4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
37 #include <linux/compat.h>
38 #include <linux/syscalls.h>
39 #include <linux/kprobes.h>
40 #include <linux/user_namespace.h>
42 #include <asm/uaccess.h>
44 #include <asm/unistd.h>
46 #ifndef SET_UNALIGN_CTL
47 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
49 #ifndef GET_UNALIGN_CTL
50 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
53 # define SET_FPEMU_CTL(a,b) (-EINVAL)
56 # define GET_FPEMU_CTL(a,b) (-EINVAL)
59 # define SET_FPEXC_CTL(a,b) (-EINVAL)
62 # define GET_FPEXC_CTL(a,b) (-EINVAL)
65 # define GET_ENDIAN(a,b) (-EINVAL)
68 # define SET_ENDIAN(a,b) (-EINVAL)
71 # define GET_TSC_CTL(a) (-EINVAL)
74 # define SET_TSC_CTL(a) (-EINVAL)
78 * this is where the system-wide overflow UID and GID are defined, for
79 * architectures that now have 32-bit UID/GID but didn't in the past
82 int overflowuid
= DEFAULT_OVERFLOWUID
;
83 int overflowgid
= DEFAULT_OVERFLOWGID
;
86 EXPORT_SYMBOL(overflowuid
);
87 EXPORT_SYMBOL(overflowgid
);
91 * the same as above, but for filesystems which can only store a 16-bit
92 * UID and GID. as such, this is needed on all architectures
95 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
96 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
98 EXPORT_SYMBOL(fs_overflowuid
);
99 EXPORT_SYMBOL(fs_overflowgid
);
102 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
107 EXPORT_SYMBOL(cad_pid
);
110 * If set, this is used for preparing the system to power off.
113 void (*pm_power_off_prepare
)(void);
115 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
119 if (p
->uid
!= current
->euid
&&
120 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
124 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
128 no_nice
= security_task_setnice(p
, niceval
);
135 set_user_nice(p
, niceval
);
140 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
142 struct task_struct
*g
, *p
;
143 struct user_struct
*user
;
147 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
150 /* normalize: avoid signed division (rounding problems) */
157 read_lock(&tasklist_lock
);
161 p
= find_task_by_vpid(who
);
165 error
= set_one_prio(p
, niceval
, error
);
169 pgrp
= find_vpid(who
);
171 pgrp
= task_pgrp(current
);
172 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
173 error
= set_one_prio(p
, niceval
, error
);
174 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
177 user
= current
->user
;
181 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
182 goto out_unlock
; /* No processes for this user */
186 error
= set_one_prio(p
, niceval
, error
);
187 while_each_thread(g
, p
);
188 if (who
!= current
->uid
)
189 free_uid(user
); /* For find_user() */
193 read_unlock(&tasklist_lock
);
199 * Ugh. To avoid negative return values, "getpriority()" will
200 * not return the normal nice-value, but a negated value that
201 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
202 * to stay compatible.
204 asmlinkage
long sys_getpriority(int which
, int who
)
206 struct task_struct
*g
, *p
;
207 struct user_struct
*user
;
208 long niceval
, retval
= -ESRCH
;
211 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
214 read_lock(&tasklist_lock
);
218 p
= find_task_by_vpid(who
);
222 niceval
= 20 - task_nice(p
);
223 if (niceval
> retval
)
229 pgrp
= find_vpid(who
);
231 pgrp
= task_pgrp(current
);
232 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
233 niceval
= 20 - task_nice(p
);
234 if (niceval
> retval
)
236 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
239 user
= current
->user
;
243 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
244 goto out_unlock
; /* No processes for this user */
248 niceval
= 20 - task_nice(p
);
249 if (niceval
> retval
)
252 while_each_thread(g
, p
);
253 if (who
!= current
->uid
)
254 free_uid(user
); /* for find_user() */
258 read_unlock(&tasklist_lock
);
264 * emergency_restart - reboot the system
266 * Without shutting down any hardware or taking any locks
267 * reboot the system. This is called when we know we are in
268 * trouble so this is our best effort to reboot. This is
269 * safe to call in interrupt context.
271 void emergency_restart(void)
273 machine_emergency_restart();
275 EXPORT_SYMBOL_GPL(emergency_restart
);
277 static void kernel_restart_prepare(char *cmd
)
279 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
280 system_state
= SYSTEM_RESTART
;
286 * kernel_restart - reboot the system
287 * @cmd: pointer to buffer containing command to execute for restart
290 * Shutdown everything and perform a clean reboot.
291 * This is not safe to call in interrupt context.
