4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
39 #include "delegation.h"
42 /* #define NFS_DEBUG_VERBOSE 1 */
44 static int nfs_opendir(struct inode
*, struct file
*);
45 static int nfs_readdir(struct file
*, void *, filldir_t
);
46 static struct dentry
*nfs_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
47 static int nfs_create(struct inode
*, struct dentry
*, int, struct nameidata
*);
48 static int nfs_mkdir(struct inode
*, struct dentry
*, int);
49 static int nfs_rmdir(struct inode
*, struct dentry
*);
50 static int nfs_unlink(struct inode
*, struct dentry
*);
51 static int nfs_symlink(struct inode
*, struct dentry
*, const char *);
52 static int nfs_link(struct dentry
*, struct inode
*, struct dentry
*);
53 static int nfs_mknod(struct inode
*, struct dentry
*, int, dev_t
);
54 static int nfs_rename(struct inode
*, struct dentry
*,
55 struct inode
*, struct dentry
*);
56 static int nfs_fsync_dir(struct file
*, struct dentry
*, int);
57 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
59 const struct file_operations nfs_dir_operations
= {
60 .llseek
= nfs_llseek_dir
,
61 .read
= generic_read_dir
,
62 .readdir
= nfs_readdir
,
64 .release
= nfs_release
,
65 .fsync
= nfs_fsync_dir
,
68 const struct inode_operations nfs_dir_inode_operations
= {
73 .symlink
= nfs_symlink
,
78 .permission
= nfs_permission
,
79 .getattr
= nfs_getattr
,
80 .setattr
= nfs_setattr
,
84 const struct inode_operations nfs3_dir_inode_operations
= {
89 .symlink
= nfs_symlink
,
94 .permission
= nfs_permission
,
95 .getattr
= nfs_getattr
,
96 .setattr
= nfs_setattr
,
97 .listxattr
= nfs3_listxattr
,
98 .getxattr
= nfs3_getxattr
,
99 .setxattr
= nfs3_setxattr
,
100 .removexattr
= nfs3_removexattr
,
102 #endif /* CONFIG_NFS_V3 */
106 static struct dentry
*nfs_atomic_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
107 const struct inode_operations nfs4_dir_inode_operations
= {
108 .create
= nfs_create
,
109 .lookup
= nfs_atomic_lookup
,
111 .unlink
= nfs_unlink
,
112 .symlink
= nfs_symlink
,
116 .rename
= nfs_rename
,
117 .permission
= nfs_permission
,
118 .getattr
= nfs_getattr
,
119 .setattr
= nfs_setattr
,
120 .getxattr
= nfs4_getxattr
,
121 .setxattr
= nfs4_setxattr
,
122 .listxattr
= nfs4_listxattr
,
125 #endif /* CONFIG_NFS_V4 */
131 nfs_opendir(struct inode
*inode
, struct file
*filp
)
135 dfprintk(VFS
, "NFS: opendir(%s/%ld)\n",
136 inode
->i_sb
->s_id
, inode
->i_ino
);
139 /* Call generic open code in order to cache credentials */
140 res
= nfs_open(inode
, filp
);
145 typedef __be32
* (*decode_dirent_t
)(__be32
*, struct nfs_entry
*, int);
149 unsigned long page_index
;
152 loff_t current_index
;
153 struct nfs_entry
*entry
;
154 decode_dirent_t decode
;
157 unsigned long timestamp
;
159 } nfs_readdir_descriptor_t
;
161 /* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
169 * NOTE: Dirent information verification is done always by the
170 * page-in of the RPC reply, nowhere else, this simplies
171 * things substantially.
174 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
*page
)
176 struct file
*file
= desc
->file
;
177 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
178 struct rpc_cred
*cred
= nfs_file_cred(file
);
179 unsigned long timestamp
;
182 dfprintk(DIRCACHE
, "NFS: %s: reading cookie %Lu into page %lu\n",
183 __FUNCTION__
, (long long)desc
->entry
->cookie
,
188 error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, desc
->entry
->cookie
, page
,
189 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
191 /* We requested READDIRPLUS, but the server doesn't grok it */
192 if (error
== -ENOTSUPP
&& desc
->plus
) {
193 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
194 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_FLAGS(inode
));
200 desc
->timestamp
= timestamp
;
201 desc
->timestamp_valid
= 1;
202 SetPageUptodate(page
);
203 /* Ensure consistent page alignment of the data.
204 * Note: assumes we have exclusive access to this mapping either
205 * through inode->i_mutex or some other mechanism.
207 if (page
->index
== 0 && invalidate_inode_pages2_range(inode
->i_mapping
, PAGE_CACHE_SIZE
, -1) < 0) {
208 /* Should never happen */
209 nfs_zap_mapping(inode
, inode
->i_mapping
);
220 int dir_decode(nfs_readdir_descriptor_t
*desc
)
222 __be32
*p
= desc
->ptr
;
223 p
= desc
->decode(p
, desc
->entry
, desc
->plus
);
227 if (desc
->timestamp_valid
)
228 desc
->entry
->fattr
->time_start
= desc
->timestamp
;
230 desc
->entry
->fattr
->valid
&= ~NFS_ATTR_FATTR
;
235 void dir_page_release(nfs_readdir_descriptor_t
*desc
)
238 page_cache_release(desc
->page
);
244 * Given a pointer to a buffer that has already been filled by a call
245 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
247 * If the end of the buffer has been reached, return -EAGAIN, if not,
248 * return the offset within the buffer of the next entry to be
252 int find_dirent(nfs_readdir_descriptor_t
*desc
)
254 struct nfs_entry
*entry
= desc
->entry
;
258 while((status
= dir_decode(desc
)) == 0) {
259 dfprintk(DIRCACHE
, "NFS: %s: examining cookie %Lu\n",
260 __FUNCTION__
, (unsigned long long)entry
->cookie
);
261 if (entry
->prev_cookie
== *desc
->dir_cookie
)
263 if (loop_count
++ > 200) {
272 * Given a pointer to a buffer that has already been filled by a call
273 * to readdir, find the entry at offset 'desc->file->f_pos'.
