2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21 * Preemption granularity:
22 * (default: 2 msec, units: nanoseconds)
24 * NOTE: this granularity value is not the same as the concept of
25 * 'timeslice length' - timeslices in CFS will typically be somewhat
26 * larger than this value. (to see the precise effective timeslice
27 * length of your workload, run vmstat and monitor the context-switches
30 * On SMP systems the value of this is multiplied by the log2 of the
31 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
32 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
34 unsigned int sysctl_sched_granularity __read_mostly
= 2000000000ULL/HZ
;
37 * SCHED_BATCH wake-up granularity.
38 * (default: 10 msec, units: nanoseconds)
40 * This option delays the preemption effects of decoupled workloads
41 * and reduces their over-scheduling. Synchronous workloads will still
42 * have immediate wakeup/sleep latencies.
44 unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly
=
48 * SCHED_OTHER wake-up granularity.
49 * (default: 1 msec, units: nanoseconds)
51 * This option delays the preemption effects of decoupled workloads
52 * and reduces their over-scheduling. Synchronous workloads will still
53 * have immediate wakeup/sleep latencies.
55 unsigned int sysctl_sched_wakeup_granularity __read_mostly
= 1000000000ULL/HZ
;
57 unsigned int sysctl_sched_stat_granularity __read_mostly
;
60 * Initialized in sched_init_granularity():
62 unsigned int sysctl_sched_runtime_limit __read_mostly
;
65 * Debugging: various feature bits
68 SCHED_FEAT_FAIR_SLEEPERS
= 1,
69 SCHED_FEAT_SLEEPER_AVG
= 2,
70 SCHED_FEAT_SLEEPER_LOAD_AVG
= 4,
71 SCHED_FEAT_PRECISE_CPU_LOAD
= 8,
72 SCHED_FEAT_START_DEBIT
= 16,
73 SCHED_FEAT_SKIP_INITIAL
= 32,
76 unsigned int sysctl_sched_features __read_mostly
=
77 SCHED_FEAT_FAIR_SLEEPERS
*1 |
78 SCHED_FEAT_SLEEPER_AVG
*0 |
79 SCHED_FEAT_SLEEPER_LOAD_AVG
*1 |
80 SCHED_FEAT_PRECISE_CPU_LOAD
*1 |
81 SCHED_FEAT_START_DEBIT
*1 |
82 SCHED_FEAT_SKIP_INITIAL
*0;
84 extern struct sched_class fair_sched_class
;
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
90 #ifdef CONFIG_FAIR_GROUP_SCHED
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
98 /* currently running entity (if any) on this cfs_rq */
99 static inline struct sched_entity
*cfs_rq_curr(struct cfs_rq
*cfs_rq
)
104 /* An entity is a task if it doesn't "own" a runqueue */
105 #define entity_is_task(se) (!se->my_q)
108 set_cfs_rq_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
113 #else /* CONFIG_FAIR_GROUP_SCHED */
115 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
117 return container_of(cfs_rq
, struct rq
, cfs
);
120 static inline struct sched_entity
*cfs_rq_curr(struct cfs_rq
*cfs_rq
)
122 struct rq
*rq
= rq_of(cfs_rq
);
124 if (unlikely(rq
->curr
->sched_class
!= &fair_sched_class
))
127 return &rq
->curr
->se
;
130 #define entity_is_task(se) 1
133 set_cfs_rq_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
135 #endif /* CONFIG_FAIR_GROUP_SCHED */
137 static inline struct task_struct
*task_of(struct sched_entity
*se
)
139 return container_of(se
, struct task_struct
, se
);
143 /**************************************************************
144 * Scheduling class tree data structure manipulation methods:
148 * Enqueue an entity into the rb-tree:
151 __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
153 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
154 struct rb_node
*parent
= NULL
;
155 struct sched_entity
*entry
;
156 s64 key
= se
->fair_key
;
160 * Find the right place in the rbtree:
164 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
166 * We dont care about collisions. Nodes with
167 * the same key stay together.
