2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The IP fragmentation functionality.
8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9 * Alan Cox <alan@lxorguk.ukuu.org.uk>
12 * Alan Cox : Split from ip.c , see ip_input.c for history.
13 * David S. Miller : Begin massive cleanup...
14 * Andi Kleen : Add sysctls.
15 * xxxx : Overlapfrag bug.
16 * Ultima : ip_expire() kernel panic.
17 * Bill Hawes : Frag accounting and evictor fixes.
18 * John McDonald : 0 length frag bug.
19 * Alexey Kuznetsov: SMP races, threading, cleanup.
20 * Patrick McHardy : LRU queue of frag heads for evictor.
23 #include <linux/compiler.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
27 #include <linux/jiffies.h>
28 #include <linux/skbuff.h>
29 #include <linux/list.h>
31 #include <linux/icmp.h>
32 #include <linux/netdevice.h>
33 #include <linux/jhash.h>
34 #include <linux/random.h>
38 #include <net/checksum.h>
39 #include <net/inetpeer.h>
40 #include <net/inet_frag.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/inet.h>
44 #include <linux/netfilter_ipv4.h>
46 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
47 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
48 * as well. Or notify me, at least. --ANK
51 static int sysctl_ipfrag_max_dist __read_mostly
= 64;
55 struct inet_skb_parm h
;
59 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
61 /* Describe an entry in the "incomplete datagrams" queue. */
63 struct inet_frag_queue q
;
72 struct inet_peer
*peer
;
75 static struct inet_frags ip4_frags
;
77 int ip_frag_nqueues(struct net
*net
)
79 return net
->ipv4
.frags
.nqueues
;
82 int ip_frag_mem(struct net
*net
)
84 return atomic_read(&net
->ipv4
.frags
.mem
);
87 static int ip_frag_reasm(struct ipq
*qp
, struct sk_buff
*prev
,
88 struct net_device
*dev
);
90 struct ip4_create_arg
{
95 static unsigned int ipqhashfn(__be16 id
, __be32 saddr
, __be32 daddr
, u8 prot
)
97 return jhash_3words((__force u32
)id
<< 16 | prot
,
98 (__force u32
)saddr
, (__force u32
)daddr
,
99 ip4_frags
.rnd
) & (INETFRAGS_HASHSZ
- 1);
102 static unsigned int ip4_hashfn(struct inet_frag_queue
*q
)
106 ipq
= container_of(q
, struct ipq
, q
);
107 return ipqhashfn(ipq
->id
, ipq
->saddr
, ipq
->daddr
, ipq
->protocol
);
110 static int ip4_frag_match(struct inet_frag_queue
*q
, void *a
)
113 struct ip4_create_arg
*arg
= a
;
115 qp
= container_of(q
, struct ipq
, q
);
116 return (qp
->id
== arg
->iph
->id
&&
117 qp
->saddr
== arg
->iph
->saddr
&&
118 qp
->daddr
== arg
->iph
->daddr
&&
119 qp
->protocol
== arg
->iph
->protocol
&&
120 qp
->user
== arg
->user
);
123 /* Memory Tracking Functions. */
124 static __inline__
void frag_kfree_skb(struct netns_frags
*nf
,
125 struct sk_buff
*skb
, int *work
)
128 *work
-= skb
->truesize
;
129 atomic_sub(skb
->truesize
, &nf
->mem
);
133 static void ip4_frag_init(struct inet_frag_queue
*q
, void *a
)
135 struct ipq
*qp
= container_of(q
, struct ipq
, q
);
136 struct ip4_create_arg
*arg
= a
;
138 qp
->protocol
= arg
->iph
->protocol
;
139 qp
->id
= arg
->iph
->id
;
140 qp
->saddr
= arg
->iph
->saddr
;
141 qp
->daddr
= arg
->iph
->daddr
;
142 qp
->user
= arg
->user
;
143 qp
->peer
= sysctl_ipfrag_max_dist
?
144 inet_getpeer(arg
->iph
->saddr
, 1) : NULL
;
147 static __inline__
void ip4_frag_free(struct inet_frag_queue
*q
)
151 qp
= container_of(q
, struct ipq
, q
);
153 inet_putpeer(qp
->peer
);
157 /* Destruction primitives. */
159 static __inline__
void ipq_put(struct ipq
*ipq
)
161 inet_frag_put(&ipq
->q
, &ip4_frags
);
164 /* Kill ipq entry. It is not destroyed immediately,
165 * because caller (and someone more) holds reference count.
