input: migor_ts compile and detection fix
[linux-2.6/mini2440.git] / drivers / md / dm-table.c
blob61f441409234e334048460bd6475eee2572d883c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <asm/atomic.h>
20 #define DM_MSG_PREFIX "table"
22 #define MAX_DEPTH 16
23 #define NODE_SIZE L1_CACHE_BYTES
24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
27 struct dm_table {
28 struct mapped_device *md;
29 atomic_t holders;
31 /* btree table */
32 unsigned int depth;
33 unsigned int counts[MAX_DEPTH]; /* in nodes */
34 sector_t *index[MAX_DEPTH];
36 unsigned int num_targets;
37 unsigned int num_allocated;
38 sector_t *highs;
39 struct dm_target *targets;
42 * Indicates the rw permissions for the new logical
43 * device. This should be a combination of FMODE_READ
44 * and FMODE_WRITE.
46 int mode;
48 /* a list of devices used by this table */
49 struct list_head devices;
52 * These are optimistic limits taken from all the
53 * targets, some targets will need smaller limits.
55 struct io_restrictions limits;
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
59 void *event_context;
63 * Similar to ceiling(log_size(n))
65 static unsigned int int_log(unsigned int n, unsigned int base)
67 int result = 0;
69 while (n > 1) {
70 n = dm_div_up(n, base);
71 result++;
74 return result;
78 * Returns the minimum that is _not_ zero, unless both are zero.
80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
83 * Combine two io_restrictions, always taking the lower value.
85 static void combine_restrictions_low(struct io_restrictions *lhs,
86 struct io_restrictions *rhs)
88 lhs->max_sectors =
89 min_not_zero(lhs->max_sectors, rhs->max_sectors);
91 lhs->max_phys_segments =
92 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
94 lhs->max_hw_segments =
95 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
97 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
99 lhs->max_segment_size =
100 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
102 lhs->max_hw_sectors =
103 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
105 lhs->seg_boundary_mask =
106 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
108 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
110 lhs->no_cluster |= rhs->no_cluster;
114 * Calculate the index of the child node of the n'th node k'th key.
116 static inline unsigned int get_child(unsigned int n, unsigned int k)
118 return (n * CHILDREN_PER_NODE) + k;
122 * Return the n'th node of level l from table t.
124 static inline sector_t *get_node(struct dm_table *t,
125 unsigned int l, unsigned int n)
127 return t->index[l] + (n * KEYS_PER_NODE);
131 * Return the highest key that you could lookup from the n'th
132 * node on level l of the btree.
134 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
136 for (; l < t->depth - 1; l++)
137 n = get_child(n, CHILDREN_PER_NODE - 1);
139 if (n >= t->counts[l])
140 return (sector_t) - 1;
142 return get_node(t, l, n)[KEYS_PER_NODE - 1];
146 * Fills in a level of the btree based on the highs of the level
147 * below it.
149 static int setup_btree_index(unsigned int l, struct dm_table *t)
151 unsigned int n, k;
152 sector_t *node;
154 for (n = 0U; n < t->counts[l]; n++) {
155 node = get_node(t, l, n);
157 for (k = 0U; k < KEYS_PER_NODE; k++)
158 node[k] = high(t, l + 1, get_child(n, k));
161 return 0;
164 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
166 unsigned long size;
167 void *addr;
170 * Check that we're not going to overflow.
172 if (nmemb > (ULONG_MAX / elem_size))
173 return NULL;
175 size = nmemb * elem_size;
176 addr = vmalloc(size);
177 if (addr)
178 memset(addr, 0, size);
180 return addr;
184 * highs, and targets are managed as dynamic arrays during a
185 * table load.
187 static int alloc_targets(struct dm_table *t, unsigned int num)
189 sector_t *n_highs;
190 struct dm_target *n_targets;
191 int n = t->num_targets;
194 * Allocate both the target array and offset array at once.
195 * Append an empty entry to catch sectors beyond the end of
196 * the device.
