: pid of the process
4468 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4469 * @user_mask_ptr: user-space pointer to the new cpu mask
4471 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4472 unsigned long __user
*user_mask_ptr
)
4477 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4481 return sched_setaffinity(pid
, new_mask
);
4485 * Represents all cpu's present in the system
4486 * In systems capable of hotplug, this map could dynamically grow
4487 * as new cpu's are detected in the system via any platform specific
4488 * method, such as ACPI for e.g.
4491 cpumask_t cpu_present_map __read_mostly
;
4492 EXPORT_SYMBOL(cpu_present_map
);
4495 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4496 EXPORT_SYMBOL(cpu_online_map
);
4498 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4499 EXPORT_SYMBOL(cpu_possible_map
);
4502 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4504 struct task_struct
*p
;
4507 mutex_lock(&sched_hotcpu_mutex
);
4508 read_lock(&tasklist_lock
);
4511 p
= find_process_by_pid(pid
);
4515 retval
= security_task_getscheduler(p
);
4519 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4522 read_unlock(&tasklist_lock
);
4523 mutex_unlock(&sched_hotcpu_mutex
);
4529 * sys_sched_getaffinity - get the cpu affinity of a process
4530 * @pid: pid of the process
4531 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4532 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4534 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4535 unsigned long __user
*user_mask_ptr
)
4540 if (len
< sizeof(cpumask_t
))
4543 ret
= sched_getaffinity(pid
, &mask
);
4547 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4550 return sizeof(cpumask_t
);
4554 * sys_sched_yield - yield the current processor to other threads.
4556 * This function yields the current CPU to other tasks. If there are no
4557 * other threads running on this CPU then this function will return.
4559 asmlinkage
long sys_sched_yield(void)
4561 struct rq
*rq
= this_rq_lock();
4563 schedstat_inc(rq
, yld_cnt
);
4564 current
->sched_class
->yield_task(rq
);
4567 * Since we are going to call schedule() anyway, there's
4568 * no need to preempt or enable interrupts:
4570 __release(rq
->lock
);
4571 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4572 _raw_spin_unlock(&rq
->lock
);
4573 preempt_enable_no_resched();
4580 static void __cond_resched(void)
4582 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4583 __might_sleep(__FILE__
, __LINE__
);
4586 * The BKS might be reacquired before we have dropped
4587 * PREEMPT_ACTIVE, which could trigger a second
4588 * cond_resched() call.
4591 add_preempt_count(PREEMPT_ACTIVE
);
4593 sub_preempt_count(PREEMPT_ACTIVE
);
4594 } while (need_resched());
4597 int __sched
cond_resched(void)
4599 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4600 system_state
== SYSTEM_RUNNING
) {
4606 EXPORT_SYMBOL(cond_resched
);
4609 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4610 * call schedule, and on return reacquire the lock.
4612 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4613 * operations here to prevent schedule() from being called twice (once via
4614 * spin_unlock(), once by hand).
4616 int cond_resched_lock(spinlock_t
*lock
)
4620 if (need_lockbreak(lock
)) {
4626 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4627 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4628 _raw_spin_unlock(lock
);
4629 preempt_enable_no_resched();
4636 EXPORT_SYMBOL(cond_resched_lock
);
4638 int __sched
cond_resched_softirq(void)
4640 BUG_ON(!in_softirq());
4642 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4650 EXPORT_SYMBOL(cond_resched_softirq
);
4653 * yield - yield the current processor to other threads.
4655 * This is a shortcut for kernel-space yielding - it marks the
4656 * thread runnable and calls sys_sched_yield().
4658 void __sched
yield(void)
4660 set_current_state(TASK_RUNNING
);
4663 EXPORT_SYMBOL(yield
);
4666 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4667 * that process accounting knows that this is a task in IO wait state.
4669 * But don't do that if it is a deliberate, throttling IO wait (this task
4670 * has set its backing_dev_info: the queue against which it should throttle)
4672 void __sched
io_schedule(void)
4674 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4676 delayacct_blkio_start();
4677 atomic_inc(&rq
->nr_iowait
);
4679 atomic_dec(&rq
->nr_iowait
);
4680 delayacct_blkio_end();
4682 EXPORT_SYMBOL(io_schedule
);
4684 long __sched
io_schedule_timeout(long timeout
)
4686 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4689 delayacct_blkio_start();
4690 atomic_inc(&rq
->nr_iowait
);
4691 ret
= schedule_timeout(timeout
);
4692 atomic_dec(&rq
->nr_iowait
);
4693 delayacct_blkio_end();
4698 * sys_sched_get_priority_max - return maximum RT priority.
4699 * @policy: scheduling class.
4701 * this syscall returns the maximum rt_priority that can be used
4702 * by a given scheduling class.
4704 asmlinkage
long sys_sched_get_priority_max(int policy
)
4711 ret
= MAX_USER_RT_PRIO
-1;
4723 * sys_sched_get_priority_min - return minimum RT priority.
4724 * @policy: scheduling class.
4726 * this syscall returns the minimum rt_priority that can be used
4727 * by a given scheduling class.
4729 asmlinkage
long sys_sched_get_priority_min(int policy
)
4747 * sys_sched_rr_get_interval - return the default timeslice of a process.
4748 * @pid: pid of the process.
4749 * @interval: userspace pointer to the timeslice value.
4751 * this syscall writes the default timeslice value of a given process
4752 * into the user-space timespec buffer. A value of '0' means infinity.
4755 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4757 struct task_struct
*p
;
4758 int retval
= -EINVAL
;
4765 read_lock(&tasklist_lock
);
4766 p
= find_process_by_pid(pid
);
4770 retval
= security_task_getscheduler(p
);
4774 jiffies_to_timespec(p
->policy
== SCHED_FIFO
?
4775 0 : static_prio_timeslice(p
->static_prio
), &t
);
4776 read_unlock(&tasklist_lock
);
4777 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4781 read_unlock(&tasklist_lock
);
4785 static const char stat_nam
[] = "RSDTtZX";
4787 static void show_task(struct task_struct
*p
)
4789 unsigned long free
= 0;
4792 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4793 printk("%-13.13s %c", p
->comm
,
4794 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4795 #if BITS_PER_LONG == 32
4796 if (state
== TASK_RUNNING
)
4797 printk(" running ");
4799 printk(" %08lx ", thread_saved_pc(p
));
4801 if (state
== TASK_RUNNING
)
4802 printk(" running task ");
4804 printk(" %016lx ", thread_saved_pc(p
));
4806 #ifdef CONFIG_DEBUG_STACK_USAGE
4808 unsigned long *n
= end_of_stack(p
);
4811 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4814 printk("%5lu %5d %6d\n", free
, p
->pid
, p
->parent
->pid
);
4816 if (state
!= TASK_RUNNING
)
4817 show_stack(p
, NULL
);
4820 void show_state_filter(unsigned long state_filter
)
4822 struct task_struct
*g
, *p
;
4824 #if BITS_PER_LONG == 32
4826 " task PC stack pid father\n");
4829 " task PC stack pid father\n");
4831 read_lock(&tasklist_lock
);
4832 do_each_thread(g
, p
) {
4834 * reset the NMI-timeout, listing all files on a slow
4835 * console might take alot of time:
4837 touch_nmi_watchdog();
4838 if (!state_filter
|| (p
->state
& state_filter
))
4840 } while_each_thread(g
, p
);
4842 touch_all_softlockup_watchdogs();
4844 #ifdef CONFIG_SCHED_DEBUG
4845 sysrq_sched_debug_show();
4847 read_unlock(&tasklist_lock
);
4849 * Only show locks if all tasks are dumped:
4851 if (state_filter
== -1)
4852 debug_show_all_locks();
4855 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4857 idle
->sched_class
= &idle_sched_class
;
4861 * init_idle - set up an idle thread for a given CPU
4862 * @idle: task in question
4863 * @cpu: cpu the idle task belongs to
4865 * NOTE: this function does not set the idle thread's NEED_RESCHED
4866 * flag, to make booting more robust.
