sh: remove PTRACE_O_TRACESYSGOOD from asm/ptrace.h
[linux-2.6/mini2440.git] / fs / nfs / dir.c
blob35334539d9475dc0188bdb80f4a1d15ef70b56a9
1 /*
2 * linux/fs/nfs/dir.c
4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
42 /* #define NFS_DEBUG_VERBOSE 1 */
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .readdir = nfs_readdir,
63 .open = nfs_opendir,
64 .release = nfs_release,
65 .fsync = nfs_fsync_dir,
68 const struct inode_operations nfs_dir_inode_operations = {
69 .create = nfs_create,
70 .lookup = nfs_lookup,
71 .link = nfs_link,
72 .unlink = nfs_unlink,
73 .symlink = nfs_symlink,
74 .mkdir = nfs_mkdir,
75 .rmdir = nfs_rmdir,
76 .mknod = nfs_mknod,
77 .rename = nfs_rename,
78 .permission = nfs_permission,
79 .getattr = nfs_getattr,
80 .setattr = nfs_setattr,
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 .create = nfs_create,
86 .lookup = nfs_lookup,
87 .link = nfs_link,
88 .unlink = nfs_unlink,
89 .symlink = nfs_symlink,
90 .mkdir = nfs_mkdir,
91 .rmdir = nfs_rmdir,
92 .mknod = nfs_mknod,
93 .rename = nfs_rename,
94 .permission = nfs_permission,
95 .getattr = nfs_getattr,
96 .setattr = nfs_setattr,
97 .listxattr = nfs3_listxattr,
98 .getxattr = nfs3_getxattr,
99 .setxattr = nfs3_setxattr,
100 .removexattr = nfs3_removexattr,
102 #endif /* CONFIG_NFS_V3 */
104 #ifdef CONFIG_NFS_V4
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 .create = nfs_create,
109 .lookup = nfs_atomic_lookup,
110 .link = nfs_link,
111 .unlink = nfs_unlink,
112 .symlink = nfs_symlink,
113 .mkdir = nfs_mkdir,
114 .rmdir = nfs_rmdir,
115 .mknod = nfs_mknod,
116 .rename = nfs_rename,
117 .permission = nfs_permission,
118 .getattr = nfs_getattr,
119 .setattr = nfs_setattr,
120 .getxattr = nfs4_getxattr,
121 .setxattr = nfs4_setxattr,
122 .listxattr = nfs4_listxattr,
125 #endif /* CONFIG_NFS_V4 */
128 * Open file
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
133 int res;
135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 inode->i_sb->s_id, inode->i_ino);
138 lock_kernel();
139 /* Call generic open code in order to cache credentials */
140 res = nfs_open(inode, filp);
141 unlock_kernel();
142 return res;
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 struct file *file;
148 struct page *page;
149 unsigned long page_index;
150 __be32 *ptr;
151 u64 *dir_cookie;
152 loff_t current_index;
153 struct nfs_entry *entry;
154 decode_dirent_t decode;
155 int plus;
156 int error;
157 unsigned long timestamp;
158 int timestamp_valid;
159 } nfs_readdir_descriptor_t;
161 /* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
167 * to be.
169 * NOTE: Dirent information verification is done always by the
170 * page-in of the RPC reply, nowhere else, this simplies
171 * things substantially.
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
176 struct file *file = desc->file;
177 struct inode *inode = file->f_path.dentry->d_inode;
178 struct rpc_cred *cred = nfs_file_cred(file);
179 unsigned long timestamp;
180 int error;
182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 __FUNCTION__, (long long)desc->entry->cookie,
184 page->index);
186 again:
187 timestamp = jiffies;
188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 NFS_SERVER(inode)->dtsize, desc->plus);
190 if (error < 0) {
191 /* We requested READDIRPLUS, but the server doesn't grok it */
192 if (error == -ENOTSUPP && desc->plus) {
193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195 desc->plus = 0;
196 goto again;
198 goto error;
200 desc->timestamp = timestamp;
201 desc->timestamp_valid = 1;
202 SetPageUptodate(page);
203 /* Ensure consistent page alignment of the data.
204 * Note: assumes we have exclusive access to this mapping either
205 * through inode->i_mutex or some other mechanism.
207 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
208 /* Should never happen */
209 nfs_zap_mapping(inode, inode->i_mapping);
211 unlock_page(page);
212 return 0;
213 error:
214 unlock_page(page);
215 desc->error = error;
216 return -EIO;
219 static inline
220 int dir_decode(nfs_readdir_descriptor_t *desc)
222 __be32 *p = desc->ptr;
223 p = desc->decode(p, desc->entry, desc->plus);
224 if (IS_ERR(p))
225 return PTR_ERR(p);
226 desc->ptr = p;
227 if (desc->timestamp_valid)
228 desc->entry->fattr->time_start = desc->timestamp;
229 else
230 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
231 return 0;
234 static inline
235 void dir_page_release(nfs_readdir_descriptor_t *desc)
237 kunmap(desc->page);
238 page_cache_release(desc->page);
239 desc->page = NULL;
240 desc->ptr = NULL;
244 * Given a pointer to a buffer that has already been filled by a call
245 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
247 * If the end of the buffer has been reached, return -EAGAIN, if not,
248 * return the offset within the buffer of the next entry to be
249 * read.
251 static inline
252 int find_dirent(nfs_readdir_descriptor_t *desc)
254 struct nfs_entry *entry = desc->entry;
255 int loop_count = 0,
256 status;
258 while((status = dir_decode(desc)) == 0) {
259 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
260 __FUNCTION__, (unsigned long long)entry->cookie);
261 if (entry->prev_cookie == *desc->dir_cookie)
262 break;
263 if (loop_count++ > 200) {
264 loop_count = 0;
265 schedule();
268 return status;
272 * Given a pointer to a buffer that has already been filled by a call
273 * to readdir, find the entry at offset 'desc->file->f_pos'.
275 * If the end of the buffer has been reached, return -EAGAIN, if not,
276 * return the offset within the buffer of the next entry to be
277 * read.
