2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
21 #include <linux/sched.h>
23 #include <linux/file.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
32 #include <linux/rcuref.h>
34 #include <asm/kmap_types.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
39 #define dprintk printk
41 #define dprintk(x...) do { ; } while (0)
44 /*------ sysctl variables----*/
45 static DEFINE_SPINLOCK(aio_nr_lock
);
46 unsigned long aio_nr
; /* current system wide number of aio requests */
47 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
48 /*----end sysctl variables---*/
50 static kmem_cache_t
*kiocb_cachep
;
51 static kmem_cache_t
*kioctx_cachep
;
53 static struct workqueue_struct
*aio_wq
;
55 /* Used for rare fput completion. */
56 static void aio_fput_routine(void *);
57 static DECLARE_WORK(fput_work
, aio_fput_routine
, NULL
);
59 static DEFINE_SPINLOCK(fput_lock
);
60 static LIST_HEAD(fput_head
);
62 static void aio_kick_handler(void *);
63 static void aio_queue_work(struct kioctx
*);
66 * Creates the slab caches used by the aio routines, panic on
67 * failure as this is done early during the boot sequence.
69 static int __init
aio_setup(void)
71 kiocb_cachep
= kmem_cache_create("kiocb", sizeof(struct kiocb
),
72 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
73 kioctx_cachep
= kmem_cache_create("kioctx", sizeof(struct kioctx
),
74 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
76 aio_wq
= create_workqueue("aio");
78 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
83 static void aio_free_ring(struct kioctx
*ctx
)
85 struct aio_ring_info
*info
= &ctx
->ring_info
;
88 for (i
=0; i
<info
->nr_pages
; i
++)
89 put_page(info
->ring_pages
[i
]);
91 if (info
->mmap_size
) {
92 down_write(&ctx
->mm
->mmap_sem
);
93 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
94 up_write(&ctx
->mm
->mmap_sem
);
97 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
98 kfree(info
->ring_pages
);
99 info
->ring_pages
= NULL
;
103 static int aio_setup_ring(struct kioctx
*ctx
)
105 struct aio_ring
*ring
;
106 struct aio_ring_info
*info
= &ctx
->ring_info
;
107 unsigned nr_events
= ctx
->max_reqs
;
111 /* Compensate for the ring buffer's head/tail overlap entry */
112 nr_events
+= 2; /* 1 is required, 2 for good luck */
114 size
= sizeof(struct aio_ring
);
115 size
+= sizeof(struct io_event
) * nr_events
;
116 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
121 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
124 info
->ring_pages
= info
->internal_pages
;
125 if (nr_pages
> AIO_RING_PAGES
) {
126 info
->ring_pages
= kmalloc(sizeof(struct page
*) * nr_pages
, GFP_KERNEL
);
127 if (!info
->ring_pages
)
129 memset(info
->ring_pages
, 0, sizeof(struct page
*) * nr_pages
);
132 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
133 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
134 down_write(&ctx
->mm
->mmap_sem
);
135 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
136 PROT_READ
|PROT_WRITE
, MAP_ANON
|MAP_PRIVATE
,
138 if (IS_ERR((void *)info
->mmap_base
)) {
139 up_write(&ctx
->mm
->mmap_sem
);
140 printk("mmap err: %ld\n", -info
->mmap_base
);
146 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
147 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
148 info
->mmap_base
, nr_pages
,
149 1, 0, info
->ring_pages
, NULL
);
150 up_write(&ctx
->mm
->mmap_sem
);
152 if (unlikely(info
->nr_pages
!= nr_pages
)) {
157 ctx
->user_id
= info
->mmap_base
;
159 info
->nr
= nr_events
; /* trusted copy */
161 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
162 ring
->nr
= nr_events
; /* user copy */
163 ring
->id
= ctx
->user_id
;
164 ring
->head
= ring
->tail
= 0;
165 ring
->magic
= AIO_RING_MAGIC
;
166 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
167 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
168 ring
->header_length
= sizeof(struct aio_ring
);
169 kunmap_atomic(ring
, KM_USER0
);
175 /* aio_ring_event: returns a pointer to the event at the given index from
176 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
178 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
179 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
180 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
182 #define aio_ring_event(info, nr, km) ({ \
183 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
184 struct io_event *__event; \
185 __event = kmap_atomic( \
186 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
187 __event += pos % AIO_EVENTS_PER_PAGE; \
191 #define put_aio_ring_event(event, km) do { \
192 struct io_event *__event = (event); \
194 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
198 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
200 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
202 struct mm_struct
*mm
;
205 /* Prevent overflows */
206 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
207 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
208 pr_debug("ENOMEM: nr_events too high\n");
209 return ERR_PTR(-EINVAL
);
212 if ((unsigned long)nr_events
> aio_max_nr
)
213 return ERR_PTR(-EAGAIN
);
215 ctx
= kmem_cache_alloc(kioctx_cachep
, GFP_KERNEL
);
217 return ERR_PTR(-ENOMEM
);
219 memset(ctx
, 0, sizeof(*ctx
));
220 ctx
->max_reqs
= nr_events
;
221 mm
= ctx
->mm
= current
->mm
;
222 atomic_inc(&mm
->mm_count
);
224 atomic_set(&ctx
->users
, 1);
225 spin_lock_init(&ctx
->ctx_lock
);
226 spin_lock_init(&ctx
->ring_info
.ring_lock
);
227 init_waitqueue_head(&ctx
->wait
);
229 INIT_LIST_HEAD(&ctx
->active_reqs
);
230 INIT_LIST_HEAD(&ctx
->run_list
);
231 INIT_WORK(&ctx
->wq
, aio_kick_handler
, ctx
);
233 if (aio_setup_ring(ctx
) < 0)
236 /* limit the number of system wide aios */
237 spin_lock(&aio_nr_lock
);
238 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
239 aio_nr
+ ctx
->max_reqs
< aio_nr
)
242 aio_nr
+= ctx
->max_reqs
;
243 spin_unlock(&aio_nr_lock
);
244 if (ctx
->max_reqs
== 0)
247 /* now link into global list. kludge. FIXME */
248 write_lock(&mm
->ioctx_list_lock
);
249 ctx
->next
= mm
->ioctx_list
;
250 mm
->ioctx_list
= ctx
;
251 write_unlock(&mm
->ioctx_list_lock
);
253 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
254 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
259 return ERR_PTR(-EAGAIN
);
263 kmem_cache_free(kioctx_cachep
, ctx
);
264 ctx
= ERR_PTR(-ENOMEM
);
266 dprintk("aio: error allocating ioctx %p\n", ctx
);
271 * Cancels all outstanding aio requests on an aio context. Used
272 * when the processes owning a context have all exited to encourage
273 * the rapid destruction of the kioctx.