4868 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4870 struct rq
*rq
= cpu_rq(cpu
);
4871 unsigned long flags
;
4874 idle
->se
.exec_start
= sched_clock();
4876 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4877 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4878 __set_task_cpu(idle
, cpu
);
4880 spin_lock_irqsave(&rq
->lock
, flags
);
4881 rq
->curr
= rq
->idle
= idle
;
4882 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4885 spin_unlock_irqrestore(&rq
->lock
, flags
);
4887 /* Set the preempt count _outside_ the spinlocks! */
4888 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4889 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4891 task_thread_info(idle
)->preempt_count
= 0;
4894 * The idle tasks have their own, simple scheduling class:
4896 idle
->sched_class
= &idle_sched_class
;
4900 * In a system that switches off the HZ timer nohz_cpu_mask
4901 * indicates which cpus entered this state. This is used
4902 * in the rcu update to wait only for active cpus. For system
4903 * which do not switch off the HZ timer nohz_cpu_mask should
4904 * always be CPU_MASK_NONE.
4906 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4910 * This is how migration works:
4912 * 1) we queue a struct migration_req structure in the source CPU's
4913 * runqueue and wake up that CPU's migration thread.
4914 * 2) we down() the locked semaphore => thread blocks.
4915 * 3) migration thread wakes up (implicitly it forces the migrated
4916 * thread off the CPU)
4917 * 4) it gets the migration request and checks whether the migrated
4918 * task is still in the wrong runqueue.
4919 * 5) if it's in the wrong runqueue then the migration thread removes
4920 * it and puts it into the right queue.
4921 * 6) migration thread up()s the semaphore.
4922 * 7) we wake up and the migration is done.
4926 * Change a given task's CPU affinity. Migrate the thread to a
4927 * proper CPU and schedule it away if the CPU it's executing on
4928 * is removed from the allowed bitmask.
4930 * NOTE: the caller must have a valid reference to the task, the
4931 * task must not exit() & deallocate itself prematurely. The
4932 * call is not atomic; no spinlocks may be held.
4934 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4936 struct migration_req req
;
4937 unsigned long flags
;
4941 rq
= task_rq_lock(p
, &flags
);
4942 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4947 p
->cpus_allowed
= new_mask
;
4948 /* Can the task run on the task's current CPU? If so, we're done */
4949 if (cpu_isset(task_cpu(p
), new_mask
))
4952 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4953 /* Need help from migration thread: drop lock and wait. */
4954 task_rq_unlock(rq
, &flags
);
4955 wake_up_process(rq
->migration_thread
);
4956 wait_for_completion(&req
.done
);
4957 tlb_migrate_finish(p
->mm
);
4961 task_rq_unlock(rq
, &flags
);
4965 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4968 * Move (not current) task off this cpu, onto dest cpu. We're doing
4969 * this because either it can't run here any more (set_cpus_allowed()
4970 * away from this CPU, or CPU going down), or because we're
4971 * attempting to rebalance this task on exec (sched_exec).
4973 * So we race with normal scheduler movements, but that's OK, as long
4974 * as the task is no longer on this CPU.
4976 * Returns non-zero if task was successfully migrated.
4978 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4980 struct rq
*rq_dest
, *rq_src
;
4983 if (unlikely(cpu_is_offline(dest_cpu
)))
4986 rq_src
= cpu_rq(src_cpu
);
4987 rq_dest
= cpu_rq(dest_cpu
);
4989 double_rq_lock(rq_src
, rq_dest
);
4990 /* Already moved. */
4991 if (task_cpu(p
) != src_cpu
)
4993 /* Affinity changed (again). */
4994 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4997 on_rq
= p
->se
.on_rq
;
4999 deactivate_task(rq_src
, p
, 0);
5001 set_task_cpu(p
, dest_cpu
);
5003 activate_task(rq_dest
, p
, 0);
5004 check_preempt_curr(rq_dest
, p
);
5008 double_rq_unlock(rq_src
, rq_dest
);
5013 * migration_thread - this is a highprio system thread that performs
5014 * thread migration by bumping thread off CPU then 'pushing' onto
5017 static int migration_thread(void *data
)
5019 int cpu
= (long)data
;
5023 BUG_ON(rq
->migration_thread
!= current
);
5025 set_current_state(TASK_INTERRUPTIBLE
);
5026 while (!kthread_should_stop()) {
5027 struct migration_req
*req
;
5028 struct list_head
*head
;
5030 spin_lock_irq(&rq
->lock
);
5032 if (cpu_is_offline(cpu
)) {
5033 spin_unlock_irq(&rq
->lock
);
5037 if (rq
->active_balance
) {
5038 active_load_balance(rq
, cpu
);
5039 rq
->active_balance
= 0;
5042 head
= &rq
->migration_queue
;
5044 if (list_empty(head
)) {
5045 spin_unlock_irq(&rq
->lock
);
5047 set_current_state(TASK_INTERRUPTIBLE
);
5050 req
= list_entry(head
->next
, struct migration_req
, list
);
5051 list_del_init(head
->next
);
5053 spin_unlock(&rq
->lock
);
5054 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5057 complete(&req
->done
);
5059 __set_current_state(TASK_RUNNING
);
5063 /* Wait for kthread_stop */
5064 set_current_state(TASK_INTERRUPTIBLE
);
5065 while (!kthread_should_stop()) {
5067 set_current_state(TASK_INTERRUPTIBLE
);
5069 __set_current_state(TASK_RUNNING
);
5073 #ifdef CONFIG_HOTPLUG_CPU
5075 * Figure out where task on dead CPU should go, use force if neccessary.
