usbnet: convert rndis driver to use dev_get_stats
[linux-2.6/mini2440.git] / drivers / net / gianfar.c
blob8a51df045e84a3564548236028decdbdba31ea26
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
26 * Theory of operation
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
84 #include <asm/io.h>
85 #include <asm/irq.h>
86 #include <asm/uaccess.h>
87 #include <linux/module.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/crc32.h>
90 #include <linux/mii.h>
91 #include <linux/phy.h>
92 #include <linux/phy_fixed.h>
93 #include <linux/of.h>
95 #include "gianfar.h"
96 #include "fsl_pq_mdio.h"
98 #define TX_TIMEOUT (1*HZ)
99 #undef BRIEF_GFAR_ERRORS
100 #undef VERBOSE_GFAR_ERRORS
102 const char gfar_driver_name[] = "Gianfar Ethernet";
103 const char gfar_driver_version[] = "1.3";
105 static int gfar_enet_open(struct net_device *dev);
106 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
107 static void gfar_reset_task(struct work_struct *work);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112 struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct of_device *ofdev,
122 const struct of_device_id *match);
123 static int gfar_remove(struct of_device *ofdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
131 #endif
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
135 int amount_pull);
136 static void gfar_vlan_rx_register(struct net_device *netdev,
137 struct vlan_group *grp);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
143 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145 MODULE_AUTHOR("Freescale Semiconductor, Inc");
146 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
147 MODULE_LICENSE("GPL");
149 static const struct net_device_ops gfar_netdev_ops = {
150 .ndo_open = gfar_enet_open,
151 .ndo_start_xmit = gfar_start_xmit,
152 .ndo_stop = gfar_close,
153 .ndo_change_mtu = gfar_change_mtu,
154 .ndo_set_multicast_list = gfar_set_multi,
155 .ndo_tx_timeout = gfar_timeout,
156 .ndo_do_ioctl = gfar_ioctl,
157 .ndo_vlan_rx_register = gfar_vlan_rx_register,
158 #ifdef CONFIG_NET_POLL_CONTROLLER
159 .ndo_poll_controller = gfar_netpoll,
160 #endif
163 /* Returns 1 if incoming frames use an FCB */
164 static inline int gfar_uses_fcb(struct gfar_private *priv)
166 return priv->vlgrp || priv->rx_csum_enable;
169 static int gfar_of_init(struct net_device *dev)
171 struct device_node *phy, *mdio;
172 const unsigned int *id;
173 const char *model;
174 const char *ctype;
175 const void *mac_addr;
176 const phandle *ph;
177 u64 addr, size;
178 int err = 0;
179 struct gfar_private *priv = netdev_priv(dev);
180 struct device_node *np = priv->node;
181 char bus_name[MII_BUS_ID_SIZE];
182 const u32 *stash;
183 const u32 *stash_len;
184 const u32 *stash_idx;
186 if (!np || !of_device_is_available(np))
187 return -ENODEV;
189 /* get a pointer to the register memory */
190 addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
191 priv->regs = ioremap(addr, size);
193 if (priv->regs == NULL)
194 return -ENOMEM;
196 priv->interruptTransmit = irq_of_parse_and_map(np, 0);
198 model = of_get_property(np, "model", NULL);
200 /* If we aren't the FEC we have multiple interrupts */
201 if (model && strcasecmp(model, "FEC")) {
202 priv->interruptReceive = irq_of_parse_and_map(np, 1);
204 priv->interruptError = irq_of_parse_and_map(np, 2);
206 if (priv->interruptTransmit < 0 ||
207 priv->interruptReceive < 0 ||
208 priv->interruptError < 0) {
209 err = -EINVAL;
210 goto err_out;
214 stash = of_get_property(np, "bd-stash", NULL);
216 if(stash) {
217 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
218 priv->bd_stash_en = 1;
221 stash_len = of_get_property(np, "rx-stash-len", NULL);
223 if (stash_len)
224 priv->rx_stash_size = *stash_len;
226 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
228 if (stash_idx)
229 priv->rx_stash_index = *stash_idx;
231 if (stash_len || stash_idx)
232 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
234 mac_addr = of_get_mac_address(np);
235 if (mac_addr)
236 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
238 if (model && !strcasecmp(model, "TSEC"))
239 priv->device_flags =
240 FSL_GIANFAR_DEV_HAS_GIGABIT |
241 FSL_GIANFAR_DEV_HAS_COALESCE |
242 FSL_GIANFAR_DEV_HAS_RMON |
243 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
244 if (model && !strcasecmp(model, "eTSEC"))
245 priv->device_flags =
246 FSL_GIANFAR_DEV_HAS_GIGABIT |
247 FSL_GIANFAR_DEV_HAS_COALESCE |
248 FSL_GIANFAR_DEV_HAS_RMON |
249 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
250 FSL_GIANFAR_DEV_HAS_PADDING |
251 FSL_GIANFAR_DEV_HAS_CSUM |
252 FSL_GIANFAR_DEV_HAS_VLAN |
253 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
254 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
256 ctype = of_get_property(np, "phy-connection-type", NULL);
258 /* We only care about rgmii-id. The rest are autodetected */
259 if (ctype && !strcmp(ctype, "rgmii-id"))
260 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
261 else
262 priv->interface = PHY_INTERFACE_MODE_MII;
264 if (of_get_property(np, "fsl,magic-packet", NULL))
265 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
267 ph = of_get_property(np, "phy-handle", NULL);
268 if (ph == NULL) {
269 u32 *fixed_link;
271 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
272 if (!fixed_link) {
273 err = -ENODEV;
274 goto err_out;
277 snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id),
278 PHY_ID_FMT, "0", fixed_link[0]);
279 } else {
280 phy = of_find_node_by_phandle(*ph);
282 if (phy == NULL) {
283 err = -ENODEV;
284 goto err_out;
287 mdio = of_get_parent(phy);
289 id = of_get_property(phy, "reg", NULL);
291 of_node_put(phy);
292 of_node_put(mdio);
294 fsl_pq_mdio_bus_name(bus_name, mdio);
295 snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id), "%s:%02x",
296 bus_name, *id);
299 /* Find the TBI PHY. If it's not there, we don't support SGMII */
300 ph = of_get_property(np, "tbi-handle", NULL);
301 if (ph) {
302 struct device_node *tbi = of_find_node_by_phandle(*ph);
303 struct of_device *ofdev;
304 struct mii_bus *bus;
306 if (!tbi)
307 return 0;
309 mdio = of_get_parent(tbi);
310 if (!mdio)
311 return 0;
313 ofdev = of_find_device_by_node(mdio);
315 of_node_put(mdio);
317 id = of_get_property(tbi, "reg", NULL);
318 if (!id)
319 return 0;
321 of_node_put(tbi);
323 bus = dev_get_drvdata(&ofdev->dev);
325 priv->tbiphy = bus->phy_map[*id];
328 return 0;
330 err_out:
331 iounmap(priv->regs);
332 return err;
335 /* Ioctl MII Interface */
336 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
338 struct gfar_private *priv = netdev_priv(dev);
340 if (!netif_running(dev))
341 return -EINVAL;
343 if (!priv->phydev)
344 return -ENODEV;
346 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
349 /* Set up the ethernet device structure, private data,
350 * and anything else we need before we start */
351 static int gfar_probe(struct of_device *ofdev,
352 const struct of_device_id *match)
354 u32 tempval;
355 struct net_device *dev = NULL;
356 struct gfar_private *priv = NULL;
357 DECLARE_MAC_BUF(mac);
358 int err = 0;
359 int len_devname;
361 /* Create an ethernet device instance */