275 static void aio_cancel_all(struct kioctx
*ctx
)
277 int (*cancel
)(struct kiocb
*, struct io_event
*);
279 spin_lock_irq(&ctx
->ctx_lock
);
281 while (!list_empty(&ctx
->active_reqs
)) {
282 struct list_head
*pos
= ctx
->active_reqs
.next
;
283 struct kiocb
*iocb
= list_kiocb(pos
);
284 list_del_init(&iocb
->ki_list
);
285 cancel
= iocb
->ki_cancel
;
286 kiocbSetCancelled(iocb
);
289 spin_unlock_irq(&ctx
->ctx_lock
);
291 spin_lock_irq(&ctx
->ctx_lock
);
294 spin_unlock_irq(&ctx
->ctx_lock
);
297 static void wait_for_all_aios(struct kioctx
*ctx
)
299 struct task_struct
*tsk
= current
;
300 DECLARE_WAITQUEUE(wait
, tsk
);
302 if (!ctx
->reqs_active
)
305 add_wait_queue(&ctx
->wait
, &wait
);
306 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
307 while (ctx
->reqs_active
) {
309 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
311 __set_task_state(tsk
, TASK_RUNNING
);
312 remove_wait_queue(&ctx
->wait
, &wait
);
315 /* wait_on_sync_kiocb:
316 * Waits on the given sync kiocb to complete.
318 ssize_t fastcall
wait_on_sync_kiocb(struct kiocb
*iocb
)
320 while (iocb
->ki_users
) {
321 set_current_state(TASK_UNINTERRUPTIBLE
);
326 __set_current_state(TASK_RUNNING
);
327 return iocb
->ki_user_data
;
330 /* exit_aio: called when the last user of mm goes away. At this point,
331 * there is no way for any new requests to be submited or any of the
332 * io_* syscalls to be called on the context. However, there may be
333 * outstanding requests which hold references to the context; as they
334 * go away, they will call put_ioctx and release any pinned memory
335 * associated with the request (held via struct page * references).
337 void fastcall
exit_aio(struct mm_struct
*mm
)
339 struct kioctx
*ctx
= mm
->ioctx_list
;
340 mm
->ioctx_list
= NULL
;
342 struct kioctx
*next
= ctx
->next
;
346 wait_for_all_aios(ctx
);
348 * this is an overkill, but ensures we don't leave
349 * the ctx on the aio_wq
351 flush_workqueue(aio_wq
);
353 if (1 != atomic_read(&ctx
->users
))
355 "exit_aio:ioctx still alive: %d %d %d\n",
356 atomic_read(&ctx
->users
), ctx
->dead
,
364 * Called when the last user of an aio context has gone away,
365 * and the struct needs to be freed.
367 void fastcall
__put_ioctx(struct kioctx
*ctx
)
369 unsigned nr_events
= ctx
->max_reqs
;
371 if (unlikely(ctx
->reqs_active
))
374 cancel_delayed_work(&ctx
->wq
);
375 flush_workqueue(aio_wq
);
379 pr_debug("__put_ioctx: freeing %p\n", ctx
);
380 kmem_cache_free(kioctx_cachep
, ctx
);
383 spin_lock(&aio_nr_lock
);
384 BUG_ON(aio_nr
- nr_events
> aio_nr
);
386 spin_unlock(&aio_nr_lock
);
391 * Allocate a slot for an aio request. Increments the users count
392 * of the kioctx so that the kioctx stays around until all requests are
393 * complete. Returns NULL if no requests are free.
395 * Returns with kiocb->users set to 2. The io submit code path holds
396 * an extra reference while submitting the i/o.
397 * This prevents races between the aio code path referencing the
398 * req (after submitting it) and aio_complete() freeing the req.