5076 * NOTE: interrupts should be disabled by the caller
5078 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5080 unsigned long flags
;
5087 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5088 cpus_and(mask
, mask
, p
->cpus_allowed
);
5089 dest_cpu
= any_online_cpu(mask
);
5091 /* On any allowed CPU? */
5092 if (dest_cpu
== NR_CPUS
)
5093 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5095 /* No more Mr. Nice Guy. */
5096 if (dest_cpu
== NR_CPUS
) {
5097 rq
= task_rq_lock(p
, &flags
);
5098 cpus_setall(p
->cpus_allowed
);
5099 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5100 task_rq_unlock(rq
, &flags
);
5103 * Don't tell them about moving exiting tasks or
5104 * kernel threads (both mm NULL), since they never
5107 if (p
->mm
&& printk_ratelimit())
5108 printk(KERN_INFO
"process %d (%s) no "
5109 "longer affine to cpu%d\n",
5110 p
->pid
, p
->comm
, dead_cpu
);
5112 if (!__migrate_task(p
, dead_cpu
, dest_cpu
))
5117 * While a dead CPU has no uninterruptible tasks queued at this point,
5118 * it might still have a nonzero ->nr_uninterruptible counter, because
5119 * for performance reasons the counter is not stricly tracking tasks to
5120 * their home CPUs. So we just add the counter to another CPU's counter,
5121 * to keep the global sum constant after CPU-down:
5123 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5125 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5126 unsigned long flags
;
5128 local_irq_save(flags
);
5129 double_rq_lock(rq_src
, rq_dest
);
5130 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5131 rq_src
->nr_uninterruptible
= 0;
5132 double_rq_unlock(rq_src
, rq_dest
);
5133 local_irq_restore(flags
);
5136 /* Run through task list and migrate tasks from the dead cpu. */
5137 static void migrate_live_tasks(int src_cpu
)
5139 struct task_struct
*p
, *t
;
5141 write_lock_irq(&tasklist_lock
);
5143 do_each_thread(t
, p
) {
5147 if (task_cpu(p
) == src_cpu
)
5148 move_task_off_dead_cpu(src_cpu
, p
);
5149 } while_each_thread(t
, p
);
5151 write_unlock_irq(&tasklist_lock
);
5155 * Schedules idle task to be the next runnable task on current CPU.
5156 * It does so by boosting its priority to highest possible and adding it to
5157 * the _front_ of the runqueue. Used by CPU offline code.
5159 void sched_idle_next(void)
5161 int this_cpu
= smp_processor_id();
5162 struct rq
*rq
= cpu_rq(this_cpu
);
5163 struct task_struct
*p
= rq
->idle
;
5164 unsigned long flags
;
5166 /* cpu has to be offline */
5167 BUG_ON(cpu_online(this_cpu
));
5170 * Strictly not necessary since rest of the CPUs are stopped by now
5171 * and interrupts disabled on the current cpu.
5173 spin_lock_irqsave(&rq
->lock
, flags
);
5175 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5177 /* Add idle task to the _front_ of its priority queue: */
5178 activate_idle_task(p
, rq
);
5180 spin_unlock_irqrestore(&rq
->lock
, flags
);
5184 * Ensures that the idle task is using init_mm right before its cpu goes
5187 void idle_task_exit(void)
5189 struct mm_struct
*mm
= current
->active_mm
;
5191 BUG_ON(cpu_online(smp_processor_id()));
5194 switch_mm(mm
, &init_mm
, current
);
5198 /* called under rq->lock with disabled interrupts */
5199 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5201 struct rq
*rq
= cpu_rq(dead_cpu
);
5203 /* Must be exiting, otherwise would be on tasklist. */
5204 BUG_ON(p
->exit_state
!= EXIT_ZOMBIE
&& p
->exit_state
!= EXIT_DEAD
);
5206 /* Cannot have done final schedule yet: would have vanished. */
5207 BUG_ON(p
->state
== TASK_DEAD
);
5212 * Drop lock around migration; if someone else moves it,
5213 * that's OK. No task can be added to this CPU, so iteration is
5215 * NOTE: interrupts should be left disabled --dev@
5217 spin_unlock(&rq
->lock
);
5218 move_task_off_dead_cpu(dead_cpu
, p
);
5219 spin_lock(&rq
->lock
);
5224 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5225 static void migrate_dead_tasks(unsigned int dead_cpu
)
5227 struct rq
*rq
= cpu_rq(dead_cpu
);
5228 struct task_struct
*next
;
5231 if (!rq
->nr_running
)
5233 update_rq_clock(rq
);
5234 next
= pick_next_task(rq
, rq
->curr
);
5237 migrate_dead(dead_cpu
, next
);
5241 #endif /* CONFIG_HOTPLUG_CPU */
5243 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5245 static struct ctl_table sd_ctl_dir
[] = {
5247 .procname
= "sched_domain",
5253 static struct ctl_table sd_ctl_root
[] = {
5255 .ctl_name
= CTL_KERN
,
5256 .procname
= "kernel",
5258 .child
= sd_ctl_dir
,
5263 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5265 struct ctl_table
*entry
=
5266 kmalloc(n
* sizeof(struct ctl_table
), GFP_KERNEL
);
5269 memset(entry
, 0, n
* sizeof(struct ctl_table
));
5275 set_table_entry(struct ctl_table
*entry
,
5276 const char *procname
, void *data
, int maxlen
,
5277 mode_t mode
, proc_handler
*proc_handler
)
5279 entry
->procname
= procname
;
5281 entry
->maxlen
= maxlen
;
5283 entry
->proc_handler
= proc_handler
;
5286 static struct ctl_table
*
5287 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5289 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
5291 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5292 sizeof(long), 0644, proc_doulongvec_minmax
);
5293 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5294 sizeof(long), 0644, proc_doulongvec_minmax
);
5295 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5296 sizeof(int), 0644, proc_dointvec_minmax
);
5297 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5298 sizeof(int), 0644, proc_dointvec_minmax
);
5299 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5300 sizeof(int), 0644, proc_dointvec_minmax
);
5301 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5302 sizeof(int), 0644, proc_dointvec_minmax
);
5303 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5304 sizeof(int), 0644, proc_dointvec_minmax
);
5305 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5306 sizeof(int), 0644, proc_dointvec_minmax
);
5307 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5308 sizeof(int), 0644, proc_dointvec_minmax
);
5309 set_table_entry(&table
[10], "cache_nice_tries",
5310 &sd
->cache_nice_tries
,
5311 sizeof(int), 0644, proc_dointvec_minmax
);
5312 set_table_entry(&table
[12], "flags", &sd
->flags
,
5313 sizeof(int), 0644, proc_dointvec_minmax
);
5318 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5320 struct ctl_table
*entry
, *table
;
5321 struct sched_domain
*sd
;
5322 int domain_num
= 0, i
;
5325 for_each_domain(cpu
, sd
)
5327 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5330 for_each_domain(cpu
, sd
) {
5331 snprintf(buf
, 32, "domain%d", i
);
5332 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5334 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5341 static struct ctl_table_header
*sd_sysctl_header
;
5342 static void init_sched_domain_sysctl(void)
5344 int i
, cpu_num
= num_online_cpus();
5345 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5348 sd_ctl_dir
[0].child
= entry
;
5350 for (i
= 0; i
< cpu_num
; i
++, entry
++) {
5351 snprintf(buf
, 32, "cpu%d", i
);
5352 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5354 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5356 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5359 static void init_sched_domain_sysctl(void)
5365 * migration_call - callback that gets triggered when a CPU is added.
5366 * Here we can start up the necessary migration thread for the new CPU.
