4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 #include <linux/memcontrol.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
36 static DEFINE_SPINLOCK(swap_lock
);
37 static unsigned int nr_swapfiles
;
38 long total_swap_pages
;
39 static int swap_overflow
;
40 static int least_priority
;
42 static const char Bad_file
[] = "Bad swap file entry ";
43 static const char Unused_file
[] = "Unused swap file entry ";
44 static const char Bad_offset
[] = "Bad swap offset entry ";
45 static const char Unused_offset
[] = "Unused swap offset entry ";
47 static struct swap_list_t swap_list
= {-1, -1};
49 static struct swap_info_struct swap_info
[MAX_SWAPFILES
];
51 static DEFINE_MUTEX(swapon_mutex
);
54 * We need this because the bdev->unplug_fn can sleep and we cannot
55 * hold swap_lock while calling the unplug_fn. And swap_lock
56 * cannot be turned into a mutex.
58 static DECLARE_RWSEM(swap_unplug_sem
);
60 void swap_unplug_io_fn(struct backing_dev_info
*unused_bdi
, struct page
*page
)
64 down_read(&swap_unplug_sem
);
65 entry
.val
= page_private(page
);
66 if (PageSwapCache(page
)) {
67 struct block_device
*bdev
= swap_info
[swp_type(entry
)].bdev
;
68 struct backing_dev_info
*bdi
;
71 * If the page is removed from swapcache from under us (with a
72 * racy try_to_unuse/swapoff) we need an additional reference
73 * count to avoid reading garbage from page_private(page) above.
74 * If the WARN_ON triggers during a swapoff it maybe the race
75 * condition and it's harmless. However if it triggers without
76 * swapoff it signals a problem.
78 WARN_ON(page_count(page
) <= 1);
80 bdi
= bdev
->bd_inode
->i_mapping
->backing_dev_info
;
81 blk_run_backing_dev(bdi
, page
);
83 up_read(&swap_unplug_sem
);
86 #define SWAPFILE_CLUSTER 256
87 #define LATENCY_LIMIT 256
89 static inline unsigned long scan_swap_map(struct swap_info_struct
*si
)
91 unsigned long offset
, last_in_cluster
;
92 int latency_ration
= LATENCY_LIMIT
;
95 * We try to cluster swap pages by allocating them sequentially
96 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
97 * way, however, we resort to first-free allocation, starting
98 * a new cluster. This prevents us from scattering swap pages
99 * all over the entire swap partition, so that we reduce
100 * overall disk seek times between swap pages. -- sct
101 * But we do now try to find an empty cluster. -Andrea
104 si
->flags
+= SWP_SCANNING
;
105 if (unlikely(!si
->cluster_nr
)) {
106 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
107 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
)
109 spin_unlock(&swap_lock
);
111 offset
= si
->lowest_bit
;
112 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
114 /* Locate the first empty (unaligned) cluster */
115 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
116 if (si
->swap_map
[offset
])
117 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
118 else if (offset
== last_in_cluster
) {
119 spin_lock(&swap_lock
);
120 si
->cluster_next
= offset
-SWAPFILE_CLUSTER
+1;
123 if (unlikely(--latency_ration
< 0)) {
125 latency_ration
= LATENCY_LIMIT
;
128 spin_lock(&swap_lock
);
134 offset
= si
->cluster_next
;
135 if (offset
> si
->highest_bit
)
136 lowest
: offset
= si
->lowest_bit
;
137 checks
: if (!(si
->flags
& SWP_WRITEOK
))
139 if (!si
->highest_bit
)
141 if (!si
->swap_map
[offset
]) {
142 if (offset
== si
->lowest_bit
)
144 if (offset
== si
->highest_bit
)
147 if (si
->inuse_pages
== si
->pages
) {
148 si
->lowest_bit
= si
->max
;
151 si
->swap_map
[offset
] = 1;
152 si
->cluster_next
= offset
+ 1;
153 si
->flags
-= SWP_SCANNING
;
157 spin_unlock(&swap_lock
);
158 while (++offset
<= si
->highest_bit
) {
159 if (!si
->swap_map
[offset
]) {
160 spin_lock(&swap_lock
);
163 if (unlikely(--latency_ration
< 0)) {
165 latency_ration
= LATENCY_LIMIT
;
168 spin_lock(&swap_lock
);
172 si
->flags
-= SWP_SCANNING
;
176 swp_entry_t
get_swap_page(void)
178 struct swap_info_struct
*si
;
183 spin_lock(&swap_lock
);
184 if (nr_swap_pages
<= 0)
188 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
189 si
= swap_info
+ type
;
192 (!wrapped
&& si
->prio
!= swap_info
[next
].prio
)) {
193 next
= swap_list
.head
;
197 if (!si
->highest_bit
)
199 if (!(si
->flags
& SWP_WRITEOK
))
202 swap_list
.next
= next
;
203 offset
= scan_swap_map(si
);
205 spin_unlock(&swap_lock
);
206 return swp_entry(type
, offset
);
208 next
= swap_list
.next
;
213 spin_unlock(&swap_lock
);
214 return (swp_entry_t
) {0};
217 swp_entry_t
get_swap_page_of_type(int type
)
219 struct swap_info_struct
*si
;
222 spin_lock(&swap_lock
);
223 si
= swap_info
+ type
;
224 if (si
->flags
& SWP_WRITEOK
) {
226 offset
= scan_swap_map(si
);
228 spin_unlock(&swap_lock
);
229 return swp_entry(type
, offset
);
233 spin_unlock(&swap_lock
);
234 return (swp_entry_t
) {0};
237 static struct swap_info_struct
* swap_info_get(swp_entry_t entry
)
239 struct swap_info_struct
* p
;
240 unsigned long offset
, type
;
244 type
= swp_type(entry
);
245 if (type
>= nr_swapfiles
)
247 p
= & swap_info
[type
];
248 if (!(p
->flags
& SWP_USED
))
250 offset
= swp_offset(entry
);
251 if (offset
>= p
->max
)
253 if (!p
->swap_map
[offset
])
255 spin_lock(&swap_lock
);
259 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
262 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
265 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
268 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
273 static int swap_entry_free(struct swap_info_struct
*p
, unsigned long offset
)
275 int count
= p
->swap_map
[offset
];
277 if (count
< SWAP_MAP_MAX
) {
279 p
->swap_map
[offset
] = count
;
281 if (offset
< p
->lowest_bit
)
282 p
->lowest_bit
= offset
;
283 if (offset
> p
->highest_bit
)
284 p
->highest_bit
= offset
;
285 if (p
->prio
> swap_info
[swap_list
.next
].prio
)
286 swap_list
.next
= p
- swap_info
;
295 * Caller has made sure that the swapdevice corresponding to entry
296 * is still around or has not been recycled.