400 static struct kiocb
*FASTCALL(__aio_get_req(struct kioctx
*ctx
));
401 static struct kiocb fastcall
*__aio_get_req(struct kioctx
*ctx
)
403 struct kiocb
*req
= NULL
;
404 struct aio_ring
*ring
;
407 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
415 req
->ki_cancel
= NULL
;
416 req
->ki_retry
= NULL
;
419 INIT_LIST_HEAD(&req
->ki_run_list
);
421 /* Check if the completion queue has enough free space to
422 * accept an event from this io.
424 spin_lock_irq(&ctx
->ctx_lock
);
425 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
426 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
427 list_add(&req
->ki_list
, &ctx
->active_reqs
);
432 kunmap_atomic(ring
, KM_USER0
);
433 spin_unlock_irq(&ctx
->ctx_lock
);
436 kmem_cache_free(kiocb_cachep
, req
);
443 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
446 /* Handle a potential starvation case -- should be exceedingly rare as
447 * requests will be stuck on fput_head only if the aio_fput_routine is
448 * delayed and the requests were the last user of the struct file.
450 req
= __aio_get_req(ctx
);
451 if (unlikely(NULL
== req
)) {
452 aio_fput_routine(NULL
);
453 req
= __aio_get_req(ctx
);
458 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
460 assert_spin_locked(&ctx
->ctx_lock
);
464 kmem_cache_free(kiocb_cachep
, req
);
467 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
471 static void aio_fput_routine(void *data
)
473 spin_lock_irq(&fput_lock
);
474 while (likely(!list_empty(&fput_head
))) {
475 struct kiocb
*req
= list_kiocb(fput_head
.next
);
476 struct kioctx
*ctx
= req
->ki_ctx
;
478 list_del(&req
->ki_list
);
479 spin_unlock_irq(&fput_lock
);
481 /* Complete the fput */
482 __fput(req
->ki_filp
);
484 /* Link the iocb into the context's free list */
485 spin_lock_irq(&ctx
->ctx_lock
);
486 really_put_req(ctx
, req
);
487 spin_unlock_irq(&ctx
->ctx_lock
);
490 spin_lock_irq(&fput_lock
);
492 spin_unlock_irq(&fput_lock
);
496 * Returns true if this put was the last user of the request.
498 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
500 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%d\n",
501 req
, atomic_read(&req
->ki_filp
->f_count
));
503 assert_spin_locked(&ctx
->ctx_lock
);
506 if (unlikely(req
->ki_users
< 0))
508 if (likely(req
->ki_users
))
510 list_del(&req
->ki_list
); /* remove from active_reqs */
511 req
->ki_cancel
= NULL
;
512 req
->ki_retry
= NULL
;
514 /* Must be done under the lock to serialise against cancellation.
515 * Call this aio_fput as it duplicates fput via the fput_work.
517 if (unlikely(rcuref_dec_and_test(&req
->ki_filp
->f_count
))) {
519 spin_lock(&fput_lock
);
520 list_add(&req
->ki_list
, &fput_head
);
521 spin_unlock(&fput_lock
);
522 queue_work(aio_wq
, &fput_work
);
524 really_put_req(ctx
, req
);
529 * Returns true if this put was the last user of the kiocb,
530 * false if the request is still in use.
532 int fastcall
aio_put_req(struct kiocb
*req
)
534 struct kioctx
*ctx
= req
->ki_ctx
;
536 spin_lock_irq(&ctx
->ctx_lock
);
537 ret
= __aio_put_req(ctx
, req
);
538 spin_unlock_irq(&ctx
->ctx_lock
);
544 /* Lookup an ioctx id. ioctx_list is lockless for reads.
545 * FIXME: this is O(n) and is only suitable for development.
547 struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
549 struct kioctx
*ioctx
;
550 struct mm_struct
*mm
;
553 read_lock(&mm
->ioctx_list_lock
);
554 for (ioctx
= mm
->ioctx_list
; ioctx
; ioctx
= ioctx
->next
)
555 if (likely(ioctx
->user_id
== ctx_id
&& !ioctx
->dead
)) {
559 read_unlock(&mm
->ioctx_list_lock
);
566 * Makes the calling kernel thread take on the specified
568 * Called by the retry thread execute retries within the
569 * iocb issuer's mm context, so that copy_from/to_user
570 * operations work seamlessly for aio.
571 * (Note: this routine is intended to be called only
572 * from a kernel thread context)
574 static void use_mm(struct mm_struct
*mm
)
576 struct mm_struct
*active_mm
;
577 struct task_struct
*tsk
= current
;
580 tsk
->flags
|= PF_BORROWED_MM
;
581 active_mm
= tsk
->active_mm
;
582 atomic_inc(&mm
->mm_count
);
586 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
587 * it won't work. Update it accordingly if you change it here
589 activate_mm(active_mm
, mm
);
597 * Reverses the effect of use_mm, i.e. releases the
598 * specified mm context which was earlier taken on
599 * by the calling kernel thread
600 * (Note: this routine is intended to be called only
601 * from a kernel thread context)
603 * Comments: Called with ctx->ctx_lock held. This nests
604 * task_lock instead ctx_lock.