5368 static int __cpuinit
5369 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5371 struct task_struct
*p
;
5372 int cpu
= (long)hcpu
;
5373 unsigned long flags
;
5377 case CPU_LOCK_ACQUIRE
:
5378 mutex_lock(&sched_hotcpu_mutex
);
5381 case CPU_UP_PREPARE
:
5382 case CPU_UP_PREPARE_FROZEN
:
5383 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5386 kthread_bind(p
, cpu
);
5387 /* Must be high prio: stop_machine expects to yield to it. */
5388 rq
= task_rq_lock(p
, &flags
);
5389 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5390 task_rq_unlock(rq
, &flags
);
5391 cpu_rq(cpu
)->migration_thread
= p
;
5395 case CPU_ONLINE_FROZEN
:
5396 /* Strictly unneccessary, as first user will wake it. */
5397 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5400 #ifdef CONFIG_HOTPLUG_CPU
5401 case CPU_UP_CANCELED
:
5402 case CPU_UP_CANCELED_FROZEN
:
5403 if (!cpu_rq(cpu
)->migration_thread
)
5405 /* Unbind it from offline cpu so it can run. Fall thru. */
5406 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5407 any_online_cpu(cpu_online_map
));
5408 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5409 cpu_rq(cpu
)->migration_thread
= NULL
;
5413 case CPU_DEAD_FROZEN
:
5414 migrate_live_tasks(cpu
);
5416 kthread_stop(rq
->migration_thread
);
5417 rq
->migration_thread
= NULL
;
5418 /* Idle task back to normal (off runqueue, low prio) */
5419 rq
= task_rq_lock(rq
->idle
, &flags
);
5420 update_rq_clock(rq
);
5421 deactivate_task(rq
, rq
->idle
, 0);
5422 rq
->idle
->static_prio
= MAX_PRIO
;
5423 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5424 rq
->idle
->sched_class
= &idle_sched_class
;
5425 migrate_dead_tasks(cpu
);
5426 task_rq_unlock(rq
, &flags
);
5427 migrate_nr_uninterruptible(rq
);
5428 BUG_ON(rq
->nr_running
!= 0);
5430 /* No need to migrate the tasks: it was best-effort if
5431 * they didn't take sched_hotcpu_mutex. Just wake up
5432 * the requestors. */
5433 spin_lock_irq(&rq
->lock
);
5434 while (!list_empty(&rq
->migration_queue
)) {
5435 struct migration_req
*req
;
5437 req
= list_entry(rq
->migration_queue
.next
,
5438 struct migration_req
, list
);
5439 list_del_init(&req
->list
);
5440 complete(&req
->done
);
5442 spin_unlock_irq(&rq
->lock
);
5445 case CPU_LOCK_RELEASE
:
5446 mutex_unlock(&sched_hotcpu_mutex
);
5452 /* Register at highest priority so that task migration (migrate_all_tasks)
5453 * happens before everything else.
5455 static struct notifier_block __cpuinitdata migration_notifier
= {
5456 .notifier_call
= migration_call
,
5460 int __init
migration_init(void)
5462 void *cpu
= (void *)(long)smp_processor_id();
5465 /* Start one for the boot CPU: */
5466 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5467 BUG_ON(err
== NOTIFY_BAD
);
5468 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5469 register_cpu_notifier(&migration_notifier
);
5477 /* Number of possible processor ids */
5478 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5479 EXPORT_SYMBOL(nr_cpu_ids
);
5481 #undef SCHED_DOMAIN_DEBUG
5482 #ifdef SCHED_DOMAIN_DEBUG
5483 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5488 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5492 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5497 struct sched_group
*group
= sd
->groups
;
5498 cpumask_t groupmask
;
5500 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5501 cpus_clear(groupmask
);
5504 for (i
= 0; i
< level
+ 1; i
++)
5506 printk("domain %d: ", level
);
5508 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5509 printk("does not load-balance\n");
5511 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5516 printk("span %s\n", str
);
5518 if (!cpu_isset(cpu
, sd
->span
))
5519 printk(KERN_ERR
"ERROR: domain->span does not contain "
5521 if (!cpu_isset(cpu
, group
->cpumask
))
5522 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5526 for (i
= 0; i
< level
+ 2; i
++)
5532 printk(KERN_ERR
"ERROR: group is NULL\n");
5536 if (!group
->__cpu_power
) {
5538 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5542 if (!cpus_weight(group
->cpumask
)) {
5544 printk(KERN_ERR
"ERROR: empty group\n");
5547 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5549 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5552 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5554 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5557 group
= group
->next
;
5558 } while (group
!= sd
->groups
);
5561 if (!cpus_equal(sd
->span
, groupmask
))
5562 printk(KERN_ERR
"ERROR: groups don't span "
5570 if (!cpus_subset(groupmask
, sd
->span
))
5571 printk(KERN_ERR
"ERROR: parent span is not a superset "
5572 "of domain->span\n");
5577 # define sched_domain_debug(sd, cpu) do { } while (0)
5580 static int sd_degenerate(struct sched_domain
*sd
)
5582 if (cpus_weight(sd
->span
) == 1)
5585 /* Following flags need at least 2 groups */
5586 if (sd
->flags
& (SD_LOAD_BALANCE
|
5587 SD_BALANCE_NEWIDLE
|
5591 SD_SHARE_PKG_RESOURCES
)) {
5592 if (sd
->groups
!= sd
->groups
->next
)
5596 /* Following flags don't use groups */
5597 if (sd
->flags
& (SD_WAKE_IDLE
|
5606 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5608 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5610 if (sd_degenerate(parent
))
5613 if (!cpus_equal(sd
->span
, parent
->span
))
5616 /* Does parent contain flags not in child? */
5617 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5618 if (cflags
& SD_WAKE_AFFINE
)
5619 pflags
&= ~SD_WAKE_BALANCE
;
5620 /* Flags needing groups don't count if only 1 group in parent */
5621 if (parent
->groups
== parent
->groups
->next
) {
5622 pflags
&= ~(SD_LOAD_BALANCE
|
5623 SD_BALANCE_NEWIDLE
|
5627 SD_SHARE_PKG_RESOURCES
);
5629 if (~cflags
& pflags
)
5636 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5637 * hold the hotplug lock.
5639 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5641 struct rq
*rq
= cpu_rq(cpu
);
5642 struct sched_domain
*tmp
;
5644 /* Remove the sched domains which do not contribute to scheduling. */
5645 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5646 struct sched_domain
*parent
= tmp
->parent
;
5649 if (sd_parent_degenerate(tmp
, parent
)) {
5650 tmp
->parent
= parent
->parent
;
5652 parent
->parent
->child
= tmp
;
5656 if (sd
&& sd_degenerate(sd
)) {
5662 sched_domain_debug(sd
, cpu
);
5664 rcu_assign_pointer(rq
->sd
, sd
);
5667 /* cpus with isolated domains */
5668 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5670 /* Setup the mask of cpus configured for isolated domains */
5671 static int __init
isolated_cpu_setup(char *str
)
5673 int ints
[NR_CPUS
], i
;
5675 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5676 cpus_clear(cpu_isolated_map
);
5677 for (i
= 1; i
<= ints
[0]; i
++)
5678 if (ints
[i
] < NR_CPUS
)
5679 cpu_set(ints
[i
], cpu_isolated_map
);
5683 __setup ("isolcpus=", isolated_cpu_setup
);
5686 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5687 * to a function which identifies what group(along with sched group) a CPU
5688 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5689 * (due to the fact that we keep track of groups covered with a cpumask_t).