298 void swap_free(swp_entry_t entry
)
300 struct swap_info_struct
* p
;
302 p
= swap_info_get(entry
);
304 swap_entry_free(p
, swp_offset(entry
));
305 spin_unlock(&swap_lock
);
310 * How many references to page are currently swapped out?
312 static inline int page_swapcount(struct page
*page
)
315 struct swap_info_struct
*p
;
318 entry
.val
= page_private(page
);
319 p
= swap_info_get(entry
);
321 /* Subtract the 1 for the swap cache itself */
322 count
= p
->swap_map
[swp_offset(entry
)] - 1;
323 spin_unlock(&swap_lock
);
329 * We can use this swap cache entry directly
330 * if there are no other references to it.
332 int can_share_swap_page(struct page
*page
)
336 BUG_ON(!PageLocked(page
));
337 count
= page_mapcount(page
);
338 if (count
<= 1 && PageSwapCache(page
))
339 count
+= page_swapcount(page
);
344 * Work out if there are any other processes sharing this
345 * swap cache page. Free it if you can. Return success.
347 int remove_exclusive_swap_page(struct page
*page
)
350 struct swap_info_struct
* p
;
353 BUG_ON(PagePrivate(page
));
354 BUG_ON(!PageLocked(page
));
356 if (!PageSwapCache(page
))
358 if (PageWriteback(page
))
360 if (page_count(page
) != 2) /* 2: us + cache */
363 entry
.val
= page_private(page
);
364 p
= swap_info_get(entry
);
368 /* Is the only swap cache user the cache itself? */
370 if (p
->swap_map
[swp_offset(entry
)] == 1) {
371 /* Recheck the page count with the swapcache lock held.. */
372 spin_lock_irq(&swapper_space
.tree_lock
);
373 if ((page_count(page
) == 2) && !PageWriteback(page
)) {
374 __delete_from_swap_cache(page
);
378 spin_unlock_irq(&swapper_space
.tree_lock
);
380 spin_unlock(&swap_lock
);
384 page_cache_release(page
);
391 * Free the swap entry like above, but also try to
392 * free the page cache entry if it is the last user.
394 void free_swap_and_cache(swp_entry_t entry
)
396 struct swap_info_struct
* p
;
397 struct page
*page
= NULL
;
399 if (is_migration_entry(entry
))
402 p
= swap_info_get(entry
);
404 if (swap_entry_free(p
, swp_offset(entry
)) == 1) {
405 page
= find_get_page(&swapper_space
, entry
.val
);
406 if (page
&& unlikely(TestSetPageLocked(page
))) {
407 page_cache_release(page
);
411 spin_unlock(&swap_lock
);
416 BUG_ON(PagePrivate(page
));
417 one_user
= (page_count(page
) == 2);
418 /* Only cache user (+us), or swap space full? Free it! */
419 /* Also recheck PageSwapCache after page is locked (above) */
420 if (PageSwapCache(page
) && !PageWriteback(page
) &&
421 (one_user
|| vm_swap_full())) {
422 delete_from_swap_cache(page
);
426 page_cache_release(page
);
430 #ifdef CONFIG_HIBERNATION
432 * Find the swap type that corresponds to given device (if any).
434 * @offset - number of the PAGE_SIZE-sized block of the device, starting
435 * from 0, in which the swap header is expected to be located.
437 * This is needed for the suspend to disk (aka swsusp).
439 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
441 struct block_device
*bdev
= NULL
;
445 bdev
= bdget(device
);
447 spin_lock(&swap_lock
);
448 for (i
= 0; i
< nr_swapfiles
; i
++) {
449 struct swap_info_struct
*sis
= swap_info
+ i
;
451 if (!(sis
->flags
& SWP_WRITEOK
))
458 spin_unlock(&swap_lock
);
461 if (bdev
== sis
->bdev
) {
462 struct swap_extent
*se
;
464 se
= list_entry(sis
->extent_list
.next
,
465 struct swap_extent
, list
);
466 if (se
->start_block
== offset
) {
470 spin_unlock(&swap_lock
);
476 spin_unlock(&swap_lock
);
484 * Return either the total number of swap pages of given type, or the number
485 * of free pages of that type (depending on @free)
487 * This is needed for software suspend
489 unsigned int count_swap_pages(int type
, int free
)
493 if (type
< nr_swapfiles
) {
494 spin_lock(&swap_lock
);
495 if (swap_info
[type
].flags
& SWP_WRITEOK
) {
496 n
= swap_info
[type
].pages
;
498 n
-= swap_info
[type
].inuse_pages
;
500 spin_unlock(&swap_lock
);
507 * No need to decide whether this PTE shares the swap entry with others,
508 * just let do_wp_page work it out if a write is requested later - to
509 * force COW, vm_page_prot omits write permission from any private vma.