275 * If the end of the buffer has been reached, return -EAGAIN, if not,
276 * return the offset within the buffer of the next entry to be
280 int find_dirent_index(nfs_readdir_descriptor_t
*desc
)
282 struct nfs_entry
*entry
= desc
->entry
;
287 status
= dir_decode(desc
);
291 dfprintk(DIRCACHE
, "NFS: found cookie %Lu at index %Ld\n",
292 (unsigned long long)entry
->cookie
, desc
->current_index
);
294 if (desc
->file
->f_pos
== desc
->current_index
) {
295 *desc
->dir_cookie
= entry
->cookie
;
298 desc
->current_index
++;
299 if (loop_count
++ > 200) {
308 * Find the given page, and call find_dirent() or find_dirent_index in
309 * order to try to return the next entry.
312 int find_dirent_page(nfs_readdir_descriptor_t
*desc
)
314 struct inode
*inode
= desc
->file
->f_path
.dentry
->d_inode
;
318 dfprintk(DIRCACHE
, "NFS: %s: searching page %ld for target %Lu\n",
319 __FUNCTION__
, desc
->page_index
,
320 (long long) *desc
->dir_cookie
);
322 /* If we find the page in the page_cache, we cannot be sure
323 * how fresh the data is, so we will ignore readdir_plus attributes.
325 desc
->timestamp_valid
= 0;
326 page
= read_cache_page(inode
->i_mapping
, desc
->page_index
,
327 (filler_t
*)nfs_readdir_filler
, desc
);
329 status
= PTR_ERR(page
);
333 /* NOTE: Someone else may have changed the READDIRPLUS flag */
335 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
336 if (*desc
->dir_cookie
!= 0)
337 status
= find_dirent(desc
);
339 status
= find_dirent_index(desc
);
341 dir_page_release(desc
);
343 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __FUNCTION__
, status
);
348 * Recurse through the page cache pages, and return a
349 * filled nfs_entry structure of the next directory entry if possible.
351 * The target for the search is '*desc->dir_cookie' if non-0,
352 * 'desc->file->f_pos' otherwise
355 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
360 /* Always search-by-index from the beginning of the cache */
361 if (*desc
->dir_cookie
== 0) {
362 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
363 (long long)desc
->file
->f_pos
);
364 desc
->page_index
= 0;
365 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
366 desc
->entry
->eof
= 0;
367 desc
->current_index
= 0;
369 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
370 (unsigned long long)*desc
->dir_cookie
);
373 res
= find_dirent_page(desc
);
376 /* Align to beginning of next page */
378 if (loop_count
++ > 200) {
384 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __FUNCTION__
, res
);
388 static inline unsigned int dt_type(struct inode
*inode
)
390 return (inode
->i_mode
>> 12) & 15;
393 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
);
396 * Once we've found the start of the dirent within a page: fill 'er up...
399 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
402 struct file
*file
= desc
->file
;
403 struct nfs_entry
*entry
= desc
->entry
;
404 struct dentry
*dentry
= NULL
;
409 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
410 (unsigned long long)entry
->cookie
);
413 unsigned d_type
= DT_UNKNOWN
;
414 /* Note: entry->prev_cookie contains the cookie for
415 * retrieving the current dirent on the server */
418 /* Get a dentry if we have one */
421 dentry
= nfs_readdir_lookup(desc
);
423 /* Use readdirplus info */
424 if (dentry
!= NULL
&& dentry
->d_inode
!= NULL
) {
425 d_type
= dt_type(dentry
->d_inode
);
426 fileid
= NFS_FILEID(dentry
->d_inode
);
429 res
= filldir(dirent
, entry
->name
, entry
->len
,
430 file
->f_pos
, nfs_compat_user_ino64(fileid
),
435 *desc
->dir_cookie
= entry
->cookie
;
436 if (dir_decode(desc
) != 0) {
440 if (loop_count
++ > 200) {
445 dir_page_release(desc
);
448 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
449 (unsigned long long)*desc
->dir_cookie
, res
);
454 * If we cannot find a cookie in our cache, we suspect that this is
455 * because it points to a deleted file, so we ask the server to return
456 * whatever it thinks is the next entry. We then feed this to filldir.
457 * If all goes well, we should then be able to find our way round the
458 * cache on the next call to readdir_search_pagecache();
460 * NOTE: we cannot add the anonymous page to the pagecache because
461 * the data it contains might not be page aligned. Besides,
462 * we should already have a complete representation of the
463 * directory in the page cache by the time we get here.
466 int uncached_readdir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
469 struct file
*file
= desc
->file
;
470 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
471 struct rpc_cred
*cred
= nfs_file_cred(file
);
472 struct page
*page
= NULL
;
474 unsigned long timestamp
;
476 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
477 (unsigned long long)*desc
->dir_cookie
);
479 page
= alloc_page(GFP_HIGHUSER
);
485 desc
->error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, *desc
->dir_cookie
,
487 NFS_SERVER(inode
)->dtsize
,
490 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
491 if (desc
->error
>= 0) {
492 desc
->timestamp
= timestamp
;
493 desc
->timestamp_valid
= 1;
494 if ((status
= dir_decode(desc
)) == 0)
495 desc
->entry
->prev_cookie
= *desc
->dir_cookie
;
501 status
= nfs_do_filldir(desc
, dirent
, filldir
);
503 /* Reset read descriptor so it searches the page cache from
504 * the start upon the next call to readdir_search_pagecache() */
505 desc
->page_index
= 0;
506 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
507 desc
->entry
->eof
= 0;
509 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
510 __FUNCTION__
, status
);
513 dir_page_release(desc
);
517 /* The file offset position represents the dirent entry number. A
518 last cookie cache takes care of the common case of reading the
521 static int nfs_readdir(struct file
*filp
, void *dirent
, filldir_t filldir
)
523 struct dentry
*dentry
= filp
->f_path
.dentry
;
524 struct inode
*inode
= dentry
->d_inode
;
525 nfs_readdir_descriptor_t my_desc
,
527 struct nfs_entry my_entry
;
529 struct nfs_fattr fattr
;
532 dfprintk(VFS
, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
533 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
534 (long long)filp
->f_pos
);
535 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
539 res
= nfs_revalidate_mapping_nolock(inode
, filp
->f_mapping
);
546 * filp->f_pos points to the dirent entry number.