5691 * init_sched_build_groups will build a circular linked list of the groups
5692 * covered by the given span, and will set each group's ->cpumask correctly,
5693 * and ->cpu_power to 0.
5696 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5697 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5698 struct sched_group
**sg
))
5700 struct sched_group
*first
= NULL
, *last
= NULL
;
5701 cpumask_t covered
= CPU_MASK_NONE
;
5704 for_each_cpu_mask(i
, span
) {
5705 struct sched_group
*sg
;
5706 int group
= group_fn(i
, cpu_map
, &sg
);
5709 if (cpu_isset(i
, covered
))
5712 sg
->cpumask
= CPU_MASK_NONE
;
5713 sg
->__cpu_power
= 0;
5715 for_each_cpu_mask(j
, span
) {
5716 if (group_fn(j
, cpu_map
, NULL
) != group
)
5719 cpu_set(j
, covered
);
5720 cpu_set(j
, sg
->cpumask
);
5731 #define SD_NODES_PER_DOMAIN 16
5736 * find_next_best_node - find the next node to include in a sched_domain
5737 * @node: node whose sched_domain we're building
5738 * @used_nodes: nodes already in the sched_domain
5740 * Find the next node to include in a given scheduling domain. Simply
5741 * finds the closest node not already in the @used_nodes map.
5743 * Should use nodemask_t.
5745 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5747 int i
, n
, val
, min_val
, best_node
= 0;
5751 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5752 /* Start at @node */
5753 n
= (node
+ i
) % MAX_NUMNODES
;
5755 if (!nr_cpus_node(n
))
5758 /* Skip already used nodes */
5759 if (test_bit(n
, used_nodes
))
5762 /* Simple min distance search */
5763 val
= node_distance(node
, n
);
5765 if (val
< min_val
) {
5771 set_bit(best_node
, used_nodes
);
5776 * sched_domain_node_span - get a cpumask for a node's sched_domain
5777 * @node: node whose cpumask we're constructing
5778 * @size: number of nodes to include in this span
5780 * Given a node, construct a good cpumask for its sched_domain to span. It
5781 * should be one that prevents unnecessary balancing, but also spreads tasks
5784 static cpumask_t
sched_domain_node_span(int node
)
5786 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5787 cpumask_t span
, nodemask
;
5791 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5793 nodemask
= node_to_cpumask(node
);
5794 cpus_or(span
, span
, nodemask
);
5795 set_bit(node
, used_nodes
);
5797 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5798 int next_node
= find_next_best_node(node
, used_nodes
);
5800 nodemask
= node_to_cpumask(next_node
);
5801 cpus_or(span
, span
, nodemask
);
5808 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5811 * SMT sched-domains:
5813 #ifdef CONFIG_SCHED_SMT
5814 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5815 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5817 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5818 struct sched_group
**sg
)
5821 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5827 * multi-core sched-domains:
5829 #ifdef CONFIG_SCHED_MC
5830 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5831 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5834 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5835 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5836 struct sched_group
**sg
)
5839 cpumask_t mask
= cpu_sibling_map
[cpu
];
5840 cpus_and(mask
, mask
, *cpu_map
);
5841 group
= first_cpu(mask
);
5843 *sg
= &per_cpu(sched_group_core
, group
);
5846 #elif defined(CONFIG_SCHED_MC)
5847 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5848 struct sched_group
**sg
)
5851 *sg
= &per_cpu(sched_group_core
, cpu
);
5856 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5857 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5859 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5860 struct sched_group
**sg
)
5863 #ifdef CONFIG_SCHED_MC
5864 cpumask_t mask
= cpu_coregroup_map(cpu
);
5865 cpus_and(mask
, mask
, *cpu_map
);
5866 group
= first_cpu(mask
);
5867 #elif defined(CONFIG_SCHED_SMT)
5868 cpumask_t mask
= cpu_sibling_map
[cpu
];
5869 cpus_and(mask
, mask
, *cpu_map
);
5870 group
= first_cpu(mask
);
5875 *sg
= &per_cpu(sched_group_phys
, group
);
5881 * The init_sched_build_groups can't handle what we want to do with node
5882 * groups, so roll our own. Now each node has its own list of groups which
5883 * gets dynamically allocated.
5885 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5886 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5888 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5889 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
5891 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
5892 struct sched_group
**sg
)
5894 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
5897 cpus_and(nodemask
, nodemask
, *cpu_map
);
5898 group
= first_cpu(nodemask
);
5901 *sg
= &per_cpu(sched_group_allnodes
, group
);
5905 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5907 struct sched_group
*sg
= group_head
;
5913 for_each_cpu_mask(j
, sg
->cpumask
) {
5914 struct sched_domain
*sd
;
5916 sd
= &per_cpu(phys_domains
, j
);
5917 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5919 * Only add "power" once for each
5925 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
5928 if (sg
!= group_head
)
5934 /* Free memory allocated for various sched_group structures */
5935 static void free_sched_groups(const cpumask_t
*cpu_map
)
5939 for_each_cpu_mask(cpu
, *cpu_map
) {
5940 struct sched_group
**sched_group_nodes
5941 = sched_group_nodes_bycpu
[cpu
];
5943 if (!sched_group_nodes
)
5946 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5947 cpumask_t nodemask
= node_to_cpumask(i
);
5948 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5950 cpus_and(nodemask
, nodemask
, *cpu_map
);
5951 if (cpus_empty(nodemask
))
5961 if (oldsg
!= sched_group_nodes
[i
])
5964 kfree(sched_group_nodes
);
5965 sched_group_nodes_bycpu
[cpu
] = NULL
;
5969 static void free_sched_groups(const cpumask_t
*cpu_map
)
5975 * Initialize sched groups cpu_power.
5977 * cpu_power indicates the capacity of sched group, which is used while
5978 * distributing the load between different sched groups in a sched domain.
5979 * Typically cpu_power for all the groups in a sched domain will be same unless
5980 * there are asymmetries in the topology. If there are asymmetries, group
5981 * having more cpu_power will pickup more load compared to the group having
5984 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5985 * the maximum number of tasks a group can handle in the presence of other idle
5986 * or lightly loaded groups in the same sched domain.
5988 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
5990 struct sched_domain
*child
;
5991 struct sched_group
*group
;
5993 WARN_ON(!sd
|| !sd
->groups
);
5995 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6000 sd
->groups
->__cpu_power
= 0;
6003 * For perf policy, if the groups in child domain share resources
6004 * (for example cores sharing some portions of the cache hierarchy
6005 * or SMT), then set this domain groups cpu_power such that each group
6006 * can handle only one task, when there are other idle groups in the
6007 * same sched domain.