198 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
199 sizeof(sector_t));
200 if (!n_highs)
201 return -ENOMEM;
203 n_targets = (struct dm_target *) (n_highs + num);
205 if (n) {
206 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
207 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
210 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
211 vfree(t->highs);
213 t->num_allocated = num;
214 t->highs = n_highs;
215 t->targets = n_targets;
217 return 0;
220 int dm_table_create(struct dm_table **result, int mode,
221 unsigned num_targets, struct mapped_device *md)
223 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
225 if (!t)
226 return -ENOMEM;
228 INIT_LIST_HEAD(&t->devices);
229 atomic_set(&t->holders, 1);
231 if (!num_targets)
232 num_targets = KEYS_PER_NODE;
234 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
236 if (alloc_targets(t, num_targets)) {
237 kfree(t);
238 t = NULL;
239 return -ENOMEM;
242 t->mode = mode;
243 t->md = md;
244 *result = t;
245 return 0;
248 static void free_devices(struct list_head *devices)
250 struct list_head *tmp, *next;
252 list_for_each_safe(tmp, next, devices) {
253 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
254 kfree(dd);
258 static void table_destroy(struct dm_table *t)
260 unsigned int i;
262 /* free the indexes (see dm_table_complete) */
263 if (t->depth >= 2)
264 vfree(t->index[t->depth - 2]);
266 /* free the targets */
267 for (i = 0; i < t->num_targets; i++) {
268 struct dm_target *tgt = t->targets + i;
270 if (tgt->type->dtr)
271 tgt->type->dtr(tgt);
273 dm_put_target_type(tgt->type);
276 vfree(t->highs);
278 /* free the device list */
279 if (t->devices.next != &t->devices) {
280 DMWARN("devices still present during destroy: "
281 "dm_table_remove_device calls missing");
283 free_devices(&t->devices);
286 kfree(t);
289 void dm_table_get(struct dm_table *t)
291 atomic_inc(&t->holders);
294 void dm_table_put(struct dm_table *t)
296 if (!t)
297 return;
299 if (atomic_dec_and_test(&t->holders))
300 table_destroy(t);
304 * Checks to see if we need to extend highs or targets.
306 static inline int check_space(struct dm_table *t)
308 if (t->num_targets >= t->num_allocated)
309 return alloc_targets(t, t->num_allocated * 2);
311 return 0;
315 * Convert a device path to a dev_t.
317 static int lookup_device(const char *path, dev_t *dev)
319 struct block_device *bdev = lookup_bdev(path);
320 if (IS_ERR(bdev))
321 return PTR_ERR(bdev);
322 *dev = bdev->bd_dev;
323 bdput(bdev);
324 return 0;
328 * See if we've already got a device in the list.
330 static struct dm_dev *find_device(struct list_head *l, dev_t dev)
332 struct dm_dev *dd;
334 list_for_each_entry (dd, l, list)
335 if (dd->bdev->bd_dev == dev)
336 return dd;
338 return NULL;
342 * Open a device so we can use it as a map destination.
344 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md)
346 static char *_claim_ptr = "I belong to device-mapper";
347 struct block_device *bdev;
349 int r;
351 BUG_ON(d->bdev);
353 bdev = open_by_devnum(dev, d->mode);
354 if (IS_ERR(bdev))
355 return PTR_ERR(bdev);
356 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
357 if (r)
358 blkdev_put(bdev);
359 else
360 d->bdev = bdev;
361 return r;
365 * Close a device that we've been using.
367 static void close_dev(struct dm_dev *d, struct mapped_device *md)
369 if (!d->bdev)
370 return;
372 bd_release_from_disk(d->bdev, dm_disk(md));
373 blkdev_put(d->bdev);
374 d->bdev = NULL;
378 * If possible, this checks an area of a destination device is valid.
380 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
382 sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
384 if (!dev_size)
385 return 1;
387 return ((start < dev_size) && (len <= (dev_size - start)));
391 * This upgrades the mode on an already open dm_dev. Being
392 * careful to leave things as they were if we fail to reopen the
393 * device.
395 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md)
397 int r;
398 struct dm_dev dd_copy;
399 dev_t dev = dd->bdev->bd_dev;
401 dd_copy = *dd;
403 dd->mode |= new_mode;
404 dd->bdev = NULL;
405 r = open_dev(dd, dev, md);
406 if (!r)
407 close_dev(&dd_copy, md);
408 else
409 *dd = dd_copy;
411 return r;
415 * Add a device to the list, or just increment the usage count if
416 * it's already present.