167 static void ipq_kill(struct ipq
*ipq
)
169 inet_frag_kill(&ipq
->q
, &ip4_frags
);
172 /* Memory limiting on fragments. Evictor trashes the oldest
173 * fragment queue until we are back under the threshold.
175 static void ip_evictor(struct net
*net
)
179 evicted
= inet_frag_evictor(&net
->ipv4
.frags
, &ip4_frags
);
181 IP_ADD_STATS_BH(net
, IPSTATS_MIB_REASMFAILS
, evicted
);
185 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
187 static void ip_expire(unsigned long arg
)
192 qp
= container_of((struct inet_frag_queue
*) arg
, struct ipq
, q
);
193 net
= container_of(qp
->q
.net
, struct net
, ipv4
.frags
);
195 spin_lock(&qp
->q
.lock
);
197 if (qp
->q
.last_in
& INET_FRAG_COMPLETE
)
202 IP_INC_STATS_BH(net
, IPSTATS_MIB_REASMTIMEOUT
);
203 IP_INC_STATS_BH(net
, IPSTATS_MIB_REASMFAILS
);
205 if ((qp
->q
.last_in
& INET_FRAG_FIRST_IN
) && qp
->q
.fragments
!= NULL
) {
206 struct sk_buff
*head
= qp
->q
.fragments
;
208 /* Send an ICMP "Fragment Reassembly Timeout" message. */
209 if ((head
->dev
= dev_get_by_index(net
, qp
->iif
)) != NULL
) {
210 icmp_send(head
, ICMP_TIME_EXCEEDED
, ICMP_EXC_FRAGTIME
, 0);
215 spin_unlock(&qp
->q
.lock
);
219 /* Find the correct entry in the "incomplete datagrams" queue for
220 * this IP datagram, and create new one, if nothing is found.
222 static inline struct ipq
*ip_find(struct net
*net
, struct iphdr
*iph
, u32 user
)
224 struct inet_frag_queue
*q
;
225 struct ip4_create_arg arg
;
231 read_lock(&ip4_frags
.lock
);
232 hash
= ipqhashfn(iph
->id
, iph
->saddr
, iph
->daddr
, iph
->protocol
);
234 q
= inet_frag_find(&net
->ipv4
.frags
, &ip4_frags
, &arg
, hash
);
238 return container_of(q
, struct ipq
, q
);
241 LIMIT_NETDEBUG(KERN_ERR
"ip_frag_create: no memory left !\n");
245 /* Is the fragment too far ahead to be part of ipq? */
246 static inline int ip_frag_too_far(struct ipq
*qp
)
248 struct inet_peer
*peer
= qp
->peer
;
249 unsigned int max
= sysctl_ipfrag_max_dist
;
250 unsigned int start
, end
;
258 end
= atomic_inc_return(&peer
->rid
);
261 rc
= qp
->q
.fragments
&& (end
- start
) > max
;
266 net
= container_of(qp
->q
.net
, struct net
, ipv4
.frags
);
267 IP_INC_STATS_BH(net
, IPSTATS_MIB_REASMFAILS
);
273 static int ip_frag_reinit(struct ipq
*qp
)
277 if (!mod_timer(&qp
->q
.timer
, jiffies
+ qp
->q
.net
->timeout
)) {
278 atomic_inc(&qp
->q
.refcnt
);
282 fp
= qp
->q
.fragments
;
284 struct sk_buff
*xp
= fp
->next
;
285 frag_kfree_skb(qp
->q
.net
, fp
, NULL
);
292 qp
->q
.fragments
= NULL
;
298 /* Add new segment to existing queue. */
299 static int ip_frag_queue(struct ipq
*qp
, struct sk_buff
*skb
)
301 struct sk_buff
*prev
, *next
;
302 struct net_device
*dev
;
307 if (qp
->q
.last_in
& INET_FRAG_COMPLETE
)
310 if (!(IPCB(skb
)->flags
& IPSKB_FRAG_COMPLETE
) &&
311 unlikely(ip_frag_too_far(qp
)) &&
312 unlikely(err
= ip_frag_reinit(qp
))) {
317 offset
= ntohs(ip_hdr(skb
)->frag_off
);
318 flags
= offset
& ~IP_OFFSET
;
320 offset
<<= 3; /* offset is in 8-byte chunks */
321 ihl
= ip_hdrlen(skb
);
323 /* Determine the position of this fragment. */
324 end
= offset
+ skb
->len
- ihl
;
327 /* Is this the final fragment? */
328 if ((flags
& IP_MF
) == 0) {
329 /* If we already have some bits beyond end
330 * or have different end, the segment is corrrupted.