362 dev = alloc_etherdev(sizeof (*priv));
364 if (NULL == dev)
365 return -ENOMEM;
367 priv = netdev_priv(dev);
368 priv->ndev = dev;
369 priv->ofdev = ofdev;
370 priv->node = ofdev->node;
371 SET_NETDEV_DEV(dev, &ofdev->dev);
373 err = gfar_of_init(dev);
375 if (err)
376 goto regs_fail;
378 spin_lock_init(&priv->txlock);
379 spin_lock_init(&priv->rxlock);
380 spin_lock_init(&priv->bflock);
381 INIT_WORK(&priv->reset_task, gfar_reset_task);
383 dev_set_drvdata(&ofdev->dev, priv);
385 /* Stop the DMA engine now, in case it was running before */
386 /* (The firmware could have used it, and left it running). */
387 gfar_halt(dev);
389 /* Reset MAC layer */
390 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
392 /* We need to delay at least 3 TX clocks */
393 udelay(2);
395 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
396 gfar_write(&priv->regs->maccfg1, tempval);
398 /* Initialize MACCFG2. */
399 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
401 /* Initialize ECNTRL */
402 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
404 /* Set the dev->base_addr to the gfar reg region */
405 dev->base_addr = (unsigned long) (priv->regs);
407 SET_NETDEV_DEV(dev, &ofdev->dev);
409 /* Fill in the dev structure */
410 dev->watchdog_timeo = TX_TIMEOUT;
411 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
412 dev->mtu = 1500;
414 dev->netdev_ops = &gfar_netdev_ops;
415 dev->ethtool_ops = &gfar_ethtool_ops;
417 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
418 priv->rx_csum_enable = 1;
419 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
420 } else
421 priv->rx_csum_enable = 0;
423 priv->vlgrp = NULL;
425 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
426 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
428 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
429 priv->extended_hash = 1;
430 priv->hash_width = 9;
432 priv->hash_regs[0] = &priv->regs->igaddr0;
433 priv->hash_regs[1] = &priv->regs->igaddr1;
434 priv->hash_regs[2] = &priv->regs->igaddr2;
435 priv->hash_regs[3] = &priv->regs->igaddr3;
436 priv->hash_regs[4] = &priv->regs->igaddr4;
437 priv->hash_regs[5] = &priv->regs->igaddr5;
438 priv->hash_regs[6] = &priv->regs->igaddr6;
439 priv->hash_regs[7] = &priv->regs->igaddr7;
440 priv->hash_regs[8] = &priv->regs->gaddr0;
441 priv->hash_regs[9] = &priv->regs->gaddr1;
442 priv->hash_regs[10] = &priv->regs->gaddr2;
443 priv->hash_regs[11] = &priv->regs->gaddr3;
444 priv->hash_regs[12] = &priv->regs->gaddr4;
445 priv->hash_regs[13] = &priv->regs->gaddr5;
446 priv->hash_regs[14] = &priv->regs->gaddr6;
447 priv->hash_regs[15] = &priv->regs->gaddr7;
449 } else {
450 priv->extended_hash = 0;
451 priv->hash_width = 8;
453 priv->hash_regs[0] = &priv->regs->gaddr0;
454 priv->hash_regs[1] = &priv->regs->gaddr1;
455 priv->hash_regs[2] = &priv->regs->gaddr2;
456 priv->hash_regs[3] = &priv->regs->gaddr3;
457 priv->hash_regs[4] = &priv->regs->gaddr4;
458 priv->hash_regs[5] = &priv->regs->gaddr5;
459 priv->hash_regs[6] = &priv->regs->gaddr6;
460 priv->hash_regs[7] = &priv->regs->gaddr7;
463 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
464 priv->padding = DEFAULT_PADDING;
465 else
466 priv->padding = 0;
468 if (dev->features & NETIF_F_IP_CSUM)
469 dev->hard_header_len += GMAC_FCB_LEN;
471 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
472 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
473 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
474 priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
476 priv->txcoalescing = DEFAULT_TX_COALESCE;
477 priv->txic = DEFAULT_TXIC;
478 priv->rxcoalescing = DEFAULT_RX_COALESCE;
479 priv->rxic = DEFAULT_RXIC;
481 /* Enable most messages by default */
482 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
484 /* Carrier starts down, phylib will bring it up */
485 netif_carrier_off(dev);
487 err = register_netdev(dev);
489 if (err) {
490 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
491 dev->name);
492 goto register_fail;
495 device_init_wakeup(&dev->dev,
496 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
498 /* fill out IRQ number and name fields */
499 len_devname = strlen(dev->name);
500 strncpy(&priv->int_name_tx[0], dev->name, len_devname);
501 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
502 strncpy(&priv->int_name_tx[len_devname],
503 "_tx", sizeof("_tx") + 1);
505 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
506 strncpy(&priv->int_name_rx[len_devname],
507 "_rx", sizeof("_rx") + 1);
509 strncpy(&priv->int_name_er[0], dev->name, len_devname);
510 strncpy(&priv->int_name_er[len_devname],
511 "_er", sizeof("_er") + 1);
512 } else
513 priv->int_name_tx[len_devname] = '\0';
515 /* Create all the sysfs files */
516 gfar_init_sysfs(dev);
518 /* Print out the device info */
519 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
521 /* Even more device info helps when determining which kernel */
522 /* provided which set of benchmarks. */
523 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
524 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
525 dev->name, priv->rx_ring_size, priv->tx_ring_size);
527 return 0;
529 register_fail:
530 iounmap(priv->regs);
531 regs_fail:
532 free_netdev(dev);
533 return err;
536 static int gfar_remove(struct of_device *ofdev)
538 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
540 dev_set_drvdata(&ofdev->dev, NULL);
542 iounmap(priv->regs);
543 free_netdev(priv->ndev);
545 return 0;
548 #ifdef CONFIG_PM
549 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
551 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
552 struct net_device *dev = priv->ndev;
553 unsigned long flags;
554 u32 tempval;
556 int magic_packet = priv->wol_en &&
557 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
559 netif_device_detach(dev);
561 if (netif_running(dev)) {
562 spin_lock_irqsave(&priv->txlock, flags);
563 spin_lock(&priv->rxlock);
565 gfar_halt_nodisable(dev);
567 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
568 tempval = gfar_read(&priv->regs->maccfg1);
570 tempval &= ~MACCFG1_TX_EN;
572 if (!magic_packet)
573 tempval &= ~MACCFG1_RX_EN;
575 gfar_write(&priv->regs->maccfg1, tempval);
577 spin_unlock(&priv->rxlock);
578 spin_unlock_irqrestore(&priv->txlock, flags);
580 napi_disable(&priv->napi);
582 if (magic_packet) {
583 /* Enable interrupt on Magic Packet */
584 gfar_write(&priv->regs->imask, IMASK_MAG);
586 /* Enable Magic Packet mode */
587 tempval = gfar_read(&priv->regs->maccfg2);
588 tempval |= MACCFG2_MPEN;
589 gfar_write(&priv->regs->maccfg2, tempval);
590 } else {
591 phy_stop(priv->phydev);
595 return 0;
598 static int gfar_resume(struct of_device *ofdev)
600 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
601 struct net_device *dev = priv->ndev;
602 unsigned long flags;
603 u32 tempval;
604 int magic_packet = priv->wol_en &&
605 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
607 if (!netif_running(dev)) {
608 netif_device_attach(dev);
609 return 0;
612 if (!magic_packet && priv->phydev)
613 phy_start(priv->phydev);
615 /* Disable Magic Packet mode, in case something
616 * else woke us up.