511 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
512 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
518 if (mem_cgroup_charge(page
, vma
->vm_mm
, GFP_KERNEL
))
521 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
522 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
524 mem_cgroup_uncharge_page(page
);
529 inc_mm_counter(vma
->vm_mm
, anon_rss
);
531 set_pte_at(vma
->vm_mm
, addr
, pte
,
532 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
533 page_add_anon_rmap(page
, vma
, addr
);
536 * Move the page to the active list so it is not
537 * immediately swapped out again after swapon.
541 pte_unmap_unlock(pte
, ptl
);
545 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
546 unsigned long addr
, unsigned long end
,
547 swp_entry_t entry
, struct page
*page
)
549 pte_t swp_pte
= swp_entry_to_pte(entry
);
554 * We don't actually need pte lock while scanning for swp_pte: since
555 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
556 * page table while we're scanning; though it could get zapped, and on
557 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
558 * of unmatched parts which look like swp_pte, so unuse_pte must
559 * recheck under pte lock. Scanning without pte lock lets it be
560 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
562 pte
= pte_offset_map(pmd
, addr
);
565 * swapoff spends a _lot_ of time in this loop!
566 * Test inline before going to call unuse_pte.
568 if (unlikely(pte_same(*pte
, swp_pte
))) {
570 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
573 pte
= pte_offset_map(pmd
, addr
);
575 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
581 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
582 unsigned long addr
, unsigned long end
,
583 swp_entry_t entry
, struct page
*page
)
589 pmd
= pmd_offset(pud
, addr
);
591 next
= pmd_addr_end(addr
, end
);
592 if (pmd_none_or_clear_bad(pmd
))
594 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
597 } while (pmd
++, addr
= next
, addr
!= end
);
601 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
602 unsigned long addr
, unsigned long end
,
603 swp_entry_t entry
, struct page
*page
)
609 pud
= pud_offset(pgd
, addr
);
611 next
= pud_addr_end(addr
, end
);
612 if (pud_none_or_clear_bad(pud
))
614 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
617 } while (pud
++, addr
= next
, addr
!= end
);
621 static int unuse_vma(struct vm_area_struct
*vma
,
622 swp_entry_t entry
, struct page
*page
)
625 unsigned long addr
, end
, next
;
629 addr
= page_address_in_vma(page
, vma
);
633 end
= addr
+ PAGE_SIZE
;
635 addr
= vma
->vm_start
;
639 pgd
= pgd_offset(vma
->vm_mm
, addr
);
641 next
= pgd_addr_end(addr
, end
);
642 if (pgd_none_or_clear_bad(pgd
))
644 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
647 } while (pgd
++, addr
= next
, addr
!= end
);
651 static int unuse_mm(struct mm_struct
*mm
,
652 swp_entry_t entry
, struct page
*page
)
654 struct vm_area_struct
*vma
;
657 if (!down_read_trylock(&mm
->mmap_sem
)) {
659 * Activate page so shrink_cache is unlikely to unmap its
660 * ptes while lock is dropped, so swapoff can make progress.
664 down_read(&mm
->mmap_sem
);
667 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
668 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
671 up_read(&mm
->mmap_sem
);
672 return (ret
< 0)? ret
: 0;
676 * Scan swap_map from current position to next entry still in use.
677 * Recycle to start on reaching the end, returning 0 when empty.
679 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
682 unsigned int max
= si
->max
;
683 unsigned int i
= prev
;
687 * No need for swap_lock here: we're just looking
688 * for whether an entry is in use, not modifying it; false
689 * hits are okay, and sys_swapoff() has already prevented new
690 * allocations from this area (while holding swap_lock).
699 * No entries in use at top of swap_map,
700 * loop back to start and recheck there.
706 count
= si
->swap_map
[i
];
707 if (count
&& count
!= SWAP_MAP_BAD
)
714 * We completely avoid races by reading each swap page in advance,
715 * and then search for the process using it. All the necessary
716 * page table adjustments can then be made atomically.
718 static int try_to_unuse(unsigned int type
)
720 struct swap_info_struct
* si
= &swap_info
[type
];
721 struct mm_struct
*start_mm
;
722 unsigned short *swap_map
;
723 unsigned short swcount
;
728 int reset_overflow
= 0;
732 * When searching mms for an entry, a good strategy is to
733 * start at the first mm we freed the previous entry from
734 * (though actually we don't notice whether we or coincidence
735 * freed the entry). Initialize this start_mm with a hold.
737 * A simpler strategy would be to start at the last mm we
738 * freed the previous entry from; but that would take less
739 * advantage of mmlist ordering, which clusters forked mms
740 * together, child after parent. If we race with dup_mmap(), we
741 * prefer to resolve parent before child, lest we miss entries
742 * duplicated after we scanned child: using last mm would invert
743 * that. Though it's only a serious concern when an overflowed
744 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
747 atomic_inc(&init_mm
.mm_users
);
750 * Keep on scanning until all entries have gone. Usually,
751 * one pass through swap_map is enough, but not necessarily:
752 * there are races when an instance of an entry might be missed.