6009 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6011 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6012 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6017 * add cpu_power of each child group to this groups cpu_power
6019 group
= child
->groups
;
6021 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6022 group
= group
->next
;
6023 } while (group
!= child
->groups
);
6027 * Build sched domains for a given set of cpus and attach the sched domains
6028 * to the individual cpus
6030 static int build_sched_domains(const cpumask_t
*cpu_map
)
6034 struct sched_group
**sched_group_nodes
= NULL
;
6035 int sd_allnodes
= 0;
6038 * Allocate the per-node list of sched groups
6040 sched_group_nodes
= kzalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
6042 if (!sched_group_nodes
) {
6043 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6046 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6050 * Set up domains for cpus specified by the cpu_map.
6052 for_each_cpu_mask(i
, *cpu_map
) {
6053 struct sched_domain
*sd
= NULL
, *p
;
6054 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6056 cpus_and(nodemask
, nodemask
, *cpu_map
);
6059 if (cpus_weight(*cpu_map
) >
6060 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6061 sd
= &per_cpu(allnodes_domains
, i
);
6062 *sd
= SD_ALLNODES_INIT
;
6063 sd
->span
= *cpu_map
;
6064 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6070 sd
= &per_cpu(node_domains
, i
);
6072 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6076 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6080 sd
= &per_cpu(phys_domains
, i
);
6082 sd
->span
= nodemask
;
6086 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6088 #ifdef CONFIG_SCHED_MC
6090 sd
= &per_cpu(core_domains
, i
);
6092 sd
->span
= cpu_coregroup_map(i
);
6093 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6096 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6099 #ifdef CONFIG_SCHED_SMT
6101 sd
= &per_cpu(cpu_domains
, i
);
6102 *sd
= SD_SIBLING_INIT
;
6103 sd
->span
= cpu_sibling_map
[i
];
6104 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6107 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6111 #ifdef CONFIG_SCHED_SMT
6112 /* Set up CPU (sibling) groups */
6113 for_each_cpu_mask(i
, *cpu_map
) {
6114 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
6115 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6116 if (i
!= first_cpu(this_sibling_map
))
6119 init_sched_build_groups(this_sibling_map
, cpu_map
,
6124 #ifdef CONFIG_SCHED_MC
6125 /* Set up multi-core groups */
6126 for_each_cpu_mask(i
, *cpu_map
) {
6127 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6128 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6129 if (i
!= first_cpu(this_core_map
))
6131 init_sched_build_groups(this_core_map
, cpu_map
,
6132 &cpu_to_core_group
);
6136 /* Set up physical groups */
6137 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6138 cpumask_t nodemask
= node_to_cpumask(i
);
6140 cpus_and(nodemask
, nodemask
, *cpu_map
);
6141 if (cpus_empty(nodemask
))
6144 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6148 /* Set up node groups */
6150 init_sched_build_groups(*cpu_map
, cpu_map
,
6151 &cpu_to_allnodes_group
);
6153 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6154 /* Set up node groups */
6155 struct sched_group
*sg
, *prev
;
6156 cpumask_t nodemask
= node_to_cpumask(i
);
6157 cpumask_t domainspan
;
6158 cpumask_t covered
= CPU_MASK_NONE
;
6161 cpus_and(nodemask
, nodemask
, *cpu_map
);
6162 if (cpus_empty(nodemask
)) {
6163 sched_group_nodes
[i
] = NULL
;
6167 domainspan
= sched_domain_node_span(i
);
6168 cpus_and(domainspan
, domainspan
, *cpu_map
);
6170 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6172 printk(KERN_WARNING
"Can not alloc domain group for "
6176 sched_group_nodes
[i
] = sg
;
6177 for_each_cpu_mask(j
, nodemask
) {
6178 struct sched_domain
*sd
;
6180 sd
= &per_cpu(node_domains
, j
);
6183 sg
->__cpu_power
= 0;
6184 sg
->cpumask
= nodemask
;
6186 cpus_or(covered
, covered
, nodemask
);
6189 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6190 cpumask_t tmp
, notcovered
;
6191 int n
= (i
+ j
) % MAX_NUMNODES
;
6193 cpus_complement(notcovered
, covered
);
6194 cpus_and(tmp
, notcovered
, *cpu_map
);
6195 cpus_and(tmp
, tmp
, domainspan
);
6196 if (cpus_empty(tmp
))
6199 nodemask
= node_to_cpumask(n
);
6200 cpus_and(tmp
, tmp
, nodemask
);
6201 if (cpus_empty(tmp
))
6204 sg
= kmalloc_node(sizeof(struct sched_group
),
6208 "Can not alloc domain group for node %d\n", j
);
6211 sg
->__cpu_power
= 0;
6213 sg
->next
= prev
->next
;
6214 cpus_or(covered
, covered
, tmp
);
6221 /* Calculate CPU power for physical packages and nodes */
6222 #ifdef CONFIG_SCHED_SMT
6223 for_each_cpu_mask(i
, *cpu_map
) {
6224 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6226 init_sched_groups_power(i
, sd
);
6229 #ifdef CONFIG_SCHED_MC
6230 for_each_cpu_mask(i
, *cpu_map
) {
6231 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6233 init_sched_groups_power(i
, sd
);
6237 for_each_cpu_mask(i
, *cpu_map
) {
6238 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6240 init_sched_groups_power(i
, sd
);
6244 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6245 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6248 struct sched_group
*sg
;
6250 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6251 init_numa_sched_groups_power(sg
);
6255 /* Attach the domains */
6256 for_each_cpu_mask(i
, *cpu_map
) {
6257 struct sched_domain
*sd
;
6258 #ifdef CONFIG_SCHED_SMT
6259 sd
= &per_cpu(cpu_domains
, i
);
6260 #elif defined(CONFIG_SCHED_MC)
6261 sd
= &per_cpu(core_domains
, i
);
6263 sd
= &per_cpu(phys_domains
, i
);
6265 cpu_attach_domain(sd
, i
);
6272 free_sched_groups(cpu_map
);
6277 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6279 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6281 cpumask_t cpu_default_map
;
6285 * Setup mask for cpus without special case scheduling requirements.
6286 * For now this just excludes isolated cpus, but could be used to
6287 * exclude other special cases in the future.
6289 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
6291 err
= build_sched_domains(&cpu_default_map
);
6296 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6298 free_sched_groups(cpu_map
);
6302 * Detach sched domains from a group of cpus specified in cpu_map
6303 * These cpus will now be attached to the NULL domain
6305 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6309 for_each_cpu_mask(i
, *cpu_map
)
6310 cpu_attach_domain(NULL
, i
);
6311 synchronize_sched();
6312 arch_destroy_sched_domains(cpu_map
);
6316 * Partition sched domains as specified by the cpumasks below.