332 if (end
< qp
->q
.len
||
333 ((qp
->q
.last_in
& INET_FRAG_LAST_IN
) && end
!= qp
->q
.len
))
335 qp
->q
.last_in
|= INET_FRAG_LAST_IN
;
340 if (skb
->ip_summed
!= CHECKSUM_UNNECESSARY
)
341 skb
->ip_summed
= CHECKSUM_NONE
;
343 if (end
> qp
->q
.len
) {
344 /* Some bits beyond end -> corruption. */
345 if (qp
->q
.last_in
& INET_FRAG_LAST_IN
)
354 if (pskb_pull(skb
, ihl
) == NULL
)
357 err
= pskb_trim_rcsum(skb
, end
- offset
);
361 /* Find out which fragments are in front and at the back of us
362 * in the chain of fragments so far. We must know where to put
363 * this fragment, right?
366 for (next
= qp
->q
.fragments
; next
!= NULL
; next
= next
->next
) {
367 if (FRAG_CB(next
)->offset
>= offset
)
372 /* We found where to put this one. Check for overlap with
373 * preceding fragment, and, if needed, align things so that
374 * any overlaps are eliminated.
377 int i
= (FRAG_CB(prev
)->offset
+ prev
->len
) - offset
;
385 if (!pskb_pull(skb
, i
))
387 if (skb
->ip_summed
!= CHECKSUM_UNNECESSARY
)
388 skb
->ip_summed
= CHECKSUM_NONE
;
394 while (next
&& FRAG_CB(next
)->offset
< end
) {
395 int i
= end
- FRAG_CB(next
)->offset
; /* overlap is 'i' bytes */
398 /* Eat head of the next overlapped fragment
399 * and leave the loop. The next ones cannot overlap.
401 if (!pskb_pull(next
, i
))
403 FRAG_CB(next
)->offset
+= i
;
405 if (next
->ip_summed
!= CHECKSUM_UNNECESSARY
)
406 next
->ip_summed
= CHECKSUM_NONE
;
409 struct sk_buff
*free_it
= next
;
411 /* Old fragment is completely overridden with
419 qp
->q
.fragments
= next
;
421 qp
->q
.meat
-= free_it
->len
;
422 frag_kfree_skb(qp
->q
.net
, free_it
, NULL
);
426 FRAG_CB(skb
)->offset
= offset
;
428 /* Insert this fragment in the chain of fragments. */
433 qp
->q
.fragments
= skb
;
437 qp
->iif
= dev
->ifindex
;
440 qp
->q
.stamp
= skb
->tstamp
;
441 qp
->q
.meat
+= skb
->len
;
442 atomic_add(skb
->truesize
, &qp
->q
.net
->mem
);
444 qp
->q
.last_in
|= INET_FRAG_FIRST_IN
;
446 if (qp
->q
.last_in
== (INET_FRAG_FIRST_IN
| INET_FRAG_LAST_IN
) &&
447 qp
->q
.meat
== qp
->q
.len
)
448 return ip_frag_reasm(qp
, prev
, dev
);
450 write_lock(&ip4_frags
.lock
);
451 list_move_tail(&qp
->q
.lru_list
, &qp
->q
.net
->lru_list
);
452 write_unlock(&ip4_frags
.lock
);
461 /* Build a new IP datagram from all its fragments. */
463 static int ip_frag_reasm(struct ipq
*qp
, struct sk_buff
*prev
,
464 struct net_device
*dev
)
466 struct net
*net
= container_of(qp
->q
.net
, struct net
, ipv4
.frags
);
468 struct sk_buff
*fp
, *head
= qp
->q
.fragments
;
475 /* Make the one we just received the head. */
478 fp
= skb_clone(head
, GFP_ATOMIC
);
482 fp
->next
= head
->next
;
485 skb_morph(head
, qp
->q
.fragments
);
486 head
->next
= qp
->q
.fragments
->next
;
488 kfree_skb(qp
->q
.fragments
);
489 qp
->q
.fragments
= head
;
492 WARN_ON(head
== NULL
);
493 WARN_ON(FRAG_CB(head
)->offset
!= 0);
495 /* Allocate a new buffer for the datagram. */
496 ihlen
= ip_hdrlen(head
);
497 len
= ihlen
+ qp
->q
.len
;