418 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
419 const char *path, sector_t start, sector_t len,
420 int mode, struct dm_dev **result)
422 int r;
423 dev_t uninitialized_var(dev);
424 struct dm_dev *dd;
425 unsigned int major, minor;
427 BUG_ON(!t);
429 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
430 /* Extract the major/minor numbers */
431 dev = MKDEV(major, minor);
432 if (MAJOR(dev) != major || MINOR(dev) != minor)
433 return -EOVERFLOW;
434 } else {
435 /* convert the path to a device */
436 if ((r = lookup_device(path, &dev)))
437 return r;
440 dd = find_device(&t->devices, dev);
441 if (!dd) {
442 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
443 if (!dd)
444 return -ENOMEM;
446 dd->mode = mode;
447 dd->bdev = NULL;
449 if ((r = open_dev(dd, dev, t->md))) {
450 kfree(dd);
451 return r;
454 format_dev_t(dd->name, dev);
456 atomic_set(&dd->count, 0);
457 list_add(&dd->list, &t->devices);
459 } else if (dd->mode != (mode | dd->mode)) {
460 r = upgrade_mode(dd, mode, t->md);
461 if (r)
462 return r;
464 atomic_inc(&dd->count);
466 if (!check_device_area(dd, start, len)) {
467 DMWARN("device %s too small for target", path);
468 dm_put_device(ti, dd);
469 return -EINVAL;
472 *result = dd;
474 return 0;
477 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
479 struct request_queue *q = bdev_get_queue(bdev);
480 struct io_restrictions *rs = &ti->limits;
483 * Combine the device limits low.
485 * FIXME: if we move an io_restriction struct
486 * into q this would just be a call to
487 * combine_restrictions_low()
489 rs->max_sectors =
490 min_not_zero(rs->max_sectors, q->max_sectors);
493 * Check if merge fn is supported.
494 * If not we'll force DM to use PAGE_SIZE or
495 * smaller I/O, just to be safe.
498 if (q->merge_bvec_fn && !ti->type->merge)
499 rs->max_sectors =
500 min_not_zero(rs->max_sectors,
501 (unsigned int) (PAGE_SIZE >> 9));
503 rs->max_phys_segments =
504 min_not_zero(rs->max_phys_segments,
505 q->max_phys_segments);
507 rs->max_hw_segments =
508 min_not_zero(rs->max_hw_segments, q->max_hw_segments);
510 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
512 rs->max_segment_size =
513 min_not_zero(rs->max_segment_size, q->max_segment_size);
515 rs->max_hw_sectors =
516 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors);
518 rs->seg_boundary_mask =
519 min_not_zero(rs->seg_boundary_mask,
520 q->seg_boundary_mask);
522 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn);
524 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
526 EXPORT_SYMBOL_GPL(dm_set_device_limits);
528 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
529 sector_t len, int mode, struct dm_dev **result)
531 int r = __table_get_device(ti->table, ti, path,
532 start, len, mode, result);
534 if (!r)
535 dm_set_device_limits(ti, (*result)->bdev);
537 return r;
541 * Decrement a devices use count and remove it if necessary.
543 void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
545 if (atomic_dec_and_test(&dd->count)) {
546 close_dev(dd, ti->table->md);
547 list_del(&dd->list);
548 kfree(dd);
553 * Checks to see if the target joins onto the end of the table.
555 static int adjoin(struct dm_table *table, struct dm_target *ti)
557 struct dm_target *prev;
559 if (!table->num_targets)
560 return !ti->begin;
562 prev = &table->targets[table->num_targets - 1];
563 return (ti->begin == (prev->begin + prev->len));
567 * Used to dynamically allocate the arg array.
569 static char **realloc_argv(unsigned *array_size, char **old_argv)
571 char **argv;
572 unsigned new_size;
574 new_size = *array_size ? *array_size * 2 : 64;
575 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
576 if (argv) {
577 memcpy(argv, old_argv, *array_size * sizeof(*argv));
578 *array_size = new_size;
581 kfree(old_argv);
582 return argv;
586 * Destructively splits up the argument list to pass to ctr.