169 if (key
- entry
->fair_key
< 0) {
170 link
= &parent
->rb_left
;
172 link
= &parent
->rb_right
;
178 * Maintain a cache of leftmost tree entries (it is frequently
182 cfs_rq
->rb_leftmost
= &se
->run_node
;
184 rb_link_node(&se
->run_node
, parent
, link
);
185 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
186 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
187 cfs_rq
->nr_running
++;
192 __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
194 if (cfs_rq
->rb_leftmost
== &se
->run_node
)
195 cfs_rq
->rb_leftmost
= rb_next(&se
->run_node
);
196 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
197 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
198 cfs_rq
->nr_running
--;
202 static inline struct rb_node
*first_fair(struct cfs_rq
*cfs_rq
)
204 return cfs_rq
->rb_leftmost
;
207 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
209 return rb_entry(first_fair(cfs_rq
), struct sched_entity
, run_node
);
212 /**************************************************************
213 * Scheduling class statistics methods:
217 * We rescale the rescheduling granularity of tasks according to their
218 * nice level, but only linearly, not exponentially:
221 niced_granularity(struct sched_entity
*curr
, unsigned long granularity
)
225 if (likely(curr
->load
.weight
== NICE_0_LOAD
))
228 * Positive nice levels get the same granularity as nice-0:
230 if (likely(curr
->load
.weight
< NICE_0_LOAD
)) {
231 tmp
= curr
->load
.weight
* (u64
)granularity
;
232 return (long) (tmp
>> NICE_0_SHIFT
);
235 * Negative nice level tasks get linearly finer
238 tmp
= curr
->load
.inv_weight
* (u64
)granularity
;
241 * It will always fit into 'long':
243 return (long) (tmp
>> WMULT_SHIFT
);
247 limit_wait_runtime(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
249 long limit
= sysctl_sched_runtime_limit
;
252 * Niced tasks have the same history dynamic range as
255 if (unlikely(se
->wait_runtime
> limit
)) {
256 se
->wait_runtime
= limit
;
257 schedstat_inc(se
, wait_runtime_overruns
);
258 schedstat_inc(cfs_rq
, wait_runtime_overruns
);
260 if (unlikely(se
->wait_runtime
< -limit
)) {
261 se
->wait_runtime
= -limit
;
262 schedstat_inc(se
, wait_runtime_underruns
);
263 schedstat_inc(cfs_rq
, wait_runtime_underruns
);
268 __add_wait_runtime(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, long delta
)
270 se
->wait_runtime
+= delta
;
271 schedstat_add(se
, sum_wait_runtime
, delta
);
272 limit_wait_runtime(cfs_rq
, se
);
276 add_wait_runtime(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, long delta
)
278 schedstat_add(cfs_rq
, wait_runtime
, -se
->wait_runtime
);
279 __add_wait_runtime(cfs_rq
, se
, delta
);
280 schedstat_add(cfs_rq
, wait_runtime
, se
->wait_runtime
);
284 * Update the current task's runtime statistics. Skip current tasks that
285 * are not in our scheduling class.