293 void kernel_restart(char *cmd
)
295 kernel_restart_prepare(cmd
);
297 printk(KERN_EMERG
"Restarting system.\n");
299 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
300 machine_restart(cmd
);
302 EXPORT_SYMBOL_GPL(kernel_restart
);
304 static void kernel_shutdown_prepare(enum system_states state
)
306 blocking_notifier_call_chain(&reboot_notifier_list
,
307 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
308 system_state
= state
;
312 * kernel_halt - halt the system
314 * Shutdown everything and perform a clean system halt.
316 void kernel_halt(void)
318 kernel_shutdown_prepare(SYSTEM_HALT
);
320 printk(KERN_EMERG
"System halted.\n");
324 EXPORT_SYMBOL_GPL(kernel_halt
);
327 * kernel_power_off - power_off the system
329 * Shutdown everything and perform a clean system power_off.
331 void kernel_power_off(void)
333 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
334 if (pm_power_off_prepare
)
335 pm_power_off_prepare();
336 disable_nonboot_cpus();
338 printk(KERN_EMERG
"Power down.\n");
341 EXPORT_SYMBOL_GPL(kernel_power_off
);
343 * Reboot system call: for obvious reasons only root may call it,
344 * and even root needs to set up some magic numbers in the registers
345 * so that some mistake won't make this reboot the whole machine.
346 * You can also set the meaning of the ctrl-alt-del-key here.
348 * reboot doesn't sync: do that yourself before calling this.
350 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
354 /* We only trust the superuser with rebooting the system. */
355 if (!capable(CAP_SYS_BOOT
))
358 /* For safety, we require "magic" arguments. */
359 if (magic1
!= LINUX_REBOOT_MAGIC1
||
360 (magic2
!= LINUX_REBOOT_MAGIC2
&&
361 magic2
!= LINUX_REBOOT_MAGIC2A
&&
362 magic2
!= LINUX_REBOOT_MAGIC2B
&&
363 magic2
!= LINUX_REBOOT_MAGIC2C
))
366 /* Instead of trying to make the power_off code look like
367 * halt when pm_power_off is not set do it the easy way.
369 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
370 cmd
= LINUX_REBOOT_CMD_HALT
;
374 case LINUX_REBOOT_CMD_RESTART
:
375 kernel_restart(NULL
);
378 case LINUX_REBOOT_CMD_CAD_ON
:
382 case LINUX_REBOOT_CMD_CAD_OFF
:
386 case LINUX_REBOOT_CMD_HALT
:
392 case LINUX_REBOOT_CMD_POWER_OFF
:
398 case LINUX_REBOOT_CMD_RESTART2
:
399 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
403 buffer
[sizeof(buffer
) - 1] = '\0';
405 kernel_restart(buffer
);
409 case LINUX_REBOOT_CMD_KEXEC
:
412 ret
= kernel_kexec();
418 #ifdef CONFIG_HIBERNATION
419 case LINUX_REBOOT_CMD_SW_SUSPEND
:
421 int ret
= hibernate();
435 static void deferred_cad(struct work_struct
*dummy
)
437 kernel_restart(NULL
);
441 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
442 * As it's called within an interrupt, it may NOT sync: the only choice
443 * is whether to reboot at once, or just ignore the ctrl-alt-del.
445 void ctrl_alt_del(void)
447 static DECLARE_WORK(cad_work
, deferred_cad
);
450 schedule_work(&cad_work
);
452 kill_cad_pid(SIGINT
, 1);
456 * Unprivileged users may change the real gid to the effective gid
457 * or vice versa. (BSD-style)
459 * If you set the real gid at all, or set the effective gid to a value not
460 * equal to the real gid, then the saved gid is set to the new effective gid.
462 * This makes it possible for a setgid program to completely drop its
463 * privileges, which is often a useful assertion to make when you are doing
464 * a security audit over a program.
466 * The general idea is that a program which uses just setregid() will be
467 * 100% compatible with BSD. A program which uses just setgid() will be
468 * 100% compatible with POSIX with saved IDs.
470 * SMP: There are not races, the GIDs are checked only by filesystem
471 * operations (as far as semantic preservation is concerned).
473 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
475 int old_rgid
= current
->gid
;
476 int old_egid
= current
->egid
;
477 int new_rgid
= old_rgid
;
478 int new_egid
= old_egid
;
481 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
485 if (rgid
!= (gid_t
) -1) {
486 if ((old_rgid
== rgid
) ||
487 (current
->egid
==rgid
) ||
493 if (egid
!= (gid_t
) -1) {
494 if ((old_rgid
== egid
) ||
495 (current
->egid
== egid
) ||
496 (current
->sgid
== egid
) ||
502 if (new_egid
!= old_egid
) {
503 set_dumpable(current
->mm
, suid_dumpable
);
506 if (rgid
!= (gid_t
) -1 ||
507 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
508 current
->sgid
= new_egid
;
509 current
->fsgid
= new_egid
;
510 current
->egid
= new_egid
;
511 current
->gid
= new_rgid
;
512 key_fsgid_changed(current
);
513 proc_id_connector(current
, PROC_EVENT_GID
);
518 * setgid() is implemented like SysV w/ SAVED_IDS
520 * SMP: Same implicit races as above.