619 spin_lock_irqsave(&priv->txlock, flags);
620 spin_lock(&priv->rxlock);
622 tempval = gfar_read(&priv->regs->maccfg2);
623 tempval &= ~MACCFG2_MPEN;
624 gfar_write(&priv->regs->maccfg2, tempval);
626 gfar_start(dev);
628 spin_unlock(&priv->rxlock);
629 spin_unlock_irqrestore(&priv->txlock, flags);
631 netif_device_attach(dev);
633 napi_enable(&priv->napi);
635 return 0;
637 #else
638 #define gfar_suspend NULL
639 #define gfar_resume NULL
640 #endif
642 /* Reads the controller's registers to determine what interface
643 * connects it to the PHY.
645 static phy_interface_t gfar_get_interface(struct net_device *dev)
647 struct gfar_private *priv = netdev_priv(dev);
648 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
650 if (ecntrl & ECNTRL_SGMII_MODE)
651 return PHY_INTERFACE_MODE_SGMII;
653 if (ecntrl & ECNTRL_TBI_MODE) {
654 if (ecntrl & ECNTRL_REDUCED_MODE)
655 return PHY_INTERFACE_MODE_RTBI;
656 else
657 return PHY_INTERFACE_MODE_TBI;
660 if (ecntrl & ECNTRL_REDUCED_MODE) {
661 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
662 return PHY_INTERFACE_MODE_RMII;
663 else {
664 phy_interface_t interface = priv->interface;
667 * This isn't autodetected right now, so it must
668 * be set by the device tree or platform code.
670 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
671 return PHY_INTERFACE_MODE_RGMII_ID;
673 return PHY_INTERFACE_MODE_RGMII;
677 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
678 return PHY_INTERFACE_MODE_GMII;
680 return PHY_INTERFACE_MODE_MII;
684 /* Initializes driver's PHY state, and attaches to the PHY.
685 * Returns 0 on success.
687 static int init_phy(struct net_device *dev)
689 struct gfar_private *priv = netdev_priv(dev);
690 uint gigabit_support =
691 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
692 SUPPORTED_1000baseT_Full : 0;
693 struct phy_device *phydev;
694 phy_interface_t interface;
696 priv->oldlink = 0;
697 priv->oldspeed = 0;
698 priv->oldduplex = -1;
700 interface = gfar_get_interface(dev);
702 phydev = phy_connect(dev, priv->phy_bus_id, &adjust_link, 0, interface);
704 if (interface == PHY_INTERFACE_MODE_SGMII)
705 gfar_configure_serdes(dev);
707 if (IS_ERR(phydev)) {
708 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
709 return PTR_ERR(phydev);
712 /* Remove any features not supported by the controller */
713 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
714 phydev->advertising = phydev->supported;
716 priv->phydev = phydev;
718 return 0;
722 * Initialize TBI PHY interface for communicating with the
723 * SERDES lynx PHY on the chip. We communicate with this PHY
724 * through the MDIO bus on each controller, treating it as a
725 * "normal" PHY at the address found in the TBIPA register. We assume
726 * that the TBIPA register is valid. Either the MDIO bus code will set
727 * it to a value that doesn't conflict with other PHYs on the bus, or the
728 * value doesn't matter, as there are no other PHYs on the bus.
730 static void gfar_configure_serdes(struct net_device *dev)
732 struct gfar_private *priv = netdev_priv(dev);
734 if (!priv->tbiphy) {
735 printk(KERN_WARNING "SGMII mode requires that the device "
736 "tree specify a tbi-handle\n");
737 return;
741 * If the link is already up, we must already be ok, and don't need to
742 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
743 * everything for us? Resetting it takes the link down and requires
744 * several seconds for it to come back.
746 if (phy_read(priv->tbiphy, MII_BMSR) & BMSR_LSTATUS)
747 return;
749 /* Single clk mode, mii mode off(for serdes communication) */
750 phy_write(priv->tbiphy, MII_TBICON, TBICON_CLK_SELECT);
752 phy_write(priv->tbiphy, MII_ADVERTISE,
753 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
754 ADVERTISE_1000XPSE_ASYM);
756 phy_write(priv->tbiphy, MII_BMCR, BMCR_ANENABLE |
757 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
760 static void init_registers(struct net_device *dev)
762 struct gfar_private *priv = netdev_priv(dev);
764 /* Clear IEVENT */
765 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
767 /* Initialize IMASK */
768 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
770 /* Init hash registers to zero */
771 gfar_write(&priv->regs->igaddr0, 0);
772 gfar_write(&priv->regs->igaddr1, 0);
773 gfar_write(&priv->regs->igaddr2, 0);
774 gfar_write(&priv->regs->igaddr3, 0);
775 gfar_write(&priv->regs->igaddr4, 0);
776 gfar_write(&priv->regs->igaddr5, 0);
777 gfar_write(&priv->regs->igaddr6, 0);
778 gfar_write(&priv->regs->igaddr7, 0);
780 gfar_write(&priv->regs->gaddr0, 0);
781 gfar_write(&priv->regs->gaddr1, 0);
782 gfar_write(&priv->regs->gaddr2, 0);
783 gfar_write(&priv->regs->gaddr3, 0);
784 gfar_write(&priv->regs->gaddr4, 0);
785 gfar_write(&priv->regs->gaddr5, 0);
786 gfar_write(&priv->regs->gaddr6, 0);
787 gfar_write(&priv->regs->gaddr7, 0);
789 /* Zero out the rmon mib registers if it has them */
790 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
791 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
793 /* Mask off the CAM interrupts */
794 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
795 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
798 /* Initialize the max receive buffer length */
799 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
801 /* Initialize the Minimum Frame Length Register */
802 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
806 /* Halt the receive and transmit queues */
807 static void gfar_halt_nodisable(struct net_device *dev)
809 struct gfar_private *priv = netdev_priv(dev);
810 struct gfar __iomem *regs = priv->regs;
811 u32 tempval;
813 /* Mask all interrupts */
814 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
816 /* Clear all interrupts */
817 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
819 /* Stop the DMA, and wait for it to stop */