288 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
290 unsigned long delta
, delta_exec
, delta_fair
, delta_mine
;
291 struct load_weight
*lw
= &cfs_rq
->load
;
292 unsigned long load
= lw
->weight
;
294 delta_exec
= curr
->delta_exec
;
295 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
297 curr
->sum_exec_runtime
+= delta_exec
;
298 cfs_rq
->exec_clock
+= delta_exec
;
303 delta_fair
= calc_delta_fair(delta_exec
, lw
);
304 delta_mine
= calc_delta_mine(delta_exec
, curr
->load
.weight
, lw
);
306 if (cfs_rq
->sleeper_bonus
> sysctl_sched_granularity
) {
307 delta
= min(cfs_rq
->sleeper_bonus
, (u64
)delta_exec
);
308 delta
= calc_delta_mine(delta
, curr
->load
.weight
, lw
);
309 delta
= min((u64
)delta
, cfs_rq
->sleeper_bonus
);
310 cfs_rq
->sleeper_bonus
-= delta
;
314 cfs_rq
->fair_clock
+= delta_fair
;
316 * We executed delta_exec amount of time on the CPU,
317 * but we were only entitled to delta_mine amount of
318 * time during that period (if nr_running == 1 then
319 * the two values are equal)
320 * [Note: delta_mine - delta_exec is negative]:
322 add_wait_runtime(cfs_rq
, curr
, delta_mine
- delta_exec
);
325 static void update_curr(struct cfs_rq
*cfs_rq
)
327 struct sched_entity
*curr
= cfs_rq_curr(cfs_rq
);
328 unsigned long delta_exec
;
334 * Get the amount of time the current task was running
335 * since the last time we changed load (this cannot
336 * overflow on 32 bits):
338 delta_exec
= (unsigned long)(rq_of(cfs_rq
)->clock
- curr
->exec_start
);
340 curr
->delta_exec
+= delta_exec
;
342 if (unlikely(curr
->delta_exec
> sysctl_sched_stat_granularity
)) {
343 __update_curr(cfs_rq
, curr
);
344 curr
->delta_exec
= 0;
346 curr
->exec_start
= rq_of(cfs_rq
)->clock
;
350 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
352 se
->wait_start_fair
= cfs_rq
->fair_clock
;
353 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
357 * We calculate fair deltas here, so protect against the random effects
358 * of a multiplication overflow by capping it to the runtime limit:
360 #if BITS_PER_LONG == 32
361 static inline unsigned long
362 calc_weighted(unsigned long delta
, unsigned long weight
, int shift
)
364 u64 tmp
= (u64
)delta
* weight
>> shift
;
366 if (unlikely(tmp
> sysctl_sched_runtime_limit
*2))
367 return sysctl_sched_runtime_limit
*2;
371 static inline unsigned long
372 calc_weighted(unsigned long delta
, unsigned long weight
, int shift
)
374 return delta
* weight
>> shift
;
379 * Task is being enqueued - update stats:
381 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
386 * Are we enqueueing a waiting task? (for current tasks
387 * a dequeue/enqueue event is a NOP)
389 if (se
!= cfs_rq_curr(cfs_rq
))
390 update_stats_wait_start(cfs_rq
, se
);
394 key
= cfs_rq
->fair_clock
;
397 * Optimize the common nice 0 case:
399 if (likely(se
->load
.weight
== NICE_0_LOAD
)) {
400 key
-= se
->wait_runtime
;
404 if (se
->wait_runtime
< 0) {
405 tmp
= -se
->wait_runtime
;
406 key
+= (tmp
* se
->load
.inv_weight
) >>
407 (WMULT_SHIFT
- NICE_0_SHIFT
);
409 tmp
= se
->wait_runtime
;
410 key
-= (tmp
* se
->load
.inv_weight
) >>
411 (WMULT_SHIFT
- NICE_0_SHIFT
);
419 * Note: must be called with a freshly updated rq->fair_clock.
422 __update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
424 unsigned long delta_fair
= se
->delta_fair_run
;
426 schedstat_set(se
->wait_max
, max(se
->wait_max
,
427 rq_of(cfs_rq
)->clock
- se
->wait_start
));