606 static void unuse_mm(struct mm_struct
*mm
)
608 struct task_struct
*tsk
= current
;
611 tsk
->flags
&= ~PF_BORROWED_MM
;
613 /* active_mm is still 'mm' */
614 enter_lazy_tlb(mm
, tsk
);
619 * Queue up a kiocb to be retried. Assumes that the kiocb
620 * has already been marked as kicked, and places it on
621 * the retry run list for the corresponding ioctx, if it
622 * isn't already queued. Returns 1 if it actually queued
623 * the kiocb (to tell the caller to activate the work
624 * queue to process it), or 0, if it found that it was
627 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
629 struct kioctx
*ctx
= iocb
->ki_ctx
;
631 assert_spin_locked(&ctx
->ctx_lock
);
633 if (list_empty(&iocb
->ki_run_list
)) {
634 list_add_tail(&iocb
->ki_run_list
,
642 * This is the core aio execution routine. It is
643 * invoked both for initial i/o submission and
644 * subsequent retries via the aio_kick_handler.
645 * Expects to be invoked with iocb->ki_ctx->lock
646 * already held. The lock is released and reaquired
647 * as needed during processing.
649 * Calls the iocb retry method (already setup for the
650 * iocb on initial submission) for operation specific
651 * handling, but takes care of most of common retry
652 * execution details for a given iocb. The retry method
653 * needs to be non-blocking as far as possible, to avoid
654 * holding up other iocbs waiting to be serviced by the
655 * retry kernel thread.
657 * The trickier parts in this code have to do with
658 * ensuring that only one retry instance is in progress
659 * for a given iocb at any time. Providing that guarantee
660 * simplifies the coding of individual aio operations as
661 * it avoids various potential races.
663 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
665 struct kioctx
*ctx
= iocb
->ki_ctx
;
666 ssize_t (*retry
)(struct kiocb
*);
669 if (iocb
->ki_retried
++ > 1024*1024) {
670 printk("Maximal retry count. Bytes done %Zd\n",
671 iocb
->ki_nbytes
- iocb
->ki_left
);
675 if (!(iocb
->ki_retried
& 0xff)) {
676 pr_debug("%ld retry: %d of %d\n", iocb
->ki_retried
,
677 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
);
680 if (!(retry
= iocb
->ki_retry
)) {
681 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
686 * We don't want the next retry iteration for this
687 * operation to start until this one has returned and
688 * updated the iocb state. However, wait_queue functions
689 * can trigger a kick_iocb from interrupt context in the
690 * meantime, indicating that data is available for the next
691 * iteration. We want to remember that and enable the
692 * next retry iteration _after_ we are through with
695 * So, in order to be able to register a "kick", but
696 * prevent it from being queued now, we clear the kick
697 * flag, but make the kick code *think* that the iocb is
698 * still on the run list until we are actually done.
699 * When we are done with this iteration, we check if
700 * the iocb was kicked in the meantime and if so, queue
704 kiocbClearKicked(iocb
);
707 * This is so that aio_complete knows it doesn't need to
708 * pull the iocb off the run list (We can't just call
709 * INIT_LIST_HEAD because we don't want a kick_iocb to
710 * queue this on the run list yet)
712 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
713 spin_unlock_irq(&ctx
->ctx_lock
);
715 /* Quit retrying if the i/o has been cancelled */
716 if (kiocbIsCancelled(iocb
)) {
718 aio_complete(iocb
, ret
, 0);
719 /* must not access the iocb after this */
724 * Now we are all set to call the retry method in async
725 * context. By setting this thread's io_wait context
726 * to point to the wait queue entry inside the currently
727 * running iocb for the duration of the retry, we ensure
728 * that async notification wakeups are queued by the
729 * operation instead of blocking waits, and when notified,
730 * cause the iocb to be kicked for continuation (through
731 * the aio_wake_function callback).
733 BUG_ON(current
->io_wait
!= NULL
);
734 current
->io_wait
= &iocb
->ki_wait
;
736 current
->io_wait
= NULL
;
738 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
739 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
740 aio_complete(iocb
, ret
, 0);
743 spin_lock_irq(&ctx
->ctx_lock
);
745 if (-EIOCBRETRY
== ret
) {
747 * OK, now that we are done with this iteration
748 * and know that there is more left to go,
749 * this is where we let go so that a subsequent
750 * "kick" can start the next iteration
753 /* will make __queue_kicked_iocb succeed from here on */
754 INIT_LIST_HEAD(&iocb
->ki_run_list
);
755 /* we must queue the next iteration ourselves, if it
756 * has already been kicked */
757 if (kiocbIsKicked(iocb
)) {
758 __queue_kicked_iocb(iocb
);
761 * __queue_kicked_iocb will always return 1 here, because
762 * iocb->ki_run_list is empty at this point so it should
763 * be safe to unconditionally queue the context into the
774 * Process all pending retries queued on the ioctx
776 * Assumes it is operating within the aio issuer's mm
779 static int __aio_run_iocbs(struct kioctx
*ctx
)
784 assert_spin_locked(&ctx
->ctx_lock
);
786 list_splice_init(&ctx
->run_list
, &run_list
);
787 while (!list_empty(&run_list
)) {
788 iocb
= list_entry(run_list
.next
, struct kiocb
,
790 list_del(&iocb
->ki_run_list
);
792 * Hold an extra reference while retrying i/o.