820 tempval = gfar_read(&priv->regs->dmactrl);
821 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
822 != (DMACTRL_GRS | DMACTRL_GTS)) {
823 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
824 gfar_write(&priv->regs->dmactrl, tempval);
826 while (!(gfar_read(&priv->regs->ievent) &
827 (IEVENT_GRSC | IEVENT_GTSC)))
828 cpu_relax();
832 /* Halt the receive and transmit queues */
833 void gfar_halt(struct net_device *dev)
835 struct gfar_private *priv = netdev_priv(dev);
836 struct gfar __iomem *regs = priv->regs;
837 u32 tempval;
839 gfar_halt_nodisable(dev);
841 /* Disable Rx and Tx */
842 tempval = gfar_read(&regs->maccfg1);
843 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
844 gfar_write(&regs->maccfg1, tempval);
847 void stop_gfar(struct net_device *dev)
849 struct gfar_private *priv = netdev_priv(dev);
850 struct gfar __iomem *regs = priv->regs;
851 unsigned long flags;
853 phy_stop(priv->phydev);
855 /* Lock it down */
856 spin_lock_irqsave(&priv->txlock, flags);
857 spin_lock(&priv->rxlock);
859 gfar_halt(dev);
861 spin_unlock(&priv->rxlock);
862 spin_unlock_irqrestore(&priv->txlock, flags);
864 /* Free the IRQs */
865 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
866 free_irq(priv->interruptError, dev);
867 free_irq(priv->interruptTransmit, dev);
868 free_irq(priv->interruptReceive, dev);
869 } else {
870 free_irq(priv->interruptTransmit, dev);
873 free_skb_resources(priv);
875 dma_free_coherent(&priv->ofdev->dev,
876 sizeof(struct txbd8)*priv->tx_ring_size
877 + sizeof(struct rxbd8)*priv->rx_ring_size,
878 priv->tx_bd_base,
879 gfar_read(&regs->tbase0));
882 /* If there are any tx skbs or rx skbs still around, free them.
883 * Then free tx_skbuff and rx_skbuff */
884 static void free_skb_resources(struct gfar_private *priv)
886 struct rxbd8 *rxbdp;
887 struct txbd8 *txbdp;
888 int i, j;
890 /* Go through all the buffer descriptors and free their data buffers */
891 txbdp = priv->tx_bd_base;
893 for (i = 0; i < priv->tx_ring_size; i++) {
894 if (!priv->tx_skbuff[i])
895 continue;
897 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
898 txbdp->length, DMA_TO_DEVICE);
899 txbdp->lstatus = 0;
900 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
901 txbdp++;
902 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
903 txbdp->length, DMA_TO_DEVICE);
905 txbdp++;
906 dev_kfree_skb_any(priv->tx_skbuff[i]);
907 priv->tx_skbuff[i] = NULL;
910 kfree(priv->tx_skbuff);
912 rxbdp = priv->rx_bd_base;
914 /* rx_skbuff is not guaranteed to be allocated, so only
915 * free it and its contents if it is allocated */
916 if(priv->rx_skbuff != NULL) {
917 for (i = 0; i < priv->rx_ring_size; i++) {
918 if (priv->rx_skbuff[i]) {
919 dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr,
920 priv->rx_buffer_size,
921 DMA_FROM_DEVICE);
923 dev_kfree_skb_any(priv->rx_skbuff[i]);
924 priv->rx_skbuff[i] = NULL;
927 rxbdp->lstatus = 0;
928 rxbdp->bufPtr = 0;
930 rxbdp++;
933 kfree(priv->rx_skbuff);
937 void gfar_start(struct net_device *dev)
939 struct gfar_private *priv = netdev_priv(dev);
940 struct gfar __iomem *regs = priv->regs;
941 u32 tempval;
943 /* Enable Rx and Tx in MACCFG1 */
944 tempval = gfar_read(&regs->maccfg1);
945 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
946 gfar_write(&regs->maccfg1, tempval);
948 /* Initialize DMACTRL to have WWR and WOP */
949 tempval = gfar_read(&priv->regs->dmactrl);
950 tempval |= DMACTRL_INIT_SETTINGS;
951 gfar_write(&priv->regs->dmactrl, tempval);
953 /* Make sure we aren't stopped */
954 tempval = gfar_read(&priv->regs->dmactrl);
955 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
956 gfar_write(&priv->regs->dmactrl, tempval);
958 /* Clear THLT/RHLT, so that the DMA starts polling now */
959 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
960 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
962 /* Unmask the interrupts we look for */
963 gfar_write(&regs->imask, IMASK_DEFAULT);
965 dev->trans_start = jiffies;
968 /* Bring the controller up and running */
969 int startup_gfar(struct net_device *dev)
971 struct txbd8 *txbdp;
972 struct rxbd8 *rxbdp;
973 dma_addr_t addr = 0;
974 unsigned long vaddr;
975 int i;
976 struct gfar_private *priv = netdev_priv(dev);
977 struct gfar __iomem *regs = priv->regs;
978 int err = 0;
979 u32 rctrl = 0;
980 u32 attrs = 0;
982 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
984 /* Allocate memory for the buffer descriptors */
985 vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev,
986 sizeof (struct txbd8) * priv->tx_ring_size +
987 sizeof (struct rxbd8) * priv->rx_ring_size,
988 &addr, GFP_KERNEL);
990 if (vaddr == 0) {
991 if (netif_msg_ifup(priv))
992 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
993 dev->name);
994 return -ENOMEM;
997 priv->tx_bd_base = (struct txbd8 *) vaddr;
999 /* enet DMA only understands physical addresses */
1000 gfar_write(&regs->tbase0, addr);
1002 /* Start the rx descriptor ring where the tx ring leaves off */
1003 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
1004 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
1005 priv->rx_bd_base = (struct rxbd8 *) vaddr;
1006 gfar_write(&regs->rbase0, addr);
1008 /* Setup the skbuff rings */
1009 priv->tx_skbuff =
1010 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
1011 priv->tx_ring_size, GFP_KERNEL);
1013 if (NULL == priv->tx_skbuff) {
1014 if (netif_msg_ifup(priv))
1015 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
1016 dev->name);
1017 err = -ENOMEM;
1018 goto tx_skb_fail;
1021 for (i = 0; i < priv->tx_ring_size; i++)
1022 priv->tx_skbuff[i] = NULL;
1024 priv->rx_skbuff =
1025 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
1026 priv->rx_ring_size, GFP_KERNEL);
1028 if (NULL == priv->rx_skbuff) {
1029 if (netif_msg_ifup(priv))
1030 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
1031 dev->name);
1032 err = -ENOMEM;