279 static inline
280 int find_dirent_index(nfs_readdir_descriptor_t *desc)
282 struct nfs_entry *entry = desc->entry;
283 int loop_count = 0,
284 status;
286 for(;;) {
287 status = dir_decode(desc);
288 if (status)
289 break;
291 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
292 (unsigned long long)entry->cookie, desc->current_index);
294 if (desc->file->f_pos == desc->current_index) {
295 *desc->dir_cookie = entry->cookie;
296 break;
298 desc->current_index++;
299 if (loop_count++ > 200) {
300 loop_count = 0;
301 schedule();
304 return status;
308 * Find the given page, and call find_dirent() or find_dirent_index in
309 * order to try to return the next entry.
311 static inline
312 int find_dirent_page(nfs_readdir_descriptor_t *desc)
314 struct inode *inode = desc->file->f_path.dentry->d_inode;
315 struct page *page;
316 int status;
318 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
319 __FUNCTION__, desc->page_index,
320 (long long) *desc->dir_cookie);
322 /* If we find the page in the page_cache, we cannot be sure
323 * how fresh the data is, so we will ignore readdir_plus attributes.
325 desc->timestamp_valid = 0;
326 page = read_cache_page(inode->i_mapping, desc->page_index,
327 (filler_t *)nfs_readdir_filler, desc);
328 if (IS_ERR(page)) {
329 status = PTR_ERR(page);
330 goto out;
333 /* NOTE: Someone else may have changed the READDIRPLUS flag */
334 desc->page = page;
335 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
336 if (*desc->dir_cookie != 0)
337 status = find_dirent(desc);
338 else
339 status = find_dirent_index(desc);
340 if (status < 0)
341 dir_page_release(desc);
342 out:
343 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
344 return status;
348 * Recurse through the page cache pages, and return a
349 * filled nfs_entry structure of the next directory entry if possible.
351 * The target for the search is '*desc->dir_cookie' if non-0,
352 * 'desc->file->f_pos' otherwise
354 static inline
355 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
357 int loop_count = 0;
358 int res;
360 /* Always search-by-index from the beginning of the cache */
361 if (*desc->dir_cookie == 0) {
362 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
363 (long long)desc->file->f_pos);
364 desc->page_index = 0;
365 desc->entry->cookie = desc->entry->prev_cookie = 0;
366 desc->entry->eof = 0;
367 desc->current_index = 0;
368 } else
369 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
370 (unsigned long long)*desc->dir_cookie);
372 for (;;) {
373 res = find_dirent_page(desc);
374 if (res != -EAGAIN)
375 break;
376 /* Align to beginning of next page */
377 desc->page_index ++;
378 if (loop_count++ > 200) {
379 loop_count = 0;
380 schedule();
384 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
385 return res;
388 static inline unsigned int dt_type(struct inode *inode)
390 return (inode->i_mode >> 12) & 15;
393 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
396 * Once we've found the start of the dirent within a page: fill 'er up...
398 static
399 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
400 filldir_t filldir)
402 struct file *file = desc->file;
403 struct nfs_entry *entry = desc->entry;
404 struct dentry *dentry = NULL;
405 u64 fileid;
406 int loop_count = 0,
407 res;
409 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
410 (unsigned long long)entry->cookie);
412 for(;;) {
413 unsigned d_type = DT_UNKNOWN;
414 /* Note: entry->prev_cookie contains the cookie for
415 * retrieving the current dirent on the server */
416 fileid = entry->ino;
418 /* Get a dentry if we have one */
419 if (dentry != NULL)
420 dput(dentry);
421 dentry = nfs_readdir_lookup(desc);
423 /* Use readdirplus info */
424 if (dentry != NULL && dentry->d_inode != NULL) {
425 d_type = dt_type(dentry->d_inode);
426 fileid = NFS_FILEID(dentry->d_inode);
429 res = filldir(dirent, entry->name, entry->len,
430 file->f_pos, nfs_compat_user_ino64(fileid),
431 d_type);
432 if (res < 0)
433 break;
434 file->f_pos++;
435 *desc->dir_cookie = entry->cookie;
436 if (dir_decode(desc) != 0) {
437 desc->page_index ++;
438 break;
440 if (loop_count++ > 200) {
441 loop_count = 0;
442 schedule();
445 dir_page_release(desc);
446 if (dentry != NULL)
447 dput(dentry);
448 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
449 (unsigned long long)*desc->dir_cookie, res);
450 return res;
454 * If we cannot find a cookie in our cache, we suspect that this is
455 * because it points to a deleted file, so we ask the server to return
456 * whatever it thinks is the next entry. We then feed this to filldir.
457 * If all goes well, we should then be able to find our way round the
458 * cache on the next call to readdir_search_pagecache();
460 * NOTE: we cannot add the anonymous page to the pagecache because
461 * the data it contains might not be page aligned. Besides,
462 * we should already have a complete representation of the
463 * directory in the page cache by the time we get here.
465 static inline
466 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
467 filldir_t filldir)
469 struct file *file = desc->file;
470 struct inode *inode = file->f_path.dentry->d_inode;
471 struct rpc_cred *cred = nfs_file_cred(file);
472 struct page *page = NULL;
473 int status;
474 unsigned long timestamp;
476 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
477 (unsigned long long)*desc->dir_cookie);
479 page = alloc_page(GFP_HIGHUSER);
480 if (!page) {
481 status = -ENOMEM;
482 goto out;
484 timestamp = jiffies;
485 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
486 page,
487 NFS_SERVER(inode)->dtsize,
488 desc->plus);
489 desc->page = page;
490 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
491 if (desc->error >= 0) {
492 desc->timestamp = timestamp;
493 desc->timestamp_valid = 1;
494 if ((status = dir_decode(desc)) == 0)
495 desc->entry->prev_cookie = *desc->dir_cookie;
496 } else
497 status = -EIO;
498 if (status < 0)
499 goto out_release;
501 status = nfs_do_filldir(desc, dirent, filldir);
503 /* Reset read descriptor so it searches the page cache from
504 * the start upon the next call to readdir_search_pagecache() */
505 desc->page_index = 0;
506 desc->entry->cookie = desc->entry->prev_cookie = 0;
507 desc->entry->eof = 0;
508 out:
509 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
510 __FUNCTION__, status);
511 return status;
512 out_release:
513 dir_page_release(desc);
514 goto out;
517 /* The file offset position represents the dirent entry number. A
518 last cookie cache takes care of the common case of reading the
519 whole directory.
