[SCSI] simplify scsi_io_completion()
[linux-2.6/mini2440.git] / drivers / scsi / scsi_lib.c
blobecfbbd30dce530ac24830f56f293a13c85cdeef3
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
66 #undef SP
68 struct kmem_cache *scsi_sdb_cache;
70 static void scsi_run_queue(struct request_queue *q);
73 * Function: scsi_unprep_request()
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
78 * Arguments: req - request to unprepare
80 * Lock status: Assumed that no locks are held upon entry.
82 * Returns: Nothing.
84 static void scsi_unprep_request(struct request *req)
86 struct scsi_cmnd *cmd = req->special;
88 req->cmd_flags &= ~REQ_DONTPREP;
89 req->special = NULL;
91 scsi_put_command(cmd);
95 * Function: scsi_queue_insert()
97 * Purpose: Insert a command in the midlevel queue.
99 * Arguments: cmd - command that we are adding to queue.
100 * reason - why we are inserting command to queue.
102 * Lock status: Assumed that lock is not held upon entry.
104 * Returns: Nothing.
106 * Notes: We do this for one of two cases. Either the host is busy
107 * and it cannot accept any more commands for the time being,
108 * or the device returned QUEUE_FULL and can accept no more
109 * commands.
110 * Notes: This could be called either from an interrupt context or a
111 * normal process context.
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
115 struct Scsi_Host *host = cmd->device->host;
116 struct scsi_device *device = cmd->device;
117 struct scsi_target *starget = scsi_target(device);
118 struct request_queue *q = device->request_queue;
119 unsigned long flags;
121 SCSI_LOG_MLQUEUE(1,
122 printk("Inserting command %p into mlqueue\n", cmd));
125 * Set the appropriate busy bit for the device/host.
127 * If the host/device isn't busy, assume that something actually
128 * completed, and that we should be able to queue a command now.
130 * Note that the prior mid-layer assumption that any host could
131 * always queue at least one command is now broken. The mid-layer
132 * will implement a user specifiable stall (see
133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 * if a command is requeued with no other commands outstanding
135 * either for the device or for the host.
137 switch (reason) {
138 case SCSI_MLQUEUE_HOST_BUSY:
139 host->host_blocked = host->max_host_blocked;
140 break;
141 case SCSI_MLQUEUE_DEVICE_BUSY:
142 device->device_blocked = device->max_device_blocked;
143 break;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
146 break;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
153 scsi_device_unbusy(device);
156 * Requeue this command. It will go before all other commands
157 * that are already in the queue.
159 * NOTE: there is magic here about the way the queue is plugged if
160 * we have no outstanding commands.
162 * Although we *don't* plug the queue, we call the request
163 * function. The SCSI request function detects the blocked condition
164 * and plugs the queue appropriately.
166 spin_lock_irqsave(q->queue_lock, flags);
167 blk_requeue_request(q, cmd->request);
168 spin_unlock_irqrestore(q->queue_lock, flags);
170 scsi_run_queue(q);
172 return 0;
176 * scsi_execute - insert request and wait for the result
177 * @sdev: scsi device
178 * @cmd: scsi command
179 * @data_direction: data direction
180 * @buffer: data buffer
181 * @bufflen: len of buffer
182 * @sense: optional sense buffer
183 * @timeout: request timeout in seconds
184 * @retries: number of times to retry request
185 * @flags: or into request flags;
187 * returns the req->errors value which is the scsi_cmnd result
188 * field.
190 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
191 int data_direction, void *buffer, unsigned bufflen,
192 unsigned char *sense, int timeout, int retries, int flags)
194 struct request *req;
195 int write = (data_direction == DMA_TO_DEVICE);
196 int ret = DRIVER_ERROR << 24;
198 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
200 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
201 buffer, bufflen, __GFP_WAIT))
202 goto out;
204 req->cmd_len = COMMAND_SIZE(cmd[0]);
205 memcpy(req->cmd, cmd, req->cmd_len);
206 req->sense = sense;
207 req->sense_len = 0;
208 req->retries = retries;
209 req->timeout = timeout;
210 req->cmd_type = REQ_TYPE_BLOCK_PC;
211 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
214 * head injection *required* here otherwise quiesce won't work
216 blk_execute_rq(req->q, NULL, req, 1);
219 * Some devices (USB mass-storage in particular) may transfer
220 * garbage data together with a residue indicating that the data
221 * is invalid. Prevent the garbage from being misinterpreted
222 * and prevent security leaks by zeroing out the excess data.
224 if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
225 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
227 ret = req->errors;
228 out:
229 blk_put_request(req);
231 return ret;
233 EXPORT_SYMBOL(scsi_execute);
236 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
237 int data_direction, void *buffer, unsigned bufflen,
238 struct scsi_sense_hdr *sshdr, int timeout, int retries)
240 char *sense = NULL;
241 int result;
243 if (sshdr) {
244 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
245 if (!sense)
246 return DRIVER_ERROR << 24;
248 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249 sense, timeout, retries, 0);
250 if (sshdr)
251 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
253 kfree(sense);
254 return result;
256 EXPORT_SYMBOL(scsi_execute_req);
258 struct scsi_io_context {
259 void *data;
260 void (*done)(void *data, char *sense, int result, int resid);
261 char sense[SCSI_SENSE_BUFFERSIZE];
264 static struct kmem_cache *scsi_io_context_cache;
266 static void scsi_end_async(struct request *req, int uptodate)
268 struct scsi_io_context *sioc = req->end_io_data;
270 if (sioc->done)
271 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
273 kmem_cache_free(scsi_io_context_cache, sioc);
274 __blk_put_request(req->q, req);
277 static int scsi_merge_bio(struct request *rq, struct bio *bio)
279 struct request_queue *q = rq->q;
281 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
282 if (rq_data_dir(rq) == WRITE)
283 bio->bi_rw |= (1 << BIO_RW);
284 blk_queue_bounce(q, &bio);
286 return blk_rq_append_bio(q, rq, bio);
289 static void scsi_bi_endio(struct bio *bio, int error)
291 bio_put(bio);
295 * scsi_req_map_sg - map a scatterlist into a request
296 * @rq: request to fill
297 * @sgl: scatterlist
298 * @nsegs: number of elements
299 * @bufflen: len of buffer
300 * @gfp: memory allocation flags
302 * scsi_req_map_sg maps a scatterlist into a request so that the
303 * request can be sent to the block layer. We do not trust the scatterlist
304 * sent to use, as some ULDs use that struct to only organize the pages.
306 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
307 int nsegs, unsigned bufflen, gfp_t gfp)
309 struct request_queue *q = rq->q;
310 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
311 unsigned int data_len = bufflen, len, bytes, off;
312 struct scatterlist *sg;
313 struct page *page;
314 struct bio *bio = NULL;
315 int i, err, nr_vecs = 0;
317 for_each_sg(sgl, sg, nsegs, i) {
318 page = sg_page(sg);
319 off = sg->offset;
320 len = sg->length;
322 while (len > 0 && data_len > 0) {
324 * sg sends a scatterlist that is larger than
325 * the data_len it wants transferred for certain
326 * IO sizes
328 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
329 bytes = min(bytes, data_len);
331 if (!bio) {
332 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
333 nr_pages -= nr_vecs;
335 bio = bio_alloc(gfp, nr_vecs);
336 if (!bio) {
337 err = -ENOMEM;
338 goto free_bios;
340 bio->bi_end_io = scsi_bi_endio;
343 if (bio_add_pc_page(q, bio, page, bytes, off) !=
344 bytes) {
345 bio_put(bio);
346 err = -EINVAL;
347 goto free_bios;
350 if (bio->bi_vcnt >= nr_vecs) {
351 err = scsi_merge_bio(rq, bio);
352 if (err) {
353 bio_endio(bio, 0);
354 goto free_bios;
356 bio = NULL;
359 page++;
360 len -= bytes;
361 data_len -=bytes;
362 off = 0;
366 rq->buffer = rq->data = NULL;
367 rq->data_len = bufflen;
368 return 0;
370 free_bios:
371 while ((bio = rq->bio) != NULL) {
372 rq->bio = bio->bi_next;
374 * call endio instead of bio_put incase it was bounced
376 bio_endio(bio, 0);
379 return err;
383 * scsi_execute_async - insert request
384 * @sdev: scsi device
385 * @cmd: scsi command
386 * @cmd_len: length of scsi cdb
387 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
388 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
389 * @bufflen: len of buffer
390 * @use_sg: if buffer is a scatterlist this is the number of elements
391 * @timeout: request timeout in seconds
392 * @retries: number of times to retry request
393 * @privdata: data passed to done()
394 * @done: callback function when done
395 * @gfp: memory allocation flags
397 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
398 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
399 int use_sg, int timeout, int retries, void *privdata,
400 void (*done)(void *, char *, int, int), gfp_t gfp)
402 struct request *req;
403 struct scsi_io_context *sioc;
404 int err = 0;
405 int write = (data_direction == DMA_TO_DEVICE);
407 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
408 if (!sioc)
409 return DRIVER_ERROR << 24;
411 req = blk_get_request(sdev->request_queue, write, gfp);
412 if (!req)
413 goto free_sense;
414 req->cmd_type = REQ_TYPE_BLOCK_PC;
415 req->cmd_flags |= REQ_QUIET;
417 if (use_sg)
418 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
419 else if (bufflen)
420 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
422 if (err)
423 goto free_req;
425 req->cmd_len = cmd_len;
426 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
427 memcpy(req->cmd, cmd, req->cmd_len);
428 req->sense = sioc->sense;
429 req->sense_len = 0;
430 req->timeout = timeout;
431 req->retries = retries;
432 req->end_io_data = sioc;
434 sioc->data = privdata;
435 sioc->done = done;
437 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
438 return 0;
440 free_req:
441 blk_put_request(req);
442 free_sense:
443 kmem_cache_free(scsi_io_context_cache, sioc);
444 return DRIVER_ERROR << 24;
446 EXPORT_SYMBOL_GPL(scsi_execute_async);
449 * Function: scsi_init_cmd_errh()
451 * Purpose: Initialize cmd fields related to error handling.