547 * *desc->dir_cookie has the cookie for the next entry. We have
548 * to either find the entry with the appropriate number or
549 * revalidate the cookie.
551 memset(desc
, 0, sizeof(*desc
));
554 desc
->dir_cookie
= &nfs_file_open_context(filp
)->dir_cookie
;
555 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
556 desc
->plus
= NFS_USE_READDIRPLUS(inode
);
558 my_entry
.cookie
= my_entry
.prev_cookie
= 0;
561 my_entry
.fattr
= &fattr
;
562 nfs_fattr_init(&fattr
);
563 desc
->entry
= &my_entry
;
565 nfs_block_sillyrename(dentry
);
566 while(!desc
->entry
->eof
) {
567 res
= readdir_search_pagecache(desc
);
569 if (res
== -EBADCOOKIE
) {
570 /* This means either end of directory */
571 if (*desc
->dir_cookie
&& desc
->entry
->cookie
!= *desc
->dir_cookie
) {
572 /* Or that the server has 'lost' a cookie */
573 res
= uncached_readdir(desc
, dirent
, filldir
);
580 if (res
== -ETOOSMALL
&& desc
->plus
) {
581 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_FLAGS(inode
));
582 nfs_zap_caches(inode
);
584 desc
->entry
->eof
= 0;
590 res
= nfs_do_filldir(desc
, dirent
, filldir
);
596 nfs_unblock_sillyrename(dentry
);
600 dfprintk(VFS
, "NFS: readdir(%s/%s) returns %ld\n",
601 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
606 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int origin
)
608 mutex_lock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
611 offset
+= filp
->f_pos
;
619 if (offset
!= filp
->f_pos
) {
620 filp
->f_pos
= offset
;
621 nfs_file_open_context(filp
)->dir_cookie
= 0;
624 mutex_unlock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
629 * All directory operations under NFS are synchronous, so fsync()
630 * is a dummy operation.
632 static int nfs_fsync_dir(struct file
*filp
, struct dentry
*dentry
, int datasync
)
634 dfprintk(VFS
, "NFS: fsync_dir(%s/%s) datasync %d\n",
635 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
642 * A check for whether or not the parent directory has changed.
643 * In the case it has, we assume that the dentries are untrustworthy
644 * and may need to be looked up again.
646 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
)
650 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
652 /* Revalidate nfsi->cache_change_attribute before we declare a match */
653 if (nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
655 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
661 * Return the intent data that applies to this particular path component
663 * Note that the current set of intents only apply to the very last
664 * component of the path.
665 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
667 static inline unsigned int nfs_lookup_check_intent(struct nameidata
*nd
, unsigned int mask
)
669 if (nd
->flags
& (LOOKUP_CONTINUE
|LOOKUP_PARENT
))
671 return nd
->flags
& mask
;
675 * Use intent information to check whether or not we're going to do
676 * an O_EXCL create using this path component.
678 static int nfs_is_exclusive_create(struct inode
*dir
, struct nameidata
*nd
)
680 if (NFS_PROTO(dir
)->version
== 2)
682 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) == 0)
684 return (nd
->intent
.open
.flags
& O_EXCL
) != 0;
688 * Inode and filehandle revalidation for lookups.
690 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
691 * or if the intent information indicates that we're about to open this
692 * particular file and the "nocto" mount flag is not set.
696 int nfs_lookup_verify_inode(struct inode
*inode
, struct nameidata
*nd
)
698 struct nfs_server
*server
= NFS_SERVER(inode
);
701 /* VFS wants an on-the-wire revalidation */
702 if (nd
->flags
& LOOKUP_REVAL
)
704 /* This is an open(2) */
705 if (nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) != 0 &&
706 !(server
->flags
& NFS_MOUNT_NOCTO
) &&
707 (S_ISREG(inode
->i_mode
) ||
708 S_ISDIR(inode
->i_mode
)))
712 return nfs_revalidate_inode(server
, inode
);
714 return __nfs_revalidate_inode(server
, inode
);
718 * We judge how long we want to trust negative
719 * dentries by looking at the parent inode mtime.
721 * If parent mtime has changed, we revalidate, else we wait for a
722 * period corresponding to the parent's attribute cache timeout value.
725 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
726 struct nameidata
*nd
)
728 /* Don't revalidate a negative dentry if we're creating a new file */
729 if (nd
!= NULL
&& nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) != 0)
731 return !nfs_check_verifier(dir
, dentry
);
735 * This is called every time the dcache has a lookup hit,
736 * and we should check whether we can really trust that
739 * NOTE! The hit can be a negative hit too, don't assume
742 * If the parent directory is seen to have changed, we throw out the
743 * cached dentry and do a new lookup.