794 iocb
->ki_users
++; /* grab extra reference */
796 if (__aio_put_req(ctx
, iocb
)) /* drop extra ref */
799 if (!list_empty(&ctx
->run_list
))
804 static void aio_queue_work(struct kioctx
* ctx
)
806 unsigned long timeout
;
808 * if someone is waiting, get the work started right
809 * away, otherwise, use a longer delay
812 if (waitqueue_active(&ctx
->wait
))
816 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
822 * Process all pending retries queued on the ioctx
824 * Assumes it is operating within the aio issuer's mm
827 static inline void aio_run_iocbs(struct kioctx
*ctx
)
831 spin_lock_irq(&ctx
->ctx_lock
);
833 requeue
= __aio_run_iocbs(ctx
);
834 spin_unlock_irq(&ctx
->ctx_lock
);
840 * just like aio_run_iocbs, but keeps running them until
841 * the list stays empty
843 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
845 spin_lock_irq(&ctx
->ctx_lock
);
846 while (__aio_run_iocbs(ctx
))
848 spin_unlock_irq(&ctx
->ctx_lock
);
853 * Work queue handler triggered to process pending
854 * retries on an ioctx. Takes on the aio issuer's
855 * mm context before running the iocbs, so that
856 * copy_xxx_user operates on the issuer's address
858 * Run on aiod's context.
860 static void aio_kick_handler(void *data
)
862 struct kioctx
*ctx
= data
;
863 mm_segment_t oldfs
= get_fs();
868 spin_lock_irq(&ctx
->ctx_lock
);
869 requeue
=__aio_run_iocbs(ctx
);
871 spin_unlock_irq(&ctx
->ctx_lock
);
874 * we're in a worker thread already, don't use queue_delayed_work,
877 queue_work(aio_wq
, &ctx
->wq
);
882 * Called by kick_iocb to queue the kiocb for retry
883 * and if required activate the aio work queue to process
886 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
888 struct kioctx
*ctx
= iocb
->ki_ctx
;
892 /* We're supposed to be the only path putting the iocb back on the run
893 * list. If we find that the iocb is *back* on a wait queue already
894 * than retry has happened before we could queue the iocb. This also
895 * means that the retry could have completed and freed our iocb, no
897 BUG_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
899 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
900 /* set this inside the lock so that we can't race with aio_run_iocb()
901 * testing it and putting the iocb on the run list under the lock */
902 if (!kiocbTryKick(iocb
))
903 run
= __queue_kicked_iocb(iocb
);
904 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
911 * Called typically from a wait queue callback context
912 * (aio_wake_function) to trigger a retry of the iocb.
913 * The retry is usually executed by aio workqueue
914 * threads (See aio_kick_handler).
916 void fastcall
kick_iocb(struct kiocb
*iocb
)
918 /* sync iocbs are easy: they can only ever be executing from a
920 if (is_sync_kiocb(iocb
)) {
921 kiocbSetKicked(iocb
);
922 wake_up_process(iocb
->ki_obj
.tsk
);
926 try_queue_kicked_iocb(iocb
);
928 EXPORT_SYMBOL(kick_iocb
);
931 * Called when the io request on the given iocb is complete.
932 * Returns true if this is the last user of the request. The
933 * only other user of the request can be the cancellation code.
935 int fastcall
aio_complete(struct kiocb
*iocb
, long res
, long res2
)
937 struct kioctx
*ctx
= iocb
->ki_ctx
;
938 struct aio_ring_info
*info
;
939 struct aio_ring
*ring
;
940 struct io_event
*event
;
946 * Special case handling for sync iocbs:
947 * - events go directly into the iocb for fast handling
948 * - the sync task with the iocb in its stack holds the single iocb
949 * ref, no other paths have a way to get another ref
950 * - the sync task helpfully left a reference to itself in the iocb
952 if (is_sync_kiocb(iocb
)) {
953 BUG_ON(iocb
->ki_users
!= 1);
954 iocb
->ki_user_data
= res
;
956 wake_up_process(iocb
->ki_obj
.tsk
);
960 info
= &ctx
->ring_info
;
962 /* add a completion event to the ring buffer.
963 * must be done holding ctx->ctx_lock to prevent
964 * other code from messing with the tail
965 * pointer since we might be called from irq
968 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
970 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
971 list_del_init(&iocb
->ki_run_list
);
974 * cancelled requests don't get events, userland was given one
975 * when the event got cancelled.
977 if (kiocbIsCancelled(iocb
))
980 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
983 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
984 if (++tail
>= info
->nr
)
987 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
988 event
->data
= iocb
->ki_user_data
;
992 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
993 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
996 /* after flagging the request as done, we
997 * must never even look at it again
999 smp_wmb(); /* make event visible before updating tail */
1004 put_aio_ring_event(event
, KM_IRQ0
);
1005 kunmap_atomic(ring
, KM_IRQ1
);
1007 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
1009 pr_debug("%ld retries: %d of %d\n", iocb
->ki_retried
,
1010 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
);
1012 /* everything turned out well, dispose of the aiocb. */
1013 ret
= __aio_put_req(ctx
, iocb
);
1015 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1017 if (waitqueue_active(&ctx
->wait
))
1018 wake_up(&ctx
->wait
);
1027 * Pull an event off of the ioctx's event ring. Returns the number of
1028 * events fetched (0 or 1 ;-)
1029 * FIXME: make this use cmpxchg.