453 * Arguments: cmd - command that is ready to be queued.
455 * Notes: This function has the job of initializing a number of
456 * fields related to error handling. Typically this will
457 * be called once for each command, as required.
459 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
461 cmd->serial_number = 0;
462 scsi_set_resid(cmd, 0);
463 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
464 if (cmd->cmd_len == 0)
465 cmd->cmd_len = scsi_command_size(cmd->cmnd);
468 void scsi_device_unbusy(struct scsi_device *sdev)
470 struct Scsi_Host *shost = sdev->host;
471 struct scsi_target *starget = scsi_target(sdev);
472 unsigned long flags;
474 spin_lock_irqsave(shost->host_lock, flags);
475 shost->host_busy--;
476 starget->target_busy--;
477 if (unlikely(scsi_host_in_recovery(shost) &&
478 (shost->host_failed || shost->host_eh_scheduled)))
479 scsi_eh_wakeup(shost);
480 spin_unlock(shost->host_lock);
481 spin_lock(sdev->request_queue->queue_lock);
482 sdev->device_busy--;
483 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
487 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
488 * and call blk_run_queue for all the scsi_devices on the target -
489 * including current_sdev first.
491 * Called with *no* scsi locks held.
493 static void scsi_single_lun_run(struct scsi_device *current_sdev)
495 struct Scsi_Host *shost = current_sdev->host;
496 struct scsi_device *sdev, *tmp;
497 struct scsi_target *starget = scsi_target(current_sdev);
498 unsigned long flags;
500 spin_lock_irqsave(shost->host_lock, flags);
501 starget->starget_sdev_user = NULL;
502 spin_unlock_irqrestore(shost->host_lock, flags);
505 * Call blk_run_queue for all LUNs on the target, starting with
506 * current_sdev. We race with others (to set starget_sdev_user),
507 * but in most cases, we will be first. Ideally, each LU on the
508 * target would get some limited time or requests on the target.
510 blk_run_queue(current_sdev->request_queue);
512 spin_lock_irqsave(shost->host_lock, flags);
513 if (starget->starget_sdev_user)
514 goto out;
515 list_for_each_entry_safe(sdev, tmp, &starget->devices,
516 same_target_siblings) {
517 if (sdev == current_sdev)
518 continue;
519 if (scsi_device_get(sdev))
520 continue;
522 spin_unlock_irqrestore(shost->host_lock, flags);
523 blk_run_queue(sdev->request_queue);
524 spin_lock_irqsave(shost->host_lock, flags);
526 scsi_device_put(sdev);
528 out:
529 spin_unlock_irqrestore(shost->host_lock, flags);
532 static inline int scsi_device_is_busy(struct scsi_device *sdev)
534 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
535 return 1;
537 return 0;
540 static inline int scsi_target_is_busy(struct scsi_target *starget)
542 return ((starget->can_queue > 0 &&
543 starget->target_busy >= starget->can_queue) ||
544 starget->target_blocked);
547 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
549 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
550 shost->host_blocked || shost->host_self_blocked)
551 return 1;
553 return 0;
557 * Function: scsi_run_queue()
559 * Purpose: Select a proper request queue to serve next
561 * Arguments: q - last request's queue
563 * Returns: Nothing
565 * Notes: The previous command was completely finished, start
566 * a new one if possible.
568 static void scsi_run_queue(struct request_queue *q)
570 struct scsi_device *sdev = q->queuedata;
571 struct Scsi_Host *shost = sdev->host;
572 LIST_HEAD(starved_list);
573 unsigned long flags;
575 if (scsi_target(sdev)->single_lun)
576 scsi_single_lun_run(sdev);
578 spin_lock_irqsave(shost->host_lock, flags);
579 list_splice_init(&shost->starved_list, &starved_list);
581 while (!list_empty(&starved_list)) {
582 int flagset;
585 * As long as shost is accepting commands and we have
586 * starved queues, call blk_run_queue. scsi_request_fn
587 * drops the queue_lock and can add us back to the
588 * starved_list.
590 * host_lock protects the starved_list and starved_entry.
591 * scsi_request_fn must get the host_lock before checking
592 * or modifying starved_list or starved_entry.
594 if (scsi_host_is_busy(shost))
595 break;
597 sdev = list_entry(starved_list.next,
598 struct scsi_device, starved_entry);
599 list_del_init(&sdev->starved_entry);
600 if (scsi_target_is_busy(scsi_target(sdev))) {
601 list_move_tail(&sdev->starved_entry,
602 &shost->starved_list);
603 continue;
606 spin_unlock(shost->host_lock);
608 spin_lock(sdev->request_queue->queue_lock);
609 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
610 !test_bit(QUEUE_FLAG_REENTER,
611 &sdev->request_queue->queue_flags);
612 if (flagset)
613 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
614 __blk_run_queue(sdev->request_queue);
615 if (flagset)
616 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
617 spin_unlock(sdev->request_queue->queue_lock);
619 spin_lock(shost->host_lock);
621 /* put any unprocessed entries back */
622 list_splice(&starved_list, &shost->starved_list);
623 spin_unlock_irqrestore(shost->host_lock, flags);
625 blk_run_queue(q);
629 * Function: scsi_requeue_command()
631 * Purpose: Handle post-processing of completed commands.
633 * Arguments: q - queue to operate on
634 * cmd - command that may need to be requeued.
636 * Returns: Nothing
638 * Notes: After command completion, there may be blocks left
639 * over which weren't finished by the previous command
640 * this can be for a number of reasons - the main one is
641 * I/O errors in the middle of the request, in which case
642 * we need to request the blocks that come after the bad
643 * sector.
644 * Notes: Upon return, cmd is a stale pointer.
646 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
648 struct request *req = cmd->request;
649 unsigned long flags;
651 spin_lock_irqsave(q->queue_lock, flags);
652 scsi_unprep_request(req);
653 blk_requeue_request(q, req);
654 spin_unlock_irqrestore(q->queue_lock, flags);
656 scsi_run_queue(q);
659 void scsi_next_command(struct scsi_cmnd *cmd)
661 struct scsi_device *sdev = cmd->device;
662 struct request_queue *q = sdev->request_queue;
664 /* need to hold a reference on the device before we let go of the cmd */
665 get_device(&sdev->sdev_gendev);
667 scsi_put_command(cmd);
668 scsi_run_queue(q);
670 /* ok to remove device now */
671 put_device(&sdev->sdev_gendev);
674 void scsi_run_host_queues(struct Scsi_Host *shost)
676 struct scsi_device *sdev;
678 shost_for_each_device(sdev, shost)
679 scsi_run_queue(sdev->request_queue);
683 * Function: scsi_end_request()
685 * Purpose: Post-processing of completed commands (usually invoked at end
686 * of upper level post-processing and scsi_io_completion).
688 * Arguments: cmd - command that is complete.
689 * error - 0 if I/O indicates success, < 0 for I/O error.
690 * bytes - number of bytes of completed I/O
691 * requeue - indicates whether we should requeue leftovers.
693 * Lock status: Assumed that lock is not held upon entry.
695 * Returns: cmd if requeue required, NULL otherwise.
697 * Notes: This is called for block device requests in order to
698 * mark some number of sectors as complete.
700 * We are guaranteeing that the request queue will be goosed
701 * at some point during this call.
702 * Notes: If cmd was requeued, upon return it will be a stale pointer.
704 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
705 int bytes, int requeue)
707 struct request_queue *q = cmd->device->request_queue;
708 struct request *req = cmd->request;
711 * If there are blocks left over at the end, set up the command
712 * to queue the remainder of them.