1033 goto rx_skb_fail;
1036 for (i = 0; i < priv->rx_ring_size; i++)
1037 priv->rx_skbuff[i] = NULL;
1039 /* Initialize some variables in our dev structure */
1040 priv->num_txbdfree = priv->tx_ring_size;
1041 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1042 priv->cur_rx = priv->rx_bd_base;
1043 priv->skb_curtx = priv->skb_dirtytx = 0;
1044 priv->skb_currx = 0;
1046 /* Initialize Transmit Descriptor Ring */
1047 txbdp = priv->tx_bd_base;
1048 for (i = 0; i < priv->tx_ring_size; i++) {
1049 txbdp->lstatus = 0;
1050 txbdp->bufPtr = 0;
1051 txbdp++;
1054 /* Set the last descriptor in the ring to indicate wrap */
1055 txbdp--;
1056 txbdp->status |= TXBD_WRAP;
1058 rxbdp = priv->rx_bd_base;
1059 for (i = 0; i < priv->rx_ring_size; i++) {
1060 struct sk_buff *skb;
1062 skb = gfar_new_skb(dev);
1064 if (!skb) {
1065 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1066 dev->name);
1068 goto err_rxalloc_fail;
1071 priv->rx_skbuff[i] = skb;
1073 gfar_new_rxbdp(dev, rxbdp, skb);
1075 rxbdp++;
1078 /* Set the last descriptor in the ring to wrap */
1079 rxbdp--;
1080 rxbdp->status |= RXBD_WRAP;
1082 /* If the device has multiple interrupts, register for
1083 * them. Otherwise, only register for the one */
1084 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1085 /* Install our interrupt handlers for Error,
1086 * Transmit, and Receive */
1087 if (request_irq(priv->interruptError, gfar_error,
1088 0, priv->int_name_er, dev) < 0) {
1089 if (netif_msg_intr(priv))
1090 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1091 dev->name, priv->interruptError);
1093 err = -1;
1094 goto err_irq_fail;
1097 if (request_irq(priv->interruptTransmit, gfar_transmit,
1098 0, priv->int_name_tx, dev) < 0) {
1099 if (netif_msg_intr(priv))
1100 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1101 dev->name, priv->interruptTransmit);
1103 err = -1;
1105 goto tx_irq_fail;
1108 if (request_irq(priv->interruptReceive, gfar_receive,
1109 0, priv->int_name_rx, dev) < 0) {
1110 if (netif_msg_intr(priv))
1111 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1112 dev->name, priv->interruptReceive);
1114 err = -1;
1115 goto rx_irq_fail;
1117 } else {
1118 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1119 0, priv->int_name_tx, dev) < 0) {
1120 if (netif_msg_intr(priv))
1121 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1122 dev->name, priv->interruptTransmit);
1124 err = -1;
1125 goto err_irq_fail;
1129 phy_start(priv->phydev);
1131 /* Configure the coalescing support */
1132 gfar_write(&regs->txic, 0);
1133 if (priv->txcoalescing)
1134 gfar_write(&regs->txic, priv->txic);
1136 gfar_write(&regs->rxic, 0);
1137 if (priv->rxcoalescing)
1138 gfar_write(&regs->rxic, priv->rxic);
1140 if (priv->rx_csum_enable)
1141 rctrl |= RCTRL_CHECKSUMMING;
1143 if (priv->extended_hash) {
1144 rctrl |= RCTRL_EXTHASH;
1146 gfar_clear_exact_match(dev);
1147 rctrl |= RCTRL_EMEN;
1150 if (priv->padding) {
1151 rctrl &= ~RCTRL_PAL_MASK;
1152 rctrl |= RCTRL_PADDING(priv->padding);
1155 /* Init rctrl based on our settings */
1156 gfar_write(&priv->regs->rctrl, rctrl);
1158 if (dev->features & NETIF_F_IP_CSUM)
1159 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1161 /* Set the extraction length and index */
1162 attrs = ATTRELI_EL(priv->rx_stash_size) |
1163 ATTRELI_EI(priv->rx_stash_index);
1165 gfar_write(&priv->regs->attreli, attrs);
1167 /* Start with defaults, and add stashing or locking
1168 * depending on the approprate variables */
1169 attrs = ATTR_INIT_SETTINGS;
1171 if (priv->bd_stash_en)
1172 attrs |= ATTR_BDSTASH;
1174 if (priv->rx_stash_size != 0)
1175 attrs |= ATTR_BUFSTASH;
1177 gfar_write(&priv->regs->attr, attrs);
1179 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1180 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1181 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1183 /* Start the controller */
1184 gfar_start(dev);
1186 return 0;
1188 rx_irq_fail:
1189 free_irq(priv->interruptTransmit, dev);
1190 tx_irq_fail:
1191 free_irq(priv->interruptError, dev);
1192 err_irq_fail:
1193 err_rxalloc_fail:
1194 rx_skb_fail:
1195 free_skb_resources(priv);
1196 tx_skb_fail:
1197 dma_free_coherent(&priv->ofdev->dev,
1198 sizeof(struct txbd8)*priv->tx_ring_size
1199 + sizeof(struct rxbd8)*priv->rx_ring_size,
1200 priv->tx_bd_base,
1201 gfar_read(&regs->tbase0));
1203 return err;
1206 /* Called when something needs to use the ethernet device */
1207 /* Returns 0 for success. */
1208 static int gfar_enet_open(struct net_device *dev)
1210 struct gfar_private *priv = netdev_priv(dev);
1211 int err;
1213 napi_enable(&priv->napi);
1215 skb_queue_head_init(&priv->rx_recycle);
1217 /* Initialize a bunch of registers */
1218 init_registers(dev);
1220 gfar_set_mac_address(dev);
1222 err = init_phy(dev);
1224 if(err) {
1225 napi_disable(&priv->napi);
1226 return err;
1229 err = startup_gfar(dev);
1230 if (err) {
1231 napi_disable(&priv->napi);
1232 return err;
1235 netif_start_queue(dev);
1237 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1239 return err;
1242 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1244 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1246 cacheable_memzero(fcb, GMAC_FCB_LEN);
1248 return fcb;
1251 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1253 u8 flags = 0;
1255 /* If we're here, it's a IP packet with a TCP or UDP
1256 * payload. We set it to checksum, using a pseudo-header
1257 * we provide
1259 flags = TXFCB_DEFAULT;
1261 /* Tell the controller what the protocol is */
1262 /* And provide the already calculated phcs */
1263 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1264 flags |= TXFCB_UDP;
1265 fcb->phcs = udp_hdr(skb)->check;
1266 } else
1267 fcb->phcs = tcp_hdr(skb)->check;
1269 /* l3os is the distance between the start of the
1270 * frame (skb->data) and the start of the IP hdr.