522 asmlinkage
long sys_setgid(gid_t gid
)
524 int old_egid
= current
->egid
;
527 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
531 if (capable(CAP_SETGID
)) {
532 if (old_egid
!= gid
) {
533 set_dumpable(current
->mm
, suid_dumpable
);
536 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
537 } else if ((gid
== current
->gid
) || (gid
== current
->sgid
)) {
538 if (old_egid
!= gid
) {
539 set_dumpable(current
->mm
, suid_dumpable
);
542 current
->egid
= current
->fsgid
= gid
;
547 key_fsgid_changed(current
);
548 proc_id_connector(current
, PROC_EVENT_GID
);
552 static int set_user(uid_t new_ruid
, int dumpclear
)
554 struct user_struct
*new_user
;
556 new_user
= alloc_uid(current
->nsproxy
->user_ns
, new_ruid
);
560 if (atomic_read(&new_user
->processes
) >=
561 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
562 new_user
!= current
->nsproxy
->user_ns
->root_user
) {
567 switch_uid(new_user
);
570 set_dumpable(current
->mm
, suid_dumpable
);
573 current
->uid
= new_ruid
;
578 * Unprivileged users may change the real uid to the effective uid
579 * or vice versa. (BSD-style)
581 * If you set the real uid at all, or set the effective uid to a value not
582 * equal to the real uid, then the saved uid is set to the new effective uid.
584 * This makes it possible for a setuid program to completely drop its
585 * privileges, which is often a useful assertion to make when you are doing
586 * a security audit over a program.
588 * The general idea is that a program which uses just setreuid() will be
589 * 100% compatible with BSD. A program which uses just setuid() will be
590 * 100% compatible with POSIX with saved IDs.
592 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
594 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
597 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
601 new_ruid
= old_ruid
= current
->uid
;
602 new_euid
= old_euid
= current
->euid
;
603 old_suid
= current
->suid
;
605 if (ruid
!= (uid_t
) -1) {
607 if ((old_ruid
!= ruid
) &&
608 (current
->euid
!= ruid
) &&
609 !capable(CAP_SETUID
))
613 if (euid
!= (uid_t
) -1) {
615 if ((old_ruid
!= euid
) &&
616 (current
->euid
!= euid
) &&
617 (current
->suid
!= euid
) &&
618 !capable(CAP_SETUID
))
622 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
625 if (new_euid
!= old_euid
) {
626 set_dumpable(current
->mm
, suid_dumpable
);
629 current
->fsuid
= current
->euid
= new_euid
;
630 if (ruid
!= (uid_t
) -1 ||
631 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
632 current
->suid
= current
->euid
;
633 current
->fsuid
= current
->euid
;
635 key_fsuid_changed(current
);
636 proc_id_connector(current
, PROC_EVENT_UID
);
638 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
644 * setuid() is implemented like SysV with SAVED_IDS
646 * Note that SAVED_ID's is deficient in that a setuid root program
647 * like sendmail, for example, cannot set its uid to be a normal
648 * user and then switch back, because if you're root, setuid() sets
649 * the saved uid too. If you don't like this, blame the bright people
650 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
651 * will allow a root program to temporarily drop privileges and be able to
652 * regain them by swapping the real and effective uid.
654 asmlinkage
long sys_setuid(uid_t uid
)
656 int old_euid
= current
->euid
;
657 int old_ruid
, old_suid
, new_suid
;
660 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
664 old_ruid
= current
->uid
;
665 old_suid
= current
->suid
;
668 if (capable(CAP_SETUID
)) {
669 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
672 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
675 if (old_euid
!= uid
) {
676 set_dumpable(current
->mm
, suid_dumpable
);
679 current
->fsuid
= current
->euid
= uid
;
680 current
->suid
= new_suid
;
682 key_fsuid_changed(current
);
683 proc_id_connector(current
, PROC_EVENT_UID
);
685 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
690 * This function implements a generic ability to update ruid, euid,
691 * and suid. This allows you to implement the 4.4 compatible seteuid().