714 if (blk_end_request(req, error, bytes)) {
715 int leftover = (req->hard_nr_sectors << 9);
717 if (blk_pc_request(req))
718 leftover = req->data_len;
720 /* kill remainder if no retrys */
721 if (error && scsi_noretry_cmd(cmd))
722 blk_end_request(req, error, leftover);
723 else {
724 if (requeue) {
726 * Bleah. Leftovers again. Stick the
727 * leftovers in the front of the
728 * queue, and goose the queue again.
730 scsi_requeue_command(q, cmd);
731 cmd = NULL;
733 return cmd;
738 * This will goose the queue request function at the end, so we don't
739 * need to worry about launching another command.
741 scsi_next_command(cmd);
742 return NULL;
745 static inline unsigned int scsi_sgtable_index(unsigned short nents)
747 unsigned int index;
749 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
751 if (nents <= 8)
752 index = 0;
753 else
754 index = get_count_order(nents) - 3;
756 return index;
759 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
761 struct scsi_host_sg_pool *sgp;
763 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
764 mempool_free(sgl, sgp->pool);
767 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
769 struct scsi_host_sg_pool *sgp;
771 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
772 return mempool_alloc(sgp->pool, gfp_mask);
775 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
776 gfp_t gfp_mask)
778 int ret;
780 BUG_ON(!nents);
782 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
783 gfp_mask, scsi_sg_alloc);
784 if (unlikely(ret))
785 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
786 scsi_sg_free);
788 return ret;
791 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
793 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
797 * Function: scsi_release_buffers()
799 * Purpose: Completion processing for block device I/O requests.
801 * Arguments: cmd - command that we are bailing.
803 * Lock status: Assumed that no lock is held upon entry.
805 * Returns: Nothing
807 * Notes: In the event that an upper level driver rejects a
808 * command, we must release resources allocated during
809 * the __init_io() function. Primarily this would involve
810 * the scatter-gather table, and potentially any bounce
811 * buffers.
813 void scsi_release_buffers(struct scsi_cmnd *cmd)
815 if (cmd->sdb.table.nents)
816 scsi_free_sgtable(&cmd->sdb);
818 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
820 if (scsi_bidi_cmnd(cmd)) {
821 struct scsi_data_buffer *bidi_sdb =
822 cmd->request->next_rq->special;
823 scsi_free_sgtable(bidi_sdb);
824 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
825 cmd->request->next_rq->special = NULL;
828 if (scsi_prot_sg_count(cmd))
829 scsi_free_sgtable(cmd->prot_sdb);
831 EXPORT_SYMBOL(scsi_release_buffers);
834 * Bidi commands Must be complete as a whole, both sides at once.
835 * If part of the bytes were written and lld returned
836 * scsi_in()->resid and/or scsi_out()->resid this information will be left
837 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
838 * decide what to do with this information.
840 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
842 struct request *req = cmd->request;
843 unsigned int dlen = req->data_len;
844 unsigned int next_dlen = req->next_rq->data_len;
846 req->data_len = scsi_out(cmd)->resid;
847 req->next_rq->data_len = scsi_in(cmd)->resid;
849 /* The req and req->next_rq have not been completed */
850 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
852 scsi_release_buffers(cmd);
855 * This will goose the queue request function at the end, so we don't
856 * need to worry about launching another command.
858 scsi_next_command(cmd);
862 * Function: scsi_io_completion()
864 * Purpose: Completion processing for block device I/O requests.
866 * Arguments: cmd - command that is finished.
868 * Lock status: Assumed that no lock is held upon entry.
870 * Returns: Nothing
872 * Notes: This function is matched in terms of capabilities to
873 * the function that created the scatter-gather list.
874 * In other words, if there are no bounce buffers
875 * (the normal case for most drivers), we don't need
876 * the logic to deal with cleaning up afterwards.
878 * We must call scsi_end_request(). This will finish off
879 * the specified number of sectors. If we are done, the
880 * command block will be released and the queue function
881 * will be goosed. If we are not done then we have to
882 * figure out what to do next:
884 * a) We can call scsi_requeue_command(). The request
885 * will be unprepared and put back on the queue. Then
886 * a new command will be created for it. This should
887 * be used if we made forward progress, or if we want
888 * to switch from READ(10) to READ(6) for example.
890 * b) We can call scsi_queue_insert(). The request will
891 * be put back on the queue and retried using the same
892 * command as before, possibly after a delay.
894 * c) We can call blk_end_request() with -EIO to fail
895 * the remainder of the request.
897 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
899 int result = cmd->result;
900 int this_count;
901 struct request_queue *q = cmd->device->request_queue;
902 struct request *req = cmd->request;
903 int error = 0;
904 struct scsi_sense_hdr sshdr;
905 int sense_valid = 0;
906 int sense_deferred = 0;
907 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
908 ACTION_DELAYED_RETRY} action;
909 char *description = NULL;
911 if (result) {
912 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
913 if (sense_valid)
914 sense_deferred = scsi_sense_is_deferred(&sshdr);
917 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
918 req->errors = result;
919 if (result) {
920 if (sense_valid && req->sense) {
922 * SG_IO wants current and deferred errors
924 int len = 8 + cmd->sense_buffer[7];
926 if (len > SCSI_SENSE_BUFFERSIZE)
927 len = SCSI_SENSE_BUFFERSIZE;
928 memcpy(req->sense, cmd->sense_buffer, len);
929 req->sense_len = len;
931 if (!sense_deferred)
932 error = -EIO;
934 if (scsi_bidi_cmnd(cmd)) {
935 /* will also release_buffers */
936 scsi_end_bidi_request(cmd);
937 return;
939 req->data_len = scsi_get_resid(cmd);
942 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
943 scsi_release_buffers(cmd);
946 * Next deal with any sectors which we were able to correctly
947 * handle.
949 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
950 "%d bytes done.\n",
951 req->nr_sectors, good_bytes));
953 /* A number of bytes were successfully read. If there
954 * are leftovers and there is some kind of error
955 * (result != 0), retry the rest.
957 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
958 return;
959 this_count = blk_rq_bytes(req);
961 if (host_byte(result) == DID_RESET) {
962 /* Third party bus reset or reset for error recovery
963 * reasons. Just retry the command and see what
964 * happens.
966 action = ACTION_RETRY;
967 } else if (sense_valid && !sense_deferred) {
968 switch (sshdr.sense_key) {
969 case UNIT_ATTENTION:
970 if (cmd->device->removable) {
971 /* Detected disc change. Set a bit
972 * and quietly refuse further access.
974 cmd->device->changed = 1;
975 description = "Media Changed";
976 action = ACTION_FAIL;
977 } else {
978 /* Must have been a power glitch, or a
979 * bus reset. Could not have been a
980 * media change, so we just retry the
981 * command and see what happens.
983 action = ACTION_RETRY;
985 break;
986 case ILLEGAL_REQUEST:
987 /* If we had an ILLEGAL REQUEST returned, then
988 * we may have performed an unsupported
989 * command. The only thing this should be
990 * would be a ten byte read where only a six
991 * byte read was supported. Also, on a system
992 * where READ CAPACITY failed, we may have
993 * read past the end of the disk.
995 if ((cmd->device->use_10_for_rw &&
996 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
997 (cmd->cmnd[0] == READ_10 ||
998 cmd->cmnd[0] == WRITE_10)) {
999 /* This will issue a new 6-byte command. */
1000 cmd->device->use_10_for_rw = 0;
1001 action = ACTION_REPREP;
1002 } else
1003 action = ACTION_FAIL;
1004 break;
1005 case ABORTED_COMMAND:
1006 if (sshdr.asc == 0x10) { /* DIF */
1007 action = ACTION_FAIL;
1008 description = "Data Integrity Failure";
1009 } else
1010 action = ACTION_RETRY;
1011 break;
1012 case NOT_READY:
1013 /* If the device is in the process of becoming
1014 * ready, or has a temporary blockage, retry.
1016 if (sshdr.asc == 0x04) {
1017 switch (sshdr.ascq) {
1018 case 0x01: /* becoming ready */
1019 case 0x04: /* format in progress */
1020 case 0x05: /* rebuild in progress */
1021 case 0x06: /* recalculation in progress */
1022 case 0x07: /* operation in progress */
1023 case 0x08: /* Long write in progress */
1024 case 0x09: /* self test in progress */
1025 action = ACTION_DELAYED_RETRY;
1026 break;
1028 } else {
1029 description = "Device not ready";
1030 action = ACTION_FAIL;
1032 break;
1033 case VOLUME_OVERFLOW:
1034 /* See SSC3rXX or current. */
1035 action = ACTION_FAIL;
1036 break;
1037 default:
1038 description = "Unhandled sense code";
1039 action = ACTION_FAIL;
1040 break;
1042 } else {
1043 description = "Unhandled error code";
1044 action = ACTION_FAIL;
1047 switch (action) {
1048 case ACTION_FAIL:
1049 /* Give up and fail the remainder of the request */
1050 if (!(req->cmd_flags & REQ_QUIET)) {
1051 if (description)
1052 scmd_printk(KERN_INFO, cmd, "%s",
1053 description);
1054 scsi_print_result(cmd);
1055 if (driver_byte(result) & DRIVER_SENSE)
1056 scsi_print_sense("", cmd);
1058 blk_end_request(req, -EIO, blk_rq_bytes(req));
1059 scsi_next_command(cmd);
1060 break;
1061 case ACTION_REPREP:
1062 /* Unprep the request and put it back at the head of the queue.