521 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
523 struct dentry *dentry = filp->f_path.dentry;
524 struct inode *inode = dentry->d_inode;
525 nfs_readdir_descriptor_t my_desc,
526 *desc = &my_desc;
527 struct nfs_entry my_entry;
528 struct nfs_fh fh;
529 struct nfs_fattr fattr;
530 long res;
532 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
533 dentry->d_parent->d_name.name, dentry->d_name.name,
534 (long long)filp->f_pos);
535 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
537 lock_kernel();
539 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
540 if (res < 0) {
541 unlock_kernel();
542 return res;
546 * filp->f_pos points to the dirent entry number.
547 * *desc->dir_cookie has the cookie for the next entry. We have
548 * to either find the entry with the appropriate number or
549 * revalidate the cookie.
551 memset(desc, 0, sizeof(*desc));
553 desc->file = filp;
554 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
555 desc->decode = NFS_PROTO(inode)->decode_dirent;
556 desc->plus = NFS_USE_READDIRPLUS(inode);
558 my_entry.cookie = my_entry.prev_cookie = 0;
559 my_entry.eof = 0;
560 my_entry.fh = &fh;
561 my_entry.fattr = &fattr;
562 nfs_fattr_init(&fattr);
563 desc->entry = &my_entry;
565 nfs_block_sillyrename(dentry);
566 while(!desc->entry->eof) {
567 res = readdir_search_pagecache(desc);
569 if (res == -EBADCOOKIE) {
570 /* This means either end of directory */
571 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
572 /* Or that the server has 'lost' a cookie */
573 res = uncached_readdir(desc, dirent, filldir);
574 if (res >= 0)
575 continue;
577 res = 0;
578 break;
580 if (res == -ETOOSMALL && desc->plus) {
581 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
582 nfs_zap_caches(inode);
583 desc->plus = 0;
584 desc->entry->eof = 0;
585 continue;
587 if (res < 0)
588 break;
590 res = nfs_do_filldir(desc, dirent, filldir);
591 if (res < 0) {
592 res = 0;
593 break;
596 nfs_unblock_sillyrename(dentry);
597 unlock_kernel();
598 if (res > 0)
599 res = 0;
600 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
601 dentry->d_parent->d_name.name, dentry->d_name.name,
602 res);
603 return res;
606 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
608 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
609 switch (origin) {
610 case 1:
611 offset += filp->f_pos;
612 case 0:
613 if (offset >= 0)
614 break;
615 default:
616 offset = -EINVAL;
617 goto out;
619 if (offset != filp->f_pos) {
620 filp->f_pos = offset;
621 nfs_file_open_context(filp)->dir_cookie = 0;
623 out:
624 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
625 return offset;
629 * All directory operations under NFS are synchronous, so fsync()
630 * is a dummy operation.
632 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
634 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
635 dentry->d_parent->d_name.name, dentry->d_name.name,
636 datasync);
638 return 0;
642 * A check for whether or not the parent directory has changed.
643 * In the case it has, we assume that the dentries are untrustworthy
644 * and may need to be looked up again.
646 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
648 if (IS_ROOT(dentry))
649 return 1;
650 if (!nfs_verify_change_attribute(dir, dentry->d_time))
651 return 0;
652 /* Revalidate nfsi->cache_change_attribute before we declare a match */
653 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
654 return 0;
655 if (!nfs_verify_change_attribute(dir, dentry->d_time))
656 return 0;
657 return 1;
661 * Return the intent data that applies to this particular path component
663 * Note that the current set of intents only apply to the very last
664 * component of the path.
665 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
667 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
669 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
670 return 0;
671 return nd->flags & mask;
675 * Use intent information to check whether or not we're going to do
676 * an O_EXCL create using this path component.
678 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
680 if (NFS_PROTO(dir)->version == 2)
681 return 0;
682 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
683 return 0;
684 return (nd->intent.open.flags & O_EXCL) != 0;
688 * Inode and filehandle revalidation for lookups.
690 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
691 * or if the intent information indicates that we're about to open this
692 * particular file and the "nocto" mount flag is not set.
695 static inline
696 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
698 struct nfs_server *server = NFS_SERVER(inode);
700 if (nd != NULL) {
701 /* VFS wants an on-the-wire revalidation */
702 if (nd->flags & LOOKUP_REVAL)
703 goto out_force;
704 /* This is an open(2) */
705 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
706 !(server->flags & NFS_MOUNT_NOCTO) &&
707 (S_ISREG(inode->i_mode) ||
708 S_ISDIR(inode->i_mode)))
709 goto out_force;
710 return 0;
712 return nfs_revalidate_inode(server, inode);
713 out_force:
714 return __nfs_revalidate_inode(server, inode);
718 * We judge how long we want to trust negative
719 * dentries by looking at the parent inode mtime.
721 * If parent mtime has changed, we revalidate, else we wait for a
722 * period corresponding to the parent's attribute cache timeout value.
724 static inline
725 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
726 struct nameidata *nd)
728 /* Don't revalidate a negative dentry if we're creating a new file */
729 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
730 return 0;
731 return !nfs_check_verifier(dir, dentry);
735 * This is called every time the dcache has a lookup hit,
736 * and we should check whether we can really trust that
737 * lookup.
739 * NOTE! The hit can be a negative hit too, don't assume
740 * we have an inode!
742 * If the parent directory is seen to have changed, we throw out the
743 * cached dentry and do a new lookup.