429 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
430 delta_fair
= calc_weighted(delta_fair
, se
->load
.weight
,
433 add_wait_runtime(cfs_rq
, se
, delta_fair
);
437 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
439 unsigned long delta_fair
;
441 delta_fair
= (unsigned long)min((u64
)(2*sysctl_sched_runtime_limit
),
442 (u64
)(cfs_rq
->fair_clock
- se
->wait_start_fair
));
444 se
->delta_fair_run
+= delta_fair
;
445 if (unlikely(abs(se
->delta_fair_run
) >=
446 sysctl_sched_stat_granularity
)) {
447 __update_stats_wait_end(cfs_rq
, se
);
448 se
->delta_fair_run
= 0;
451 se
->wait_start_fair
= 0;
452 schedstat_set(se
->wait_start
, 0);
456 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
460 * Mark the end of the wait period if dequeueing a
463 if (se
!= cfs_rq_curr(cfs_rq
))
464 update_stats_wait_end(cfs_rq
, se
);
468 * We are picking a new current task - update its stats:
471 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
474 * We are starting a new run period:
476 se
->exec_start
= rq_of(cfs_rq
)->clock
;
480 * We are descheduling a task - update its stats:
483 update_stats_curr_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
488 /**************************************************
489 * Scheduling class queueing methods:
492 static void __enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
494 unsigned long load
= cfs_rq
->load
.weight
, delta_fair
;
497 if (sysctl_sched_features
& SCHED_FEAT_SLEEPER_LOAD_AVG
)
498 load
= rq_of(cfs_rq
)->cpu_load
[2];
500 delta_fair
= se
->delta_fair_sleep
;
503 * Fix up delta_fair with the effect of us running
504 * during the whole sleep period:
506 if (sysctl_sched_features
& SCHED_FEAT_SLEEPER_AVG
)
507 delta_fair
= div64_likely32((u64
)delta_fair
* load
,
508 load
+ se
->load
.weight
);
510 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
511 delta_fair
= calc_weighted(delta_fair
, se
->load
.weight
,
514 prev_runtime
= se
->wait_runtime
;
515 __add_wait_runtime(cfs_rq
, se
, delta_fair
);
516 delta_fair
= se
->wait_runtime
- prev_runtime
;
519 * Track the amount of bonus we've given to sleepers:
521 cfs_rq
->sleeper_bonus
+= delta_fair
;
522 if (unlikely(cfs_rq
->sleeper_bonus
> sysctl_sched_runtime_limit
))
523 cfs_rq
->sleeper_bonus
= sysctl_sched_runtime_limit
;
525 schedstat_add(cfs_rq
, wait_runtime
, se
->wait_runtime
);
528 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
530 struct task_struct
*tsk
= task_of(se
);
531 unsigned long delta_fair
;
533 if ((entity_is_task(se
) && tsk
->policy
== SCHED_BATCH
) ||
534 !(sysctl_sched_features
& SCHED_FEAT_FAIR_SLEEPERS
))
537 delta_fair
= (unsigned long)min((u64
)(2*sysctl_sched_runtime_limit
),
538 (u64
)(cfs_rq
->fair_clock
- se
->sleep_start_fair
));
540 se
->delta_fair_sleep
+= delta_fair
;
541 if (unlikely(abs(se
->delta_fair_sleep
) >=
542 sysctl_sched_stat_granularity
)) {
543 __enqueue_sleeper(cfs_rq
, se
);
544 se
->delta_fair_sleep
= 0;
547 se
->sleep_start_fair
= 0;
549 #ifdef CONFIG_SCHEDSTATS
550 if (se
->sleep_start
) {
551 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
556 if (unlikely(delta
> se
->sleep_max
))
557 se
->sleep_max
= delta
;
560 se
->sum_sleep_runtime
+= delta
;
562 if (se
->block_start
) {
563 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
568 if (unlikely(delta
> se
->block_max
))
569 se
->block_max
= delta
;
572 se
->sum_sleep_runtime
+= delta
;
578 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
581 * Update the fair clock.