693 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
695 int old_ruid
= current
->uid
;
696 int old_euid
= current
->euid
;
697 int old_suid
= current
->suid
;
700 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
704 if (!capable(CAP_SETUID
)) {
705 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
706 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
708 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
709 (euid
!= current
->euid
) && (euid
!= current
->suid
))
711 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
712 (suid
!= current
->euid
) && (suid
!= current
->suid
))
715 if (ruid
!= (uid_t
) -1) {
716 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
719 if (euid
!= (uid_t
) -1) {
720 if (euid
!= current
->euid
) {
721 set_dumpable(current
->mm
, suid_dumpable
);
724 current
->euid
= euid
;
726 current
->fsuid
= current
->euid
;
727 if (suid
!= (uid_t
) -1)
728 current
->suid
= suid
;
730 key_fsuid_changed(current
);
731 proc_id_connector(current
, PROC_EVENT_UID
);
733 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
736 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
740 if (!(retval
= put_user(current
->uid
, ruid
)) &&
741 !(retval
= put_user(current
->euid
, euid
)))
742 retval
= put_user(current
->suid
, suid
);
748 * Same as above, but for rgid, egid, sgid.
750 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
754 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
758 if (!capable(CAP_SETGID
)) {
759 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
760 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
762 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
763 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
765 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
766 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
769 if (egid
!= (gid_t
) -1) {
770 if (egid
!= current
->egid
) {
771 set_dumpable(current
->mm
, suid_dumpable
);
774 current
->egid
= egid
;
776 current
->fsgid
= current
->egid
;
777 if (rgid
!= (gid_t
) -1)
779 if (sgid
!= (gid_t
) -1)
780 current
->sgid
= sgid
;
782 key_fsgid_changed(current
);
783 proc_id_connector(current
, PROC_EVENT_GID
);
787 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
791 if (!(retval
= put_user(current
->gid
, rgid
)) &&
792 !(retval
= put_user(current
->egid
, egid
)))
793 retval
= put_user(current
->sgid
, sgid
);
800 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
801 * is used for "access()" and for the NFS daemon (letting nfsd stay at
802 * whatever uid it wants to). It normally shadows "euid", except when
803 * explicitly set by setfsuid() or for access..
805 asmlinkage
long sys_setfsuid(uid_t uid
)
809 old_fsuid
= current
->fsuid
;
810 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
813 if (uid
== current
->uid
|| uid
== current
->euid
||
814 uid
== current
->suid
|| uid
== current
->fsuid
||
815 capable(CAP_SETUID
)) {
816 if (uid
!= old_fsuid
) {
817 set_dumpable(current
->mm
, suid_dumpable
);
820 current
->fsuid
= uid
;
823 key_fsuid_changed(current
);
824 proc_id_connector(current
, PROC_EVENT_UID
);
826 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
832 * Samma på svenska..
834 asmlinkage
long sys_setfsgid(gid_t gid
)
838 old_fsgid
= current
->fsgid
;
839 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
842 if (gid
== current
->gid
|| gid
== current
->egid
||
843 gid
== current
->sgid
|| gid
== current
->fsgid
||
844 capable(CAP_SETGID
)) {
845 if (gid
!= old_fsgid
) {
846 set_dumpable(current
->mm
, suid_dumpable
);
849 current
->fsgid
= gid
;
850 key_fsgid_changed(current
);
851 proc_id_connector(current
, PROC_EVENT_GID
);
856 asmlinkage
long sys_times(struct tms __user
* tbuf
)
859 * In the SMP world we might just be unlucky and have one of
860 * the times increment as we use it. Since the value is an
861 * atomically safe type this is just fine. Conceptually its
862 * as if the syscall took an instant longer to occur.
866 struct task_struct
*tsk
= current
;
867 struct task_struct
*t
;
868 cputime_t utime
, stime
, cutime
, cstime
;
870 spin_lock_irq(&tsk
->sighand
->siglock
);
871 utime
= tsk
->signal
->utime
;
872 stime
= tsk
->signal
->stime
;
875 utime
= cputime_add(utime
, t
->utime
);
876 stime
= cputime_add(stime
, t
->stime
);
880 cutime
= tsk
->signal
->cutime
;
881 cstime
= tsk
->signal
->cstime
;
882 spin_unlock_irq(&tsk
->sighand
->siglock
);
884 tmp
.tms_utime
= cputime_to_clock_t(utime
);
885 tmp
.tms_stime
= cputime_to_clock_t(stime
);
886 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
887 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
888 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
891 return (long) jiffies_64_to_clock_t(get_jiffies_64());
895 * This needs some heavy checking ...
896 * I just haven't the stomach for it. I also don't fully
897 * understand sessions/pgrp etc. Let somebody who does explain it.