745 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
747 struct inode *dir;
748 struct inode *inode;
749 struct dentry *parent;
750 int error;
751 struct nfs_fh fhandle;
752 struct nfs_fattr fattr;
754 parent = dget_parent(dentry);
755 lock_kernel();
756 dir = parent->d_inode;
757 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
758 inode = dentry->d_inode;
760 if (!inode) {
761 if (nfs_neg_need_reval(dir, dentry, nd))
762 goto out_bad;
763 goto out_valid;
766 if (is_bad_inode(inode)) {
767 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
768 __FUNCTION__, dentry->d_parent->d_name.name,
769 dentry->d_name.name);
770 goto out_bad;
773 /* Force a full look up iff the parent directory has changed */
774 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
775 if (nfs_lookup_verify_inode(inode, nd))
776 goto out_zap_parent;
777 goto out_valid;
780 if (NFS_STALE(inode))
781 goto out_bad;
783 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
784 if (error)
785 goto out_bad;
786 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
787 goto out_bad;
788 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
789 goto out_bad;
791 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
792 out_valid:
793 unlock_kernel();
794 dput(parent);
795 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
796 __FUNCTION__, dentry->d_parent->d_name.name,
797 dentry->d_name.name);
798 return 1;
799 out_zap_parent:
800 nfs_zap_caches(dir);
801 out_bad:
802 nfs_mark_for_revalidate(dir);
803 if (inode && S_ISDIR(inode->i_mode)) {
804 /* Purge readdir caches. */
805 nfs_zap_caches(inode);
806 /* If we have submounts, don't unhash ! */
807 if (have_submounts(dentry))
808 goto out_valid;
809 shrink_dcache_parent(dentry);
811 d_drop(dentry);
812 unlock_kernel();
813 dput(parent);
814 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
815 __FUNCTION__, dentry->d_parent->d_name.name,
816 dentry->d_name.name);
817 return 0;
821 * This is called from dput() when d_count is going to 0.
823 static int nfs_dentry_delete(struct dentry *dentry)
825 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
826 dentry->d_parent->d_name.name, dentry->d_name.name,
827 dentry->d_flags);
829 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
830 /* Unhash it, so that ->d_iput() would be called */
831 return 1;
833 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
834 /* Unhash it, so that ancestors of killed async unlink
835 * files will be cleaned up during umount */
836 return 1;
838 return 0;
843 * Called when the dentry loses inode.
844 * We use it to clean up silly-renamed files.
846 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
848 nfs_inode_return_delegation(inode);
849 if (S_ISDIR(inode->i_mode))
850 /* drop any readdir cache as it could easily be old */
851 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
853 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
854 lock_kernel();
855 drop_nlink(inode);
856 nfs_complete_unlink(dentry, inode);
857 unlock_kernel();
859 iput(inode);
862 struct dentry_operations nfs_dentry_operations = {
863 .d_revalidate = nfs_lookup_revalidate,
864 .d_delete = nfs_dentry_delete,
865 .d_iput = nfs_dentry_iput,
868 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
870 struct dentry *res;
871 struct dentry *parent;
872 struct inode *inode = NULL;
873 int error;
874 struct nfs_fh fhandle;
875 struct nfs_fattr fattr;
877 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
878 dentry->d_parent->d_name.name, dentry->d_name.name);
879 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
881 res = ERR_PTR(-ENAMETOOLONG);
882 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
883 goto out;
885 res = ERR_PTR(-ENOMEM);
886 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
888 lock_kernel();
891 * If we're doing an exclusive create, optimize away the lookup
892 * but don't hash the dentry.
894 if (nfs_is_exclusive_create(dir, nd)) {
895 d_instantiate(dentry, NULL);
896 res = NULL;
897 goto out_unlock;
900 parent = dentry->d_parent;
901 /* Protect against concurrent sillydeletes */
902 nfs_block_sillyrename(parent);
903 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
904 if (error == -ENOENT)
905 goto no_entry;
906 if (error < 0) {
907 res = ERR_PTR(error);
908 goto out_unblock_sillyrename;
910 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
911 res = (struct dentry *)inode;
912 if (IS_ERR(res))
913 goto out_unblock_sillyrename;
915 no_entry:
916 res = d_materialise_unique(dentry, inode);
917 if (res != NULL) {
918 if (IS_ERR(res))
919 goto out_unblock_sillyrename;
920 dentry = res;
922 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
923 out_unblock_sillyrename:
924 nfs_unblock_sillyrename(parent);
925 out_unlock:
926 unlock_kernel();
927 out:
928 return res;
931 #ifdef CONFIG_NFS_V4
932 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
934 struct dentry_operations nfs4_dentry_operations = {
935 .d_revalidate = nfs_open_revalidate,
936 .d_delete = nfs_dentry_delete,
937 .d_iput = nfs_dentry_iput,
941 * Use intent information to determine whether we need to substitute
942 * the NFSv4-style stateful OPEN for the LOOKUP call
944 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
946 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
947 return 0;
948 /* NFS does not (yet) have a stateful open for directories */
949 if (nd->flags & LOOKUP_DIRECTORY)
950 return 0;
951 /* Are we trying to write to a read only partition? */
952 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
953 return 0;
954 return 1;
957 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
959 struct dentry *res = NULL;
960 int error;
962 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
963 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
965 /* Check that we are indeed trying to open this file */
966 if (!is_atomic_open(dir, nd))
967 goto no_open;
969 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
970 res = ERR_PTR(-ENAMETOOLONG);
971 goto out;
973 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
975 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
976 * the dentry. */
977 if (nd->intent.open.flags & O_EXCL) {
978 d_instantiate(dentry, NULL);
979 goto out;
982 /* Open the file on the server */
983 lock_kernel();
984 res = nfs4_atomic_open(dir, dentry, nd);
985 unlock_kernel();
986 if (IS_ERR(res)) {
987 error = PTR_ERR(res);
988 switch (error) {
989 /* Make a negative dentry */
990 case -ENOENT:
991 res = NULL;
992 goto out;
993 /* This turned out not to be a regular file */
994 case -EISDIR:
995 case -ENOTDIR:
996 goto no_open;
997 case -ELOOP:
998 if (!(nd->intent.open.flags & O_NOFOLLOW))
999 goto no_open;
1000 /* case -EINVAL: */
1001 default:
1002 goto out;
1004 } else if (res != NULL)
1005 dentry = res;
1006 out:
1007 return res;
1008 no_open:
1009 return nfs_lookup(dir, dentry, nd);
1012 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1014 struct dentry *parent = NULL;
1015 struct inode *inode = dentry->d_inode;
1016 struct inode *dir;
1017 int openflags, ret = 0;
1019 parent = dget_parent(dentry);
1020 dir = parent->d_inode;
1021 if (!is_atomic_open(dir, nd))
1022 goto no_open;
1023 /* We can't create new files in nfs_open_revalidate(), so we
1024 * optimize away revalidation of negative dentries.