745 static int nfs_lookup_revalidate(struct dentry
* dentry
, struct nameidata
*nd
)
749 struct dentry
*parent
;
751 struct nfs_fh fhandle
;
752 struct nfs_fattr fattr
;
754 parent
= dget_parent(dentry
);
756 dir
= parent
->d_inode
;
757 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
758 inode
= dentry
->d_inode
;
761 if (nfs_neg_need_reval(dir
, dentry
, nd
))
766 if (is_bad_inode(inode
)) {
767 dfprintk(LOOKUPCACHE
, "%s: %s/%s has dud inode\n",
768 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
769 dentry
->d_name
.name
);
773 /* Force a full look up iff the parent directory has changed */
774 if (!nfs_is_exclusive_create(dir
, nd
) && nfs_check_verifier(dir
, dentry
)) {
775 if (nfs_lookup_verify_inode(inode
, nd
))
780 if (NFS_STALE(inode
))
783 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
786 if (nfs_compare_fh(NFS_FH(inode
), &fhandle
))
788 if ((error
= nfs_refresh_inode(inode
, &fattr
)) != 0)
791 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
795 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is valid\n",
796 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
797 dentry
->d_name
.name
);
802 nfs_mark_for_revalidate(dir
);
803 if (inode
&& S_ISDIR(inode
->i_mode
)) {
804 /* Purge readdir caches. */
805 nfs_zap_caches(inode
);
806 /* If we have submounts, don't unhash ! */
807 if (have_submounts(dentry
))
809 shrink_dcache_parent(dentry
);
814 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is invalid\n",
815 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
816 dentry
->d_name
.name
);
821 * This is called from dput() when d_count is going to 0.
823 static int nfs_dentry_delete(struct dentry
*dentry
)
825 dfprintk(VFS
, "NFS: dentry_delete(%s/%s, %x)\n",
826 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
829 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
830 /* Unhash it, so that ->d_iput() would be called */
833 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
834 /* Unhash it, so that ancestors of killed async unlink
835 * files will be cleaned up during umount */
843 * Called when the dentry loses inode.
844 * We use it to clean up silly-renamed files.
846 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
848 nfs_inode_return_delegation(inode
);
849 if (S_ISDIR(inode
->i_mode
))
850 /* drop any readdir cache as it could easily be old */
851 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
853 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
856 nfs_complete_unlink(dentry
, inode
);
862 struct dentry_operations nfs_dentry_operations
= {
863 .d_revalidate
= nfs_lookup_revalidate
,
864 .d_delete
= nfs_dentry_delete
,
865 .d_iput
= nfs_dentry_iput
,
868 static struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, struct nameidata
*nd
)
871 struct dentry
*parent
;
872 struct inode
*inode
= NULL
;
874 struct nfs_fh fhandle
;
875 struct nfs_fattr fattr
;
877 dfprintk(VFS
, "NFS: lookup(%s/%s)\n",
878 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
879 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
881 res
= ERR_PTR(-ENAMETOOLONG
);
882 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
885 res
= ERR_PTR(-ENOMEM
);
886 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
891 * If we're doing an exclusive create, optimize away the lookup
892 * but don't hash the dentry.
894 if (nfs_is_exclusive_create(dir
, nd
)) {
895 d_instantiate(dentry
, NULL
);
900 parent
= dentry
->d_parent
;
901 /* Protect against concurrent sillydeletes */
902 nfs_block_sillyrename(parent
);
903 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
904 if (error
== -ENOENT
)
907 res
= ERR_PTR(error
);
908 goto out_unblock_sillyrename
;
910 inode
= nfs_fhget(dentry
->d_sb
, &fhandle
, &fattr
);
911 res
= (struct dentry
*)inode
;
913 goto out_unblock_sillyrename
;
916 res
= d_materialise_unique(dentry
, inode
);
919 goto out_unblock_sillyrename
;
922 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
923 out_unblock_sillyrename
:
924 nfs_unblock_sillyrename(parent
);
932 static int nfs_open_revalidate(struct dentry
*, struct nameidata
*);
934 struct dentry_operations nfs4_dentry_operations
= {
935 .d_revalidate
= nfs_open_revalidate
,
936 .d_delete
= nfs_dentry_delete
,
937 .d_iput
= nfs_dentry_iput
,
941 * Use intent information to determine whether we need to substitute
942 * the NFSv4-style stateful OPEN for the LOOKUP call
944 static int is_atomic_open(struct inode
*dir
, struct nameidata
*nd
)
946 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) == 0)
948 /* NFS does not (yet) have a stateful open for directories */
949 if (nd
->flags
& LOOKUP_DIRECTORY
)
951 /* Are we trying to write to a read only partition? */
952 if (IS_RDONLY(dir
) && (nd
->intent
.open
.flags
& (O_CREAT
|O_TRUNC
|FMODE_WRITE
)))
957 static struct dentry
*nfs_atomic_lookup(struct inode
*dir
, struct dentry
*dentry
, struct nameidata
*nd
)
959 struct dentry
*res
= NULL
;
962 dfprintk(VFS
, "NFS: atomic_lookup(%s/%ld), %s\n",
963 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
965 /* Check that we are indeed trying to open this file */
966 if (!is_atomic_open(dir
, nd
))
969 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
) {
970 res
= ERR_PTR(-ENAMETOOLONG
);
973 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
975 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
977 if (nd
->intent
.open
.flags
& O_EXCL
) {
978 d_instantiate(dentry
, NULL
);
982 /* Open the file on the server */
984 res
= nfs4_atomic_open(dir
, dentry
, nd
);
987 error
= PTR_ERR(res
);
989 /* Make a negative dentry */
993 /* This turned out not to be a regular file */
998 if (!(nd
->intent
.open
.flags
& O_NOFOLLOW
))
1004 } else if (res
!= NULL
)
1009 return nfs_lookup(dir
, dentry
, nd
);
1012 static int nfs_open_revalidate(struct dentry
*dentry
, struct nameidata
*nd
)
1014 struct dentry
*parent
= NULL
;
1015 struct inode
*inode
= dentry
->d_inode
;
1017 int openflags
, ret
= 0;
1019 parent
= dget_parent(dentry
);
1020 dir
= parent
->d_inode
;
1021 if (!is_atomic_open(dir
, nd
))
1023 /* We can't create new files in nfs_open_revalidate(), so we
1024 * optimize away revalidation of negative dentries.