588 int dm_split_args(int *argc, char ***argvp, char *input)
590 char *start, *end = input, *out, **argv = NULL;
591 unsigned array_size = 0;
593 *argc = 0;
595 if (!input) {
596 *argvp = NULL;
597 return 0;
600 argv = realloc_argv(&array_size, argv);
601 if (!argv)
602 return -ENOMEM;
604 while (1) {
605 start = end;
607 /* Skip whitespace */
608 while (*start && isspace(*start))
609 start++;
611 if (!*start)
612 break; /* success, we hit the end */
614 /* 'out' is used to remove any back-quotes */
615 end = out = start;
616 while (*end) {
617 /* Everything apart from '\0' can be quoted */
618 if (*end == '\\' && *(end + 1)) {
619 *out++ = *(end + 1);
620 end += 2;
621 continue;
624 if (isspace(*end))
625 break; /* end of token */
627 *out++ = *end++;
630 /* have we already filled the array ? */
631 if ((*argc + 1) > array_size) {
632 argv = realloc_argv(&array_size, argv);
633 if (!argv)
634 return -ENOMEM;
637 /* we know this is whitespace */
638 if (*end)
639 end++;
641 /* terminate the string and put it in the array */
642 *out = '\0';
643 argv[*argc] = start;
644 (*argc)++;
647 *argvp = argv;
648 return 0;
651 static void check_for_valid_limits(struct io_restrictions *rs)
653 if (!rs->max_sectors)
654 rs->max_sectors = SAFE_MAX_SECTORS;
655 if (!rs->max_hw_sectors)
656 rs->max_hw_sectors = SAFE_MAX_SECTORS;
657 if (!rs->max_phys_segments)
658 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
659 if (!rs->max_hw_segments)
660 rs->max_hw_segments = MAX_HW_SEGMENTS;
661 if (!rs->hardsect_size)
662 rs->hardsect_size = 1 << SECTOR_SHIFT;
663 if (!rs->max_segment_size)
664 rs->max_segment_size = MAX_SEGMENT_SIZE;
665 if (!rs->seg_boundary_mask)
666 rs->seg_boundary_mask = -1;
667 if (!rs->bounce_pfn)
668 rs->bounce_pfn = -1;
671 int dm_table_add_target(struct dm_table *t, const char *type,
672 sector_t start, sector_t len, char *params)
674 int r = -EINVAL, argc;
675 char **argv;
676 struct dm_target *tgt;
678 if ((r = check_space(t)))
679 return r;
681 tgt = t->targets + t->num_targets;
682 memset(tgt, 0, sizeof(*tgt));
684 if (!len) {
685 DMERR("%s: zero-length target", dm_device_name(t->md));
686 return -EINVAL;
689 tgt->type = dm_get_target_type(type);
690 if (!tgt->type) {
691 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
692 type);
693 return -EINVAL;
696 tgt->table = t;
697 tgt->begin = start;
698 tgt->len = len;
699 tgt->error = "Unknown error";
702 * Does this target adjoin the previous one ?
704 if (!adjoin(t, tgt)) {
705 tgt->error = "Gap in table";
706 r = -EINVAL;
707 goto bad;
710 r = dm_split_args(&argc, &argv, params);
711 if (r) {
712 tgt->error = "couldn't split parameters (insufficient memory)";
713 goto bad;
716 r = tgt->type->ctr(tgt, argc, argv);
717 kfree(argv);
718 if (r)
719 goto bad;
721 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
723 /* FIXME: the plan is to combine high here and then have
724 * the merge fn apply the target level restrictions. */
725 combine_restrictions_low(&t->limits, &tgt->limits);
726 return 0;
728 bad:
729 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
730 dm_put_target_type(tgt->type);
731 return r;
734 static int setup_indexes(struct dm_table *t)
736 int i;
737 unsigned int total = 0;
738 sector_t *indexes;
740 /* allocate the space for *all* the indexes */
741 for (i = t->depth - 2; i >= 0; i--) {
742 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
743 total += t->counts[i];
746 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
747 if (!indexes)
748 return -ENOMEM;
750 /* set up internal nodes, bottom-up */
751 for (i = t->depth - 2; i >= 0; i--) {
752 t->index[i] = indexes;
753 indexes += (KEYS_PER_NODE * t->counts[i]);
754 setup_btree_index(i, t);
757 return 0;
761 * Builds the btree to index the map.
763 int dm_table_complete(struct dm_table *t)
765 int r = 0;
766 unsigned int leaf_nodes;
768 check_for_valid_limits(&t->limits);
770 /* how many indexes will the btree have ? */
771 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
772 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
774 /* leaf layer has already been set up */
775 t->counts[t->depth - 1] = leaf_nodes;
776 t->index[t->depth - 1] = t->highs;
778 if (t->depth >= 2)
779 r = setup_indexes(t);
781 return r;
784 static DEFINE_MUTEX(_event_lock);
785 void dm_table_event_callback(struct dm_table *t,
786 void (*fn)(void *), void *context)
788 mutex_lock(&_event_lock);
789 t->event_fn = fn;
790 t->event_context = context;
791 mutex_unlock(&_event_lock);
794 void dm_table_event(struct dm_table *t)
797 * You can no longer call dm_table_event() from interrupt
798 * context, use a bottom half instead.