1026 if (inode == NULL) {
1027 if (!nfs_neg_need_reval(dir, dentry, nd))
1028 ret = 1;
1029 goto out;
1032 /* NFS only supports OPEN on regular files */
1033 if (!S_ISREG(inode->i_mode))
1034 goto no_open;
1035 openflags = nd->intent.open.flags;
1036 /* We cannot do exclusive creation on a positive dentry */
1037 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1038 goto no_open;
1039 /* We can't create new files, or truncate existing ones here */
1040 openflags &= ~(O_CREAT|O_TRUNC);
1043 * Note: we're not holding inode->i_mutex and so may be racing with
1044 * operations that change the directory. We therefore save the
1045 * change attribute *before* we do the RPC call.
1047 lock_kernel();
1048 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1049 unlock_kernel();
1050 out:
1051 dput(parent);
1052 if (!ret)
1053 d_drop(dentry);
1054 return ret;
1055 no_open:
1056 dput(parent);
1057 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1058 return 1;
1059 return nfs_lookup_revalidate(dentry, nd);
1061 #endif /* CONFIG_NFSV4 */
1063 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1065 struct dentry *parent = desc->file->f_path.dentry;
1066 struct inode *dir = parent->d_inode;
1067 struct nfs_entry *entry = desc->entry;
1068 struct dentry *dentry, *alias;
1069 struct qstr name = {
1070 .name = entry->name,
1071 .len = entry->len,
1073 struct inode *inode;
1074 unsigned long verf = nfs_save_change_attribute(dir);
1076 switch (name.len) {
1077 case 2:
1078 if (name.name[0] == '.' && name.name[1] == '.')
1079 return dget_parent(parent);
1080 break;
1081 case 1:
1082 if (name.name[0] == '.')
1083 return dget(parent);
1086 spin_lock(&dir->i_lock);
1087 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1088 spin_unlock(&dir->i_lock);
1089 return NULL;
1091 spin_unlock(&dir->i_lock);
1093 name.hash = full_name_hash(name.name, name.len);
1094 dentry = d_lookup(parent, &name);
1095 if (dentry != NULL) {
1096 /* Is this a positive dentry that matches the readdir info? */
1097 if (dentry->d_inode != NULL &&
1098 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1099 d_mountpoint(dentry))) {
1100 if (!desc->plus || entry->fh->size == 0)
1101 return dentry;
1102 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1103 entry->fh) == 0)
1104 goto out_renew;
1106 /* No, so d_drop to allow one to be created */
1107 d_drop(dentry);
1108 dput(dentry);
1110 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1111 return NULL;
1112 if (name.len > NFS_SERVER(dir)->namelen)
1113 return NULL;
1114 /* Note: caller is already holding the dir->i_mutex! */
1115 dentry = d_alloc(parent, &name);
1116 if (dentry == NULL)
1117 return NULL;
1118 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1119 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1120 if (IS_ERR(inode)) {
1121 dput(dentry);
1122 return NULL;
1125 alias = d_materialise_unique(dentry, inode);
1126 if (alias != NULL) {
1127 dput(dentry);
1128 if (IS_ERR(alias))
1129 return NULL;
1130 dentry = alias;
1133 out_renew:
1134 nfs_set_verifier(dentry, verf);
1135 return dentry;
1139 * Code common to create, mkdir, and mknod.
1141 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1142 struct nfs_fattr *fattr)
1144 struct dentry *parent = dget_parent(dentry);
1145 struct inode *dir = parent->d_inode;
1146 struct inode *inode;
1147 int error = -EACCES;
1149 d_drop(dentry);
1151 /* We may have been initialized further down */
1152 if (dentry->d_inode)
1153 goto out;
1154 if (fhandle->size == 0) {
1155 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1156 if (error)
1157 goto out_error;
1159 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1160 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1161 struct nfs_server *server = NFS_SB(dentry->d_sb);
1162 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1163 if (error < 0)
1164 goto out_error;
1166 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1167 error = PTR_ERR(inode);
1168 if (IS_ERR(inode))
1169 goto out_error;
1170 d_add(dentry, inode);
1171 out:
1172 dput(parent);
1173 return 0;
1174 out_error:
1175 nfs_mark_for_revalidate(dir);
1176 dput(parent);
1177 return error;
1181 * Following a failed create operation, we drop the dentry rather
1182 * than retain a negative dentry. This avoids a problem in the event
1183 * that the operation succeeded on the server, but an error in the
1184 * reply path made it appear to have failed.
1186 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1187 struct nameidata *nd)
1189 struct iattr attr;
1190 int error;
1191 int open_flags = 0;
1193 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1194 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1196 attr.ia_mode = mode;
1197 attr.ia_valid = ATTR_MODE;
1199 if ((nd->flags & LOOKUP_CREATE) != 0)
1200 open_flags = nd->intent.open.flags;
1202 lock_kernel();
1203 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1204 if (error != 0)
1205 goto out_err;
1206 unlock_kernel();
1207 return 0;
1208 out_err:
1209 unlock_kernel();
1210 d_drop(dentry);
1211 return error;
1215 * See comments for nfs_proc_create regarding failed operations.
1217 static int
1218 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1220 struct iattr attr;
1221 int status;
1223 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1224 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1226 if (!new_valid_dev(rdev))
1227 return -EINVAL;
1229 attr.ia_mode = mode;
1230 attr.ia_valid = ATTR_MODE;
1232 lock_kernel();
1233 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1234 if (status != 0)
1235 goto out_err;
1236 unlock_kernel();
1237 return 0;
1238 out_err:
1239 unlock_kernel();
1240 d_drop(dentry);
1241 return status;
1245 * See comments for nfs_proc_create regarding failed operations.
1247 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1249 struct iattr attr;
1250 int error;
1252 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1253 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1255 attr.ia_valid = ATTR_MODE;
1256 attr.ia_mode = mode | S_IFDIR;
1258 lock_kernel();
1259 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1260 if (error != 0)
1261 goto out_err;
1262 unlock_kernel();
1263 return 0;
1264 out_err:
1265 d_drop(dentry);
1266 unlock_kernel();
1267 return error;
1270 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1272 int error;
1274 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1275 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1277 lock_kernel();
1278 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1279 /* Ensure the VFS deletes this inode */
1280 if (error == 0 && dentry->d_inode != NULL)
1281 clear_nlink(dentry->d_inode);
1282 unlock_kernel();
1284 return error;
1287 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1289 static unsigned int sillycounter;
1290 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1291 const int countersize = sizeof(sillycounter)*2;
1292 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1293 char silly[slen+1];
1294 struct qstr qsilly;
1295 struct dentry *sdentry;
1296 int error = -EIO;
1298 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1299 dentry->d_parent->d_name.name, dentry->d_name.name,
1300 atomic_read(&dentry->d_count));
1301 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1304 * We don't allow a dentry to be silly-renamed twice.