754 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
755 if (signal_pending(current
)) {
761 * Get a page for the entry, using the existing swap
762 * cache page if there is one. Otherwise, get a clean
763 * page and read the swap into it.
765 swap_map
= &si
->swap_map
[i
];
766 entry
= swp_entry(type
, i
);
767 page
= read_swap_cache_async(entry
,
768 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
771 * Either swap_duplicate() failed because entry
772 * has been freed independently, and will not be
773 * reused since sys_swapoff() already disabled
774 * allocation from here, or alloc_page() failed.
783 * Don't hold on to start_mm if it looks like exiting.
785 if (atomic_read(&start_mm
->mm_users
) == 1) {
788 atomic_inc(&init_mm
.mm_users
);
792 * Wait for and lock page. When do_swap_page races with
793 * try_to_unuse, do_swap_page can handle the fault much
794 * faster than try_to_unuse can locate the entry. This
795 * apparently redundant "wait_on_page_locked" lets try_to_unuse
796 * defer to do_swap_page in such a case - in some tests,
797 * do_swap_page and try_to_unuse repeatedly compete.
799 wait_on_page_locked(page
);
800 wait_on_page_writeback(page
);
802 wait_on_page_writeback(page
);
805 * Remove all references to entry.
806 * Whenever we reach init_mm, there's no address space
807 * to search, but use it as a reminder to search shmem.
812 if (start_mm
== &init_mm
)
813 shmem
= shmem_unuse(entry
, page
);
815 retval
= unuse_mm(start_mm
, entry
, page
);
818 int set_start_mm
= (*swap_map
>= swcount
);
819 struct list_head
*p
= &start_mm
->mmlist
;
820 struct mm_struct
*new_start_mm
= start_mm
;
821 struct mm_struct
*prev_mm
= start_mm
;
822 struct mm_struct
*mm
;
824 atomic_inc(&new_start_mm
->mm_users
);
825 atomic_inc(&prev_mm
->mm_users
);
826 spin_lock(&mmlist_lock
);
827 while (*swap_map
> 1 && !retval
&& !shmem
&&
828 (p
= p
->next
) != &start_mm
->mmlist
) {
829 mm
= list_entry(p
, struct mm_struct
, mmlist
);
830 if (!atomic_inc_not_zero(&mm
->mm_users
))
832 spin_unlock(&mmlist_lock
);
841 else if (mm
== &init_mm
) {
843 shmem
= shmem_unuse(entry
, page
);
845 retval
= unuse_mm(mm
, entry
, page
);
846 if (set_start_mm
&& *swap_map
< swcount
) {
848 atomic_inc(&mm
->mm_users
);
852 spin_lock(&mmlist_lock
);
854 spin_unlock(&mmlist_lock
);
857 start_mm
= new_start_mm
;
860 /* page has already been unlocked and released */
868 page_cache_release(page
);
873 * How could swap count reach 0x7fff when the maximum
874 * pid is 0x7fff, and there's no way to repeat a swap
875 * page within an mm (except in shmem, where it's the
876 * shared object which takes the reference count)?
877 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
879 * If that's wrong, then we should worry more about
880 * exit_mmap() and do_munmap() cases described above:
881 * we might be resetting SWAP_MAP_MAX too early here.
882 * We know "Undead"s can happen, they're okay, so don't
883 * report them; but do report if we reset SWAP_MAP_MAX.
885 if (*swap_map
== SWAP_MAP_MAX
) {
886 spin_lock(&swap_lock
);
888 spin_unlock(&swap_lock
);
893 * If a reference remains (rare), we would like to leave
894 * the page in the swap cache; but try_to_unmap could
895 * then re-duplicate the entry once we drop page lock,
896 * so we might loop indefinitely; also, that page could
897 * not be swapped out to other storage meanwhile. So:
898 * delete from cache even if there's another reference,
899 * after ensuring that the data has been saved to disk -
900 * since if the reference remains (rarer), it will be
901 * read from disk into another page. Splitting into two
902 * pages would be incorrect if swap supported "shared
903 * private" pages, but they are handled by tmpfs files.
905 if ((*swap_map
> 1) && PageDirty(page
) && PageSwapCache(page
)) {
906 struct writeback_control wbc
= {
907 .sync_mode
= WB_SYNC_NONE
,
910 swap_writepage(page
, &wbc
);
912 wait_on_page_writeback(page
);
914 if (PageSwapCache(page
))
915 delete_from_swap_cache(page
);
918 * So we could skip searching mms once swap count went
919 * to 1, we did not mark any present ptes as dirty: must
920 * mark page dirty so shrink_page_list will preserve it.
924 page_cache_release(page
);
927 * Make sure that we aren't completely killing
928 * interactive performance.
934 if (reset_overflow
) {
935 printk(KERN_WARNING
"swapoff: cleared swap entry overflow\n");
942 * After a successful try_to_unuse, if no swap is now in use, we know
943 * we can empty the mmlist. swap_lock must be held on entry and exit.
944 * Note that mmlist_lock nests inside swap_lock, and an mm must be
945 * added to the mmlist just after page_duplicate - before would be racy.
947 static void drain_mmlist(void)
949 struct list_head
*p
, *next
;
952 for (i
= 0; i
< nr_swapfiles
; i
++)
953 if (swap_info
[i
].inuse_pages
)
955 spin_lock(&mmlist_lock
);
956 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
958 spin_unlock(&mmlist_lock
);
962 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
963 * corresponds to page offset `offset'.