586 enqueue_sleeper(cfs_rq
, se
);
588 update_stats_enqueue(cfs_rq
, se
);
589 __enqueue_entity(cfs_rq
, se
);
593 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
595 update_stats_dequeue(cfs_rq
, se
);
597 se
->sleep_start_fair
= cfs_rq
->fair_clock
;
598 #ifdef CONFIG_SCHEDSTATS
599 if (entity_is_task(se
)) {
600 struct task_struct
*tsk
= task_of(se
);
602 if (tsk
->state
& TASK_INTERRUPTIBLE
)
603 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
604 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
605 se
->block_start
= rq_of(cfs_rq
)->clock
;
607 cfs_rq
->wait_runtime
-= se
->wait_runtime
;
610 __dequeue_entity(cfs_rq
, se
);
614 * Preempt the current task with a newly woken task if needed:
617 __check_preempt_curr_fair(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
618 struct sched_entity
*curr
, unsigned long granularity
)
620 s64 __delta
= curr
->fair_key
- se
->fair_key
;
623 * Take scheduling granularity into account - do not
624 * preempt the current task unless the best task has
625 * a larger than sched_granularity fairness advantage:
627 if (__delta
> niced_granularity(curr
, granularity
))
628 resched_task(rq_of(cfs_rq
)->curr
);
632 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
635 * Any task has to be enqueued before it get to execute on
636 * a CPU. So account for the time it spent waiting on the
637 * runqueue. (note, here we rely on pick_next_task() having
638 * done a put_prev_task_fair() shortly before this, which
639 * updated rq->fair_clock - used by update_stats_wait_end())
641 update_stats_wait_end(cfs_rq
, se
);
642 update_stats_curr_start(cfs_rq
, se
);
643 set_cfs_rq_curr(cfs_rq
, se
);
646 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
648 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
650 set_next_entity(cfs_rq
, se
);
655 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
658 * If still on the runqueue then deactivate_task()
659 * was not called and update_curr() has to be done:
664 update_stats_curr_end(cfs_rq
, prev
);
667 update_stats_wait_start(cfs_rq
, prev
);
668 set_cfs_rq_curr(cfs_rq
, NULL
);
671 static void entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
673 struct sched_entity
*next
;
676 * Dequeue and enqueue the task to update its
677 * position within the tree:
679 dequeue_entity(cfs_rq
, curr
, 0);
680 enqueue_entity(cfs_rq
, curr
, 0);
683 * Reschedule if another task tops the current one.
685 next
= __pick_next_entity(cfs_rq
);
689 __check_preempt_curr_fair(cfs_rq
, next
, curr
, sysctl_sched_granularity
);
692 /**************************************************
693 * CFS operations on tasks:
696 #ifdef CONFIG_FAIR_GROUP_SCHED
698 /* Walk up scheduling entities hierarchy */
699 #define for_each_sched_entity(se) \
700 for (; se; se = se->parent)
702 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
707 /* runqueue on which this entity is (to be) queued */
708 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
713 /* runqueue "owned" by this group */
714 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
719 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
720 * another cpu ('this_cpu')
722 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
724 /* A later patch will take group into account */
725 return &cpu_rq(this_cpu
)->cfs
;
728 /* Iterate thr' all leaf cfs_rq's on a runqueue */
729 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
730 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
732 /* Do the two (enqueued) tasks belong to the same group ? */
733 static inline int is_same_group(struct task_struct
*curr
, struct task_struct
*p
)
735 if (curr
->se
.cfs_rq
== p
->se
.cfs_rq
)
741 #else /* CONFIG_FAIR_GROUP_SCHED */
743 #define for_each_sched_entity(se) \
744 for (; se; se = NULL)
746 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
748 return &task_rq(p
)->cfs
;
751 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
753 struct task_struct
*p
= task_of(se
);
754 struct rq
*rq
= task_rq(p
);
759 /* runqueue "owned" by this group */
760 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