1026 if (inode
== NULL
) {
1027 if (!nfs_neg_need_reval(dir
, dentry
, nd
))
1032 /* NFS only supports OPEN on regular files */
1033 if (!S_ISREG(inode
->i_mode
))
1035 openflags
= nd
->intent
.open
.flags
;
1036 /* We cannot do exclusive creation on a positive dentry */
1037 if ((openflags
& (O_CREAT
|O_EXCL
)) == (O_CREAT
|O_EXCL
))
1039 /* We can't create new files, or truncate existing ones here */
1040 openflags
&= ~(O_CREAT
|O_TRUNC
);
1043 * Note: we're not holding inode->i_mutex and so may be racing with
1044 * operations that change the directory. We therefore save the
1045 * change attribute *before* we do the RPC call.
1048 ret
= nfs4_open_revalidate(dir
, dentry
, openflags
, nd
);
1057 if (inode
!= NULL
&& nfs_have_delegation(inode
, FMODE_READ
))
1059 return nfs_lookup_revalidate(dentry
, nd
);
1061 #endif /* CONFIG_NFSV4 */
1063 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
)
1065 struct dentry
*parent
= desc
->file
->f_path
.dentry
;
1066 struct inode
*dir
= parent
->d_inode
;
1067 struct nfs_entry
*entry
= desc
->entry
;
1068 struct dentry
*dentry
, *alias
;
1069 struct qstr name
= {
1070 .name
= entry
->name
,
1073 struct inode
*inode
;
1074 unsigned long verf
= nfs_save_change_attribute(dir
);
1078 if (name
.name
[0] == '.' && name
.name
[1] == '.')
1079 return dget_parent(parent
);
1082 if (name
.name
[0] == '.')
1083 return dget(parent
);
1086 spin_lock(&dir
->i_lock
);
1087 if (NFS_I(dir
)->cache_validity
& NFS_INO_INVALID_DATA
) {
1088 spin_unlock(&dir
->i_lock
);
1091 spin_unlock(&dir
->i_lock
);
1093 name
.hash
= full_name_hash(name
.name
, name
.len
);
1094 dentry
= d_lookup(parent
, &name
);
1095 if (dentry
!= NULL
) {
1096 /* Is this a positive dentry that matches the readdir info? */
1097 if (dentry
->d_inode
!= NULL
&&
1098 (NFS_FILEID(dentry
->d_inode
) == entry
->ino
||
1099 d_mountpoint(dentry
))) {
1100 if (!desc
->plus
|| entry
->fh
->size
== 0)
1102 if (nfs_compare_fh(NFS_FH(dentry
->d_inode
),
1106 /* No, so d_drop to allow one to be created */
1110 if (!desc
->plus
|| !(entry
->fattr
->valid
& NFS_ATTR_FATTR
))
1112 if (name
.len
> NFS_SERVER(dir
)->namelen
)
1114 /* Note: caller is already holding the dir->i_mutex! */
1115 dentry
= d_alloc(parent
, &name
);
1118 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
1119 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
);
1120 if (IS_ERR(inode
)) {
1125 alias
= d_materialise_unique(dentry
, inode
);
1126 if (alias
!= NULL
) {
1134 nfs_set_verifier(dentry
, verf
);
1139 * Code common to create, mkdir, and mknod.
1141 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1142 struct nfs_fattr
*fattr
)
1144 struct dentry
*parent
= dget_parent(dentry
);
1145 struct inode
*dir
= parent
->d_inode
;
1146 struct inode
*inode
;
1147 int error
= -EACCES
;
1151 /* We may have been initialized further down */
1152 if (dentry
->d_inode
)
1154 if (fhandle
->size
== 0) {
1155 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
);
1159 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1160 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1161 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1162 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
);
1166 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
);
1167 error
= PTR_ERR(inode
);
1170 d_add(dentry
, inode
);
1175 nfs_mark_for_revalidate(dir
);
1181 * Following a failed create operation, we drop the dentry rather
1182 * than retain a negative dentry. This avoids a problem in the event
1183 * that the operation succeeded on the server, but an error in the
1184 * reply path made it appear to have failed.
1186 static int nfs_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1187 struct nameidata
*nd
)
1193 dfprintk(VFS
, "NFS: create(%s/%ld), %s\n",
1194 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1196 attr
.ia_mode
= mode
;
1197 attr
.ia_valid
= ATTR_MODE
;
1199 if ((nd
->flags
& LOOKUP_CREATE
) != 0)
1200 open_flags
= nd
->intent
.open
.flags
;
1203 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
, nd
);
1215 * See comments for nfs_proc_create regarding failed operations.
1218 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t rdev
)
1223 dfprintk(VFS
, "NFS: mknod(%s/%ld), %s\n",
1224 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1226 if (!new_valid_dev(rdev
))
1229 attr
.ia_mode
= mode
;
1230 attr
.ia_valid
= ATTR_MODE
;
1233 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1245 * See comments for nfs_proc_create regarding failed operations.
1247 static int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1252 dfprintk(VFS
, "NFS: mkdir(%s/%ld), %s\n",
1253 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1255 attr
.ia_valid
= ATTR_MODE
;
1256 attr
.ia_mode
= mode
| S_IFDIR
;
1259 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1270 static int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1274 dfprintk(VFS
, "NFS: rmdir(%s/%ld), %s\n",
1275 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1278 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1279 /* Ensure the VFS deletes this inode */
1280 if (error
== 0 && dentry
->d_inode
!= NULL
)
1281 clear_nlink(dentry
->d_inode
);
1287 static int nfs_sillyrename(struct inode
*dir
, struct dentry
*dentry
)
1289 static unsigned int sillycounter
;
1290 const int fileidsize
= sizeof(NFS_FILEID(dentry
->d_inode
))*2;
1291 const int countersize
= sizeof(sillycounter
)*2;
1292 const int slen
= sizeof(".nfs")+fileidsize
+countersize
-1;
1295 struct dentry
*sdentry
;
1298 dfprintk(VFS
, "NFS: silly-rename(%s/%s, ct=%d)\n",
1299 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
1300 atomic_read(&dentry
->d_count
));
1301 nfs_inc_stats(dir
, NFSIOS_SILLYRENAME
);
1304 * We don't allow a dentry to be silly-renamed twice.