1271 * l4os is the distance between the start of the
1272 * l3 hdr and the l4 hdr */
1273 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1274 fcb->l4os = skb_network_header_len(skb);
1276 fcb->flags = flags;
1279 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1281 fcb->flags |= TXFCB_VLN;
1282 fcb->vlctl = vlan_tx_tag_get(skb);
1285 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1286 struct txbd8 *base, int ring_size)
1288 struct txbd8 *new_bd = bdp + stride;
1290 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1293 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1294 int ring_size)
1296 return skip_txbd(bdp, 1, base, ring_size);
1299 /* This is called by the kernel when a frame is ready for transmission. */
1300 /* It is pointed to by the dev->hard_start_xmit function pointer */
1301 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1303 struct gfar_private *priv = netdev_priv(dev);
1304 struct txfcb *fcb = NULL;
1305 struct txbd8 *txbdp, *txbdp_start, *base;
1306 u32 lstatus;
1307 int i;
1308 u32 bufaddr;
1309 unsigned long flags;
1310 unsigned int nr_frags, length;
1312 base = priv->tx_bd_base;
1314 /* total number of fragments in the SKB */
1315 nr_frags = skb_shinfo(skb)->nr_frags;
1317 spin_lock_irqsave(&priv->txlock, flags);
1319 /* check if there is space to queue this packet */
1320 if ((nr_frags+1) > priv->num_txbdfree) {
1321 /* no space, stop the queue */
1322 netif_stop_queue(dev);
1323 dev->stats.tx_fifo_errors++;
1324 spin_unlock_irqrestore(&priv->txlock, flags);
1325 return NETDEV_TX_BUSY;
1328 /* Update transmit stats */
1329 dev->stats.tx_bytes += skb->len;
1331 txbdp = txbdp_start = priv->cur_tx;
1333 if (nr_frags == 0) {
1334 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1335 } else {
1336 /* Place the fragment addresses and lengths into the TxBDs */
1337 for (i = 0; i < nr_frags; i++) {
1338 /* Point at the next BD, wrapping as needed */
1339 txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1341 length = skb_shinfo(skb)->frags[i].size;
1343 lstatus = txbdp->lstatus | length |
1344 BD_LFLAG(TXBD_READY);
1346 /* Handle the last BD specially */
1347 if (i == nr_frags - 1)
1348 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1350 bufaddr = dma_map_page(&priv->ofdev->dev,
1351 skb_shinfo(skb)->frags[i].page,
1352 skb_shinfo(skb)->frags[i].page_offset,
1353 length,
1354 DMA_TO_DEVICE);
1356 /* set the TxBD length and buffer pointer */
1357 txbdp->bufPtr = bufaddr;
1358 txbdp->lstatus = lstatus;
1361 lstatus = txbdp_start->lstatus;
1364 /* Set up checksumming */
1365 if (CHECKSUM_PARTIAL == skb->ip_summed) {
1366 fcb = gfar_add_fcb(skb);
1367 lstatus |= BD_LFLAG(TXBD_TOE);
1368 gfar_tx_checksum(skb, fcb);
1371 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1372 if (unlikely(NULL == fcb)) {
1373 fcb = gfar_add_fcb(skb);
1374 lstatus |= BD_LFLAG(TXBD_TOE);
1377 gfar_tx_vlan(skb, fcb);
1380 /* setup the TxBD length and buffer pointer for the first BD */
1381 priv->tx_skbuff[priv->skb_curtx] = skb;
1382 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1383 skb_headlen(skb), DMA_TO_DEVICE);
1385 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1388 * The powerpc-specific eieio() is used, as wmb() has too strong
1389 * semantics (it requires synchronization between cacheable and
1390 * uncacheable mappings, which eieio doesn't provide and which we
1391 * don't need), thus requiring a more expensive sync instruction. At
1392 * some point, the set of architecture-independent barrier functions
1393 * should be expanded to include weaker barriers.
1395 eieio();
1397 txbdp_start->lstatus = lstatus;
1399 /* Update the current skb pointer to the next entry we will use
1400 * (wrapping if necessary) */
1401 priv->skb_curtx = (priv->skb_curtx + 1) &
1402 TX_RING_MOD_MASK(priv->tx_ring_size);
1404 priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1406 /* reduce TxBD free count */
1407 priv->num_txbdfree -= (nr_frags + 1);
1409 dev->trans_start = jiffies;
1411 /* If the next BD still needs to be cleaned up, then the bds
1412 are full. We need to tell the kernel to stop sending us stuff. */
1413 if (!priv->num_txbdfree) {
1414 netif_stop_queue(dev);
1416 dev->stats.tx_fifo_errors++;
1419 /* Tell the DMA to go go go */
1420 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1422 /* Unlock priv */
1423 spin_unlock_irqrestore(&priv->txlock, flags);
1425 return 0;
1428 /* Stops the kernel queue, and halts the controller */
1429 static int gfar_close(struct net_device *dev)
1431 struct gfar_private *priv = netdev_priv(dev);
1433 napi_disable(&priv->napi);
1435 skb_queue_purge(&priv->rx_recycle);
1436 cancel_work_sync(&priv->reset_task);
1437 stop_gfar(dev);
1439 /* Disconnect from the PHY */
1440 phy_disconnect(priv->phydev);
1441 priv->phydev = NULL;
1443 netif_stop_queue(dev);
1445 return 0;
1448 /* Changes the mac address if the controller is not running. */
1449 static int gfar_set_mac_address(struct net_device *dev)
1451 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1453 return 0;
1457 /* Enables and disables VLAN insertion/extraction */
1458 static void gfar_vlan_rx_register(struct net_device *dev,
1459 struct vlan_group *grp)
1461 struct gfar_private *priv = netdev_priv(dev);
1462 unsigned long flags;
1463 u32 tempval;
1465 spin_lock_irqsave(&priv->rxlock, flags);
1467 priv->vlgrp = grp;
1469 if (grp) {
1470 /* Enable VLAN tag insertion */
1471 tempval = gfar_read(&priv->regs->tctrl);
1472 tempval |= TCTRL_VLINS;
1474 gfar_write(&priv->regs->tctrl, tempval);
1476 /* Enable VLAN tag extraction */
1477 tempval = gfar_read(&priv->regs->rctrl);
1478 tempval |= RCTRL_VLEX;
1479 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1480 gfar_write(&priv->regs->rctrl, tempval);
1481 } else {
1482 /* Disable VLAN tag insertion */
1483 tempval = gfar_read(&priv->regs->tctrl);
1484 tempval &= ~TCTRL_VLINS;
1485 gfar_write(&priv->regs->tctrl, tempval);
1487 /* Disable VLAN tag extraction */
1488 tempval = gfar_read(&priv->regs->rctrl);
1489 tempval &= ~RCTRL_VLEX;
1490 /* If parse is no longer required, then disable parser */
1491 if (tempval & RCTRL_REQ_PARSER)
1492 tempval |= RCTRL_PRSDEP_INIT;
1493 else
1494 tempval &= ~RCTRL_PRSDEP_INIT;
1495 gfar_write(&priv->regs->rctrl, tempval);
1498 gfar_change_mtu(dev, dev->mtu);
1500 spin_unlock_irqrestore(&priv->rxlock, flags);
1503 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1505 int tempsize, tempval;
1506 struct gfar_private *priv = netdev_priv(dev);
1507 int oldsize = priv->rx_buffer_size;
1508 int frame_size = new_mtu + ETH_HLEN;
1510 if (priv->vlgrp)
1511 frame_size += VLAN_HLEN;
1513 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1514 if (netif_msg_drv(priv))
1515 printk(KERN_ERR "%s: Invalid MTU setting\n",
1516 dev->name);
1517 return -EINVAL;
1520 if (gfar_uses_fcb(priv))
1521 frame_size += GMAC_FCB_LEN;
1523 frame_size += priv->padding;
1525 tempsize =
1526 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1527 INCREMENTAL_BUFFER_SIZE;
1529 /* Only stop and start the controller if it isn't already
1530 * stopped, and we changed something */
1531 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1532 stop_gfar(dev);
1534 priv->rx_buffer_size = tempsize;
1536 dev->mtu = new_mtu;
1538 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1539 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1541 /* If the mtu is larger than the max size for standard
1542 * ethernet frames (ie, a jumbo frame), then set maccfg2
1543 * to allow huge frames, and to check the length */
1544 tempval = gfar_read(&priv->regs->maccfg2);
1546 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1547 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1548 else
1549 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1551 gfar_write(&priv->regs->maccfg2, tempval);
1553 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1554 startup_gfar(dev);
1556 return 0;
1559 /* gfar_reset_task gets scheduled when a packet has not been
1560 * transmitted after a set amount of time.