899 * OK, I think I have the protection semantics right.... this is really
900 * only important on a multi-user system anyway, to make sure one user
901 * can't send a signal to a process owned by another. -TYT, 12/12/91
903 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
906 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
908 struct task_struct
*p
;
909 struct task_struct
*group_leader
= current
->group_leader
;
914 pid
= task_pid_vnr(group_leader
);
920 /* From this point forward we keep holding onto the tasklist lock
921 * so that our parent does not change from under us. -DaveM
923 write_lock_irq(&tasklist_lock
);
926 p
= find_task_by_vpid(pid
);
931 if (!thread_group_leader(p
))
934 if (same_thread_group(p
->real_parent
, group_leader
)) {
936 if (task_session(p
) != task_session(group_leader
))
943 if (p
!= group_leader
)
948 if (p
->signal
->leader
)
953 struct task_struct
*g
;
955 pgrp
= find_vpid(pgid
);
956 g
= pid_task(pgrp
, PIDTYPE_PGID
);
957 if (!g
|| task_session(g
) != task_session(group_leader
))
961 err
= security_task_setpgid(p
, pgid
);
965 if (task_pgrp(p
) != pgrp
) {
966 change_pid(p
, PIDTYPE_PGID
, pgrp
);
967 set_task_pgrp(p
, pid_nr(pgrp
));
972 /* All paths lead to here, thus we are safe. -DaveM */
973 write_unlock_irq(&tasklist_lock
);
977 asmlinkage
long sys_getpgid(pid_t pid
)
979 struct task_struct
*p
;
985 grp
= task_pgrp(current
);
988 p
= find_task_by_vpid(pid
);
995 retval
= security_task_getpgid(p
);
999 retval
= pid_vnr(grp
);
1005 #ifdef __ARCH_WANT_SYS_GETPGRP
1007 asmlinkage
long sys_getpgrp(void)
1009 return sys_getpgid(0);
1014 asmlinkage
long sys_getsid(pid_t pid
)
1016 struct task_struct
*p
;
1022 sid
= task_session(current
);
1025 p
= find_task_by_vpid(pid
);
1028 sid
= task_session(p
);
1032 retval
= security_task_getsid(p
);
1036 retval
= pid_vnr(sid
);
1042 asmlinkage
long sys_setsid(void)
1044 struct task_struct
*group_leader
= current
->group_leader
;
1045 struct pid
*sid
= task_pid(group_leader
);
1046 pid_t session
= pid_vnr(sid
);
1049 write_lock_irq(&tasklist_lock
);
1050 /* Fail if I am already a session leader */
1051 if (group_leader
->signal
->leader
)
1054 /* Fail if a process group id already exists that equals the
1055 * proposed session id.
1057 if (pid_task(sid
, PIDTYPE_PGID
))
1060 group_leader
->signal
->leader
= 1;
1061 __set_special_pids(sid
);
1063 spin_lock(&group_leader
->sighand
->siglock
);
1064 group_leader
->signal
->tty
= NULL
;
1065 spin_unlock(&group_leader
->sighand
->siglock
);
1069 write_unlock_irq(&tasklist_lock
);
1074 * Supplementary group IDs
1077 /* init to 2 - one for init_task, one to ensure it is never freed */
1078 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1080 struct group_info
*groups_alloc(int gidsetsize
)
1082 struct group_info
*group_info
;
1086 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1087 /* Make sure we always allocate at least one indirect block pointer */
1088 nblocks
= nblocks
? : 1;
1089 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1092 group_info
->ngroups
= gidsetsize
;
1093 group_info
->nblocks
= nblocks
;
1094 atomic_set(&group_info
->usage
, 1);
1096 if (gidsetsize
<= NGROUPS_SMALL
)
1097 group_info
->blocks
[0] = group_info
->small_block
;
1099 for (i
= 0; i
< nblocks
; i
++) {
1101 b
= (void *)__get_free_page(GFP_USER
);
1103 goto out_undo_partial_alloc
;
1104 group_info
->blocks
[i
] = b
;
1109 out_undo_partial_alloc
:
1111 free_page((unsigned long)group_info
->blocks
[i
]);
1117 EXPORT_SYMBOL(groups_alloc
);
1119 void groups_free(struct group_info
*group_info
)
1121 if (group_info
->blocks
[0] != group_info
->small_block
) {
1123 for (i
= 0; i
< group_info
->nblocks
; i
++)
1124 free_page((unsigned long)group_info
->blocks
[i
]);
1129 EXPORT_SYMBOL(groups_free
);
1131 /* export the group_info to a user-space array */
1132 static int groups_to_user(gid_t __user
*grouplist
,
1133 struct group_info
*group_info
)
1136 unsigned int count
= group_info
->ngroups
;
1138 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1139 unsigned int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1140 unsigned int len
= cp_count
* sizeof(*grouplist
);
1142 if (copy_to_user(grouplist
, group_info
->blocks
[i
], len
))
1145 grouplist
+= NGROUPS_PER_BLOCK
;
1151 /* fill a group_info from a user-space array - it must be allocated already */
1152 static int groups_from_user(struct group_info
*group_info
,