1307 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1310 sprintf(silly
, ".nfs%*.*Lx",
1311 fileidsize
, fileidsize
,
1312 (unsigned long long)NFS_FILEID(dentry
->d_inode
));
1314 /* Return delegation in anticipation of the rename */
1315 nfs_inode_return_delegation(dentry
->d_inode
);
1319 char *suffix
= silly
+ slen
- countersize
;
1323 sprintf(suffix
, "%*.*x", countersize
, countersize
, sillycounter
);
1325 dfprintk(VFS
, "NFS: trying to rename %s to %s\n",
1326 dentry
->d_name
.name
, silly
);
1328 sdentry
= lookup_one_len(silly
, dentry
->d_parent
, slen
);
1330 * N.B. Better to return EBUSY here ... it could be
1331 * dangerous to delete the file while it's in use.
1333 if (IS_ERR(sdentry
))
1335 } while(sdentry
->d_inode
!= NULL
); /* need negative lookup */
1337 qsilly
.name
= silly
;
1338 qsilly
.len
= strlen(silly
);
1339 if (dentry
->d_inode
) {
1340 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1342 nfs_mark_for_revalidate(dentry
->d_inode
);
1344 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1347 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1348 d_move(dentry
, sdentry
);
1349 error
= nfs_async_unlink(dir
, dentry
);
1350 /* If we return 0 we don't unlink */
1358 * Remove a file after making sure there are no pending writes,
1359 * and after checking that the file has only one user.
1361 * We invalidate the attribute cache and free the inode prior to the operation
1362 * to avoid possible races if the server reuses the inode.
1364 static int nfs_safe_remove(struct dentry
*dentry
)
1366 struct inode
*dir
= dentry
->d_parent
->d_inode
;
1367 struct inode
*inode
= dentry
->d_inode
;
1370 dfprintk(VFS
, "NFS: safe_remove(%s/%s)\n",
1371 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1373 /* If the dentry was sillyrenamed, we simply call d_delete() */
1374 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1379 if (inode
!= NULL
) {
1380 nfs_inode_return_delegation(inode
);
1381 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1382 /* The VFS may want to delete this inode */
1385 nfs_mark_for_revalidate(inode
);
1387 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1392 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1393 * belongs to an active ".nfs..." file and we return -EBUSY.
1395 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1397 static int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1400 int need_rehash
= 0;
1402 dfprintk(VFS
, "NFS: unlink(%s/%ld, %s)\n", dir
->i_sb
->s_id
,
1403 dir
->i_ino
, dentry
->d_name
.name
);
1406 spin_lock(&dcache_lock
);
1407 spin_lock(&dentry
->d_lock
);
1408 if (atomic_read(&dentry
->d_count
) > 1) {
1409 spin_unlock(&dentry
->d_lock
);
1410 spin_unlock(&dcache_lock
);
1411 /* Start asynchronous writeout of the inode */
1412 write_inode_now(dentry
->d_inode
, 0);
1413 error
= nfs_sillyrename(dir
, dentry
);
1417 if (!d_unhashed(dentry
)) {
1421 spin_unlock(&dentry
->d_lock
);
1422 spin_unlock(&dcache_lock
);
1423 error
= nfs_safe_remove(dentry
);
1425 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1426 } else if (need_rehash
)
1433 * To create a symbolic link, most file systems instantiate a new inode,
1434 * add a page to it containing the path, then write it out to the disk
1435 * using prepare_write/commit_write.
1437 * Unfortunately the NFS client can't create the in-core inode first
1438 * because it needs a file handle to create an in-core inode (see
1439 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1440 * symlink request has completed on the server.
1442 * So instead we allocate a raw page, copy the symname into it, then do
1443 * the SYMLINK request with the page as the buffer. If it succeeds, we
1444 * now have a new file handle and can instantiate an in-core NFS inode
1445 * and move the raw page into its mapping.
1447 static int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1449 struct pagevec lru_pvec
;
1453 unsigned int pathlen
= strlen(symname
);
1456 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s)\n", dir
->i_sb
->s_id
,
1457 dir
->i_ino
, dentry
->d_name
.name
, symname
);
1459 if (pathlen
> PAGE_SIZE
)
1460 return -ENAMETOOLONG
;
1462 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1463 attr
.ia_valid
= ATTR_MODE
;
1467 page
= alloc_page(GFP_HIGHUSER
);
1473 kaddr
= kmap_atomic(page
, KM_USER0
);
1474 memcpy(kaddr
, symname
, pathlen
);
1475 if (pathlen
< PAGE_SIZE
)
1476 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1477 kunmap_atomic(kaddr
, KM_USER0
);
1479 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1481 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1482 dir
->i_sb
->s_id
, dir
->i_ino
,
1483 dentry
->d_name
.name
, symname
, error
);
1491 * No big deal if we can't add this page to the page cache here.
1492 * READLINK will get the missing page from the server if needed.