503 /* Head of list must not be cloned. */
504 if (skb_cloned(head
) && pskb_expand_head(head
, 0, 0, GFP_ATOMIC
))
507 /* If the first fragment is fragmented itself, we split
508 * it to two chunks: the first with data and paged part
509 * and the second, holding only fragments. */
510 if (skb_has_frags(head
)) {
511 struct sk_buff
*clone
;
514 if ((clone
= alloc_skb(0, GFP_ATOMIC
)) == NULL
)
516 clone
->next
= head
->next
;
518 skb_shinfo(clone
)->frag_list
= skb_shinfo(head
)->frag_list
;
519 skb_frag_list_init(head
);
520 for (i
=0; i
<skb_shinfo(head
)->nr_frags
; i
++)
521 plen
+= skb_shinfo(head
)->frags
[i
].size
;
522 clone
->len
= clone
->data_len
= head
->data_len
- plen
;
523 head
->data_len
-= clone
->len
;
524 head
->len
-= clone
->len
;
526 clone
->ip_summed
= head
->ip_summed
;
527 atomic_add(clone
->truesize
, &qp
->q
.net
->mem
);
530 skb_shinfo(head
)->frag_list
= head
->next
;
531 skb_push(head
, head
->data
- skb_network_header(head
));
532 atomic_sub(head
->truesize
, &qp
->q
.net
->mem
);
534 for (fp
=head
->next
; fp
; fp
= fp
->next
) {
535 head
->data_len
+= fp
->len
;
536 head
->len
+= fp
->len
;
537 if (head
->ip_summed
!= fp
->ip_summed
)
538 head
->ip_summed
= CHECKSUM_NONE
;
539 else if (head
->ip_summed
== CHECKSUM_COMPLETE
)
540 head
->csum
= csum_add(head
->csum
, fp
->csum
);
541 head
->truesize
+= fp
->truesize
;
542 atomic_sub(fp
->truesize
, &qp
->q
.net
->mem
);
547 head
->tstamp
= qp
->q
.stamp
;
551 iph
->tot_len
= htons(len
);
552 IP_INC_STATS_BH(net
, IPSTATS_MIB_REASMOKS
);
553 qp
->q
.fragments
= NULL
;
557 LIMIT_NETDEBUG(KERN_ERR
"IP: queue_glue: no memory for gluing "
563 printk(KERN_INFO
"Oversized IP packet from %pI4.\n",
566 IP_INC_STATS_BH(dev_net(dev
), IPSTATS_MIB_REASMFAILS
);
570 /* Process an incoming IP datagram fragment. */
571 int ip_defrag(struct sk_buff
*skb
, u32 user
)
576 net
= skb
->dev
? dev_net(skb
->dev
) : dev_net(skb_dst(skb
)->dev
);
577 IP_INC_STATS_BH(net
, IPSTATS_MIB_REASMREQDS
);
579 /* Start by cleaning up the memory. */
580 if (atomic_read(&net
->ipv4
.frags
.mem
) > net
->ipv4
.frags
.high_thresh
)
583 /* Lookup (or create) queue header */
584 if ((qp
= ip_find(net
, ip_hdr(skb
), user
)) != NULL
) {
587 spin_lock(&qp
->q
.lock
);
589 ret
= ip_frag_queue(qp
, skb
);
591 spin_unlock(&qp
->q
.lock
);
596 IP_INC_STATS_BH(net
, IPSTATS_MIB_REASMFAILS
);
604 static struct ctl_table ip4_frags_ns_ctl_table
[] = {
606 .ctl_name
= NET_IPV4_IPFRAG_HIGH_THRESH
,
607 .procname
= "ipfrag_high_thresh",
608 .data
= &init_net
.ipv4
.frags
.high_thresh
,
609 .maxlen
= sizeof(int),
611 .proc_handler
= proc_dointvec
614 .ctl_name
= NET_IPV4_IPFRAG_LOW_THRESH
,
615 .procname
= "ipfrag_low_thresh",
616 .data
= &init_net
.ipv4
.frags
.low_thresh
,
617 .maxlen
= sizeof(int),
619 .proc_handler
= proc_dointvec
622 .ctl_name
= NET_IPV4_IPFRAG_TIME
,
623 .procname
= "ipfrag_time",
624 .data
= &init_net
.ipv4
.frags
.timeout
,
625 .maxlen
= sizeof(int),
627 .proc_handler
= proc_dointvec_jiffies
,