1030 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1032 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1034 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1035 struct aio_ring
*ring
;
1039 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1040 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1041 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1042 (unsigned long)ring
->nr
);
1044 if (ring
->head
== ring
->tail
)
1047 spin_lock(&info
->ring_lock
);
1049 head
= ring
->head
% info
->nr
;
1050 if (head
!= ring
->tail
) {
1051 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1053 head
= (head
+ 1) % info
->nr
;
1054 smp_mb(); /* finish reading the event before updatng the head */
1057 put_aio_ring_event(evp
, KM_USER1
);
1059 spin_unlock(&info
->ring_lock
);
1062 kunmap_atomic(ring
, KM_USER0
);
1063 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1064 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1068 struct aio_timeout
{
1069 struct timer_list timer
;
1071 struct task_struct
*p
;
1074 static void timeout_func(unsigned long data
)
1076 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1079 wake_up_process(to
->p
);
1082 static inline void init_timeout(struct aio_timeout
*to
)
1084 init_timer(&to
->timer
);
1085 to
->timer
.data
= (unsigned long)to
;
1086 to
->timer
.function
= timeout_func
;
1091 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1092 const struct timespec
*ts
)
1094 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1095 if (time_after(to
->timer
.expires
, jiffies
))
1096 add_timer(&to
->timer
);
1101 static inline void clear_timeout(struct aio_timeout
*to
)
1103 del_singleshot_timer_sync(&to
->timer
);
1106 static int read_events(struct kioctx
*ctx
,
1107 long min_nr
, long nr
,
1108 struct io_event __user
*event
,
1109 struct timespec __user
*timeout
)
1111 long start_jiffies
= jiffies
;
1112 struct task_struct
*tsk
= current
;
1113 DECLARE_WAITQUEUE(wait
, tsk
);
1116 struct io_event ent
;
1117 struct aio_timeout to
;
1120 /* needed to zero any padding within an entry (there shouldn't be
1121 * any, but C is fun!
1123 memset(&ent
, 0, sizeof(ent
));
1126 while (likely(i
< nr
)) {
1127 ret
= aio_read_evt(ctx
, &ent
);
1128 if (unlikely(ret
<= 0))
1131 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1132 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1134 /* Could we split the check in two? */
1136 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1137 dprintk("aio: lost an event due to EFAULT.\n");
1142 /* Good, event copied to userland, update counts. */
1154 /* racey check, but it gets redone */
1155 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1157 aio_run_all_iocbs(ctx
);
1165 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1168 set_timeout(start_jiffies
, &to
, &ts
);
1171 while (likely(i
< nr
)) {
1172 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1174 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1175 ret
= aio_read_evt(ctx
, &ent
);
1181 if (to
.timed_out
) /* Only check after read evt */
1184 if (signal_pending(tsk
)) {
1188 /*ret = aio_read_evt(ctx, &ent);*/
1191 set_task_state(tsk
, TASK_RUNNING
);
1192 remove_wait_queue(&ctx
->wait
, &wait
);
1194 if (unlikely(ret
<= 0))
1198 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1199 dprintk("aio: lost an event due to EFAULT.\n");
1203 /* Good, event copied to userland, update counts. */
1214 /* Take an ioctx and remove it from the list of ioctx's. Protects
1215 * against races with itself via ->dead.
1217 static void io_destroy(struct kioctx
*ioctx
)
1219 struct mm_struct
*mm
= current
->mm
;
1220 struct kioctx
**tmp
;
1223 /* delete the entry from the list is someone else hasn't already */
1224 write_lock(&mm
->ioctx_list_lock
);
1225 was_dead
= ioctx
->dead
;
1227 for (tmp
= &mm
->ioctx_list
; *tmp
&& *tmp
!= ioctx
;
1228 tmp
= &(*tmp
)->next
)
1232 write_unlock(&mm
->ioctx_list_lock
);
1234 dprintk("aio_release(%p)\n", ioctx
);
1235 if (likely(!was_dead
))
1236 put_ioctx(ioctx
); /* twice for the list */
1238 aio_cancel_all(ioctx
);
1239 wait_for_all_aios(ioctx
);
1240 put_ioctx(ioctx
); /* once for the lookup */
1244 * Create an aio_context capable of receiving at least nr_events.