1306 error = -EBUSY;
1307 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1308 goto out;
1310 sprintf(silly, ".nfs%*.*Lx",
1311 fileidsize, fileidsize,
1312 (unsigned long long)NFS_FILEID(dentry->d_inode));
1314 /* Return delegation in anticipation of the rename */
1315 nfs_inode_return_delegation(dentry->d_inode);
1317 sdentry = NULL;
1318 do {
1319 char *suffix = silly + slen - countersize;
1321 dput(sdentry);
1322 sillycounter++;
1323 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1325 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1326 dentry->d_name.name, silly);
1328 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1330 * N.B. Better to return EBUSY here ... it could be
1331 * dangerous to delete the file while it's in use.
1333 if (IS_ERR(sdentry))
1334 goto out;
1335 } while(sdentry->d_inode != NULL); /* need negative lookup */
1337 qsilly.name = silly;
1338 qsilly.len = strlen(silly);
1339 if (dentry->d_inode) {
1340 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1341 dir, &qsilly);
1342 nfs_mark_for_revalidate(dentry->d_inode);
1343 } else
1344 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1345 dir, &qsilly);
1346 if (!error) {
1347 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1348 d_move(dentry, sdentry);
1349 error = nfs_async_unlink(dir, dentry);
1350 /* If we return 0 we don't unlink */
1352 dput(sdentry);
1353 out:
1354 return error;
1358 * Remove a file after making sure there are no pending writes,
1359 * and after checking that the file has only one user.
1361 * We invalidate the attribute cache and free the inode prior to the operation
1362 * to avoid possible races if the server reuses the inode.
1364 static int nfs_safe_remove(struct dentry *dentry)
1366 struct inode *dir = dentry->d_parent->d_inode;
1367 struct inode *inode = dentry->d_inode;
1368 int error = -EBUSY;
1370 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1371 dentry->d_parent->d_name.name, dentry->d_name.name);
1373 /* If the dentry was sillyrenamed, we simply call d_delete() */
1374 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1375 error = 0;
1376 goto out;
1379 if (inode != NULL) {
1380 nfs_inode_return_delegation(inode);
1381 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1382 /* The VFS may want to delete this inode */
1383 if (error == 0)
1384 drop_nlink(inode);
1385 nfs_mark_for_revalidate(inode);
1386 } else
1387 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1388 out:
1389 return error;
1392 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1393 * belongs to an active ".nfs..." file and we return -EBUSY.
1395 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1397 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1399 int error;
1400 int need_rehash = 0;
1402 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1403 dir->i_ino, dentry->d_name.name);
1405 lock_kernel();
1406 spin_lock(&dcache_lock);
1407 spin_lock(&dentry->d_lock);
1408 if (atomic_read(&dentry->d_count) > 1) {
1409 spin_unlock(&dentry->d_lock);
1410 spin_unlock(&dcache_lock);
1411 /* Start asynchronous writeout of the inode */
1412 write_inode_now(dentry->d_inode, 0);
1413 error = nfs_sillyrename(dir, dentry);
1414 unlock_kernel();
1415 return error;
1417 if (!d_unhashed(dentry)) {
1418 __d_drop(dentry);
1419 need_rehash = 1;
1421 spin_unlock(&dentry->d_lock);
1422 spin_unlock(&dcache_lock);
1423 error = nfs_safe_remove(dentry);
1424 if (!error) {
1425 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1426 } else if (need_rehash)
1427 d_rehash(dentry);
1428 unlock_kernel();
1429 return error;
1433 * To create a symbolic link, most file systems instantiate a new inode,
1434 * add a page to it containing the path, then write it out to the disk
1435 * using prepare_write/commit_write.
1437 * Unfortunately the NFS client can't create the in-core inode first
1438 * because it needs a file handle to create an in-core inode (see
1439 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1440 * symlink request has completed on the server.
1442 * So instead we allocate a raw page, copy the symname into it, then do
1443 * the SYMLINK request with the page as the buffer. If it succeeds, we
1444 * now have a new file handle and can instantiate an in-core NFS inode
1445 * and move the raw page into its mapping.
1447 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1449 struct pagevec lru_pvec;
1450 struct page *page;
1451 char *kaddr;
1452 struct iattr attr;
1453 unsigned int pathlen = strlen(symname);
1454 int error;
1456 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1457 dir->i_ino, dentry->d_name.name, symname);
1459 if (pathlen > PAGE_SIZE)
1460 return -ENAMETOOLONG;
1462 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1463 attr.ia_valid = ATTR_MODE;
1465 lock_kernel();
1467 page = alloc_page(GFP_HIGHUSER);
1468 if (!page) {
1469 unlock_kernel();
1470 return -ENOMEM;
1473 kaddr = kmap_atomic(page, KM_USER0);
1474 memcpy(kaddr, symname, pathlen);
1475 if (pathlen < PAGE_SIZE)
1476 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1477 kunmap_atomic(kaddr, KM_USER0);
1479 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1480 if (error != 0) {
1481 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1482 dir->i_sb->s_id, dir->i_ino,
1483 dentry->d_name.name, symname, error);
1484 d_drop(dentry);
1485 __free_page(page);
1486 unlock_kernel();
1487 return error;
1491 * No big deal if we can't add this page to the page cache here.
1492 * READLINK will get the missing page from the server if needed.
1494 pagevec_init(&lru_pvec, 0);
1495 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1496 GFP_KERNEL)) {
1497 pagevec_add(&lru_pvec, page);
1498 pagevec_lru_add(&lru_pvec);
1499 SetPageUptodate(page);
1500 unlock_page(page);
1501 } else
1502 __free_page(page);
1504 unlock_kernel();
1505 return 0;
1508 static int
1509 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1511 struct inode *inode = old_dentry->d_inode;
1512 int error;
1514 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1515 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1516 dentry->d_parent->d_name.name, dentry->d_name.name);
1518 lock_kernel();
1519 d_drop(dentry);
1520 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1521 if (error == 0) {
1522 atomic_inc(&inode->i_count);
1523 d_add(dentry, inode);
1525 unlock_kernel();
1526 return error;
1530 * RENAME
1531 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1532 * different file handle for the same inode after a rename (e.g. when
1533 * moving to a different directory). A fail-safe method to do so would
1534 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1535 * rename the old file using the sillyrename stuff. This way, the original
1536 * file in old_dir will go away when the last process iput()s the inode.