965 sector_t
map_swap_page(struct swap_info_struct
*sis
, pgoff_t offset
)
967 struct swap_extent
*se
= sis
->curr_swap_extent
;
968 struct swap_extent
*start_se
= se
;
971 struct list_head
*lh
;
973 if (se
->start_page
<= offset
&&
974 offset
< (se
->start_page
+ se
->nr_pages
)) {
975 return se
->start_block
+ (offset
- se
->start_page
);
978 if (lh
== &sis
->extent_list
)
980 se
= list_entry(lh
, struct swap_extent
, list
);
981 sis
->curr_swap_extent
= se
;
982 BUG_ON(se
== start_se
); /* It *must* be present */
986 #ifdef CONFIG_HIBERNATION
988 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
989 * corresponding to given index in swap_info (swap type).
991 sector_t
swapdev_block(int swap_type
, pgoff_t offset
)
993 struct swap_info_struct
*sis
;
995 if (swap_type
>= nr_swapfiles
)
998 sis
= swap_info
+ swap_type
;
999 return (sis
->flags
& SWP_WRITEOK
) ? map_swap_page(sis
, offset
) : 0;
1001 #endif /* CONFIG_HIBERNATION */
1004 * Free all of a swapdev's extent information
1006 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1008 while (!list_empty(&sis
->extent_list
)) {
1009 struct swap_extent
*se
;
1011 se
= list_entry(sis
->extent_list
.next
,
1012 struct swap_extent
, list
);
1013 list_del(&se
->list
);
1019 * Add a block range (and the corresponding page range) into this swapdev's
1020 * extent list. The extent list is kept sorted in page order.
1022 * This function rather assumes that it is called in ascending page order.
1025 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1026 unsigned long nr_pages
, sector_t start_block
)
1028 struct swap_extent
*se
;
1029 struct swap_extent
*new_se
;
1030 struct list_head
*lh
;
1032 lh
= sis
->extent_list
.prev
; /* The highest page extent */
1033 if (lh
!= &sis
->extent_list
) {
1034 se
= list_entry(lh
, struct swap_extent
, list
);
1035 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1036 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1038 se
->nr_pages
+= nr_pages
;
1044 * No merge. Insert a new extent, preserving ordering.
1046 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1049 new_se
->start_page
= start_page
;
1050 new_se
->nr_pages
= nr_pages
;
1051 new_se
->start_block
= start_block
;
1053 list_add_tail(&new_se
->list
, &sis
->extent_list
);
1058 * A `swap extent' is a simple thing which maps a contiguous range of pages
1059 * onto a contiguous range of disk blocks. An ordered list of swap extents
1060 * is built at swapon time and is then used at swap_writepage/swap_readpage
1061 * time for locating where on disk a page belongs.
1063 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1064 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1065 * swap files identically.
1067 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1068 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1069 * swapfiles are handled *identically* after swapon time.
1071 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1072 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1073 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1074 * requirements, they are simply tossed out - we will never use those blocks
1077 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1078 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1079 * which will scribble on the fs.
1081 * The amount of disk space which a single swap extent represents varies.
1082 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1083 * extents in the list. To avoid much list walking, we cache the previous
1084 * search location in `curr_swap_extent', and start new searches from there.
1085 * This is extremely effective. The average number of iterations in
1086 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1088 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1090 struct inode
*inode
;
1091 unsigned blocks_per_page
;
1092 unsigned long page_no
;
1094 sector_t probe_block
;
1095 sector_t last_block
;
1096 sector_t lowest_block
= -1;
1097 sector_t highest_block
= 0;
1101 inode
= sis
->swap_file
->f_mapping
->host
;
1102 if (S_ISBLK(inode
->i_mode
)) {
1103 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1108 blkbits
= inode
->i_blkbits
;
1109 blocks_per_page
= PAGE_SIZE
>> blkbits
;
1112 * Map all the blocks into the extent list. This code doesn't try
1117 last_block
= i_size_read(inode
) >> blkbits
;
1118 while ((probe_block
+ blocks_per_page
) <= last_block
&&
1119 page_no
< sis
->max
) {
1120 unsigned block_in_page
;
1121 sector_t first_block
;
1123 first_block
= bmap(inode
, probe_block
);
1124 if (first_block
== 0)
1128 * It must be PAGE_SIZE aligned on-disk
1130 if (first_block
& (blocks_per_page
- 1)) {
1135 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1139 block
= bmap(inode
, probe_block
+ block_in_page
);
1142 if (block
!= first_block
+ block_in_page
) {
1149 first_block
>>= (PAGE_SHIFT
- blkbits
);
1150 if (page_no
) { /* exclude the header page */