1153 gid_t __user
*grouplist
)
1156 unsigned int count
= group_info
->ngroups
;
1158 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1159 unsigned int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1160 unsigned int len
= cp_count
* sizeof(*grouplist
);
1162 if (copy_from_user(group_info
->blocks
[i
], grouplist
, len
))
1165 grouplist
+= NGROUPS_PER_BLOCK
;
1171 /* a simple Shell sort */
1172 static void groups_sort(struct group_info
*group_info
)
1174 int base
, max
, stride
;
1175 int gidsetsize
= group_info
->ngroups
;
1177 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1182 max
= gidsetsize
- stride
;
1183 for (base
= 0; base
< max
; base
++) {
1185 int right
= left
+ stride
;
1186 gid_t tmp
= GROUP_AT(group_info
, right
);
1188 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1189 GROUP_AT(group_info
, right
) =
1190 GROUP_AT(group_info
, left
);
1194 GROUP_AT(group_info
, right
) = tmp
;
1200 /* a simple bsearch */
1201 int groups_search(struct group_info
*group_info
, gid_t grp
)
1203 unsigned int left
, right
;
1209 right
= group_info
->ngroups
;
1210 while (left
< right
) {
1211 unsigned int mid
= (left
+right
)/2;
1212 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1223 /* validate and set current->group_info */
1224 int set_current_groups(struct group_info
*group_info
)
1227 struct group_info
*old_info
;
1229 retval
= security_task_setgroups(group_info
);
1233 groups_sort(group_info
);
1234 get_group_info(group_info
);
1237 old_info
= current
->group_info
;
1238 current
->group_info
= group_info
;
1239 task_unlock(current
);
1241 put_group_info(old_info
);
1246 EXPORT_SYMBOL(set_current_groups
);
1248 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1253 * SMP: Nobody else can change our grouplist. Thus we are
1260 /* no need to grab task_lock here; it cannot change */
1261 i
= current
->group_info
->ngroups
;
1263 if (i
> gidsetsize
) {
1267 if (groups_to_user(grouplist
, current
->group_info
)) {
1277 * SMP: Our groups are copy-on-write. We can set them safely
1278 * without another task interfering.
1281 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1283 struct group_info
*group_info
;
1286 if (!capable(CAP_SETGID
))
1288 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1291 group_info
= groups_alloc(gidsetsize
);
1294 retval
= groups_from_user(group_info
, grouplist
);
1296 put_group_info(group_info
);
1300 retval
= set_current_groups(group_info
);
1301 put_group_info(group_info
);
1307 * Check whether we're fsgid/egid or in the supplemental group..
1309 int in_group_p(gid_t grp
)
1312 if (grp
!= current
->fsgid
)
1313 retval
= groups_search(current
->group_info
, grp
);
1317 EXPORT_SYMBOL(in_group_p
);
1319 int in_egroup_p(gid_t grp
)
1322 if (grp
!= current
->egid
)
1323 retval
= groups_search(current
->group_info
, grp
);
1327 EXPORT_SYMBOL(in_egroup_p
);
1329 DECLARE_RWSEM(uts_sem
);
1331 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1335 down_read(&uts_sem
);
1336 if (copy_to_user(name
, utsname(), sizeof *name
))
1342 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1345 char tmp
[__NEW_UTS_LEN
];
1347 if (!capable(CAP_SYS_ADMIN
))
1349 if (len
< 0 || len
> __NEW_UTS_LEN
)
1351 down_write(&uts_sem
);
1353 if (!copy_from_user(tmp
, name
, len
)) {
1354 memcpy(utsname()->nodename
, tmp
, len
);
1355 utsname()->nodename
[len
] = 0;
1362 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1364 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1370 down_read(&uts_sem
);
1371 i
= 1 + strlen(utsname()->nodename
);
1375 if (copy_to_user(name
, utsname()->nodename
, i
))
1384 * Only setdomainname; getdomainname can be implemented by calling
1387 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1390 char tmp
[__NEW_UTS_LEN
];
1392 if (!capable(CAP_SYS_ADMIN
))
1394 if (len
< 0 || len
> __NEW_UTS_LEN
)
1397 down_write(&uts_sem
);
1399 if (!copy_from_user(tmp
, name
, len
)) {
1400 memcpy(utsname()->domainname
, tmp
, len
);
1401 utsname()->domainname
[len
] = 0;
1408 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1410 if (resource
>= RLIM_NLIMITS
)
1413 struct rlimit value
;
1414 task_lock(current
->group_leader
);
1415 value
= current
->signal
->rlim
[resource
];
1416 task_unlock(current
->group_leader
);
1417 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1421 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1424 * Back compatibility for getrlimit. Needed for some apps.