1494 pagevec_init(&lru_pvec
, 0);
1495 if (!add_to_page_cache(page
, dentry
->d_inode
->i_mapping
, 0,
1497 pagevec_add(&lru_pvec
, page
);
1498 pagevec_lru_add(&lru_pvec
);
1499 SetPageUptodate(page
);
1509 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1511 struct inode
*inode
= old_dentry
->d_inode
;
1514 dfprintk(VFS
, "NFS: link(%s/%s -> %s/%s)\n",
1515 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1516 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1520 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1522 atomic_inc(&inode
->i_count
);
1523 d_add(dentry
, inode
);
1531 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1532 * different file handle for the same inode after a rename (e.g. when
1533 * moving to a different directory). A fail-safe method to do so would
1534 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1535 * rename the old file using the sillyrename stuff. This way, the original
1536 * file in old_dir will go away when the last process iput()s the inode.
1540 * It actually works quite well. One needs to have the possibility for
1541 * at least one ".nfs..." file in each directory the file ever gets
1542 * moved or linked to which happens automagically with the new
1543 * implementation that only depends on the dcache stuff instead of
1544 * using the inode layer
1546 * Unfortunately, things are a little more complicated than indicated
1547 * above. For a cross-directory move, we want to make sure we can get
1548 * rid of the old inode after the operation. This means there must be
1549 * no pending writes (if it's a file), and the use count must be 1.
1550 * If these conditions are met, we can drop the dentries before doing
1553 static int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1554 struct inode
*new_dir
, struct dentry
*new_dentry
)
1556 struct inode
*old_inode
= old_dentry
->d_inode
;
1557 struct inode
*new_inode
= new_dentry
->d_inode
;
1558 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
1562 * To prevent any new references to the target during the rename,
1563 * we unhash the dentry and free the inode in advance.
1566 if (!d_unhashed(new_dentry
)) {
1568 rehash
= new_dentry
;
1571 dfprintk(VFS
, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1572 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1573 new_dentry
->d_parent
->d_name
.name
, new_dentry
->d_name
.name
,
1574 atomic_read(&new_dentry
->d_count
));
1577 * First check whether the target is busy ... we can't
1578 * safely do _any_ rename if the target is in use.
1580 * For files, make a copy of the dentry and then do a
1581 * silly-rename. If the silly-rename succeeds, the
1582 * copied dentry is hashed and becomes the new target.
1586 if (S_ISDIR(new_inode
->i_mode
)) {
1588 if (!S_ISDIR(old_inode
->i_mode
))
1590 } else if (atomic_read(&new_dentry
->d_count
) > 2) {
1592 /* copy the target dentry's name */
1593 dentry
= d_alloc(new_dentry
->d_parent
,
1594 &new_dentry
->d_name
);
1598 /* silly-rename the existing target ... */
1599 err
= nfs_sillyrename(new_dir
, new_dentry
);
1601 new_dentry
= rehash
= dentry
;
1603 /* instantiate the replacement target */
1604 d_instantiate(new_dentry
, NULL
);
1605 } else if (atomic_read(&new_dentry
->d_count
) > 1)
1606 /* dentry still busy? */
1609 drop_nlink(new_inode
);
1613 * ... prune child dentries and writebacks if needed.
1615 if (atomic_read(&old_dentry
->d_count
) > 1) {
1616 if (S_ISREG(old_inode
->i_mode
))
1617 nfs_wb_all(old_inode
);
1618 shrink_dcache_parent(old_dentry
);
1620 nfs_inode_return_delegation(old_inode
);
1622 if (new_inode
!= NULL
) {
1623 nfs_inode_return_delegation(new_inode
);
1624 d_delete(new_dentry
);
1627 error
= NFS_PROTO(old_dir
)->rename(old_dir
, &old_dentry
->d_name
,
1628 new_dir
, &new_dentry
->d_name
);
1629 nfs_mark_for_revalidate(old_inode
);
1634 d_move(old_dentry
, new_dentry
);
1635 nfs_set_verifier(new_dentry
,
1636 nfs_save_change_attribute(new_dir
));
1639 /* new dentry created? */
1646 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
1647 static LIST_HEAD(nfs_access_lru_list
);
1648 static atomic_long_t nfs_access_nr_entries
;
1650 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
1652 put_rpccred(entry
->cred
);
1654 smp_mb__before_atomic_dec();
1655 atomic_long_dec(&nfs_access_nr_entries
);
1656 smp_mb__after_atomic_dec();
1659 int nfs_access_cache_shrinker(int nr_to_scan
, gfp_t gfp_mask
)
1662 struct nfs_inode
*nfsi
;
1663 struct nfs_access_entry
*cache
;
1666 spin_lock(&nfs_access_lru_lock
);
1667 list_for_each_entry(nfsi
, &nfs_access_lru_list
, access_cache_inode_lru
) {
1668 struct inode
*inode
;
1670 if (nr_to_scan
-- == 0)
1672 inode
= igrab(&nfsi
->vfs_inode
);
1675 spin_lock(&inode
->i_lock
);
1676 if (list_empty(&nfsi
->access_cache_entry_lru
))
1677 goto remove_lru_entry
;
1678 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
1679 struct nfs_access_entry
, lru
);
1680 list_move(&cache
->lru
, &head
);
1681 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1682 if (!list_empty(&nfsi
->access_cache_entry_lru
))
1683 list_move_tail(&nfsi
->access_cache_inode_lru
,
1684 &nfs_access_lru_list
);
1687 list_del_init(&nfsi
->access_cache_inode_lru
);
1688 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
1690 spin_unlock(&inode
->i_lock
);
1691 spin_unlock(&nfs_access_lru_lock
);
1695 spin_unlock(&nfs_access_lru_lock
);
1696 while (!list_empty(&head
)) {
1697 cache
= list_entry(head
.next
, struct nfs_access_entry
, lru
);
1698 list_del(&cache
->lru
);
1699 nfs_access_free_entry(cache
);
1701 return (atomic_long_read(&nfs_access_nr_entries
) / 100) * sysctl_vfs_cache_pressure
;
1704 static void __nfs_access_zap_cache(struct inode
*inode
)
1706 struct nfs_inode
*nfsi