1538 * FIXED.
1540 * It actually works quite well. One needs to have the possibility for
1541 * at least one ".nfs..." file in each directory the file ever gets
1542 * moved or linked to which happens automagically with the new
1543 * implementation that only depends on the dcache stuff instead of
1544 * using the inode layer
1546 * Unfortunately, things are a little more complicated than indicated
1547 * above. For a cross-directory move, we want to make sure we can get
1548 * rid of the old inode after the operation. This means there must be
1549 * no pending writes (if it's a file), and the use count must be 1.
1550 * If these conditions are met, we can drop the dentries before doing
1551 * the rename.
1553 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1554 struct inode *new_dir, struct dentry *new_dentry)
1556 struct inode *old_inode = old_dentry->d_inode;
1557 struct inode *new_inode = new_dentry->d_inode;
1558 struct dentry *dentry = NULL, *rehash = NULL;
1559 int error = -EBUSY;
1562 * To prevent any new references to the target during the rename,
1563 * we unhash the dentry and free the inode in advance.
1565 lock_kernel();
1566 if (!d_unhashed(new_dentry)) {
1567 d_drop(new_dentry);
1568 rehash = new_dentry;
1571 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1572 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1573 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1574 atomic_read(&new_dentry->d_count));
1577 * First check whether the target is busy ... we can't
1578 * safely do _any_ rename if the target is in use.
1580 * For files, make a copy of the dentry and then do a
1581 * silly-rename. If the silly-rename succeeds, the
1582 * copied dentry is hashed and becomes the new target.
1584 if (!new_inode)
1585 goto go_ahead;
1586 if (S_ISDIR(new_inode->i_mode)) {
1587 error = -EISDIR;
1588 if (!S_ISDIR(old_inode->i_mode))
1589 goto out;
1590 } else if (atomic_read(&new_dentry->d_count) > 2) {
1591 int err;
1592 /* copy the target dentry's name */
1593 dentry = d_alloc(new_dentry->d_parent,
1594 &new_dentry->d_name);
1595 if (!dentry)
1596 goto out;
1598 /* silly-rename the existing target ... */
1599 err = nfs_sillyrename(new_dir, new_dentry);
1600 if (!err) {
1601 new_dentry = rehash = dentry;
1602 new_inode = NULL;
1603 /* instantiate the replacement target */
1604 d_instantiate(new_dentry, NULL);
1605 } else if (atomic_read(&new_dentry->d_count) > 1)
1606 /* dentry still busy? */
1607 goto out;
1608 } else
1609 drop_nlink(new_inode);
1611 go_ahead:
1613 * ... prune child dentries and writebacks if needed.
1615 if (atomic_read(&old_dentry->d_count) > 1) {
1616 if (S_ISREG(old_inode->i_mode))
1617 nfs_wb_all(old_inode);
1618 shrink_dcache_parent(old_dentry);
1620 nfs_inode_return_delegation(old_inode);
1622 if (new_inode != NULL) {
1623 nfs_inode_return_delegation(new_inode);
1624 d_delete(new_dentry);
1627 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1628 new_dir, &new_dentry->d_name);
1629 nfs_mark_for_revalidate(old_inode);
1630 out:
1631 if (rehash)
1632 d_rehash(rehash);
1633 if (!error) {
1634 d_move(old_dentry, new_dentry);
1635 nfs_set_verifier(new_dentry,
1636 nfs_save_change_attribute(new_dir));
1639 /* new dentry created? */
1640 if (dentry)
1641 dput(dentry);
1642 unlock_kernel();
1643 return error;
1646 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1647 static LIST_HEAD(nfs_access_lru_list);
1648 static atomic_long_t nfs_access_nr_entries;
1650 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1652 put_rpccred(entry->cred);
1653 kfree(entry);
1654 smp_mb__before_atomic_dec();
1655 atomic_long_dec(&nfs_access_nr_entries);
1656 smp_mb__after_atomic_dec();
1659 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1661 LIST_HEAD(head);
1662 struct nfs_inode *nfsi;
1663 struct nfs_access_entry *cache;
1665 restart:
1666 spin_lock(&nfs_access_lru_lock);
1667 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1668 struct inode *inode;
1670 if (nr_to_scan-- == 0)
1671 break;
1672 inode = igrab(&nfsi->vfs_inode);
1673 if (inode == NULL)
1674 continue;
1675 spin_lock(&inode->i_lock);
1676 if (list_empty(&nfsi->access_cache_entry_lru))
1677 goto remove_lru_entry;
1678 cache = list_entry(nfsi->access_cache_entry_lru.next,
1679 struct nfs_access_entry, lru);
1680 list_move(&cache->lru, &head);
1681 rb_erase(&cache->rb_node, &nfsi->access_cache);
1682 if (!list_empty(&nfsi->access_cache_entry_lru))
1683 list_move_tail(&nfsi->access_cache_inode_lru,
1684 &nfs_access_lru_list);
1685 else {
1686 remove_lru_entry:
1687 list_del_init(&nfsi->access_cache_inode_lru);
1688 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1690 spin_unlock(&inode->i_lock);
1691 spin_unlock(&nfs_access_lru_lock);
1692 iput(inode);
1693 goto restart;
1695 spin_unlock(&nfs_access_lru_lock);
1696 while (!list_empty(&head)) {
1697 cache = list_entry(head.next, struct nfs_access_entry, lru);
1698 list_del(&cache->lru);
1699 nfs_access_free_entry(cache);
1701 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1704 static void __nfs_access_zap_cache(struct inode *inode)
1706 struct nfs_inode *nfsi = NFS_I(inode);
1707 struct rb_root *root_node = &nfsi->access_cache;
1708 struct rb_node *n, *dispose = NULL;
1709 struct nfs_access_entry *entry;
1711 /* Unhook entries from the cache */
1712 while ((n = rb_first(root_node)) != NULL) {
1713 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1714 rb_erase(n, root_node);
1715 list_del(&entry->lru);
1716 n->rb_left = dispose;
1717 dispose = n;
1719 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1720 spin_unlock(&inode->i_lock);
1722 /* Now kill them all! */
1723 while (dispose != NULL) {
1724 n = dispose;
1725 dispose = n->rb_left;
1726 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1730 void nfs_access_zap_cache(struct inode *inode)
1732 /* Remove from global LRU init */