6317 * This attaches all cpus from the cpumasks to the NULL domain,
6318 * waits for a RCU quiescent period, recalculates sched
6319 * domain information and then attaches them back to the
6320 * correct sched domains
6321 * Call with hotplug lock held
6323 int partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6325 cpumask_t change_map
;
6328 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6329 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6330 cpus_or(change_map
, *partition1
, *partition2
);
6332 /* Detach sched domains from all of the affected cpus */
6333 detach_destroy_domains(&change_map
);
6334 if (!cpus_empty(*partition1
))
6335 err
= build_sched_domains(partition1
);
6336 if (!err
&& !cpus_empty(*partition2
))
6337 err
= build_sched_domains(partition2
);
6342 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6343 static int arch_reinit_sched_domains(void)
6347 mutex_lock(&sched_hotcpu_mutex
);
6348 detach_destroy_domains(&cpu_online_map
);
6349 err
= arch_init_sched_domains(&cpu_online_map
);
6350 mutex_unlock(&sched_hotcpu_mutex
);
6355 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6359 if (buf
[0] != '0' && buf
[0] != '1')
6363 sched_smt_power_savings
= (buf
[0] == '1');
6365 sched_mc_power_savings
= (buf
[0] == '1');
6367 ret
= arch_reinit_sched_domains();
6369 return ret
? ret
: count
;
6372 #ifdef CONFIG_SCHED_MC
6373 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6375 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6377 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6378 const char *buf
, size_t count
)
6380 return sched_power_savings_store(buf
, count
, 0);
6382 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6383 sched_mc_power_savings_store
);
6386 #ifdef CONFIG_SCHED_SMT
6387 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6389 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6391 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6392 const char *buf
, size_t count
)
6394 return sched_power_savings_store(buf
, count
, 1);
6396 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6397 sched_smt_power_savings_store
);
6400 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6404 #ifdef CONFIG_SCHED_SMT
6406 err
= sysfs_create_file(&cls
->kset
.kobj
,
6407 &attr_sched_smt_power_savings
.attr
);
6409 #ifdef CONFIG_SCHED_MC
6410 if (!err
&& mc_capable())
6411 err
= sysfs_create_file(&cls
->kset
.kobj
,
6412 &attr_sched_mc_power_savings
.attr
);
6419 * Force a reinitialization of the sched domains hierarchy. The domains
6420 * and groups cannot be updated in place without racing with the balancing
6421 * code, so we temporarily attach all running cpus to the NULL domain
6422 * which will prevent rebalancing while the sched domains are recalculated.
6424 static int update_sched_domains(struct notifier_block
*nfb
,
6425 unsigned long action
, void *hcpu
)
6428 case CPU_UP_PREPARE
:
6429 case CPU_UP_PREPARE_FROZEN
:
6430 case CPU_DOWN_PREPARE
:
6431 case CPU_DOWN_PREPARE_FROZEN
:
6432 detach_destroy_domains(&cpu_online_map
);
6435 case CPU_UP_CANCELED
:
6436 case CPU_UP_CANCELED_FROZEN
:
6437 case CPU_DOWN_FAILED
:
6438 case CPU_DOWN_FAILED_FROZEN
:
6440 case CPU_ONLINE_FROZEN
:
6442 case CPU_DEAD_FROZEN
:
6444 * Fall through and re-initialise the domains.
6451 /* The hotplug lock is already held by cpu_up/cpu_down */
6452 arch_init_sched_domains(&cpu_online_map
);
6457 void __init
sched_init_smp(void)
6459 cpumask_t non_isolated_cpus
;
6461 mutex_lock(&sched_hotcpu_mutex
);
6462 arch_init_sched_domains(&cpu_online_map
);
6463 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6464 if (cpus_empty(non_isolated_cpus
))
6465 cpu_set(smp_processor_id(), non_isolated_cpus
);
6466 mutex_unlock(&sched_hotcpu_mutex
);
6467 /* XXX: Theoretical race here - CPU may be hotplugged now */
6468 hotcpu_notifier(update_sched_domains
, 0);
6470 init_sched_domain_sysctl();
6472 /* Move init over to a non-isolated CPU */
6473 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6477 void __init
sched_init_smp(void)
6480 #endif /* CONFIG_SMP */
6482 int in_sched_functions(unsigned long addr
)
6484 /* Linker adds these: start and end of __sched functions */
6485 extern char __sched_text_start
[], __sched_text_end
[];
6487 return in_lock_functions(addr
) ||
6488 (addr
>= (unsigned long)__sched_text_start
6489 && addr
< (unsigned long)__sched_text_end
);
6492 static inline void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6494 cfs_rq
->tasks_timeline
= RB_ROOT
;
6495 #ifdef CONFIG_FAIR_GROUP_SCHED
6500 void __init
sched_init(void)
6502 int highest_cpu
= 0;
6506 * Link up the scheduling class hierarchy:
6508 rt_sched_class
.next
= &fair_sched_class
;
6509 fair_sched_class
.next
= &idle_sched_class
;
6510 idle_sched_class
.next
= NULL
;
6512 for_each_possible_cpu(i
) {
6513 struct rt_prio_array
*array
;
6517 spin_lock_init(&rq
->lock
);
6518 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6521 init_cfs_rq(&rq
->cfs
, rq
);
6522 #ifdef CONFIG_FAIR_GROUP_SCHED
6523 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6525 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6526 struct sched_entity
*se
=
6527 &per_cpu(init_sched_entity
, i
);
6529 init_cfs_rq_p
[i
] = cfs_rq
;
6530 init_cfs_rq(cfs_rq
, rq
);
6531 cfs_rq
->tg
= &init_task_grp
;
6532 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6533 &rq
->leaf_cfs_rq_list
);
6535 init_sched_entity_p
[i
] = se
;
6536 se
->cfs_rq
= &rq
->cfs
;
6538 se
->load
.weight
= init_task_grp_load
;
6539 se
->load
.inv_weight
=
6540 div64_64(1ULL<<32, init_task_grp_load
);
6543 init_task_grp
.shares
= init_task_grp_load
;
6546 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6547 rq
->cpu_load
[j
] = 0;
6550 rq
->active_balance
= 0;
6551 rq
->next_balance
= jiffies
;
6554 rq
->migration_thread
= NULL
;
6555 INIT_LIST_HEAD(&rq
->migration_queue
);
6557 atomic_set(&rq
->nr_iowait
, 0);
6559 array
= &rq
->rt
.active
;
6560 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6561 INIT_LIST_HEAD(array
->queue
+ j
);
6562 __clear_bit(j
, array
->bitmap
);
6565 /* delimiter for bitsearch: */
6566 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6569 set_load_weight(&init_task
);
6571 #ifdef CONFIG_PREEMPT_NOTIFIERS
6572 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6576 nr_cpu_ids
= highest_cpu
+ 1;
6577 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6580 #ifdef CONFIG_RT_MUTEXES
6581 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6585 * The boot idle thread does lazy MMU switching as well:
6587 atomic_inc(&init_mm
.mm_count
);
6588 enter_lazy_tlb(&init_mm
, current
);
6591 * Make us the idle thread. Technically, schedule() should not be
6592 * called from this thread, however somewhere below it might be,
6593 * but because we are the idle thread, we just pick up running again
6594 * when this runqueue becomes "idle".