1427 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1430 if (resource
>= RLIM_NLIMITS
)
1433 task_lock(current
->group_leader
);
1434 x
= current
->signal
->rlim
[resource
];
1435 task_unlock(current
->group_leader
);
1436 if (x
.rlim_cur
> 0x7FFFFFFF)
1437 x
.rlim_cur
= 0x7FFFFFFF;
1438 if (x
.rlim_max
> 0x7FFFFFFF)
1439 x
.rlim_max
= 0x7FFFFFFF;
1440 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1445 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1447 struct rlimit new_rlim
, *old_rlim
;
1448 unsigned long it_prof_secs
;
1451 if (resource
>= RLIM_NLIMITS
)
1453 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1455 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1457 old_rlim
= current
->signal
->rlim
+ resource
;
1458 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1459 !capable(CAP_SYS_RESOURCE
))
1461 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> sysctl_nr_open
)
1464 retval
= security_task_setrlimit(resource
, &new_rlim
);
1468 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
== 0) {
1470 * The caller is asking for an immediate RLIMIT_CPU
1471 * expiry. But we use the zero value to mean "it was
1472 * never set". So let's cheat and make it one second
1475 new_rlim
.rlim_cur
= 1;
1478 task_lock(current
->group_leader
);
1479 *old_rlim
= new_rlim
;
1480 task_unlock(current
->group_leader
);
1482 if (resource
!= RLIMIT_CPU
)
1486 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1487 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1488 * very long-standing error, and fixing it now risks breakage of
1489 * applications, so we live with it
1491 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1494 it_prof_secs
= cputime_to_secs(current
->signal
->it_prof_expires
);
1495 if (it_prof_secs
== 0 || new_rlim
.rlim_cur
<= it_prof_secs
) {
1496 unsigned long rlim_cur
= new_rlim
.rlim_cur
;
1499 cputime
= secs_to_cputime(rlim_cur
);
1500 read_lock(&tasklist_lock
);
1501 spin_lock_irq(¤t
->sighand
->siglock
);
1502 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
1503 spin_unlock_irq(¤t
->sighand
->siglock
);
1504 read_unlock(&tasklist_lock
);
1511 * It would make sense to put struct rusage in the task_struct,
1512 * except that would make the task_struct be *really big*. After
1513 * task_struct gets moved into malloc'ed memory, it would
1514 * make sense to do this. It will make moving the rest of the information
1515 * a lot simpler! (Which we're not doing right now because we're not
1516 * measuring them yet).
1518 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1519 * races with threads incrementing their own counters. But since word
1520 * reads are atomic, we either get new values or old values and we don't
1521 * care which for the sums. We always take the siglock to protect reading
1522 * the c* fields from p->signal from races with exit.c updating those
1523 * fields when reaping, so a sample either gets all the additions of a
1524 * given child after it's reaped, or none so this sample is before reaping.
1527 * We need to take the siglock for CHILDEREN, SELF and BOTH
1528 * for the cases current multithreaded, non-current single threaded
1529 * non-current multithreaded. Thread traversal is now safe with
1531 * Strictly speaking, we donot need to take the siglock if we are current and
1532 * single threaded, as no one else can take our signal_struct away, no one
1533 * else can reap the children to update signal->c* counters, and no one else
1534 * can race with the signal-> fields. If we do not take any lock, the
1535 * signal-> fields could be read out of order while another thread was just
1536 * exiting. So we should place a read memory barrier when we avoid the lock.
1537 * On the writer side, write memory barrier is implied in __exit_signal
1538 * as __exit_signal releases the siglock spinlock after updating the signal->
1539 * fields. But we don't do this yet to keep things simple.