1063 * A new command will be prepared and issued.
1065 scsi_requeue_command(q, cmd);
1066 break;
1067 case ACTION_RETRY:
1068 /* Retry the same command immediately */
1069 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1070 break;
1071 case ACTION_DELAYED_RETRY:
1072 /* Retry the same command after a delay */
1073 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1074 break;
1078 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1079 gfp_t gfp_mask)
1081 int count;
1084 * If sg table allocation fails, requeue request later.
1086 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1087 gfp_mask))) {
1088 return BLKPREP_DEFER;
1091 req->buffer = NULL;
1094 * Next, walk the list, and fill in the addresses and sizes of
1095 * each segment.
1097 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1098 BUG_ON(count > sdb->table.nents);
1099 sdb->table.nents = count;
1100 if (blk_pc_request(req))
1101 sdb->length = req->data_len;
1102 else
1103 sdb->length = req->nr_sectors << 9;
1104 return BLKPREP_OK;
1108 * Function: scsi_init_io()
1110 * Purpose: SCSI I/O initialize function.
1112 * Arguments: cmd - Command descriptor we wish to initialize
1114 * Returns: 0 on success
1115 * BLKPREP_DEFER if the failure is retryable
1116 * BLKPREP_KILL if the failure is fatal
1118 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1120 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1121 if (error)
1122 goto err_exit;
1124 if (blk_bidi_rq(cmd->request)) {
1125 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1126 scsi_sdb_cache, GFP_ATOMIC);
1127 if (!bidi_sdb) {
1128 error = BLKPREP_DEFER;
1129 goto err_exit;
1132 cmd->request->next_rq->special = bidi_sdb;
1133 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1134 GFP_ATOMIC);
1135 if (error)
1136 goto err_exit;
1139 if (blk_integrity_rq(cmd->request)) {
1140 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1141 int ivecs, count;
1143 BUG_ON(prot_sdb == NULL);
1144 ivecs = blk_rq_count_integrity_sg(cmd->request);
1146 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1147 error = BLKPREP_DEFER;
1148 goto err_exit;
1151 count = blk_rq_map_integrity_sg(cmd->request,
1152 prot_sdb->table.sgl);
1153 BUG_ON(unlikely(count > ivecs));
1155 cmd->prot_sdb = prot_sdb;
1156 cmd->prot_sdb->table.nents = count;
1159 return BLKPREP_OK ;
1161 err_exit:
1162 scsi_release_buffers(cmd);
1163 if (error == BLKPREP_KILL)
1164 scsi_put_command(cmd);
1165 else /* BLKPREP_DEFER */
1166 scsi_unprep_request(cmd->request);
1168 return error;
1170 EXPORT_SYMBOL(scsi_init_io);
1172 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1173 struct request *req)
1175 struct scsi_cmnd *cmd;
1177 if (!req->special) {
1178 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1179 if (unlikely(!cmd))
1180 return NULL;
1181 req->special = cmd;
1182 } else {
1183 cmd = req->special;
1186 /* pull a tag out of the request if we have one */
1187 cmd->tag = req->tag;
1188 cmd->request = req;
1190 cmd->cmnd = req->cmd;
1192 return cmd;
1195 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1197 struct scsi_cmnd *cmd;
1198 int ret = scsi_prep_state_check(sdev, req);
1200 if (ret != BLKPREP_OK)
1201 return ret;
1203 cmd = scsi_get_cmd_from_req(sdev, req);
1204 if (unlikely(!cmd))
1205 return BLKPREP_DEFER;
1208 * BLOCK_PC requests may transfer data, in which case they must
1209 * a bio attached to them. Or they might contain a SCSI command
1210 * that does not transfer data, in which case they may optionally
1211 * submit a request without an attached bio.
1213 if (req->bio) {
1214 int ret;
1216 BUG_ON(!req->nr_phys_segments);
1218 ret = scsi_init_io(cmd, GFP_ATOMIC);
1219 if (unlikely(ret))
1220 return ret;
1221 } else {
1222 BUG_ON(req->data_len);
1223 BUG_ON(req->data);
1225 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1226 req->buffer = NULL;
1229 cmd->cmd_len = req->cmd_len;
1230 if (!req->data_len)
1231 cmd->sc_data_direction = DMA_NONE;
1232 else if (rq_data_dir(req) == WRITE)
1233 cmd->sc_data_direction = DMA_TO_DEVICE;
1234 else
1235 cmd->sc_data_direction = DMA_FROM_DEVICE;
1237 cmd->transfersize = req->data_len;
1238 cmd->allowed = req->retries;
1239 return BLKPREP_OK;
1241 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1244 * Setup a REQ_TYPE_FS command. These are simple read/write request
1245 * from filesystems that still need to be translated to SCSI CDBs from
1246 * the ULD.
1248 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1250 struct scsi_cmnd *cmd;
1251 int ret = scsi_prep_state_check(sdev, req);
1253 if (ret != BLKPREP_OK)
1254 return ret;
1256 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1257 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1258 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1259 if (ret != BLKPREP_OK)
1260 return ret;
1264 * Filesystem requests must transfer data.
1266 BUG_ON(!req->nr_phys_segments);
1268 cmd = scsi_get_cmd_from_req(sdev, req);
1269 if (unlikely(!cmd))
1270 return BLKPREP_DEFER;
1272 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1273 return scsi_init_io(cmd, GFP_ATOMIC);
1275 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1277 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1279 int ret = BLKPREP_OK;
1282 * If the device is not in running state we will reject some
1283 * or all commands.
1285 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1286 switch (sdev->sdev_state) {
1287 case SDEV_OFFLINE:
1289 * If the device is offline we refuse to process any
1290 * commands. The device must be brought online
1291 * before trying any recovery commands.
1293 sdev_printk(KERN_ERR, sdev,
1294 "rejecting I/O to offline device\n");
1295 ret = BLKPREP_KILL;
1296 break;
1297 case SDEV_DEL:
1299 * If the device is fully deleted, we refuse to
1300 * process any commands as well.
1302 sdev_printk(KERN_ERR, sdev,
1303 "rejecting I/O to dead device\n");
1304 ret = BLKPREP_KILL;
1305 break;
1306 case SDEV_QUIESCE:
1307 case SDEV_BLOCK:
1308 case SDEV_CREATED_BLOCK:
1310 * If the devices is blocked we defer normal commands.
1312 if (!(req->cmd_flags & REQ_PREEMPT))
1313 ret = BLKPREP_DEFER;
1314 break;
1315 default:
1317 * For any other not fully online state we only allow
1318 * special commands. In particular any user initiated
1319 * command is not allowed.
1321 if (!(req->cmd_flags & REQ_PREEMPT))
1322 ret = BLKPREP_KILL;
1323 break;
1326 return ret;
1328 EXPORT_SYMBOL(scsi_prep_state_check);
1330 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1332 struct scsi_device *sdev = q->queuedata;
1334 switch (ret) {
1335 case BLKPREP_KILL:
1336 req->errors = DID_NO_CONNECT << 16;
1337 /* release the command and kill it */
1338 if (req->special) {
1339 struct scsi_cmnd *cmd = req->special;
1340 scsi_release_buffers(cmd);
1341 scsi_put_command(cmd);
1342 req->special = NULL;
1344 break;
1345 case BLKPREP_DEFER:
1347 * If we defer, the elv_next_request() returns NULL, but the
1348 * queue must be restarted, so we plug here if no returning
1349 * command will automatically do that.
1351 if (sdev->device_busy == 0)
1352 blk_plug_device(q);
1353 break;
1354 default:
1355 req->cmd_flags |= REQ_DONTPREP;
1358 return ret;
1360 EXPORT_SYMBOL(scsi_prep_return);
1362 int scsi_prep_fn(struct request_queue *q, struct request *req)
1364 struct scsi_device *sdev = q->queuedata;
1365 int ret = BLKPREP_KILL;
1367 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1368 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1369 return scsi_prep_return(q, req, ret);
1373 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1374 * return 0.
1376 * Called with the queue_lock held.
1378 static inline int scsi_dev_queue_ready(struct request_queue *q,
1379 struct scsi_device *sdev)
1381 if (sdev->device_busy == 0 && sdev->device_blocked) {
1383 * unblock after device_blocked iterates to zero
1385 if (--sdev->device_blocked == 0) {
1386 SCSI_LOG_MLQUEUE(3,
1387 sdev_printk(KERN_INFO, sdev,
1388 "unblocking device at zero depth\n"));
1389 } else {
1390 blk_plug_device(q);
1391 return 0;
1394 if (scsi_device_is_busy(sdev))
1395 return 0;
1397 return 1;
1402 * scsi_target_queue_ready: checks if there we can send commands to target
1403 * @sdev: scsi device on starget to check.