= NFS_I(inode
);
1707 struct rb_root
*root_node
= &nfsi
->access_cache
;
1708 struct rb_node
*n
, *dispose
= NULL
;
1709 struct nfs_access_entry
*entry
;
1711 /* Unhook entries from the cache */
1712 while ((n
= rb_first(root_node
)) != NULL
) {
1713 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1714 rb_erase(n
, root_node
);
1715 list_del(&entry
->lru
);
1716 n
->rb_left
= dispose
;
1719 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
1720 spin_unlock(&inode
->i_lock
);
1722 /* Now kill them all! */
1723 while (dispose
!= NULL
) {
1725 dispose
= n
->rb_left
;
1726 nfs_access_free_entry(rb_entry(n
, struct nfs_access_entry
, rb_node
));
1730 void nfs_access_zap_cache(struct inode
*inode
)
1732 /* Remove from global LRU init */
1733 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_FLAGS(inode
))) {
1734 spin_lock(&nfs_access_lru_lock
);
1735 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
1736 spin_unlock(&nfs_access_lru_lock
);
1739 spin_lock(&inode
->i_lock
);
1740 /* This will release the spinlock */
1741 __nfs_access_zap_cache(inode
);
1744 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
1746 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
1747 struct nfs_access_entry
*entry
;
1750 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1752 if (cred
< entry
->cred
)
1754 else if (cred
> entry
->cred
)
1762 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
1764 struct nfs_inode
*nfsi
= NFS_I(inode
);
1765 struct nfs_access_entry
*cache
;
1768 spin_lock(&inode
->i_lock
);
1769 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
1771 cache
= nfs_access_search_rbtree(inode
, cred
);
1774 if (!time_in_range(jiffies
, cache
->jiffies
, cache
->jiffies
+ nfsi
->attrtimeo
))
1776 res
->jiffies
= cache
->jiffies
;
1777 res
->cred
= cache
->cred
;
1778 res
->mask
= cache
->mask
;
1779 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
1782 spin_unlock(&inode
->i_lock
);
1785 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1786 list_del(&cache
->lru
);
1787 spin_unlock(&inode
->i_lock
);
1788 nfs_access_free_entry(cache
);
1791 /* This will release the spinlock */
1792 __nfs_access_zap_cache(inode
);
1796 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
1798 struct nfs_inode
*nfsi
= NFS_I(inode
);
1799 struct rb_root
*root_node
= &nfsi
->access_cache
;
1800 struct rb_node
**p
= &root_node
->rb_node
;
1801 struct rb_node
*parent
= NULL
;
1802 struct nfs_access_entry
*entry
;
1804 spin_lock(&inode
->i_lock
);
1805 while (*p
!= NULL
) {
1807 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
1809 if (set
->cred
< entry
->cred
)
1810 p
= &parent
->rb_left
;
1811 else if (set
->cred
> entry
->cred
)
1812 p
= &parent
->rb_right
;
1816 rb_link_node(&set
->rb_node
, parent
, p
);
1817 rb_insert_color(&set
->rb_node
, root_node
);
1818 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1819 spin_unlock(&inode
->i_lock
);
1822 rb_replace_node(parent
, &set
->rb_node
, root_node
);
1823 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1824 list_del(&entry
->lru
);
1825 spin_unlock(&inode
->i_lock
);
1826 nfs_access_free_entry(entry
);
1829 static void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
1831 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
1834 RB_CLEAR_NODE(&cache
->rb_node
);
1835 cache
->jiffies
= set
->jiffies
;
1836 cache
->cred
= get_rpccred(set
->cred
);
1837 cache
->mask
= set
->mask
;
1839 nfs_access_add_rbtree(inode
, cache
);
1841 /* Update accounting */
1842 smp_mb__before_atomic_inc();
1843 atomic_long_inc(&nfs_access_nr_entries
);
1844 smp_mb__after_atomic_inc();
1846 /* Add inode to global LRU list */
1847 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_FLAGS(inode
))) {
1848 spin_lock(&nfs_access_lru_lock
);
1849 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
, &nfs_access_lru_list
);
1850 spin_unlock(&nfs_access_lru_lock
);
1854 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
1856 struct nfs_access_entry cache
;
1859 status
= nfs_access_get_cached(inode
, cred
, &cache
);
1863 /* Be clever: ask server to check for all possible rights */
1864 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
1866 cache
.jiffies
= jiffies
;
1867 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
1870 nfs_access_add_cache(inode
, &cache
);
1872 if ((cache
.mask
& mask
) == mask
)
1877 static int nfs_open_permission_mask(int openflags
)
1881 if (openflags
& FMODE_READ
)
1883 if (openflags
& FMODE_WRITE
)
1885 if (openflags
& FMODE_EXEC
)
1890 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
1892 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
1895 int nfs_permission(struct inode
*inode
, int mask
, struct nameidata
*nd
)
1897 struct rpc_cred
*cred
;
1900 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
1904 /* Is this sys_access() ? */
1905 if (nd
!= NULL
&& (nd
->flags
& LOOKUP_ACCESS
))
1908 switch (inode
->i_mode
& S_IFMT
) {
1912 /* NFSv4 has atomic_open... */
1913 if (nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
)
1915 && (nd
->flags
& LOOKUP_OPEN
))
1920 * Optimize away all write operations, since the server
1921 * will check permissions when we perform the op.
1923 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
1930 if (!NFS_PROTO(inode
)->access
)
1933 cred
= rpcauth_lookupcred(NFS_CLIENT(inode
)->cl_auth
, 0);
1934 if (!IS_ERR(cred
)) {
1935 res
= nfs_do_access(inode
, cred
, mask
);
1938 res
= PTR_ERR(cred
);
1941 dfprintk(VFS
, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1942 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
1945 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
1947 res
= generic_permission(inode
, mask
, NULL
);
1954 * version-control: t
1955 * kept-new-versions: 5