765 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
767 return &cpu_rq(this_cpu
)->cfs
;
770 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
771 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
773 static inline int is_same_group(struct task_struct
*curr
, struct task_struct
*p
)
778 #endif /* CONFIG_FAIR_GROUP_SCHED */
781 * The enqueue_task method is called before nr_running is
782 * increased. Here we update the fair scheduling stats and
783 * then put the task into the rbtree:
785 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
787 struct cfs_rq
*cfs_rq
;
788 struct sched_entity
*se
= &p
->se
;
790 for_each_sched_entity(se
) {
793 cfs_rq
= cfs_rq_of(se
);
794 enqueue_entity(cfs_rq
, se
, wakeup
);
799 * The dequeue_task method is called before nr_running is
800 * decreased. We remove the task from the rbtree and
801 * update the fair scheduling stats:
803 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
805 struct cfs_rq
*cfs_rq
;
806 struct sched_entity
*se
= &p
->se
;
808 for_each_sched_entity(se
) {
809 cfs_rq
= cfs_rq_of(se
);
810 dequeue_entity(cfs_rq
, se
, sleep
);
811 /* Don't dequeue parent if it has other entities besides us */
812 if (cfs_rq
->load
.weight
)
818 * sched_yield() support is very simple - we dequeue and enqueue
820 static void yield_task_fair(struct rq
*rq
, struct task_struct
*p
)
822 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
824 __update_rq_clock(rq
);
826 * Dequeue and enqueue the task to update its
827 * position within the tree:
829 dequeue_entity(cfs_rq
, &p
->se
, 0);
830 enqueue_entity(cfs_rq
, &p
->se
, 0);
834 * Preempt the current task with a newly woken task if needed:
836 static void check_preempt_curr_fair(struct rq
*rq
, struct task_struct
*p
)
838 struct task_struct
*curr
= rq
->curr
;
839 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
842 if (unlikely(rt_prio(p
->prio
))) {
849 gran
= sysctl_sched_wakeup_granularity
;
851 * Batch tasks prefer throughput over latency:
853 if (unlikely(p
->policy
== SCHED_BATCH
))
854 gran
= sysctl_sched_batch_wakeup_granularity
;
856 if (is_same_group(curr
, p
))
857 __check_preempt_curr_fair(cfs_rq
, &p
->se
, &curr
->se
, gran
);
860 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
862 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
863 struct sched_entity
*se
;
865 if (unlikely(!cfs_rq
->nr_running
))
869 se
= pick_next_entity(cfs_rq
);
870 cfs_rq
= group_cfs_rq(se
);
877 * Account for a descheduled task:
879 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
881 struct sched_entity
*se
= &prev
->se
;
882 struct cfs_rq
*cfs_rq
;
884 for_each_sched_entity(se
) {
885 cfs_rq
= cfs_rq_of(se
);
886 put_prev_entity(cfs_rq
, se
);
890 /**************************************************
891 * Fair scheduling class load-balancing methods:
895 * Load-balancing iterator. Note: while the runqueue stays locked
896 * during the whole iteration, the current task might be
897 * dequeued so the iterator has to be dequeue-safe. Here we
898 * achieve that by always pre-iterating before returning
901 static inline struct task_struct
*
902 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct rb_node
*curr
)
904 struct task_struct
*p
;
909 p
= rb_entry(curr
, struct task_struct
, se
.run_node
);
910 cfs_rq
->rb_load_balance_curr
= rb_next(curr
);
915 static struct task_struct
*load_balance_start_fair(void *arg
)
917 struct cfs_rq
*cfs_rq
= arg
;
919 return __load_balance_iterator(cfs_rq
, first_fair(cfs_rq
));
922 static struct task_struct
*load_balance_next_fair(void *arg
)
924 struct cfs_rq
*cfs_rq
= arg
;
926 return __load_balance_iterator(cfs_rq
, cfs_rq
->rb_load_balance_curr
);
929 #ifdef CONFIG_FAIR_GROUP_SCHED
930 static int cfs_rq_best_prio(struct cfs_rq
*cfs_rq
)
932 struct sched_entity
*curr
;
933 struct task_struct
*p
;
935 if (!cfs_rq
->nr_running
)
938 curr
= __pick_next_entity(cfs_rq
);
946 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
947 unsigned long max_nr_move
, unsigned long max_load_move
,
948 struct sched_domain
*sd
, enum cpu_idle_type idle