1405 * Called with the host lock held.
1407 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1408 struct scsi_device *sdev)
1410 struct scsi_target *starget = scsi_target(sdev);
1412 if (starget->single_lun) {
1413 if (starget->starget_sdev_user &&
1414 starget->starget_sdev_user != sdev)
1415 return 0;
1416 starget->starget_sdev_user = sdev;
1419 if (starget->target_busy == 0 && starget->target_blocked) {
1421 * unblock after target_blocked iterates to zero
1423 if (--starget->target_blocked == 0) {
1424 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1425 "unblocking target at zero depth\n"));
1426 } else {
1427 blk_plug_device(sdev->request_queue);
1428 return 0;
1432 if (scsi_target_is_busy(starget)) {
1433 if (list_empty(&sdev->starved_entry)) {
1434 list_add_tail(&sdev->starved_entry,
1435 &shost->starved_list);
1436 return 0;
1440 /* We're OK to process the command, so we can't be starved */
1441 if (!list_empty(&sdev->starved_entry))
1442 list_del_init(&sdev->starved_entry);
1443 return 1;
1447 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1448 * return 0. We must end up running the queue again whenever 0 is
1449 * returned, else IO can hang.
1451 * Called with host_lock held.
1453 static inline int scsi_host_queue_ready(struct request_queue *q,
1454 struct Scsi_Host *shost,
1455 struct scsi_device *sdev)
1457 if (scsi_host_in_recovery(shost))
1458 return 0;
1459 if (shost->host_busy == 0 && shost->host_blocked) {
1461 * unblock after host_blocked iterates to zero
1463 if (--shost->host_blocked == 0) {
1464 SCSI_LOG_MLQUEUE(3,
1465 printk("scsi%d unblocking host at zero depth\n",
1466 shost->host_no));
1467 } else {
1468 return 0;
1471 if (scsi_host_is_busy(shost)) {
1472 if (list_empty(&sdev->starved_entry))
1473 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1474 return 0;
1477 /* We're OK to process the command, so we can't be starved */
1478 if (!list_empty(&sdev->starved_entry))
1479 list_del_init(&sdev->starved_entry);
1481 return 1;
1485 * Busy state exporting function for request stacking drivers.
1487 * For efficiency, no lock is taken to check the busy state of
1488 * shost/starget/sdev, since the returned value is not guaranteed and
1489 * may be changed after request stacking drivers call the function,
1490 * regardless of taking lock or not.
1492 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1493 * (e.g. !sdev), scsi needs to return 'not busy'.
1494 * Otherwise, request stacking drivers may hold requests forever.
1496 static int scsi_lld_busy(struct request_queue *q)
1498 struct scsi_device *sdev = q->queuedata;
1499 struct Scsi_Host *shost;
1500 struct scsi_target *starget;
1502 if (!sdev)
1503 return 0;
1505 shost = sdev->host;
1506 starget = scsi_target(sdev);
1508 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1509 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1510 return 1;
1512 return 0;
1516 * Kill a request for a dead device
1518 static void scsi_kill_request(struct request *req, struct request_queue *q)
1520 struct scsi_cmnd *cmd = req->special;
1521 struct scsi_device *sdev = cmd->device;
1522 struct scsi_target *starget = scsi_target(sdev);
1523 struct Scsi_Host *shost = sdev->host;
1525 blkdev_dequeue_request(req);
1527 if (unlikely(cmd == NULL)) {
1528 printk(KERN_CRIT "impossible request in %s.\n",
1529 __func__);
1530 BUG();
1533 scsi_init_cmd_errh(cmd);
1534 cmd->result = DID_NO_CONNECT << 16;
1535 atomic_inc(&cmd->device->iorequest_cnt);
1538 * SCSI request completion path will do scsi_device_unbusy(),
1539 * bump busy counts. To bump the counters, we need to dance
1540 * with the locks as normal issue path does.
1542 sdev->device_busy++;
1543 spin_unlock(sdev->request_queue->queue_lock);
1544 spin_lock(shost->host_lock);
1545 shost->host_busy++;
1546 starget->target_busy++;
1547 spin_unlock(shost->host_lock);
1548 spin_lock(sdev->request_queue->queue_lock);
1550 blk_complete_request(req);
1553 static void scsi_softirq_done(struct request *rq)
1555 struct scsi_cmnd *cmd = rq->special;
1556 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1557 int disposition;
1559 INIT_LIST_HEAD(&cmd->eh_entry);
1562 * Set the serial numbers back to zero
1564 cmd->serial_number = 0;
1566 atomic_inc(&cmd->device->iodone_cnt);
1567 if (cmd->result)
1568 atomic_inc(&cmd->device->ioerr_cnt);
1570 disposition = scsi_decide_disposition(cmd);
1571 if (disposition != SUCCESS &&
1572 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1573 sdev_printk(KERN_ERR, cmd->device,
1574 "timing out command, waited %lus\n",
1575 wait_for/HZ);
1576 disposition = SUCCESS;
1579 scsi_log_completion(cmd, disposition);
1581 switch (disposition) {
1582 case SUCCESS:
1583 scsi_finish_command(cmd);
1584 break;
1585 case NEEDS_RETRY:
1586 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1587 break;
1588 case ADD_TO_MLQUEUE:
1589 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1590 break;
1591 default:
1592 if (!scsi_eh_scmd_add(cmd, 0))
1593 scsi_finish_command(cmd);
1598 * Function: scsi_request_fn()
1600 * Purpose: Main strategy routine for SCSI.
1602 * Arguments: q - Pointer to actual queue.
1604 * Returns: Nothing
1606 * Lock status: IO request lock assumed to be held when called.
1608 static void scsi_request_fn(struct request_queue *q)
1610 struct scsi_device *sdev = q->queuedata;
1611 struct Scsi_Host *shost;
1612 struct scsi_cmnd *cmd;
1613 struct request *req;
1615 if (!sdev) {
1616 printk("scsi: killing requests for dead queue\n");
1617 while ((req = elv_next_request(q)) != NULL)
1618 scsi_kill_request(req, q);
1619 return;
1622 if(!get_device(&sdev->sdev_gendev))
1623 /* We must be tearing the block queue down already */
1624 return;
1627 * To start with, we keep looping until the queue is empty, or until
1628 * the host is no longer able to accept any more requests.
1630 shost = sdev->host;
1631 while (!blk_queue_plugged(q)) {
1632 int rtn;
1634 * get next queueable request. We do this early to make sure
1635 * that the request is fully prepared even if we cannot
1636 * accept it.
1638 req = elv_next_request(q);
1639 if (!req || !scsi_dev_queue_ready(q, sdev))
1640 break;
1642 if (unlikely(!scsi_device_online(sdev))) {
1643 sdev_printk(KERN_ERR, sdev,
1644 "rejecting I/O to offline device\n");
1645 scsi_kill_request(req, q);
1646 continue;
1651 * Remove the request from the request list.
1653 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1654 blkdev_dequeue_request(req);
1655 sdev->device_busy++;
1657 spin_unlock(q->queue_lock);
1658 cmd = req->special;
1659 if (unlikely(cmd == NULL)) {
1660 printk(KERN_CRIT "impossible request in %s.\n"
1661 "please mail a stack trace to "
1662 "linux-scsi@vger.kernel.org\n",
1663 __func__);
1664 blk_dump_rq_flags(req, "foo");
1665 BUG();
1667 spin_lock(shost->host_lock);
1670 * We hit this when the driver is using a host wide
1671 * tag map. For device level tag maps the queue_depth check
1672 * in the device ready fn would prevent us from trying
1673 * to allocate a tag. Since the map is a shared host resource
1674 * we add the dev to the starved list so it eventually gets
1675 * a run when a tag is freed.
1677 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1678 if (list_empty(&sdev->starved_entry))
1679 list_add_tail(&sdev->starved_entry,
1680 &shost->starved_list);
1681 goto not_ready;
1684 if (!scsi_target_queue_ready(shost, sdev))
1685 goto not_ready;
1687 if (!scsi_host_queue_ready(q, shost, sdev))
1688 goto not_ready;
1690 scsi_target(sdev)->target_busy++;
1691 shost->host_busy++;
1694 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1695 * take the lock again.
1697 spin_unlock_irq(shost->host_lock);
1700 * Finally, initialize any error handling parameters, and set up
1701 * the timers for timeouts.
1703 scsi_init_cmd_errh(cmd);
1706 * Dispatch the command to the low-level driver.
1708 rtn = scsi_dispatch_cmd(cmd);
1709 spin_lock_irq(q->queue_lock);
1710 if(rtn) {
1711 /* we're refusing the command; because of
1712 * the way locks get dropped, we need to
1713 * check here if plugging is required */
1714 if(sdev->device_busy == 0)
1715 blk_plug_device(q);
1717 break;
1721 goto out;
1723 not_ready:
1724 spin_unlock_irq(shost->host_lock);
1727 * lock q, handle tag, requeue req, and decrement device_busy. We
1728 * must return with queue_lock held.