1151 if (first_block
< lowest_block
)
1152 lowest_block
= first_block
;
1153 if (first_block
> highest_block
)
1154 highest_block
= first_block
;
1158 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1160 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1165 probe_block
+= blocks_per_page
;
1170 *span
= 1 + highest_block
- lowest_block
;
1172 page_no
= 1; /* force Empty message */
1174 sis
->pages
= page_no
- 1;
1175 sis
->highest_bit
= page_no
- 1;
1177 sis
->curr_swap_extent
= list_entry(sis
->extent_list
.prev
,
1178 struct swap_extent
, list
);
1181 printk(KERN_ERR
"swapon: swapfile has holes\n");
1187 #if 0 /* We don't need this yet */
1188 #include <linux/backing-dev.h>
1189 int page_queue_congested(struct page
*page
)
1191 struct backing_dev_info
*bdi
;
1193 BUG_ON(!PageLocked(page
)); /* It pins the swap_info_struct */
1195 if (PageSwapCache(page
)) {
1196 swp_entry_t entry
= { .val
= page_private(page
) };
1197 struct swap_info_struct
*sis
;
1199 sis
= get_swap_info_struct(swp_type(entry
));
1200 bdi
= sis
->bdev
->bd_inode
->i_mapping
->backing_dev_info
;
1202 bdi
= page
->mapping
->backing_dev_info
;
1203 return bdi_write_congested(bdi
);
1207 asmlinkage
long sys_swapoff(const char __user
* specialfile
)
1209 struct swap_info_struct
* p
= NULL
;
1210 unsigned short *swap_map
;
1211 struct file
*swap_file
, *victim
;
1212 struct address_space
*mapping
;
1213 struct inode
*inode
;
1218 if (!capable(CAP_SYS_ADMIN
))
1221 pathname
= getname(specialfile
);
1222 err
= PTR_ERR(pathname
);
1223 if (IS_ERR(pathname
))
1226 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1228 err
= PTR_ERR(victim
);
1232 mapping
= victim
->f_mapping
;
1234 spin_lock(&swap_lock
);
1235 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
].next
) {
1236 p
= swap_info
+ type
;
1237 if ((p
->flags
& SWP_ACTIVE
) == SWP_ACTIVE
) {
1238 if (p
->swap_file
->f_mapping
== mapping
)
1245 spin_unlock(&swap_lock
);
1248 if (!security_vm_enough_memory(p
->pages
))
1249 vm_unacct_memory(p
->pages
);
1252 spin_unlock(&swap_lock
);
1256 swap_list
.head
= p
->next
;
1258 swap_info
[prev
].next
= p
->next
;
1260 if (type
== swap_list
.next
) {
1261 /* just pick something that's safe... */
1262 swap_list
.next
= swap_list
.head
;
1265 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
].next
)
1266 swap_info
[i
].prio
= p
->prio
--;
1269 nr_swap_pages
-= p
->pages
;
1270 total_swap_pages
-= p
->pages
;
1271 p
->flags
&= ~SWP_WRITEOK
;
1272 spin_unlock(&swap_lock
);
1274 current
->flags
|= PF_SWAPOFF
;
1275 err
= try_to_unuse(type
);
1276 current
->flags
&= ~PF_SWAPOFF
;
1279 /* re-insert swap space back into swap_list */
1280 spin_lock(&swap_lock
);
1282 p
->prio
= --least_priority
;
1284 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
1285 if (p
->prio
>= swap_info
[i
].prio
)
1291 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1293 swap_info
[prev
].next
= p
- swap_info
;
1294 nr_swap_pages
+= p
->pages
;
1295 total_swap_pages
+= p
->pages
;
1296 p
->flags
|= SWP_WRITEOK
;
1297 spin_unlock(&swap_lock
);
1301 /* wait for any unplug function to finish */
1302 down_write(&swap_unplug_sem
);
1303 up_write(&swap_unplug_sem
);
1305 destroy_swap_extents(p
);
1306 mutex_lock(&swapon_mutex
);
1307 spin_lock(&swap_lock
);
1310 /* wait for anyone still in scan_swap_map */
1311 p
->highest_bit
= 0; /* cuts scans short */
1312 while (p
->flags
>= SWP_SCANNING
) {
1313 spin_unlock(&swap_lock
);
1314 schedule_timeout_uninterruptible(1);
1315 spin_lock(&swap_lock
);
1318 swap_file
= p
->swap_file
;
1319 p
->swap_file
= NULL
;
1321 swap_map
= p
->swap_map
;
1324 spin_unlock(&swap_lock
);
1325 mutex_unlock(&swapon_mutex
);
1327 inode
= mapping
->host
;
1328 if (S_ISBLK(inode
->i_mode
)) {
1329 struct block_device
*bdev
= I_BDEV(inode
);
1330 set_blocksize(bdev
, p
->old_block_size
);
1333 mutex_lock(&inode
->i_mutex
);
1334 inode
->i_flags
&= ~S_SWAPFILE
;
1335 mutex_unlock(&inode
->i_mutex
);
1337 filp_close(swap_file
, NULL
);
1341 filp_close(victim
, NULL
);
1346 #ifdef CONFIG_PROC_FS
1348 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1350 struct swap_info_struct
*ptr
= swap_info
;
1354 mutex_lock(&swapon_mutex
);
1357 return SEQ_START_TOKEN
;
1359 for (i
= 0; i
< nr_swapfiles
; i
++, ptr
++) {
1360 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1369 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1371 struct swap_info_struct
*ptr
;
1372 struct swap_info_struct
*endptr
= swap_info
+ nr_swapfiles
;
1374 if (v
== SEQ_START_TOKEN
)
1381 for (; ptr
< endptr
; ptr
++) {
1382 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1391 static void swap_stop(struct seq_file
*swap
, void *v
)
1393 mutex_unlock(&swapon_mutex
);
1396 static int swap_show(struct seq_file
*swap
, void *v
)
1398 struct swap_info_struct
*ptr
= v
;
1402 if (ptr
== SEQ_START_TOKEN
) {
1403 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1407 file
= ptr
->swap_file