800 BUG_ON(in_interrupt());
802 mutex_lock(&_event_lock);
803 if (t->event_fn)
804 t->event_fn(t->event_context);
805 mutex_unlock(&_event_lock);
808 sector_t dm_table_get_size(struct dm_table *t)
810 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
813 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
815 if (index >= t->num_targets)
816 return NULL;
818 return t->targets + index;
822 * Search the btree for the correct target.
824 * Caller should check returned pointer with dm_target_is_valid()
825 * to trap I/O beyond end of device.
827 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
829 unsigned int l, n = 0, k = 0;
830 sector_t *node;
832 for (l = 0; l < t->depth; l++) {
833 n = get_child(n, k);
834 node = get_node(t, l, n);
836 for (k = 0; k < KEYS_PER_NODE; k++)
837 if (node[k] >= sector)
838 break;
841 return &t->targets[(KEYS_PER_NODE * n) + k];
844 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
847 * Make sure we obey the optimistic sub devices
848 * restrictions.
850 blk_queue_max_sectors(q, t->limits.max_sectors);
851 q->max_phys_segments = t->limits.max_phys_segments;
852 q->max_hw_segments = t->limits.max_hw_segments;
853 q->hardsect_size = t->limits.hardsect_size;
854 q->max_segment_size = t->limits.max_segment_size;
855 q->max_hw_sectors = t->limits.max_hw_sectors;
856 q->seg_boundary_mask = t->limits.seg_boundary_mask;
857 q->bounce_pfn = t->limits.bounce_pfn;
859 if (t->limits.no_cluster)
860 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
861 else
862 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
866 unsigned int dm_table_get_num_targets(struct dm_table *t)
868 return t->num_targets;
871 struct list_head *dm_table_get_devices(struct dm_table *t)
873 return &t->devices;
876 int dm_table_get_mode(struct dm_table *t)
878 return t->mode;
881 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
883 int i = t->num_targets;
884 struct dm_target *ti = t->targets;
886 while (i--) {
887 if (postsuspend) {
888 if (ti->type->postsuspend)
889 ti->type->postsuspend(ti);
890 } else if (ti->type->presuspend)
891 ti->type->presuspend(ti);
893 ti++;
897 void dm_table_presuspend_targets(struct dm_table *t)
899 if (!t)
900 return;
902 suspend_targets(t, 0);
905 void dm_table_postsuspend_targets(struct dm_table *t)
907 if (!t)
908 return;
910 suspend_targets(t, 1);
913 int dm_table_resume_targets(struct dm_table *t)
915 int i, r = 0;
917 for (i = 0; i < t->num_targets; i++) {
918 struct dm_target *ti = t->targets + i;
920 if (!ti->type->preresume)
921 continue;
923 r = ti->type->preresume(ti);
924 if (r)
925 return r;
928 for (i = 0; i < t->num_targets; i++) {
929 struct dm_target *ti = t->targets + i;
931 if (ti->type->resume)
932 ti->type->resume(ti);
935 return 0;
938 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
940 struct dm_dev *dd;
941 struct list_head *devices = dm_table_get_devices(t);
942 int r = 0;
944 list_for_each_entry(dd, devices, list) {
945 struct request_queue *q = bdev_get_queue(dd->bdev);
946 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
949 return r;
952 void dm_table_unplug_all(struct dm_table *t)
954 struct dm_dev *dd;
955 struct list_head *devices = dm_table_get_devices(t);
957 list_for_each_entry(dd, devices, list) {
958 struct request_queue *q = bdev_get_queue(dd->bdev);
960 blk_unplug(q);
964 struct mapped_device *dm_table_get_md(struct dm_table *t)
966 dm_get(t->md);
968 return t->md;
971 EXPORT_SYMBOL(dm_vcalloc);
972 EXPORT_SYMBOL(dm_get_device);
973 EXPORT_SYMBOL(dm_put_device);
974 EXPORT_SYMBOL(dm_table_event);
975 EXPORT_SYMBOL(dm_table_get_size);
976 EXPORT_SYMBOL(dm_table_get_mode);
977 EXPORT_SYMBOL(dm_table_get_md);
978 EXPORT_SYMBOL(dm_table_put);
979 EXPORT_SYMBOL(dm_table_get);
980 EXPORT_SYMBOL(dm_table_unplug_all);