1733 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1734 spin_lock(&nfs_access_lru_lock);
1735 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1736 spin_unlock(&nfs_access_lru_lock);
1739 spin_lock(&inode->i_lock);
1740 /* This will release the spinlock */
1741 __nfs_access_zap_cache(inode);
1744 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1746 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1747 struct nfs_access_entry *entry;
1749 while (n != NULL) {
1750 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1752 if (cred < entry->cred)
1753 n = n->rb_left;
1754 else if (cred > entry->cred)
1755 n = n->rb_right;
1756 else
1757 return entry;
1759 return NULL;
1762 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1764 struct nfs_inode *nfsi = NFS_I(inode);
1765 struct nfs_access_entry *cache;
1766 int err = -ENOENT;
1768 spin_lock(&inode->i_lock);
1769 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1770 goto out_zap;
1771 cache = nfs_access_search_rbtree(inode, cred);
1772 if (cache == NULL)
1773 goto out;
1774 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1775 goto out_stale;
1776 res->jiffies = cache->jiffies;
1777 res->cred = cache->cred;
1778 res->mask = cache->mask;
1779 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1780 err = 0;
1781 out:
1782 spin_unlock(&inode->i_lock);
1783 return err;
1784 out_stale:
1785 rb_erase(&cache->rb_node, &nfsi->access_cache);
1786 list_del(&cache->lru);
1787 spin_unlock(&inode->i_lock);
1788 nfs_access_free_entry(cache);
1789 return -ENOENT;
1790 out_zap:
1791 /* This will release the spinlock */
1792 __nfs_access_zap_cache(inode);
1793 return -ENOENT;
1796 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1798 struct nfs_inode *nfsi = NFS_I(inode);
1799 struct rb_root *root_node = &nfsi->access_cache;
1800 struct rb_node **p = &root_node->rb_node;
1801 struct rb_node *parent = NULL;
1802 struct nfs_access_entry *entry;
1804 spin_lock(&inode->i_lock);
1805 while (*p != NULL) {
1806 parent = *p;
1807 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1809 if (set->cred < entry->cred)
1810 p = &parent->rb_left;
1811 else if (set->cred > entry->cred)
1812 p = &parent->rb_right;
1813 else
1814 goto found;
1816 rb_link_node(&set->rb_node, parent, p);
1817 rb_insert_color(&set->rb_node, root_node);
1818 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1819 spin_unlock(&inode->i_lock);
1820 return;
1821 found:
1822 rb_replace_node(parent, &set->rb_node, root_node);
1823 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1824 list_del(&entry->lru);
1825 spin_unlock(&inode->i_lock);
1826 nfs_access_free_entry(entry);
1829 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1831 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1832 if (cache == NULL)
1833 return;
1834 RB_CLEAR_NODE(&cache->rb_node);
1835 cache->jiffies = set->jiffies;
1836 cache->cred = get_rpccred(set->cred);
1837 cache->mask = set->mask;
1839 nfs_access_add_rbtree(inode, cache);
1841 /* Update accounting */
1842 smp_mb__before_atomic_inc();
1843 atomic_long_inc(&nfs_access_nr_entries);
1844 smp_mb__after_atomic_inc();
1846 /* Add inode to global LRU list */
1847 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1848 spin_lock(&nfs_access_lru_lock);
1849 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1850 spin_unlock(&nfs_access_lru_lock);
1854 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1856 struct nfs_access_entry cache;
1857 int status;
1859 status = nfs_access_get_cached(inode, cred, &cache);
1860 if (status == 0)
1861 goto out;
1863 /* Be clever: ask server to check for all possible rights */
1864 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1865 cache.cred = cred;
1866 cache.jiffies = jiffies;
1867 status = NFS_PROTO(inode)->access(inode, &cache);
1868 if (status != 0)
1869 return status;
1870 nfs_access_add_cache(inode, &cache);
1871 out:
1872 if ((cache.mask & mask) == mask)
1873 return 0;
1874 return -EACCES;
1877 static int nfs_open_permission_mask(int openflags)
1879 int mask = 0;
1881 if (openflags & FMODE_READ)
1882 mask |= MAY_READ;
1883 if (openflags & FMODE_WRITE)
1884 mask |= MAY_WRITE;
1885 if (openflags & FMODE_EXEC)
1886 mask |= MAY_EXEC;
1887 return mask;
1890 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1892 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1895 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1897 struct rpc_cred *cred;
1898 int res = 0;
1900 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1902 if (mask == 0)
1903 goto out;
1904 /* Is this sys_access() ? */
1905 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1906 goto force_lookup;
1908 switch (inode->i_mode & S_IFMT) {
1909 case S_IFLNK:
1910 goto out;
1911 case S_IFREG:
1912 /* NFSv4 has atomic_open... */
1913 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1914 && nd != NULL
1915 && (nd->flags & LOOKUP_OPEN))
1916 goto out;
1917 break;
1918 case S_IFDIR:
1920 * Optimize away all write operations, since the server
1921 * will check permissions when we perform the op.
1923 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1924 goto out;
1927 force_lookup:
1928 lock_kernel();
1930 if (!NFS_PROTO(inode)->access)
1931 goto out_notsup;
1933 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1934 if (!IS_ERR(cred)) {
1935 res = nfs_do_access(inode, cred, mask);
1936 put_rpccred(cred);
1937 } else
1938 res = PTR_ERR(cred);
1939 unlock_kernel();
1940 out:
1941 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1942 inode->i_sb->s_id, inode->i_ino, mask, res);
1943 return res;
1944 out_notsup:
1945 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1946 if (res == 0)
1947 res = generic_permission(inode, mask, NULL);
1948 unlock_kernel();
1949 goto out;
1953 * Local variables:
1954 * version-control: t
1955 * kept-new-versions: 5
1956 * End: