Merge git://oak/home/sfr/kernels/iseries/work
[linux-2.6/mini2440.git] / security / selinux / avc.c
blob12e4fb72bf0f46bfc22a5e1a8a75efd93792d650
1 /*
2 * Implementation of the kernel access vector cache (AVC).
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
35 static const struct av_perm_to_string
37 u16 tclass;
38 u32 value;
39 const char *name;
40 } av_perm_to_string[] = {
41 #define S_(c, v, s) { c, v, s },
42 #include "av_perm_to_string.h"
43 #undef S_
46 #ifdef CONFIG_AUDIT
47 static const char *class_to_string[] = {
48 #define S_(s) s,
49 #include "class_to_string.h"
50 #undef S_
52 #endif
54 #define TB_(s) static const char * s [] = {
55 #define TE_(s) };
56 #define S_(s) s,
57 #include "common_perm_to_string.h"
58 #undef TB_
59 #undef TE_
60 #undef S_
62 static const struct av_inherit
64 u16 tclass;
65 const char **common_pts;
66 u32 common_base;
67 } av_inherit[] = {
68 #define S_(c, i, b) { c, common_##i##_perm_to_string, b },
69 #include "av_inherit.h"
70 #undef S_
73 #define AVC_CACHE_SLOTS 512
74 #define AVC_DEF_CACHE_THRESHOLD 512
75 #define AVC_CACHE_RECLAIM 16
77 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
78 #define avc_cache_stats_incr(field) \
79 do { \
80 per_cpu(avc_cache_stats, get_cpu()).field++; \
81 put_cpu(); \
82 } while (0)
83 #else
84 #define avc_cache_stats_incr(field) do {} while (0)
85 #endif
87 struct avc_entry {
88 u32 ssid;
89 u32 tsid;
90 u16 tclass;
91 struct av_decision avd;
92 atomic_t used; /* used recently */
95 struct avc_node {
96 struct avc_entry ae;
97 struct list_head list;
98 struct rcu_head rhead;
101 struct avc_cache {
102 struct list_head slots[AVC_CACHE_SLOTS];
103 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
104 atomic_t lru_hint; /* LRU hint for reclaim scan */
105 atomic_t active_nodes;
106 u32 latest_notif; /* latest revocation notification */
109 struct avc_callback_node {
110 int (*callback) (u32 event, u32 ssid, u32 tsid,
111 u16 tclass, u32 perms,
112 u32 *out_retained);
113 u32 events;
114 u32 ssid;
115 u32 tsid;
116 u16 tclass;
117 u32 perms;
118 struct avc_callback_node *next;
121 /* Exported via selinufs */
122 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
124 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
125 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
126 #endif
128 static struct avc_cache avc_cache;
129 static struct avc_callback_node *avc_callbacks;
130 static kmem_cache_t *avc_node_cachep;
132 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
134 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
138 * avc_dump_av - Display an access vector in human-readable form.
139 * @tclass: target security class
140 * @av: access vector
142 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
144 const char **common_pts = NULL;
145 u32 common_base = 0;
146 int i, i2, perm;
148 if (av == 0) {
149 audit_log_format(ab, " null");
150 return;
153 for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
154 if (av_inherit[i].tclass == tclass) {
155 common_pts = av_inherit[i].common_pts;
156 common_base = av_inherit[i].common_base;
157 break;
161 audit_log_format(ab, " {");
162 i = 0;
163 perm = 1;
164 while (perm < common_base) {
165 if (perm & av) {
166 audit_log_format(ab, " %s", common_pts[i]);
167 av &= ~perm;
169 i++;
170 perm <<= 1;
173 while (i < sizeof(av) * 8) {
174 if (perm & av) {
175 for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
176 if ((av_perm_to_string[i2].tclass == tclass) &&
177 (av_perm_to_string[i2].value == perm))
178 break;
180 if (i2 < ARRAY_SIZE(av_perm_to_string)) {
181 audit_log_format(ab, " %s",
182 av_perm_to_string[i2].name);
183 av &= ~perm;
186 i++;
187 perm <<= 1;
190 if (av)
191 audit_log_format(ab, " 0x%x", av);
193 audit_log_format(ab, " }");
197 * avc_dump_query - Display a SID pair and a class in human-readable form.
198 * @ssid: source security identifier
199 * @tsid: target security identifier
200 * @tclass: target security class
202 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
204 int rc;
205 char *scontext;
206 u32 scontext_len;
208 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
209 if (rc)
210 audit_log_format(ab, "ssid=%d", ssid);
211 else {
212 audit_log_format(ab, "scontext=%s", scontext);
213 kfree(scontext);
216 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
217 if (rc)
218 audit_log_format(ab, " tsid=%d", tsid);
219 else {
220 audit_log_format(ab, " tcontext=%s", scontext);
221 kfree(scontext);
223 audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
227 * avc_init - Initialize the AVC.
229 * Initialize the access vector cache.
231 void __init avc_init(void)
233 int i;
235 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
236 INIT_LIST_HEAD(&avc_cache.slots[i]);
237 spin_lock_init(&avc_cache.slots_lock[i]);
239 atomic_set(&avc_cache.active_nodes, 0);
240 atomic_set(&avc_cache.lru_hint, 0);
242 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
243 0, SLAB_PANIC, NULL, NULL);
245 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
248 int avc_get_hash_stats(char *page)
250 int i, chain_len, max_chain_len, slots_used;
251 struct avc_node *node;
253 rcu_read_lock();
255 slots_used = 0;
256 max_chain_len = 0;
257 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
258 if (!list_empty(&avc_cache.slots[i])) {
259 slots_used++;
260 chain_len = 0;
261 list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
262 chain_len++;
263 if (chain_len > max_chain_len)
264 max_chain_len = chain_len;
268 rcu_read_unlock();
270 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
271 "longest chain: %d\n",
272 atomic_read(&avc_cache.active_nodes),
273 slots_used, AVC_CACHE_SLOTS, max_chain_len);
276 static void avc_node_free(struct rcu_head *rhead)
278 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
279 kmem_cache_free(avc_node_cachep, node);
280 avc_cache_stats_incr(frees);
283 static void avc_node_delete(struct avc_node *node)
285 list_del_rcu(&node->list);
286 call_rcu(&node->rhead, avc_node_free);
287 atomic_dec(&avc_cache.active_nodes);
290 static void avc_node_kill(struct avc_node *node)
292 kmem_cache_free(avc_node_cachep, node);
293 avc_cache_stats_incr(frees);
294 atomic_dec(&avc_cache.active_nodes);
297 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
299 list_replace_rcu(&old->list, &new->list);
300 call_rcu(&old->rhead, avc_node_free);
301 atomic_dec(&avc_cache.active_nodes);
304 static inline int avc_reclaim_node(void)
306 struct avc_node *node;
307 int hvalue, try, ecx;
308 unsigned long flags;
310 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) {
311 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
313 if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
314 continue;
316 list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
317 if (atomic_dec_and_test(&node->ae.used)) {
318 /* Recently Unused */
319 avc_node_delete(node);
320 avc_cache_stats_incr(reclaims);
321 ecx++;
322 if (ecx >= AVC_CACHE_RECLAIM) {
323 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
324 goto out;
328 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
330 out:
331 return ecx;
334 static struct avc_node *avc_alloc_node(void)
336 struct avc_node *node;
338 node = kmem_cache_alloc(avc_node_cachep, SLAB_ATOMIC);
339 if (!node)
340 goto out;
342 memset(node, 0, sizeof(*node));
343 INIT_RCU_HEAD(&node->rhead);
344 INIT_LIST_HEAD(&node->list);
345 atomic_set(&node->ae.used, 1);
346 avc_cache_stats_incr(allocations);
348 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
349 avc_reclaim_node();
351 out:
352 return node;
355 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
357 node->ae.ssid = ssid;
358 node->ae.tsid = tsid;
359 node->ae.tclass = tclass;
360 memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
363 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
365 struct avc_node *node, *ret = NULL;
366 int hvalue;
368 hvalue = avc_hash(ssid, tsid, tclass);
369 list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
370 if (ssid == node->ae.ssid &&
371 tclass == node->ae.tclass &&
372 tsid == node->ae.tsid) {
373 ret = node;
374 break;
378 if (ret == NULL) {
379 /* cache miss */
380 goto out;
383 /* cache hit */
384 if (atomic_read(&ret->ae.used) != 1)
385 atomic_set(&ret->ae.used, 1);
386 out:
387 return ret;
391 * avc_lookup - Look up an AVC entry.
392 * @ssid: source security identifier
393 * @tsid: target security identifier
394 * @tclass: target security class
395 * @requested: requested permissions, interpreted based on @tclass
397 * Look up an AVC entry that is valid for the
398 * @requested permissions between the SID pair
399 * (@ssid, @tsid), interpreting the permissions
400 * based on @tclass. If a valid AVC entry exists,
401 * then this function return the avc_node.
402 * Otherwise, this function returns NULL.
404 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
406 struct avc_node *node;
408 avc_cache_stats_incr(lookups);
409 node = avc_search_node(ssid, tsid, tclass);
411 if (node && ((node->ae.avd.decided & requested) == requested)) {
412 avc_cache_stats_incr(hits);
413 goto out;
416 node = NULL;
417 avc_cache_stats_incr(misses);
418 out:
419 return node;
422 static int avc_latest_notif_update(int seqno, int is_insert)
424 int ret = 0;
425 static DEFINE_SPINLOCK(notif_lock);
426 unsigned long flag;
428 spin_lock_irqsave(&notif_lock, flag);
429 if (is_insert) {
430 if (seqno < avc_cache.latest_notif) {
431 printk(KERN_WARNING "avc: seqno %d < latest_notif %d\n",
432 seqno, avc_cache.latest_notif);
433 ret = -EAGAIN;
435 } else {
436 if (seqno > avc_cache.latest_notif)
437 avc_cache.latest_notif = seqno;
439 spin_unlock_irqrestore(&notif_lock, flag);
441 return ret;
445 * avc_insert - Insert an AVC entry.
446 * @ssid: source security identifier
447 * @tsid: target security identifier
448 * @tclass: target security class
449 * @ae: AVC entry
451 * Insert an AVC entry for the SID pair
452 * (@ssid, @tsid) and class @tclass.
453 * The access vectors and the sequence number are
454 * normally provided by the security server in
455 * response to a security_compute_av() call. If the
456 * sequence number @ae->avd.seqno is not less than the latest
457 * revocation notification, then the function copies
458 * the access vectors into a cache entry, returns
459 * avc_node inserted. Otherwise, this function returns NULL.
461 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
463 struct avc_node *pos, *node = NULL;
464 int hvalue;
465 unsigned long flag;
467 if (avc_latest_notif_update(ae->avd.seqno, 1))
468 goto out;
470 node = avc_alloc_node();
471 if (node) {
472 hvalue = avc_hash(ssid, tsid, tclass);
473 avc_node_populate(node, ssid, tsid, tclass, ae);
475 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
476 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
477 if (pos->ae.ssid == ssid &&
478 pos->ae.tsid == tsid &&
479 pos->ae.tclass == tclass) {
480 avc_node_replace(node, pos);
481 goto found;
484 list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
485 found:
486 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
488 out:
489 return node;
492 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
493 struct in6_addr *addr, __be16 port,
494 char *name1, char *name2)
496 if (!ipv6_addr_any(addr))
497 audit_log_format(ab, " %s=%04x:%04x:%04x:%04x:%04x:"
498 "%04x:%04x:%04x", name1, NIP6(*addr));
499 if (port)
500 audit_log_format(ab, " %s=%d", name2, ntohs(port));
503 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, u32 addr,
504 __be16 port, char *name1, char *name2)
506 if (addr)
507 audit_log_format(ab, " %s=%d.%d.%d.%d", name1, NIPQUAD(addr));
508 if (port)
509 audit_log_format(ab, " %s=%d", name2, ntohs(port));
513 * avc_audit - Audit the granting or denial of permissions.
514 * @ssid: source security identifier
515 * @tsid: target security identifier
516 * @tclass: target security class
517 * @requested: requested permissions
518 * @avd: access vector decisions
519 * @result: result from avc_has_perm_noaudit
520 * @a: auxiliary audit data
522 * Audit the granting or denial of permissions in accordance
523 * with the policy. This function is typically called by
524 * avc_has_perm() after a permission check, but can also be
525 * called directly by callers who use avc_has_perm_noaudit()
526 * in order to separate the permission check from the auditing.
527 * For example, this separation is useful when the permission check must
528 * be performed under a lock, to allow the lock to be released
529 * before calling the auditing code.
531 void avc_audit(u32 ssid, u32 tsid,
532 u16 tclass, u32 requested,
533 struct av_decision *avd, int result, struct avc_audit_data *a)
535 struct task_struct *tsk = current;
536 struct inode *inode = NULL;
537 u32 denied, audited;
538 struct audit_buffer *ab;
540 denied = requested & ~avd->allowed;
541 if (denied) {
542 audited = denied;
543 if (!(audited & avd->auditdeny))
544 return;
545 } else if (result) {
546 audited = denied = requested;
547 } else {
548 audited = requested;
549 if (!(audited & avd->auditallow))
550 return;
553 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
554 if (!ab)
555 return; /* audit_panic has been called */
556 audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
557 avc_dump_av(ab, tclass,audited);
558 audit_log_format(ab, " for ");
559 if (a && a->tsk)
560 tsk = a->tsk;
561 if (tsk && tsk->pid) {
562 audit_log_format(ab, " pid=%d comm=", tsk->pid);
563 audit_log_untrustedstring(ab, tsk->comm);
565 if (a) {
566 switch (a->type) {
567 case AVC_AUDIT_DATA_IPC:
568 audit_log_format(ab, " key=%d", a->u.ipc_id);
569 break;
570 case AVC_AUDIT_DATA_CAP:
571 audit_log_format(ab, " capability=%d", a->u.cap);
572 break;
573 case AVC_AUDIT_DATA_FS:
574 if (a->u.fs.dentry) {
575 struct dentry *dentry = a->u.fs.dentry;
576 if (a->u.fs.mnt)
577 audit_avc_path(dentry, a->u.fs.mnt);
578 audit_log_format(ab, " name=");
579 audit_log_untrustedstring(ab, dentry->d_name.name);
580 inode = dentry->d_inode;
581 } else if (a->u.fs.inode) {
582 struct dentry *dentry;
583 inode = a->u.fs.inode;
584 dentry = d_find_alias(inode);
585 if (dentry) {
586 audit_log_format(ab, " name=");
587 audit_log_untrustedstring(ab, dentry->d_name.name);
588 dput(dentry);
591 if (inode)
592 audit_log_format(ab, " dev=%s ino=%ld",
593 inode->i_sb->s_id,
594 inode->i_ino);
595 break;
596 case AVC_AUDIT_DATA_NET:
597 if (a->u.net.sk) {
598 struct sock *sk = a->u.net.sk;
599 struct unix_sock *u;
600 int len = 0;
601 char *p = NULL;
603 switch (sk->sk_family) {
604 case AF_INET: {
605 struct inet_sock *inet = inet_sk(sk);
607 avc_print_ipv4_addr(ab, inet->rcv_saddr,
608 inet->sport,
609 "laddr", "lport");
610 avc_print_ipv4_addr(ab, inet->daddr,
611 inet->dport,
612 "faddr", "fport");
613 break;
615 case AF_INET6: {
616 struct inet_sock *inet = inet_sk(sk);
617 struct ipv6_pinfo *inet6 = inet6_sk(sk);
619 avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
620 inet->sport,
621 "laddr", "lport");
622 avc_print_ipv6_addr(ab, &inet6->daddr,
623 inet->dport,
624 "faddr", "fport");
625 break;
627 case AF_UNIX:
628 u = unix_sk(sk);
629 if (u->dentry) {
630 audit_avc_path(u->dentry, u->mnt);
631 audit_log_format(ab, " name=");
632 audit_log_untrustedstring(ab, u->dentry->d_name.name);
633 break;
635 if (!u->addr)
636 break;
637 len = u->addr->len-sizeof(short);
638 p = &u->addr->name->sun_path[0];
639 audit_log_format(ab, " path=");
640 if (*p)
641 audit_log_untrustedstring(ab, p);
642 else
643 audit_log_hex(ab, p, len);
644 break;
648 switch (a->u.net.family) {
649 case AF_INET:
650 avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
651 a->u.net.sport,
652 "saddr", "src");
653 avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
654 a->u.net.dport,
655 "daddr", "dest");
656 break;
657 case AF_INET6:
658 avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
659 a->u.net.sport,
660 "saddr", "src");
661 avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
662 a->u.net.dport,
663 "daddr", "dest");
664 break;
666 if (a->u.net.netif)
667 audit_log_format(ab, " netif=%s",
668 a->u.net.netif);
669 break;
672 audit_log_format(ab, " ");
673 avc_dump_query(ab, ssid, tsid, tclass);
674 audit_log_end(ab);
678 * avc_add_callback - Register a callback for security events.
679 * @callback: callback function
680 * @events: security events
681 * @ssid: source security identifier or %SECSID_WILD
682 * @tsid: target security identifier or %SECSID_WILD
683 * @tclass: target security class
684 * @perms: permissions
686 * Register a callback function for events in the set @events
687 * related to the SID pair (@ssid, @tsid) and
688 * and the permissions @perms, interpreting
689 * @perms based on @tclass. Returns %0 on success or
690 * -%ENOMEM if insufficient memory exists to add the callback.
692 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
693 u16 tclass, u32 perms,
694 u32 *out_retained),
695 u32 events, u32 ssid, u32 tsid,
696 u16 tclass, u32 perms)
698 struct avc_callback_node *c;
699 int rc = 0;
701 c = kmalloc(sizeof(*c), GFP_ATOMIC);
702 if (!c) {
703 rc = -ENOMEM;
704 goto out;
707 c->callback = callback;
708 c->events = events;
709 c->ssid = ssid;
710 c->tsid = tsid;
711 c->perms = perms;
712 c->next = avc_callbacks;
713 avc_callbacks = c;
714 out:
715 return rc;
718 static inline int avc_sidcmp(u32 x, u32 y)
720 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
724 * avc_update_node Update an AVC entry
725 * @event : Updating event
726 * @perms : Permission mask bits
727 * @ssid,@tsid,@tclass : identifier of an AVC entry
729 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
730 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
731 * otherwise, this function update the AVC entry. The original AVC-entry object
732 * will release later by RCU.
734 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
736 int hvalue, rc = 0;
737 unsigned long flag;
738 struct avc_node *pos, *node, *orig = NULL;
740 node = avc_alloc_node();
741 if (!node) {
742 rc = -ENOMEM;
743 goto out;
746 /* Lock the target slot */
747 hvalue = avc_hash(ssid, tsid, tclass);
748 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
750 list_for_each_entry(pos, &avc_cache.slots[hvalue], list){
751 if ( ssid==pos->ae.ssid &&
752 tsid==pos->ae.tsid &&
753 tclass==pos->ae.tclass ){
754 orig = pos;
755 break;
759 if (!orig) {
760 rc = -ENOENT;
761 avc_node_kill(node);
762 goto out_unlock;
766 * Copy and replace original node.
769 avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
771 switch (event) {
772 case AVC_CALLBACK_GRANT:
773 node->ae.avd.allowed |= perms;
774 break;
775 case AVC_CALLBACK_TRY_REVOKE:
776 case AVC_CALLBACK_REVOKE:
777 node->ae.avd.allowed &= ~perms;
778 break;
779 case AVC_CALLBACK_AUDITALLOW_ENABLE:
780 node->ae.avd.auditallow |= perms;
781 break;
782 case AVC_CALLBACK_AUDITALLOW_DISABLE:
783 node->ae.avd.auditallow &= ~perms;
784 break;
785 case AVC_CALLBACK_AUDITDENY_ENABLE:
786 node->ae.avd.auditdeny |= perms;
787 break;
788 case AVC_CALLBACK_AUDITDENY_DISABLE:
789 node->ae.avd.auditdeny &= ~perms;
790 break;
792 avc_node_replace(node, orig);
793 out_unlock:
794 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
795 out:
796 return rc;
800 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
801 * @seqno: policy sequence number
803 int avc_ss_reset(u32 seqno)
805 struct avc_callback_node *c;
806 int i, rc = 0;
807 unsigned long flag;
808 struct avc_node *node;
810 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
811 spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
812 list_for_each_entry(node, &avc_cache.slots[i], list)
813 avc_node_delete(node);
814 spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
817 for (c = avc_callbacks; c; c = c->next) {
818 if (c->events & AVC_CALLBACK_RESET) {
819 rc = c->callback(AVC_CALLBACK_RESET,
820 0, 0, 0, 0, NULL);
821 if (rc)
822 goto out;
826 avc_latest_notif_update(seqno, 0);
827 out:
828 return rc;
832 * avc_has_perm_noaudit - Check permissions but perform no auditing.
833 * @ssid: source security identifier
834 * @tsid: target security identifier
835 * @tclass: target security class
836 * @requested: requested permissions, interpreted based on @tclass
837 * @avd: access vector decisions
839 * Check the AVC to determine whether the @requested permissions are granted
840 * for the SID pair (@ssid, @tsid), interpreting the permissions
841 * based on @tclass, and call the security server on a cache miss to obtain
842 * a new decision and add it to the cache. Return a copy of the decisions
843 * in @avd. Return %0 if all @requested permissions are granted,
844 * -%EACCES if any permissions are denied, or another -errno upon
845 * other errors. This function is typically called by avc_has_perm(),
846 * but may also be called directly to separate permission checking from
847 * auditing, e.g. in cases where a lock must be held for the check but
848 * should be released for the auditing.
850 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
851 u16 tclass, u32 requested,
852 struct av_decision *avd)
854 struct avc_node *node;
855 struct avc_entry entry, *p_ae;
856 int rc = 0;
857 u32 denied;
859 rcu_read_lock();
861 node = avc_lookup(ssid, tsid, tclass, requested);
862 if (!node) {
863 rcu_read_unlock();
864 rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd);
865 if (rc)
866 goto out;
867 rcu_read_lock();
868 node = avc_insert(ssid,tsid,tclass,&entry);
871 p_ae = node ? &node->ae : &entry;
873 if (avd)
874 memcpy(avd, &p_ae->avd, sizeof(*avd));
876 denied = requested & ~(p_ae->avd.allowed);
878 if (!requested || denied) {
879 if (selinux_enforcing)
880 rc = -EACCES;
881 else
882 if (node)
883 avc_update_node(AVC_CALLBACK_GRANT,requested,
884 ssid,tsid,tclass);
887 rcu_read_unlock();
888 out:
889 return rc;
893 * avc_has_perm - Check permissions and perform any appropriate auditing.
894 * @ssid: source security identifier
895 * @tsid: target security identifier
896 * @tclass: target security class
897 * @requested: requested permissions, interpreted based on @tclass
898 * @auditdata: auxiliary audit data
900 * Check the AVC to determine whether the @requested permissions are granted
901 * for the SID pair (@ssid, @tsid), interpreting the permissions
902 * based on @tclass, and call the security server on a cache miss to obtain
903 * a new decision and add it to the cache. Audit the granting or denial of
904 * permissions in accordance with the policy. Return %0 if all @requested
905 * permissions are granted, -%EACCES if any permissions are denied, or
906 * another -errno upon other errors.
908 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
909 u32 requested, struct avc_audit_data *auditdata)
911 struct av_decision avd;
912 int rc;
914 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, &avd);
915 avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
916 return rc;