1561 * For now, assume that clearing out all the structures, and
1562 * starting over will fix the problem.
1564 static void gfar_reset_task(struct work_struct *work)
1566 struct gfar_private *priv = container_of(work, struct gfar_private,
1567 reset_task);
1568 struct net_device *dev = priv->ndev;
1570 if (dev->flags & IFF_UP) {
1571 stop_gfar(dev);
1572 startup_gfar(dev);
1575 netif_tx_schedule_all(dev);
1578 static void gfar_timeout(struct net_device *dev)
1580 struct gfar_private *priv = netdev_priv(dev);
1582 dev->stats.tx_errors++;
1583 schedule_work(&priv->reset_task);
1586 /* Interrupt Handler for Transmit complete */
1587 static int gfar_clean_tx_ring(struct net_device *dev)
1589 struct gfar_private *priv = netdev_priv(dev);
1590 struct txbd8 *bdp;
1591 struct txbd8 *lbdp = NULL;
1592 struct txbd8 *base = priv->tx_bd_base;
1593 struct sk_buff *skb;
1594 int skb_dirtytx;
1595 int tx_ring_size = priv->tx_ring_size;
1596 int frags = 0;
1597 int i;
1598 int howmany = 0;
1599 u32 lstatus;
1601 bdp = priv->dirty_tx;
1602 skb_dirtytx = priv->skb_dirtytx;
1604 while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1605 frags = skb_shinfo(skb)->nr_frags;
1606 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1608 lstatus = lbdp->lstatus;
1610 /* Only clean completed frames */
1611 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1612 (lstatus & BD_LENGTH_MASK))
1613 break;
1615 dma_unmap_single(&priv->ofdev->dev,
1616 bdp->bufPtr,
1617 bdp->length,
1618 DMA_TO_DEVICE);
1620 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1621 bdp = next_txbd(bdp, base, tx_ring_size);
1623 for (i = 0; i < frags; i++) {
1624 dma_unmap_page(&priv->ofdev->dev,
1625 bdp->bufPtr,
1626 bdp->length,
1627 DMA_TO_DEVICE);
1628 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1629 bdp = next_txbd(bdp, base, tx_ring_size);
1633 * If there's room in the queue (limit it to rx_buffer_size)
1634 * we add this skb back into the pool, if it's the right size
1636 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
1637 skb_recycle_check(skb, priv->rx_buffer_size +
1638 RXBUF_ALIGNMENT))
1639 __skb_queue_head(&priv->rx_recycle, skb);
1640 else
1641 dev_kfree_skb_any(skb);
1643 priv->tx_skbuff[skb_dirtytx] = NULL;
1645 skb_dirtytx = (skb_dirtytx + 1) &
1646 TX_RING_MOD_MASK(tx_ring_size);
1648 howmany++;
1649 priv->num_txbdfree += frags + 1;
1652 /* If we freed a buffer, we can restart transmission, if necessary */
1653 if (netif_queue_stopped(dev) && priv->num_txbdfree)
1654 netif_wake_queue(dev);
1656 /* Update dirty indicators */
1657 priv->skb_dirtytx = skb_dirtytx;
1658 priv->dirty_tx = bdp;
1660 dev->stats.tx_packets += howmany;
1662 return howmany;
1665 static void gfar_schedule_cleanup(struct net_device *dev)
1667 struct gfar_private *priv = netdev_priv(dev);
1668 unsigned long flags;
1670 spin_lock_irqsave(&priv->txlock, flags);
1671 spin_lock(&priv->rxlock);
1673 if (napi_schedule_prep(&priv->napi)) {
1674 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1675 __napi_schedule(&priv->napi);
1676 } else {
1678 * Clear IEVENT, so interrupts aren't called again
1679 * because of the packets that have already arrived.