1245 * ctxp must not point to an aio_context that already exists, and
1246 * must be initialized to 0 prior to the call. On successful
1247 * creation of the aio_context, *ctxp is filled in with the resulting
1248 * handle. May fail with -EINVAL if *ctxp is not initialized,
1249 * if the specified nr_events exceeds internal limits. May fail
1250 * with -EAGAIN if the specified nr_events exceeds the user's limit
1251 * of available events. May fail with -ENOMEM if insufficient kernel
1252 * resources are available. May fail with -EFAULT if an invalid
1253 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1256 asmlinkage
long sys_io_setup(unsigned nr_events
, aio_context_t __user
*ctxp
)
1258 struct kioctx
*ioctx
= NULL
;
1262 ret
= get_user(ctx
, ctxp
);
1267 if (unlikely(ctx
|| nr_events
== 0)) {
1268 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1273 ioctx
= ioctx_alloc(nr_events
);
1274 ret
= PTR_ERR(ioctx
);
1275 if (!IS_ERR(ioctx
)) {
1276 ret
= put_user(ioctx
->user_id
, ctxp
);
1280 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1289 * Destroy the aio_context specified. May cancel any outstanding
1290 * AIOs and block on completion. Will fail with -ENOSYS if not
1291 * implemented. May fail with -EFAULT if the context pointed to
1294 asmlinkage
long sys_io_destroy(aio_context_t ctx
)
1296 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1297 if (likely(NULL
!= ioctx
)) {
1301 pr_debug("EINVAL: io_destroy: invalid context id\n");
1306 * aio_p{read,write} are the default ki_retry methods for
1307 * IO_CMD_P{READ,WRITE}. They maintains kiocb retry state around potentially
1308 * multiple calls to f_op->aio_read(). They loop around partial progress
1309 * instead of returning -EIOCBRETRY because they don't have the means to call
1312 static ssize_t
aio_pread(struct kiocb
*iocb
)
1314 struct file
*file
= iocb
->ki_filp
;
1315 struct address_space
*mapping
= file
->f_mapping
;
1316 struct inode
*inode
= mapping
->host
;
1320 ret
= file
->f_op
->aio_read(iocb
, iocb
->ki_buf
,
1321 iocb
->ki_left
, iocb
->ki_pos
);
1323 * Can't just depend on iocb->ki_left to determine
1324 * whether we are done. This may have been a short read.
1327 iocb
->ki_buf
+= ret
;
1328 iocb
->ki_left
-= ret
;
1332 * For pipes and sockets we return once we have some data; for
1333 * regular files we retry till we complete the entire read or
1334 * find that we can't read any more data (e.g short reads).
1336 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1337 !S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
));
1339 /* This means we must have transferred all that we could */
1340 /* No need to retry anymore */
1341 if ((ret
== 0) || (iocb
->ki_left
== 0))
1342 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1347 /* see aio_pread() */
1348 static ssize_t
aio_pwrite(struct kiocb
*iocb
)
1350 struct file
*file
= iocb
->ki_filp
;
1354 ret
= file
->f_op
->aio_write(iocb
, iocb
->ki_buf
,
1355 iocb
->ki_left
, iocb
->ki_pos
);
1357 iocb
->ki_buf
+= ret
;
1358 iocb
->ki_left
-= ret
;
1360 } while (ret
> 0 && iocb
->ki_left
> 0);
1362 if ((ret
== 0) || (iocb
->ki_left
== 0))
1363 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1368 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1370 struct file
*file
= iocb
->ki_filp
;
1371 ssize_t ret
= -EINVAL
;
1373 if (file
->f_op
->aio_fsync
)
1374 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1378 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1380 struct file
*file
= iocb
->ki_filp
;
1381 ssize_t ret
= -EINVAL
;
1383 if (file
->f_op
->aio_fsync
)
1384 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1390 * Performs the initial checks and aio retry method
1391 * setup for the kiocb at the time of io submission.
1393 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1395 struct file
*file
= kiocb
->ki_filp
;
1398 switch (kiocb
->ki_opcode
) {
1399 case IOCB_CMD_PREAD
:
1401 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1404 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1407 ret
= security_file_permission(file
, MAY_READ
);
1411 if (file
->f_op
->aio_read
)
1412 kiocb
->ki_retry
= aio_pread
;
1414 case IOCB_CMD_PWRITE
:
1416 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1419 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1422 ret
= security_file_permission(file
, MAY_WRITE
);
1426 if (file
->f_op
->aio_write
)
1427 kiocb
->ki_retry
= aio_pwrite
;
1429 case IOCB_CMD_FDSYNC
:
1431 if (file
->f_op
->aio_fsync
)
1432 kiocb
->ki_retry
= aio_fdsync
;
1434 case IOCB_CMD_FSYNC
:
1436 if (file
->f_op
->aio_fsync
)
1437 kiocb
->ki_retry
= aio_fsync
;
1440 dprintk("EINVAL: io_submit: no operation provided\n");
1444 if (!kiocb
->ki_retry
)
1451 * aio_wake_function:
1452 * wait queue callback function for aio notification,
1453 * Simply triggers a retry of the operation via kick_iocb.
1455 * This callback is specified in the wait queue entry in
1456 * a kiocb (current->io_wait points to this wait queue
1457 * entry when an aio operation executes; it is used
1458 * instead of a synchronous wait when an i/o blocking
1459 * condition is encountered during aio).
1462 * This routine is executed with the wait queue lock held.