1730 * Decrementing device_busy without checking it is OK, as all such
1731 * cases (host limits or settings) should run the queue at some
1732 * later time.
1734 spin_lock_irq(q->queue_lock);
1735 blk_requeue_request(q, req);
1736 sdev->device_busy--;
1737 if(sdev->device_busy == 0)
1738 blk_plug_device(q);
1739 out:
1740 /* must be careful here...if we trigger the ->remove() function
1741 * we cannot be holding the q lock */
1742 spin_unlock_irq(q->queue_lock);
1743 put_device(&sdev->sdev_gendev);
1744 spin_lock_irq(q->queue_lock);
1747 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1749 struct device *host_dev;
1750 u64 bounce_limit = 0xffffffff;
1752 if (shost->unchecked_isa_dma)
1753 return BLK_BOUNCE_ISA;
1755 * Platforms with virtual-DMA translation
1756 * hardware have no practical limit.
1758 if (!PCI_DMA_BUS_IS_PHYS)
1759 return BLK_BOUNCE_ANY;
1761 host_dev = scsi_get_device(shost);
1762 if (host_dev && host_dev->dma_mask)
1763 bounce_limit = *host_dev->dma_mask;
1765 return bounce_limit;
1767 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1769 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1770 request_fn_proc *request_fn)
1772 struct request_queue *q;
1773 struct device *dev = shost->shost_gendev.parent;
1775 q = blk_init_queue(request_fn, NULL);
1776 if (!q)
1777 return NULL;
1780 * this limit is imposed by hardware restrictions
1782 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1783 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1785 blk_queue_max_sectors(q, shost->max_sectors);
1786 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1787 blk_queue_segment_boundary(q, shost->dma_boundary);
1788 dma_set_seg_boundary(dev, shost->dma_boundary);
1790 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1792 /* New queue, no concurrency on queue_flags */
1793 if (!shost->use_clustering)
1794 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1797 * set a reasonable default alignment on word boundaries: the
1798 * host and device may alter it using
1799 * blk_queue_update_dma_alignment() later.
1801 blk_queue_dma_alignment(q, 0x03);
1803 return q;
1805 EXPORT_SYMBOL(__scsi_alloc_queue);
1807 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1809 struct request_queue *q;
1811 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1812 if (!q)
1813 return NULL;
1815 blk_queue_prep_rq(q, scsi_prep_fn);
1816 blk_queue_softirq_done(q, scsi_softirq_done);
1817 blk_queue_rq_timed_out(q, scsi_times_out);
1818 blk_queue_lld_busy(q, scsi_lld_busy);
1819 return q;
1822 void scsi_free_queue(struct request_queue *q)
1824 blk_cleanup_queue(q);
1828 * Function: scsi_block_requests()
1830 * Purpose: Utility function used by low-level drivers to prevent further
1831 * commands from being queued to the device.
1833 * Arguments: shost - Host in question
1835 * Returns: Nothing
1837 * Lock status: No locks are assumed held.
1839 * Notes: There is no timer nor any other means by which the requests
1840 * get unblocked other than the low-level driver calling
1841 * scsi_unblock_requests().
1843 void scsi_block_requests(struct Scsi_Host *shost)
1845 shost->host_self_blocked = 1;
1847 EXPORT_SYMBOL(scsi_block_requests);
1850 * Function: scsi_unblock_requests()
1852 * Purpose: Utility function used by low-level drivers to allow further
1853 * commands from being queued to the device.
1855 * Arguments: shost - Host in question
1857 * Returns: Nothing
1859 * Lock status: No locks are assumed held.
1861 * Notes: There is no timer nor any other means by which the requests
1862 * get unblocked other than the low-level driver calling
1863 * scsi_unblock_requests().
1865 * This is done as an API function so that changes to the
1866 * internals of the scsi mid-layer won't require wholesale
1867 * changes to drivers that use this feature.
1869 void scsi_unblock_requests(struct Scsi_Host *shost)
1871 shost->host_self_blocked = 0;
1872 scsi_run_host_queues(shost);
1874 EXPORT_SYMBOL(scsi_unblock_requests);
1876 int __init scsi_init_queue(void)
1878 int i;
1880 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1881 sizeof(struct scsi_io_context),
1882 0, 0, NULL);
1883 if (!scsi_io_context_cache) {
1884 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1885 return -ENOMEM;
1888 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1889 sizeof(struct scsi_data_buffer),
1890 0, 0, NULL);
1891 if (!scsi_sdb_cache) {
1892 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1893 goto cleanup_io_context;
1896 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1897 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1898 int size = sgp->size * sizeof(struct scatterlist);
1900 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1901 SLAB_HWCACHE_ALIGN, NULL);
1902 if (!sgp->slab) {
1903 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1904 sgp->name);
1905 goto cleanup_sdb;
1908 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1909 sgp->slab);
1910 if (!sgp->pool) {
1911 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1912 sgp->name);
1913 goto cleanup_sdb;
1917 return 0;
1919 cleanup_sdb:
1920 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1921 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1922 if (sgp->pool)
1923 mempool_destroy(sgp->pool);
1924 if (sgp->slab)
1925 kmem_cache_destroy(sgp->slab);
1927 kmem_cache_destroy(scsi_sdb_cache);
1928 cleanup_io_context:
1929 kmem_cache_destroy(scsi_io_context_cache);
1931 return -ENOMEM;
1934 void scsi_exit_queue(void)
1936 int i;
1938 kmem_cache_destroy(scsi_io_context_cache);
1939 kmem_cache_destroy(scsi_sdb_cache);
1941 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1942 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1943 mempool_destroy(sgp->pool);
1944 kmem_cache_destroy(sgp->slab);
1949 * scsi_mode_select - issue a mode select
1950 * @sdev: SCSI device to be queried
1951 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1952 * @sp: Save page bit (0 == don't save, 1 == save)
1953 * @modepage: mode page being requested
1954 * @buffer: request buffer (may not be smaller than eight bytes)
1955 * @len: length of request buffer.
1956 * @timeout: command timeout
1957 * @retries: number of retries before failing
1958 * @data: returns a structure abstracting the mode header data
1959 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1960 * must be SCSI_SENSE_BUFFERSIZE big.
1962 * Returns zero if successful; negative error number or scsi
1963 * status on error
1967 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1968 unsigned char *buffer, int len, int timeout, int retries,
1969 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1971 unsigned char cmd[10];
1972 unsigned char *real_buffer;
1973 int ret;
1975 memset(cmd, 0, sizeof(cmd));
1976 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1978 if (sdev->use_10_for_ms) {
1979 if (len > 65535)
1980 return -EINVAL;
1981 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1982 if (!real_buffer)
1983 return -ENOMEM;
1984 memcpy(real_buffer + 8, buffer, len);
1985 len += 8;
1986 real_buffer[0] = 0;
1987 real_buffer[1] = 0;
1988 real_buffer[2] = data->medium_type;
1989 real_buffer[3] = data->device_specific;
1990 real_buffer[4] = data->longlba ? 0x01 : 0;
1991 real_buffer[5] = 0;
1992 real_buffer[6] = data->block_descriptor_length >> 8;
1993 real_buffer[7] = data->block_descriptor_length;
1995 cmd[0] = MODE_SELECT_10;
1996 cmd[7] = len >> 8;
1997 cmd[8] = len;
1998 } else {
1999 if (len > 255 || data->block_descriptor_length > 255 ||
2000 data->longlba)
2001 return -EINVAL;
2003 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2004 if (!real_buffer)
2005 return -ENOMEM;
2006 memcpy(real_buffer + 4, buffer, len);
2007 len += 4;
2008 real_buffer[0] = 0;
2009 real_buffer[1] = data->medium_type;
2010 real_buffer[2] = data->device_specific;
2011 real_buffer[3] = data->block_descriptor_length;
2014 cmd[0] = MODE_SELECT;
2015 cmd[4] = len;
2018 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2019 sshdr, timeout, retries);
2020 kfree(real_buffer);
2021 return ret;
2023 EXPORT_SYMBOL_GPL(scsi_mode_select);
2026 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2027 * @sdev: SCSI device to be queried
2028 * @dbd: set if mode sense will allow block descriptors to be returned
2029 * @modepage: mode page being requested
2030 * @buffer: request buffer (may not be smaller than eight bytes)
2031 * @len: length of request buffer.
2032 * @timeout: command timeout
2033 * @retries: number of retries before failing
2034 * @data: returns a structure abstracting the mode header data
2035 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2036 * must be SCSI_SENSE_BUFFERSIZE big.
2038 * Returns zero if unsuccessful, or the header offset (either 4
2039 * or 8 depending on whether a six or ten byte command was
2040 * issued) if successful.
2043 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2044 unsigned char *buffer, int len, int timeout, int retries,
2045 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2047 unsigned char cmd[12];
2048 int use_10_for_ms;
2049 int header_length;
2050 int result;
2051 struct scsi_sense_hdr my_sshdr;
2053 memset(data, 0, sizeof(*data));
2054 memset(&cmd[0], 0, 12);
2055 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2056 cmd[2] = modepage;
2058 /* caller might not be interested in sense, but we need it */
2059 if (!sshdr)
2060 sshdr = &my_sshdr;
2062 retry:
2063 use_10_for_ms = sdev->use_10_for_ms;
2065 if (use_10_for_ms) {
2066 if (len < 8)
2067 len = 8;
2069 cmd[0] = MODE_SENSE_10;
2070 cmd[8] = len;
2071 header_length = 8;
2072 } else {
2073 if (len < 4)
2074 len = 4;
2076 cmd[0] = MODE_SENSE;
2077 cmd[4] = len;
2078 header_length = 4;
2081 memset(buffer, 0, len);
2083 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2084 sshdr, timeout, retries);
2086 /* This code looks awful: what it's doing is making sure an
2087 * ILLEGAL REQUEST sense return identifies the actual command
2088 * byte as the problem. MODE_SENSE commands can return
2089 * ILLEGAL REQUEST if the code page isn't supported */
2091 if (use_10_for_ms && !scsi_status_is_good(result) &&
2092 (driver_byte(result) & DRIVER_SENSE)) {
2093 if (scsi_sense_valid(sshdr)) {
2094 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2095 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2097 * Invalid command operation code
2099 sdev->use_10_for_ms = 0;
2100 goto retry;
2105 if(scsi_status_is_good(result)) {
2106 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2107 (modepage == 6 || modepage == 8))) {
2108 /* Initio breakage? */
2109 header_length = 0;
2110 data->length = 13;
2111 data->medium_type = 0;
2112 data->device_specific = 0;
2113 data->longlba = 0;
2114 data->block_descriptor_length = 0;
2115 } else if(use_10_for_ms) {
2116 data->length = buffer[0]*256 + buffer[1] + 2;
2117 data->medium_type = buffer[2];
2118 data->device_specific = buffer[3];
2119 data->longlba = buffer[4] & 0x01;
2120 data->block_descriptor_length = buffer[6]*256
2121 + buffer[7];
2122 } else {
2123 data->length = buffer[0] + 1;
2124 data->medium_type = buffer[1];
2125 data->device_specific = buffer[2];
2126 data->block_descriptor_length = buffer[3];
2128 data->header_length = header_length;
2131 return result;
2133 EXPORT_SYMBOL(scsi_mode_sense);
2136 * scsi_test_unit_ready - test if unit is ready
2137 * @sdev: scsi device to change the state of.
2138 * @timeout: command timeout
2139 * @retries: number of retries before failing
2140 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2141 * returning sense. Make sure that this is cleared before passing
2142 * in.
2144 * Returns zero if unsuccessful or an error if TUR failed. For
2145 * removable media, a return of NOT_READY or UNIT_ATTENTION is
2146 * translated to success, with the ->changed flag updated.
2149 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2150 struct scsi_sense_hdr *sshdr_external)
2152 char cmd[] = {
2153 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2155 struct scsi_sense_hdr *sshdr;
2156 int result;
2158 if (!sshdr_external)
2159 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2160 else
2161 sshdr = sshdr_external;
2163 /* try to eat the UNIT_ATTENTION if there are enough retries */
2164 do {
2165 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2166 timeout, retries);
2167 if (sdev->removable && scsi_sense_valid(sshdr) &&
2168 sshdr->sense_key == UNIT_ATTENTION)
2169 sdev->changed = 1;
2170 } while (scsi_sense_valid(sshdr) &&
2171 sshdr->sense_key == UNIT_ATTENTION && --retries);
2173 if (!sshdr)
2174 /* could not allocate sense buffer, so can't process it */
2175 return result;
2177 if (sdev->removable && scsi_sense_valid(sshdr) &&
2178 (sshdr->sense_key == UNIT_ATTENTION ||
2179 sshdr->sense_key == NOT_READY)) {
2180 sdev->changed = 1;
2181 result = 0;
2183 if (!sshdr_external)
2184 kfree(sshdr);
2185 return result;
2187 EXPORT_SYMBOL(scsi_test_unit_ready);
2190 * scsi_device_set_state - Take the given device through the device state model.
2191 * @sdev: scsi device to change the state of.
2192 * @state: state to change to.
2194 * Returns zero if unsuccessful or an error if the requested
2195 * transition is illegal.
2198 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2200 enum scsi_device_state oldstate = sdev->sdev_state;
2202 if (state == oldstate)
2203 return 0;
2205 switch (state) {
2206 case SDEV_CREATED:
2207 switch (oldstate) {
2208 case SDEV_CREATED_BLOCK:
2209 break;
2210 default:
2211 goto illegal;
2213 break;
2215 case SDEV_RUNNING:
2216 switch (oldstate) {
2217 case SDEV_CREATED:
2218 case SDEV_OFFLINE:
2219 case SDEV_QUIESCE:
2220 case SDEV_BLOCK:
2221 break;
2222 default:
2223 goto illegal;
2225 break;
2227 case SDEV_QUIESCE:
2228 switch (oldstate) {
2229 case SDEV_RUNNING:
2230 case SDEV_OFFLINE:
2231 break;
2232 default:
2233 goto illegal;
2235 break;
2237 case SDEV_OFFLINE:
2238 switch (oldstate) {
2239 case SDEV_CREATED:
2240 case SDEV_RUNNING:
2241 case SDEV_QUIESCE:
2242 case SDEV_BLOCK:
2243 break;
2244 default:
2245 goto illegal;
2247 break;
2249 case SDEV_BLOCK:
2250 switch (oldstate) {
2251 case SDEV_RUNNING:
2252 case SDEV_CREATED_BLOCK:
2253 break;
2254 default:
2255 goto illegal;
2257 break;
2259 case SDEV_CREATED_BLOCK:
2260 switch (oldstate) {
2261 case SDEV_CREATED:
2262 break;
2263 default:
2264 goto illegal;
2266 break;
2268 case SDEV_CANCEL:
2269 switch (oldstate) {
2270 case SDEV_CREATED:
2271 case SDEV_RUNNING:
2272 case SDEV_QUIESCE:
2273 case SDEV_OFFLINE:
2274 case SDEV_BLOCK:
2275 break;
2276 default:
2277 goto illegal;
2279 break;
2281 case SDEV_DEL:
2282 switch (oldstate) {
2283 case SDEV_CREATED:
2284 case SDEV_RUNNING:
2285 case SDEV_OFFLINE:
2286 case SDEV_CANCEL:
2287 break;
2288 default:
2289 goto illegal;
2291 break;
2294 sdev->sdev_state = state;
2295 return 0;
2297 illegal:
2298 SCSI_LOG_ERROR_RECOVERY(1,
2299 sdev_printk(KERN_ERR, sdev,
2300 "Illegal state transition %s->%s\n",
2301 scsi_device_state_name(oldstate),
2302 scsi_device_state_name(state))
2304 return -EINVAL;
2306 EXPORT_SYMBOL(scsi_device_set_state);
2309 * sdev_evt_emit - emit a single SCSI device uevent
2310 * @sdev: associated SCSI device
2311 * @evt: event to emit
2313 * Send a single uevent (scsi_event) to the associated scsi_device.
2315 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2317 int idx = 0;
2318 char *envp[3];
2320 switch (evt->evt_type) {
2321 case SDEV_EVT_MEDIA_CHANGE:
2322 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2323 break;
2325 default:
2326 /* do nothing */
2327 break;
2330 envp[idx++] = NULL;
2332 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2336 * sdev_evt_thread - send a uevent for each scsi event
2337 * @work: work struct for scsi_device
2339 * Dispatch queued events to their associated scsi_device kobjects
2340 * as uevents.
2342 void scsi_evt_thread(struct work_struct *work)
2344 struct scsi_device *sdev;
2345 LIST_HEAD(event_list);
2347 sdev = container_of(work, struct scsi_device, event_work);
2349 while (1) {
2350 struct scsi_event *evt;
2351 struct list_head *this, *tmp;
2352 unsigned long flags;
2354 spin_lock_irqsave(&sdev->list_lock, flags);
2355 list_splice_init(&sdev->event_list, &event_list);
2356 spin_unlock_irqrestore(&sdev->list_lock, flags);
2358 if (list_empty(&event_list))
2359 break;
2361 list_for_each_safe(this, tmp, &event_list) {
2362 evt = list_entry(this, struct scsi_event, node);
2363 list_del(&evt->node);
2364 scsi_evt_emit(sdev, evt);
2365 kfree(evt);
2371 * sdev_evt_send - send asserted event to uevent thread
2372 * @sdev: scsi_device event occurred on
2373 * @evt: event to send
2375 * Assert scsi device event asynchronously.