;
1408 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1409 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1410 len
< 40 ? 40 - len
: 1, " ",
1411 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1412 "partition" : "file\t",
1413 ptr
->pages
<< (PAGE_SHIFT
- 10),
1414 ptr
->inuse_pages
<< (PAGE_SHIFT
- 10),
1419 static const struct seq_operations swaps_op
= {
1420 .start
= swap_start
,
1426 static int swaps_open(struct inode
*inode
, struct file
*file
)
1428 return seq_open(file
, &swaps_op
);
1431 static const struct file_operations proc_swaps_operations
= {
1434 .llseek
= seq_lseek
,
1435 .release
= seq_release
,
1438 static int __init
procswaps_init(void)
1440 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1443 __initcall(procswaps_init
);
1444 #endif /* CONFIG_PROC_FS */
1447 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1449 * The swapon system call
1451 asmlinkage
long sys_swapon(const char __user
* specialfile
, int swap_flags
)
1453 struct swap_info_struct
* p
;
1455 struct block_device
*bdev
= NULL
;
1456 struct file
*swap_file
= NULL
;
1457 struct address_space
*mapping
;
1461 union swap_header
*swap_header
= NULL
;
1462 int swap_header_version
;
1463 unsigned int nr_good_pages
= 0;
1466 unsigned long maxpages
= 1;
1468 unsigned short *swap_map
= NULL
;
1469 struct page
*page
= NULL
;
1470 struct inode
*inode
= NULL
;
1473 if (!capable(CAP_SYS_ADMIN
))
1475 spin_lock(&swap_lock
);
1477 for (type
= 0 ; type
< nr_swapfiles
; type
++,p
++)
1478 if (!(p
->flags
& SWP_USED
))
1481 if (type
>= MAX_SWAPFILES
) {
1482 spin_unlock(&swap_lock
);
1485 if (type
>= nr_swapfiles
)
1486 nr_swapfiles
= type
+1;
1487 memset(p
, 0, sizeof(*p
));
1488 INIT_LIST_HEAD(&p
->extent_list
);
1489 p
->flags
= SWP_USED
;
1491 spin_unlock(&swap_lock
);
1492 name
= getname(specialfile
);
1493 error
= PTR_ERR(name
);
1498 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
1499 error
= PTR_ERR(swap_file
);
1500 if (IS_ERR(swap_file
)) {
1505 p
->swap_file
= swap_file
;
1506 mapping
= swap_file
->f_mapping
;
1507 inode
= mapping
->host
;
1510 for (i
= 0; i
< nr_swapfiles
; i
++) {
1511 struct swap_info_struct
*q
= &swap_info
[i
];
1513 if (i
== type
|| !q
->swap_file
)
1515 if (mapping
== q
->swap_file
->f_mapping
)
1520 if (S_ISBLK(inode
->i_mode
)) {
1521 bdev
= I_BDEV(inode
);
1522 error
= bd_claim(bdev
, sys_swapon
);
1528 p
->old_block_size
= block_size(bdev
);
1529 error
= set_blocksize(bdev
, PAGE_SIZE
);
1533 } else if (S_ISREG(inode
->i_mode
)) {
1534 p
->bdev
= inode
->i_sb
->s_bdev
;
1535 mutex_lock(&inode
->i_mutex
);
1537 if (IS_SWAPFILE(inode
)) {
1545 swapfilesize
= i_size_read(inode
) >> PAGE_SHIFT
;
1548 * Read the swap header.
1550 if (!mapping
->a_ops
->readpage
) {
1554 page
= read_mapping_page(mapping
, 0, swap_file
);
1556 error
= PTR_ERR(page
);
1560 swap_header
= page_address(page
);
1562 if (!memcmp("SWAP-SPACE",swap_header
->magic
.magic
,10))
1563 swap_header_version
= 1;
1564 else if (!memcmp("SWAPSPACE2",swap_header
->magic
.magic
,10))
1565 swap_header_version
= 2;
1567 printk(KERN_ERR
"Unable to find swap-space signature\n");
1572 switch (swap_header_version
) {
1574 printk(KERN_ERR
"version 0 swap is no longer supported. "
1575 "Use mkswap -v1 %s\n", name
);
1579 /* swap partition endianess hack... */
1580 if (swab32(swap_header
->info
.version
) == 1) {
1581 swab32s(&swap_header
->info
.version
);
1582 swab32s(&swap_header
->info
.last_page
);
1583 swab32s(&swap_header
->info
.nr_badpages
);
1584 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1585 swab32s(&swap_header
->info
.badpages
[i
]);
1587 /* Check the swap header's sub-version and the size of
1588 the swap file and bad block lists */
1589 if (swap_header
->info
.version
!= 1) {
1591 "Unable to handle swap header version %d\n",
1592 swap_header
->info
.version
);
1598 p
->cluster_next
= 1;
1601 * Find out how many pages are allowed for a single swap
1602 * device. There are two limiting factors: 1) the number of
1603 * bits for the swap offset in the swp_entry_t type and
1604 * 2) the number of bits in the a swap pte as defined by
1605 * the different architectures. In order to find the
1606 * largest possible bit mask a swap entry with swap type 0
1607 * and swap offset ~0UL is created, encoded to a swap pte,
1608 * decoded to a swp_entry_t again and finally the swap
1609 * offset is extracted. This will mask all the bits from
1610 * the initial ~0UL mask that can't be encoded in either
1611 * the swp_entry_t or the architecture definition of a
1614 maxpages
= swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1615 if (maxpages
> swap_header
->info
.last_page
)
1616 maxpages
= swap_header
->info
.last_page
;
1617 p
->highest_bit
= maxpages
- 1;
1622 if (swapfilesize
&& maxpages
> swapfilesize
) {
1624 "Swap area shorter than signature indicates\n");