,
949 int *all_pinned
, int *this_best_prio
)
951 struct cfs_rq
*busy_cfs_rq
;
952 unsigned long load_moved
, total_nr_moved
= 0, nr_moved
;
953 long rem_load_move
= max_load_move
;
954 struct rq_iterator cfs_rq_iterator
;
956 cfs_rq_iterator
.start
= load_balance_start_fair
;
957 cfs_rq_iterator
.next
= load_balance_next_fair
;
959 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
960 #ifdef CONFIG_FAIR_GROUP_SCHED
961 struct cfs_rq
*this_cfs_rq
;
963 unsigned long maxload
;
965 this_cfs_rq
= cpu_cfs_rq(busy_cfs_rq
, this_cpu
);
967 imbalance
= busy_cfs_rq
->load
.weight
- this_cfs_rq
->load
.weight
;
968 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
972 /* Don't pull more than imbalance/2 */
974 maxload
= min(rem_load_move
, imbalance
);
976 *this_best_prio
= cfs_rq_best_prio(this_cfs_rq
);
978 # define maxload rem_load_move
980 /* pass busy_cfs_rq argument into
981 * load_balance_[start|next]_fair iterators
983 cfs_rq_iterator
.arg
= busy_cfs_rq
;
984 nr_moved
= balance_tasks(this_rq
, this_cpu
, busiest
,
985 max_nr_move
, maxload
, sd
, idle
, all_pinned
,
986 &load_moved
, this_best_prio
, &cfs_rq_iterator
);
988 total_nr_moved
+= nr_moved
;
989 max_nr_move
-= nr_moved
;
990 rem_load_move
-= load_moved
;
992 if (max_nr_move
<= 0 || rem_load_move
<= 0)
996 return max_load_move
- rem_load_move
;
1000 * scheduler tick hitting a task of our scheduling class:
1002 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
)
1004 struct cfs_rq
*cfs_rq
;
1005 struct sched_entity
*se
= &curr
->se
;
1007 for_each_sched_entity(se
) {
1008 cfs_rq
= cfs_rq_of(se
);
1009 entity_tick(cfs_rq
, se
);
1014 * Share the fairness runtime between parent and child, thus the
1015 * total amount of pressure for CPU stays equal - new tasks
1016 * get a chance to run but frequent forkers are not allowed to
1017 * monopolize the CPU. Note: the parent runqueue is locked,
1018 * the child is not running yet.
1020 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
1022 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1023 struct sched_entity
*se
= &p
->se
;
1025 sched_info_queued(p
);
1027 update_stats_enqueue(cfs_rq
, se
);
1029 * Child runs first: we let it run before the parent
1030 * until it reschedules once. We set up the key so that
1031 * it will preempt the parent:
1033 p
->se
.fair_key
= current
->se
.fair_key
-
1034 niced_granularity(&rq
->curr
->se
, sysctl_sched_granularity
) - 1;
1036 * The first wait is dominated by the child-runs-first logic,
1037 * so do not credit it with that waiting time yet:
1039 if (sysctl_sched_features
& SCHED_FEAT_SKIP_INITIAL
)
1040 p
->se
.wait_start_fair
= 0;
1043 * The statistical average of wait_runtime is about
1044 * -granularity/2, so initialize the task with that:
1046 if (sysctl_sched_features
& SCHED_FEAT_START_DEBIT
)
1047 p
->se
.wait_runtime
= -(sysctl_sched_granularity
/ 2);
1049 __enqueue_entity(cfs_rq
, se
);
1052 #ifdef CONFIG_FAIR_GROUP_SCHED
1053 /* Account for a task changing its policy or group.
1055 * This routine is mostly called to set cfs_rq->curr field when a task
1056 * migrates between groups/classes.
1058 static void set_curr_task_fair(struct rq
*rq
)
1060 struct sched_entity
*se
= &rq
->curr
.se
;
1062 for_each_sched_entity(se
)
1063 set_next_entity(cfs_rq_of(se
), se
);
1066 static void set_curr_task_fair(struct rq
*rq
)
1072 * All the scheduling class methods:
1074 struct sched_class fair_sched_class __read_mostly
= {
1075 .enqueue_task
= enqueue_task_fair
,
1076 .dequeue_task
= dequeue_task_fair
,
1077 .yield_task
= yield_task_fair
,
1079 .check_preempt_curr
= check_preempt_curr_fair
,
1081 .pick_next_task
= pick_next_task_fair
,
1082 .put_prev_task
= put_prev_task_fair
,
1084 .load_balance
= load_balance_fair
,
1086 .set_curr_task
= set_curr_task_fair
,
1087 .task_tick
= task_tick_fair
,
1088 .task_new
= task_new_fair
,
1091 #ifdef CONFIG_SCHED_DEBUG
1092 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
1094 struct cfs_rq
*cfs_rq
;
1096 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
1097 print_cfs_rq(m
, cpu
, cfs_rq
);