2377 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2379 unsigned long flags;
2381 #if 0
2382 /* FIXME: currently this check eliminates all media change events
2383 * for polled devices. Need to update to discriminate between AN
2384 * and polled events */
2385 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2386 kfree(evt);
2387 return;
2389 #endif
2391 spin_lock_irqsave(&sdev->list_lock, flags);
2392 list_add_tail(&evt->node, &sdev->event_list);
2393 schedule_work(&sdev->event_work);
2394 spin_unlock_irqrestore(&sdev->list_lock, flags);
2396 EXPORT_SYMBOL_GPL(sdev_evt_send);
2399 * sdev_evt_alloc - allocate a new scsi event
2400 * @evt_type: type of event to allocate
2401 * @gfpflags: GFP flags for allocation
2403 * Allocates and returns a new scsi_event.
2405 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2406 gfp_t gfpflags)
2408 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2409 if (!evt)
2410 return NULL;
2412 evt->evt_type = evt_type;
2413 INIT_LIST_HEAD(&evt->node);
2415 /* evt_type-specific initialization, if any */
2416 switch (evt_type) {
2417 case SDEV_EVT_MEDIA_CHANGE:
2418 default:
2419 /* do nothing */
2420 break;
2423 return evt;
2425 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2428 * sdev_evt_send_simple - send asserted event to uevent thread
2429 * @sdev: scsi_device event occurred on
2430 * @evt_type: type of event to send
2431 * @gfpflags: GFP flags for allocation
2433 * Assert scsi device event asynchronously, given an event type.
2435 void sdev_evt_send_simple(struct scsi_device *sdev,
2436 enum scsi_device_event evt_type, gfp_t gfpflags)
2438 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2439 if (!evt) {
2440 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2441 evt_type);
2442 return;
2445 sdev_evt_send(sdev, evt);
2447 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2450 * scsi_device_quiesce - Block user issued commands.
2451 * @sdev: scsi device to quiesce.
2453 * This works by trying to transition to the SDEV_QUIESCE state
2454 * (which must be a legal transition). When the device is in this
2455 * state, only special requests will be accepted, all others will
2456 * be deferred. Since special requests may also be requeued requests,
2457 * a successful return doesn't guarantee the device will be
2458 * totally quiescent.
2460 * Must be called with user context, may sleep.
2462 * Returns zero if unsuccessful or an error if not.
2465 scsi_device_quiesce(struct scsi_device *sdev)
2467 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2468 if (err)
2469 return err;
2471 scsi_run_queue(sdev->request_queue);
2472 while (sdev->device_busy) {
2473 msleep_interruptible(200);
2474 scsi_run_queue(sdev->request_queue);
2476 return 0;
2478 EXPORT_SYMBOL(scsi_device_quiesce);
2481 * scsi_device_resume - Restart user issued commands to a quiesced device.
2482 * @sdev: scsi device to resume.
2484 * Moves the device from quiesced back to running and restarts the
2485 * queues.
2487 * Must be called with user context, may sleep.
2489 void
2490 scsi_device_resume(struct scsi_device *sdev)
2492 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2493 return;
2494 scsi_run_queue(sdev->request_queue);
2496 EXPORT_SYMBOL(scsi_device_resume);
2498 static void
2499 device_quiesce_fn(struct scsi_device *sdev, void *data)
2501 scsi_device_quiesce(sdev);
2504 void
2505 scsi_target_quiesce(struct scsi_target *starget)
2507 starget_for_each_device(starget, NULL, device_quiesce_fn);
2509 EXPORT_SYMBOL(scsi_target_quiesce);
2511 static void
2512 device_resume_fn(struct scsi_device *sdev, void *data)
2514 scsi_device_resume(sdev);
2517 void
2518 scsi_target_resume(struct scsi_target *starget)
2520 starget_for_each_device(starget, NULL, device_resume_fn);
2522 EXPORT_SYMBOL(scsi_target_resume);
2525 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2526 * @sdev: device to block
2528 * Block request made by scsi lld's to temporarily stop all
2529 * scsi commands on the specified device. Called from interrupt
2530 * or normal process context.
2532 * Returns zero if successful or error if not
2534 * Notes:
2535 * This routine transitions the device to the SDEV_BLOCK state
2536 * (which must be a legal transition). When the device is in this
2537 * state, all commands are deferred until the scsi lld reenables
2538 * the device with scsi_device_unblock or device_block_tmo fires.
2539 * This routine assumes the host_lock is held on entry.
2542 scsi_internal_device_block(struct scsi_device *sdev)
2544 struct request_queue *q = sdev->request_queue;
2545 unsigned long flags;
2546 int err = 0;
2548 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2549 if (err) {
2550 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2552 if (err)
2553 return err;
2557 * The device has transitioned to SDEV_BLOCK. Stop the
2558 * block layer from calling the midlayer with this device's
2559 * request queue.
2561 spin_lock_irqsave(q->queue_lock, flags);
2562 blk_stop_queue(q);
2563 spin_unlock_irqrestore(q->queue_lock, flags);
2565 return 0;
2567 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2570 * scsi_internal_device_unblock - resume a device after a block request
2571 * @sdev: device to resume
2573 * Called by scsi lld's or the midlayer to restart the device queue
2574 * for the previously suspended scsi device. Called from interrupt or
2575 * normal process context.
2577 * Returns zero if successful or error if not.
2579 * Notes:
2580 * This routine transitions the device to the SDEV_RUNNING state
2581 * (which must be a legal transition) allowing the midlayer to
2582 * goose the queue for this device. This routine assumes the
2583 * host_lock is held upon entry.
2586 scsi_internal_device_unblock(struct scsi_device *sdev)
2588 struct request_queue *q = sdev->request_queue;
2589 int err;
2590 unsigned long flags;
2593 * Try to transition the scsi device to SDEV_RUNNING
2594 * and goose the device queue if successful.
2596 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2597 if (err) {
2598 err = scsi_device_set_state(sdev, SDEV_CREATED);
2600 if (err)
2601 return err;
2604 spin_lock_irqsave(q->queue_lock, flags);
2605 blk_start_queue(q);
2606 spin_unlock_irqrestore(q->queue_lock, flags);
2608 return 0;
2610 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2612 static void
2613 device_block(struct scsi_device *sdev, void *data)
2615 scsi_internal_device_block(sdev);
2618 static int
2619 target_block(struct device *dev, void *data)
2621 if (scsi_is_target_device(dev))
2622 starget_for_each_device(to_scsi_target(dev), NULL,
2623 device_block);
2624 return 0;
2627 void
2628 scsi_target_block(struct device *dev)
2630 if (scsi_is_target_device(dev))
2631 starget_for_each_device(to_scsi_target(dev), NULL,
2632 device_block);
2633 else
2634 device_for_each_child(dev, NULL, target_block);
2636 EXPORT_SYMBOL_GPL(scsi_target_block);
2638 static void
2639 device_unblock(struct scsi_device *sdev, void *data)
2641 scsi_internal_device_unblock(sdev);
2644 static int
2645 target_unblock(struct device *dev, void *data)
2647 if (scsi_is_target_device(dev))
2648 starget_for_each_device(to_scsi_target(dev), NULL,
2649 device_unblock);
2650 return 0;
2653 void
2654 scsi_target_unblock(struct device *dev)
2656 if (scsi_is_target_device(dev))
2657 starget_for_each_device(to_scsi_target(dev), NULL,
2658 device_unblock);
2659 else
2660 device_for_each_child(dev, NULL, target_unblock);
2662 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2665 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2666 * @sgl: scatter-gather list
2667 * @sg_count: number of segments in sg
2668 * @offset: offset in bytes into sg, on return offset into the mapped area
2669 * @len: bytes to map, on return number of bytes mapped
2671 * Returns virtual address of the start of the mapped page
2673 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2674 size_t *offset, size_t *len)
2676 int i;
2677 size_t sg_len = 0, len_complete = 0;
2678 struct scatterlist *sg;
2679 struct page *page;
2681 WARN_ON(!irqs_disabled());
2683 for_each_sg(sgl, sg, sg_count, i) {
2684 len_complete = sg_len; /* Complete sg-entries */
2685 sg_len += sg->length;
2686 if (sg_len > *offset)
2687 break;
2690 if (unlikely(i == sg_count)) {
2691 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2692 "elements %d\n",
2693 __func__, sg_len, *offset, sg_count);
2694 WARN_ON(1);
2695 return NULL;
2698 /* Offset starting from the beginning of first page in this sg-entry */
2699 *offset = *offset - len_complete + sg->offset;
2701 /* Assumption: contiguous pages can be accessed as "page + i" */
2702 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2703 *offset &= ~PAGE_MASK;
2705 /* Bytes in this sg-entry from *offset to the end of the page */
2706 sg_len = PAGE_SIZE - *offset;
2707 if (*len > sg_len)
2708 *len = sg_len;
2710 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2712 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2715 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2716 * @virt: virtual address to be unmapped
2718 void scsi_kunmap_atomic_sg(void *virt)
2720 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2722 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);