1627 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1629 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1632 /* OK, set up the swap map and apply the bad block list */
1633 swap_map
= vmalloc(maxpages
* sizeof(short));
1640 memset(swap_map
, 0, maxpages
* sizeof(short));
1641 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
1642 int page_nr
= swap_header
->info
.badpages
[i
];
1643 if (page_nr
<= 0 || page_nr
>= swap_header
->info
.last_page
)
1646 swap_map
[page_nr
] = SWAP_MAP_BAD
;
1648 nr_good_pages
= swap_header
->info
.last_page
-
1649 swap_header
->info
.nr_badpages
-
1650 1 /* header page */;
1655 if (nr_good_pages
) {
1656 swap_map
[0] = SWAP_MAP_BAD
;
1658 p
->pages
= nr_good_pages
;
1659 nr_extents
= setup_swap_extents(p
, &span
);
1660 if (nr_extents
< 0) {
1664 nr_good_pages
= p
->pages
;
1666 if (!nr_good_pages
) {
1667 printk(KERN_WARNING
"Empty swap-file\n");
1672 mutex_lock(&swapon_mutex
);
1673 spin_lock(&swap_lock
);
1674 if (swap_flags
& SWAP_FLAG_PREFER
)
1676 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
1678 p
->prio
= --least_priority
;
1679 p
->swap_map
= swap_map
;
1680 p
->flags
= SWP_ACTIVE
;
1681 nr_swap_pages
+= nr_good_pages
;
1682 total_swap_pages
+= nr_good_pages
;
1684 printk(KERN_INFO
"Adding %uk swap on %s. "
1685 "Priority:%d extents:%d across:%lluk\n",
1686 nr_good_pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
1687 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10));
1689 /* insert swap space into swap_list: */
1691 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
1692 if (p
->prio
>= swap_info
[i
].prio
) {
1699 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1701 swap_info
[prev
].next
= p
- swap_info
;
1703 spin_unlock(&swap_lock
);
1704 mutex_unlock(&swapon_mutex
);
1709 set_blocksize(bdev
, p
->old_block_size
);
1712 destroy_swap_extents(p
);
1714 spin_lock(&swap_lock
);
1715 p
->swap_file
= NULL
;
1717 spin_unlock(&swap_lock
);
1720 filp_close(swap_file
, NULL
);
1722 if (page
&& !IS_ERR(page
)) {
1724 page_cache_release(page
);
1730 inode
->i_flags
|= S_SWAPFILE
;
1731 mutex_unlock(&inode
->i_mutex
);
1736 void si_swapinfo(struct sysinfo
*val
)
1739 unsigned long nr_to_be_unused
= 0;
1741 spin_lock(&swap_lock
);
1742 for (i
= 0; i
< nr_swapfiles
; i
++) {
1743 if (!(swap_info
[i
].flags
& SWP_USED
) ||
1744 (swap_info
[i
].flags
& SWP_WRITEOK
))
1746 nr_to_be_unused
+= swap_info
[i
].inuse_pages
;
1748 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
1749 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
1750 spin_unlock(&swap_lock
);
1754 * Verify that a swap entry is valid and increment its swap map count.
1756 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1757 * "permanent", but will be reclaimed by the next swapoff.
1759 int swap_duplicate(swp_entry_t entry
)
1761 struct swap_info_struct
* p
;
1762 unsigned long offset
, type
;
1765 if (is_migration_entry(entry
))
1768 type
= swp_type(entry
);
1769 if (type
>= nr_swapfiles
)
1771 p
= type
+ swap_info
;
1772 offset
= swp_offset(entry
);
1774 spin_lock(&swap_lock
);
1775 if (offset
< p
->max
&& p
->swap_map
[offset
]) {
1776 if (p
->swap_map
[offset
] < SWAP_MAP_MAX
- 1) {
1777 p
->swap_map
[offset
]++;
1779 } else if (p
->swap_map
[offset
] <= SWAP_MAP_MAX
) {
1780 if (swap_overflow
++ < 5)
1781 printk(KERN_WARNING
"swap_dup: swap entry overflow\n");
1782 p
->swap_map
[offset
] = SWAP_MAP_MAX
;
1786 spin_unlock(&swap_lock
);
1791 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
1795 struct swap_info_struct
*
1796 get_swap_info_struct(unsigned type
)
1798 return &swap_info
[type
];
1802 * swap_lock prevents swap_map being freed. Don't grab an extra
1803 * reference on the swaphandle, it doesn't matter if it becomes unused.
1805 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
1807 struct swap_info_struct
*si
;
1808 int our_page_cluster
= page_cluster
;
1809 pgoff_t target
, toff
;
1813 if (!our_page_cluster
) /* no readahead */
1816 si
= &swap_info
[swp_type(entry
)];
1817 target
= swp_offset(entry
);
1818 base
= (target
>> our_page_cluster
) << our_page_cluster
;
1819 end
= base
+ (1 << our_page_cluster
);
1820 if (!base
) /* first page is swap header */
1823 spin_lock(&swap_lock
);
1824 if (end
> si
->max
) /* don't go beyond end of map */
1827 /* Count contiguous allocated slots above our target */
1828 for (toff
= target
; ++toff
< end
; nr_pages
++) {
1829 /* Don't read in free or bad pages */
1830 if (!si
->swap_map
[toff
])
1832 if (si
->swap_map
[toff
] == SWAP_MAP_BAD
)
1835 /* Count contiguous allocated slots below our target */
1836 for (toff
= target
; --toff
>= base
; nr_pages
++) {
1837 /* Don't read in free or bad pages */
1838 if (!si
->swap_map
[toff
])
1840 if (si
->swap_map
[toff
] == SWAP_MAP_BAD
)
1843 spin_unlock(&swap_lock
);
1846 * Indicate starting offset, and return number of pages to get:
1847 * if only 1, say 0, since there's then no readahead to be done.
1850 return nr_pages
? ++nr_pages
: 0;