1543 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
,
1544 cputime_t
*utimep
, cputime_t
*stimep
)
1546 *utimep
= cputime_add(*utimep
, t
->utime
);
1547 *stimep
= cputime_add(*stimep
, t
->stime
);
1548 r
->ru_nvcsw
+= t
->nvcsw
;
1549 r
->ru_nivcsw
+= t
->nivcsw
;
1550 r
->ru_minflt
+= t
->min_flt
;
1551 r
->ru_majflt
+= t
->maj_flt
;
1552 r
->ru_inblock
+= task_io_get_inblock(t
);
1553 r
->ru_oublock
+= task_io_get_oublock(t
);
1556 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1558 struct task_struct
*t
;
1559 unsigned long flags
;
1560 cputime_t utime
, stime
;
1562 memset((char *) r
, 0, sizeof *r
);
1563 utime
= stime
= cputime_zero
;
1565 if (who
== RUSAGE_THREAD
) {
1566 accumulate_thread_rusage(p
, r
, &utime
, &stime
);
1570 if (!lock_task_sighand(p
, &flags
))
1575 case RUSAGE_CHILDREN
:
1576 utime
= p
->signal
->cutime
;
1577 stime
= p
->signal
->cstime
;
1578 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1579 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1580 r
->ru_minflt
= p
->signal
->cmin_flt
;
1581 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1582 r
->ru_inblock
= p
->signal
->cinblock
;
1583 r
->ru_oublock
= p
->signal
->coublock
;
1585 if (who
== RUSAGE_CHILDREN
)
1589 utime
= cputime_add(utime
, p
->signal
->utime
);
1590 stime
= cputime_add(stime
, p
->signal
->stime
);
1591 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1592 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1593 r
->ru_minflt
+= p
->signal
->min_flt
;
1594 r
->ru_majflt
+= p
->signal
->maj_flt
;
1595 r
->ru_inblock
+= p
->signal
->inblock
;
1596 r
->ru_oublock
+= p
->signal
->oublock
;
1599 accumulate_thread_rusage(t
, r
, &utime
, &stime
);
1607 unlock_task_sighand(p
, &flags
);
1610 cputime_to_timeval(utime
, &r
->ru_utime
);
1611 cputime_to_timeval(stime
, &r
->ru_stime
);
1614 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1617 k_getrusage(p
, who
, &r
);
1618 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1621 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
1623 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1624 who
!= RUSAGE_THREAD
)
1626 return getrusage(current
, who
, ru
);
1629 asmlinkage
long sys_umask(int mask
)
1631 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1635 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1636 unsigned long arg4
, unsigned long arg5
)
1640 if (security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
, &error
))
1644 case PR_SET_PDEATHSIG
:
1645 if (!valid_signal(arg2
)) {
1649 current
->pdeath_signal
= arg2
;
1651 case PR_GET_PDEATHSIG
:
1652 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
1654 case PR_GET_DUMPABLE
:
1655 error
= get_dumpable(current
->mm
);
1657 case PR_SET_DUMPABLE
:
1658 if (arg2
< 0 || arg2
> 1) {
1662 set_dumpable(current
->mm
, arg2
);
1665 case PR_SET_UNALIGN
:
1666 error
= SET_UNALIGN_CTL(current
, arg2
);
1668 case PR_GET_UNALIGN
:
1669 error
= GET_UNALIGN_CTL(current
, arg2
);
1672 error
= SET_FPEMU_CTL(current
, arg2
);
1675 error
= GET_FPEMU_CTL(current
, arg2
);
1678 error
= SET_FPEXC_CTL(current
, arg2
);
1681 error
= GET_FPEXC_CTL(current
, arg2
);
1684 error
= PR_TIMING_STATISTICAL
;
1687 if (arg2
!= PR_TIMING_STATISTICAL
)
1692 struct task_struct
*me
= current
;
1693 unsigned char ncomm
[sizeof(me
->comm
)];
1695 ncomm
[sizeof(me
->comm
)-1] = 0;
1696 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
1697 sizeof(me
->comm
)-1) < 0)
1699 set_task_comm(me
, ncomm
);
1703 struct task_struct
*me
= current
;
1704 unsigned char tcomm
[sizeof(me
->comm
)];
1706 get_task_comm(tcomm
, me
);
1707 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))
1712 error
= GET_ENDIAN(current
, arg2
);
1715 error
= SET_ENDIAN(current
, arg2
);
1718 case PR_GET_SECCOMP
:
1719 error
= prctl_get_seccomp();
1721 case PR_SET_SECCOMP
:
1722 error
= prctl_set_seccomp(arg2
);
1725 error
= GET_TSC_CTL(arg2
);
1728 error
= SET_TSC_CTL(arg2
);
1737 asmlinkage
long sys_getcpu(unsigned __user
*cpup
, unsigned __user
*nodep
,
1738 struct getcpu_cache __user
*unused
)
1741 int cpu
= raw_smp_processor_id();
1743 err
|= put_user(cpu
, cpup
);
1745 err
|= put_user(cpu_to_node(cpu
), nodep
);
1746 return err
? -EFAULT
: 0;
1749 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1751 static void argv_cleanup(char **argv
, char **envp
)
1757 * orderly_poweroff - Trigger an orderly system poweroff
1758 * @force: force poweroff if command execution fails
1760 * This may be called from any context to trigger a system shutdown.
1761 * If the orderly shutdown fails, it will force an immediate shutdown.
1763 int orderly_poweroff(bool force
)
1766 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1767 static char *envp
[] = {
1769 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1773 struct subprocess_info
*info
;
1776 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1777 __func__
, poweroff_cmd
);
1781 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1787 call_usermodehelper_setcleanup(info
, argv_cleanup
);
1789 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1793 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1794 "forcing the issue\n");
1796 /* I guess this should try to kick off some daemon to
1797 sync and poweroff asap. Or not even bother syncing
1798 if we're doing an emergency shutdown? */
1805 EXPORT_SYMBOL_GPL(orderly_poweroff
);