6596 init_idle(current
, smp_processor_id());
6598 * During early bootup we pretend to be a normal task:
6600 current
->sched_class
= &fair_sched_class
;
6603 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6604 void __might_sleep(char *file
, int line
)
6607 static unsigned long prev_jiffy
; /* ratelimiting */
6609 if ((in_atomic() || irqs_disabled()) &&
6610 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6611 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6613 prev_jiffy
= jiffies
;
6614 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6615 " context at %s:%d\n", file
, line
);
6616 printk("in_atomic():%d, irqs_disabled():%d\n",
6617 in_atomic(), irqs_disabled());
6618 debug_show_held_locks(current
);
6619 if (irqs_disabled())
6620 print_irqtrace_events(current
);
6625 EXPORT_SYMBOL(__might_sleep
);
6628 #ifdef CONFIG_MAGIC_SYSRQ
6629 void normalize_rt_tasks(void)
6631 struct task_struct
*g
, *p
;
6632 unsigned long flags
;
6636 read_lock_irq(&tasklist_lock
);
6637 do_each_thread(g
, p
) {
6638 p
->se
.exec_start
= 0;
6639 #ifdef CONFIG_SCHEDSTATS
6640 p
->se
.wait_start
= 0;
6641 p
->se
.sleep_start
= 0;
6642 p
->se
.block_start
= 0;
6644 task_rq(p
)->clock
= 0;
6648 * Renice negative nice level userspace
6651 if (TASK_NICE(p
) < 0 && p
->mm
)
6652 set_user_nice(p
, 0);
6656 spin_lock_irqsave(&p
->pi_lock
, flags
);
6657 rq
= __task_rq_lock(p
);
6660 * Do not touch the migration thread:
6662 if (p
== rq
->migration_thread
)
6666 update_rq_clock(rq
);
6667 on_rq
= p
->se
.on_rq
;
6669 deactivate_task(rq
, p
, 0);
6670 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6672 activate_task(rq
, p
, 0);
6673 resched_task(rq
->curr
);
6678 __task_rq_unlock(rq
);
6679 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6680 } while_each_thread(g
, p
);
6682 read_unlock_irq(&tasklist_lock
);
6685 #endif /* CONFIG_MAGIC_SYSRQ */
6689 * These functions are only useful for the IA64 MCA handling.
6691 * They can only be called when the whole system has been
6692 * stopped - every CPU needs to be quiescent, and no scheduling
6693 * activity can take place. Using them for anything else would
6694 * be a serious bug, and as a result, they aren't even visible
6695 * under any other configuration.
6699 * curr_task - return the current task for a given cpu.
6700 * @cpu: the processor in question.
6702 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6704 struct task_struct
*curr_task(int cpu
)
6706 return cpu_curr(cpu
);
6710 * set_curr_task - set the current task for a given cpu.
6711 * @cpu: the processor in question.
6712 * @p: the task pointer to set.
6714 * Description: This function must only be used when non-maskable interrupts
6715 * are serviced on a separate stack. It allows the architecture to switch the
6716 * notion of the current task on a cpu in a non-blocking manner. This function
6717 * must be called with all CPU's synchronized, and interrupts disabled, the
6718 * and caller must save the original value of the current task (see
6719 * curr_task() above) and restore that value before reenabling interrupts and
6720 * re-starting the system.
6722 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6724 void set_curr_task(int cpu
, struct task_struct
*p
)
6731 #ifdef CONFIG_FAIR_GROUP_SCHED
6733 /* allocate runqueue etc for a new task group */
6734 struct task_grp
*sched_create_group(void)
6736 struct task_grp
*tg
;
6737 struct cfs_rq
*cfs_rq
;
6738 struct sched_entity
*se
;
6742 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
6744 return ERR_PTR(-ENOMEM
);
6746 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
6749 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
6753 for_each_possible_cpu(i
) {
6756 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
6761 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
6766 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
6767 memset(se
, 0, sizeof(struct sched_entity
));
6769 tg
->cfs_rq
[i
] = cfs_rq
;
6770 init_cfs_rq(cfs_rq
, rq
);
6774 se
->cfs_rq
= &rq
->cfs
;
6776 se
->load
.weight
= NICE_0_LOAD
;
6777 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
6781 for_each_possible_cpu(i
) {
6783 cfs_rq
= tg
->cfs_rq
[i
];
6784 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6787 tg
->shares
= NICE_0_LOAD
;
6792 for_each_possible_cpu(i
) {
6793 if (tg
->cfs_rq
&& tg
->cfs_rq
[i
])
6794 kfree(tg
->cfs_rq
[i
]);
6795 if (tg
->se
&& tg
->se
[i
])
6805 return ERR_PTR(-ENOMEM
);
6808 /* rcu callback to free various structures associated with a task group */
6809 static void free_sched_group(struct rcu_head
*rhp
)
6811 struct cfs_rq
*cfs_rq
= container_of(rhp
, struct cfs_rq
, rcu
);
6812 struct task_grp
*tg
= cfs_rq
->tg
;
6813 struct sched_entity
*se
;
6816 /* now it should be safe to free those cfs_rqs */
6817 for_each_possible_cpu(i
) {
6818 cfs_rq
= tg
->cfs_rq
[i
];
6830 /* Destroy runqueue etc associated with a task group */
6831 void sched_destroy_group(struct task_grp
*tg
)
6833 struct cfs_rq
*cfs_rq
;
6836 for_each_possible_cpu(i
) {
6837 cfs_rq
= tg
->cfs_rq
[i
];
6838 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
6841 cfs_rq
= tg
->cfs_rq
[0];
6843 /* wait for possible concurrent references to cfs_rqs complete */
6844 call_rcu(&cfs_rq
->rcu
, free_sched_group
);
6847 /* change task's runqueue when it moves between groups.
6848 * The caller of this function should have put the task in its new group
6849 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6850 * reflect its new group.
6852 void sched_move_task(struct task_struct
*tsk
)
6855 unsigned long flags
;
6858 rq
= task_rq_lock(tsk
, &flags
);
6860 if (tsk
->sched_class
!= &fair_sched_class
)
6863 update_rq_clock(rq
);
6865 running
= task_running(rq
, tsk
);
6866 on_rq
= tsk
->se
.on_rq
;
6869 dequeue_task(rq
, tsk
, 0);
6870 if (unlikely(running
))
6871 tsk
->sched_class
->put_prev_task(rq
, tsk
);
6874 set_task_cfs_rq(tsk
);
6877 if (unlikely(running
))
6878 tsk
->sched_class
->set_curr_task(rq
);
6879 enqueue_task(rq
, tsk
, 0);
6883 task_rq_unlock(rq
, &flags
);
6886 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
6888 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
6889 struct rq
*rq
= cfs_rq
->rq
;
6892 spin_lock_irq(&rq
->lock
);
6896 dequeue_entity(cfs_rq
, se
, 0);
6898 se
->load
.weight
= shares
;
6899 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
6902 enqueue_entity(cfs_rq
, se
, 0);
6904 spin_unlock_irq(&rq
->lock
);
6907 int sched_group_set_shares(struct task_grp
*tg
, unsigned long shares
)
6911 if (tg
->shares
== shares
)
6914 /* return -EINVAL if the new value is not sane */
6916 tg
->shares
= shares
;
6917 for_each_possible_cpu(i
)
6918 set_se_shares(tg
->se
[i
], shares
);
6923 #endif /* CONFIG_FAIR_GROUP_SCHED */