1463 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1464 * the ioctx lock inside the wait queue lock. This is safe
1465 * because this callback isn't used for wait queues which
1466 * are nested inside ioctx lock (i.e. ctx->wait)
1468 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1469 int sync
, void *key
)
1471 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1473 list_del_init(&wait
->task_list
);
1478 int fastcall
io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1485 /* enforce forwards compatibility on users */
1486 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
||
1487 iocb
->aio_reserved3
)) {
1488 pr_debug("EINVAL: io_submit: reserve field set\n");
1492 /* prevent overflows */
1494 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1495 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1496 ((ssize_t
)iocb
->aio_nbytes
< 0)
1498 pr_debug("EINVAL: io_submit: overflow check\n");
1502 file
= fget(iocb
->aio_fildes
);
1503 if (unlikely(!file
))
1506 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1507 if (unlikely(!req
)) {
1512 req
->ki_filp
= file
;
1513 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1514 if (unlikely(ret
)) {
1515 dprintk("EFAULT: aio_key\n");
1519 req
->ki_obj
.user
= user_iocb
;
1520 req
->ki_user_data
= iocb
->aio_data
;
1521 req
->ki_pos
= iocb
->aio_offset
;
1523 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1524 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1525 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1526 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1527 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1528 req
->ki_retried
= 0;
1530 ret
= aio_setup_iocb(req
);
1535 spin_lock_irq(&ctx
->ctx_lock
);
1537 if (!list_empty(&ctx
->run_list
)) {
1538 /* drain the run list */
1539 while (__aio_run_iocbs(ctx
))
1542 spin_unlock_irq(&ctx
->ctx_lock
);
1543 aio_put_req(req
); /* drop extra ref to req */
1547 aio_put_req(req
); /* drop extra ref to req */
1548 aio_put_req(req
); /* drop i/o ref to req */
1553 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1554 * the number of iocbs queued. May return -EINVAL if the aio_context
1555 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1556 * *iocbpp[0] is not properly initialized, if the operation specified
1557 * is invalid for the file descriptor in the iocb. May fail with
1558 * -EFAULT if any of the data structures point to invalid data. May
1559 * fail with -EBADF if the file descriptor specified in the first
1560 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1561 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1562 * fail with -ENOSYS if not implemented.
1564 asmlinkage
long sys_io_submit(aio_context_t ctx_id
, long nr
,
1565 struct iocb __user
* __user
*iocbpp
)
1571 if (unlikely(nr
< 0))
1574 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1577 ctx
= lookup_ioctx(ctx_id
);
1578 if (unlikely(!ctx
)) {
1579 pr_debug("EINVAL: io_submit: invalid context id\n");
1584 * AKPM: should this return a partial result if some of the IOs were
1585 * successfully submitted?
1587 for (i
=0; i
<nr
; i
++) {
1588 struct iocb __user
*user_iocb
;
1591 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1596 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1601 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1611 * Finds a given iocb for cancellation.
1613 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1616 struct list_head
*pos
;
1618 assert_spin_locked(&ctx
->ctx_lock
);
1620 /* TODO: use a hash or array, this sucks. */
1621 list_for_each(pos
, &ctx
->active_reqs
) {
1622 struct kiocb
*kiocb
= list_kiocb(pos
);
1623 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1630 * Attempts to cancel an iocb previously passed to io_submit. If
1631 * the operation is successfully cancelled, the resulting event is
1632 * copied into the memory pointed to by result without being placed
1633 * into the completion queue and 0 is returned. May fail with
1634 * -EFAULT if any of the data structures pointed to are invalid.
1635 * May fail with -EINVAL if aio_context specified by ctx_id is
1636 * invalid. May fail with -EAGAIN if the iocb specified was not
1637 * cancelled. Will fail with -ENOSYS if not implemented.
1639 asmlinkage
long sys_io_cancel(aio_context_t ctx_id
, struct iocb __user
*iocb
,
1640 struct io_event __user
*result
)
1642 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1644 struct kiocb
*kiocb
;
1648 ret
= get_user(key
, &iocb
->aio_key
);
1652 ctx
= lookup_ioctx(ctx_id
);
1656 spin_lock_irq(&ctx
->ctx_lock
);
1658 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1659 if (kiocb
&& kiocb
->ki_cancel
) {
1660 cancel
= kiocb
->ki_cancel
;
1662 kiocbSetCancelled(kiocb
);
1665 spin_unlock_irq(&ctx
->ctx_lock
);
1667 if (NULL
!= cancel
) {
1668 struct io_event tmp
;
1669 pr_debug("calling cancel\n");
1670 memset(&tmp
, 0, sizeof(tmp
));
1671 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1672 tmp
.data
= kiocb
->ki_user_data
;
1673 ret
= cancel(kiocb
, &tmp
);
1675 /* Cancellation succeeded -- copy the result
1676 * into the user's buffer.
1678 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1690 * Attempts to read at least min_nr events and up to nr events from
1691 * the completion queue for the aio_context specified by ctx_id. May
1692 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1693 * if nr is out of range, if when is out of range. May fail with
1694 * -EFAULT if any of the memory specified to is invalid. May return
1695 * 0 or < min_nr if no events are available and the timeout specified
1696 * by when has elapsed, where when == NULL specifies an infinite
1697 * timeout. Note that the timeout pointed to by when is relative and
1698 * will be updated if not NULL and the operation blocks. Will fail
1699 * with -ENOSYS if not implemented.
1701 asmlinkage
long sys_io_getevents(aio_context_t ctx_id
,
1704 struct io_event __user
*events
,
1705 struct timespec __user
*timeout
)
1707 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1710 if (likely(ioctx
)) {
1711 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1712 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1719 __initcall(aio_setup
);
1721 EXPORT_SYMBOL(aio_complete
);
1722 EXPORT_SYMBOL(aio_put_req
);
1723 EXPORT_SYMBOL(wait_on_sync_kiocb
);