628 .strategy
= sysctl_jiffies
633 static struct ctl_table ip4_frags_ctl_table
[] = {
635 .ctl_name
= NET_IPV4_IPFRAG_SECRET_INTERVAL
,
636 .procname
= "ipfrag_secret_interval",
637 .data
= &ip4_frags
.secret_interval
,
638 .maxlen
= sizeof(int),
640 .proc_handler
= proc_dointvec_jiffies
,
641 .strategy
= sysctl_jiffies
644 .procname
= "ipfrag_max_dist",
645 .data
= &sysctl_ipfrag_max_dist
,
646 .maxlen
= sizeof(int),
648 .proc_handler
= proc_dointvec_minmax
,
654 static int ip4_frags_ns_ctl_register(struct net
*net
)
656 struct ctl_table
*table
;
657 struct ctl_table_header
*hdr
;
659 table
= ip4_frags_ns_ctl_table
;
660 if (net
!= &init_net
) {
661 table
= kmemdup(table
, sizeof(ip4_frags_ns_ctl_table
), GFP_KERNEL
);
665 table
[0].data
= &net
->ipv4
.frags
.high_thresh
;
666 table
[1].data
= &net
->ipv4
.frags
.low_thresh
;
667 table
[2].data
= &net
->ipv4
.frags
.timeout
;
670 hdr
= register_net_sysctl_table(net
, net_ipv4_ctl_path
, table
);
674 net
->ipv4
.frags_hdr
= hdr
;
678 if (net
!= &init_net
)
684 static void ip4_frags_ns_ctl_unregister(struct net
*net
)
686 struct ctl_table
*table
;
688 table
= net
->ipv4
.frags_hdr
->ctl_table_arg
;
689 unregister_net_sysctl_table(net
->ipv4
.frags_hdr
);
693 static void ip4_frags_ctl_register(void)
695 register_net_sysctl_rotable(net_ipv4_ctl_path
, ip4_frags_ctl_table
);
698 static inline int ip4_frags_ns_ctl_register(struct net
*net
)
703 static inline void ip4_frags_ns_ctl_unregister(struct net
*net
)
707 static inline void ip4_frags_ctl_register(void)
712 static int ipv4_frags_init_net(struct net
*net
)
715 * Fragment cache limits. We will commit 256K at one time. Should we
716 * cross that limit we will prune down to 192K. This should cope with
717 * even the most extreme cases without allowing an attacker to
718 * measurably harm machine performance.
720 net
->ipv4
.frags
.high_thresh
= 256 * 1024;
721 net
->ipv4
.frags
.low_thresh
= 192 * 1024;
723 * Important NOTE! Fragment queue must be destroyed before MSL expires.
724 * RFC791 is wrong proposing to prolongate timer each fragment arrival
727 net
->ipv4
.frags
.timeout
= IP_FRAG_TIME
;
729 inet_frags_init_net(&net
->ipv4
.frags
);
731 return ip4_frags_ns_ctl_register(net
);
734 static void ipv4_frags_exit_net(struct net
*net
)
736 ip4_frags_ns_ctl_unregister(net
);
737 inet_frags_exit_net(&net
->ipv4
.frags
, &ip4_frags
);
740 static struct pernet_operations ip4_frags_ops
= {
741 .init
= ipv4_frags_init_net
,
742 .exit
= ipv4_frags_exit_net
,
745 void __init
ipfrag_init(void)
747 ip4_frags_ctl_register();
748 register_pernet_subsys(&ip4_frags_ops
);
749 ip4_frags
.hashfn
= ip4_hashfn
;
750 ip4_frags
.constructor
= ip4_frag_init
;
751 ip4_frags
.destructor
= ip4_frag_free
;
752 ip4_frags
.skb_free
= NULL
;
753 ip4_frags
.qsize
= sizeof(struct ipq
);
754 ip4_frags
.match
= ip4_frag_match
;
755 ip4_frags
.frag_expire
= ip_expire
;
756 ip4_frags
.secret_interval
= 10 * 60 * HZ
;
757 inet_frags_init(&ip4_frags
);
760 EXPORT_SYMBOL(ip_defrag
);