1681 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1684 spin_unlock(&priv->rxlock);
1685 spin_unlock_irqrestore(&priv->txlock, flags);
1688 /* Interrupt Handler for Transmit complete */
1689 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1691 gfar_schedule_cleanup((struct net_device *)dev_id);
1692 return IRQ_HANDLED;
1695 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1696 struct sk_buff *skb)
1698 struct gfar_private *priv = netdev_priv(dev);
1699 u32 lstatus;
1701 bdp->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1702 priv->rx_buffer_size, DMA_FROM_DEVICE);
1704 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1706 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1707 lstatus |= BD_LFLAG(RXBD_WRAP);
1709 eieio();
1711 bdp->lstatus = lstatus;
1715 struct sk_buff * gfar_new_skb(struct net_device *dev)
1717 unsigned int alignamount;
1718 struct gfar_private *priv = netdev_priv(dev);
1719 struct sk_buff *skb = NULL;
1721 skb = __skb_dequeue(&priv->rx_recycle);
1722 if (!skb)
1723 skb = netdev_alloc_skb(dev,
1724 priv->rx_buffer_size + RXBUF_ALIGNMENT);
1726 if (!skb)
1727 return NULL;
1729 alignamount = RXBUF_ALIGNMENT -
1730 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1732 /* We need the data buffer to be aligned properly. We will reserve
1733 * as many bytes as needed to align the data properly
1735 skb_reserve(skb, alignamount);
1737 return skb;
1740 static inline void count_errors(unsigned short status, struct net_device *dev)
1742 struct gfar_private *priv = netdev_priv(dev);
1743 struct net_device_stats *stats = &dev->stats;
1744 struct gfar_extra_stats *estats = &priv->extra_stats;
1746 /* If the packet was truncated, none of the other errors
1747 * matter */
1748 if (status & RXBD_TRUNCATED) {
1749 stats->rx_length_errors++;
1751 estats->rx_trunc++;
1753 return;
1755 /* Count the errors, if there were any */
1756 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1757 stats->rx_length_errors++;
1759 if (status & RXBD_LARGE)
1760 estats->rx_large++;
1761 else
1762 estats->rx_short++;
1764 if (status & RXBD_NONOCTET) {
1765 stats->rx_frame_errors++;
1766 estats->rx_nonoctet++;
1768 if (status & RXBD_CRCERR) {
1769 estats->rx_crcerr++;
1770 stats->rx_crc_errors++;
1772 if (status & RXBD_OVERRUN) {
1773 estats->rx_overrun++;
1774 stats->rx_crc_errors++;
1778 irqreturn_t gfar_receive(int irq, void *dev_id)
1780 gfar_schedule_cleanup((struct net_device *)dev_id);
1781 return IRQ_HANDLED;
1784 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1786 /* If valid headers were found, and valid sums
1787 * were verified, then we tell the kernel that no
1788 * checksumming is necessary. Otherwise, it is */
1789 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1790 skb->ip_summed = CHECKSUM_UNNECESSARY;
1791 else
1792 skb->ip_summed = CHECKSUM_NONE;
1796 /* gfar_process_frame() -- handle one incoming packet if skb
1797 * isn't NULL. */
1798 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1799 int amount_pull)
1801 struct gfar_private *priv = netdev_priv(dev);
1802 struct rxfcb *fcb = NULL;
1804 int ret;
1806 /* fcb is at the beginning if exists */
1807 fcb = (struct rxfcb *)skb->data;
1809 /* Remove the FCB from the skb */
1810 /* Remove the padded bytes, if there are any */
1811 if (amount_pull)
1812 skb_pull(skb, amount_pull);
1814 if (priv->rx_csum_enable)
1815 gfar_rx_checksum(skb, fcb);
1817 /* Tell the skb what kind of packet this is */
1818 skb->protocol = eth_type_trans(skb, dev);
1820 /* Send the packet up the stack */
1821 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1822 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1823 else
1824 ret = netif_receive_skb(skb);
1826 if (NET_RX_DROP == ret)
1827 priv->extra_stats.kernel_dropped++;
1829 return 0;
1832 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1833 * until the budget/quota has been reached. Returns the number
1834 * of frames handled
1836 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1838 struct rxbd8 *bdp, *base;
1839 struct sk_buff *skb;
1840 int pkt_len;
1841 int amount_pull;
1842 int howmany = 0;
1843 struct gfar_private *priv = netdev_priv(dev);
1845 /* Get the first full descriptor */
1846 bdp = priv->cur_rx;
1847 base = priv->rx_bd_base;
1849 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1850 priv->padding;
1852 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1853 struct sk_buff *newskb;
1854 rmb();
1856 /* Add another skb for the future */
1857 newskb = gfar_new_skb(dev);
1859 skb = priv->rx_skbuff[priv->skb_currx];
1861 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
1862 priv->rx_buffer_size, DMA_FROM_DEVICE);
1864 /* We drop the frame if we failed to allocate a new buffer */
1865 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1866 bdp->status & RXBD_ERR)) {
1867 count_errors(bdp->status, dev);
1869 if (unlikely(!newskb))
1870 newskb = skb;
1871 else if (skb)
1872 __skb_queue_head(&priv->rx_recycle, skb);
1873 } else {
1874 /* Increment the number of packets */
1875 dev->stats.rx_packets++;
1876 howmany++;
1878 if (likely(skb)) {
1879 pkt_len = bdp->length - ETH_FCS_LEN;
1880 /* Remove the FCS from the packet length */
1881 skb_put(skb, pkt_len);
1882 dev->stats.rx_bytes += pkt_len;
1884 if (in_irq() || irqs_disabled())
1885 printk("Interrupt problem!\n");
1886 gfar_process_frame(dev, skb, amount_pull);
1888 } else {
1889 if (netif_msg_rx_err(priv))
1890 printk(KERN_WARNING
1891 "%s: Missing skb!\n", dev->name);
1892 dev->stats.rx_dropped++;
1893 priv->extra_stats.rx_skbmissing++;
1898 priv->rx_skbuff[priv->skb_currx] = newskb;
1900 /* Setup the new bdp */
1901 gfar_new_rxbdp(dev, bdp, newskb);
1903 /* Update to the next pointer */
1904 bdp = next_bd(bdp, base, priv->rx_ring_size);
1906 /* update to point at the next skb */
1907 priv->skb_currx =
1908 (priv->skb_currx + 1) &
1909 RX_RING_MOD_MASK(priv->rx_ring_size);
1912 /* Update the current rxbd pointer to be the next one */
1913 priv->cur_rx = bdp;
1915 return howmany;
1918 static int gfar_poll(struct napi_struct *napi, int budget)
1920 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1921 struct net_device *dev = priv->ndev;
1922 int tx_cleaned = 0;
1923 int rx_cleaned = 0;
1924 unsigned long flags;
1926 /* Clear IEVENT, so interrupts aren't called again
1927 * because of the packets that have already arrived */
1928 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1930 /* If we fail to get the lock, don't bother with the TX BDs */
1931 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1932 tx_cleaned = gfar_clean_tx_ring(dev);
1933 spin_unlock_irqrestore(&priv->txlock, flags);
1936 rx_cleaned = gfar_clean_rx_ring(dev, budget);
1938 if (tx_cleaned)
1939 return budget;
1941 if (rx_cleaned < budget) {
1942 napi_complete(napi);
1944 /* Clear the halt bit in RSTAT */
1945 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1947 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1949 /* If we are coalescing interrupts, update the timer */
1950 /* Otherwise, clear it */
1951 if (likely(priv->rxcoalescing)) {
1952 gfar_write(&priv->regs->rxic, 0);
1953 gfar_write(&priv->regs->rxic, priv->rxic);
1955 if (likely(priv->txcoalescing)) {
1956 gfar_write(&priv->regs->txic, 0);
1957 gfar_write(&priv->regs->txic, priv->txic);
1961 return rx_cleaned;
1964 #ifdef CONFIG_NET_POLL_CONTROLLER
1966 * Polling 'interrupt' - used by things like netconsole to send skbs
1967 * without having to re-enable interrupts. It's not called while
1968 * the interrupt routine is executing.
1970 static void gfar_netpoll(struct net_device *dev)
1972 struct gfar_private *priv = netdev_priv(dev);
1974 /* If the device has multiple interrupts, run tx/rx */
1975 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1976 disable_irq(priv->interruptTransmit);
1977 disable_irq(priv->interruptReceive);
1978 disable_irq(priv->interruptError);
1979 gfar_interrupt(priv->interruptTransmit, dev);
1980 enable_irq(priv->interruptError);
1981 enable_irq(priv->interruptReceive);
1982 enable_irq(priv->interruptTransmit);
1983 } else {
1984 disable_irq(priv->interruptTransmit);
1985 gfar_interrupt(priv->interruptTransmit, dev);
1986 enable_irq(priv->interruptTransmit);
1989 #endif
1991 /* The interrupt handler for devices with one interrupt */
1992 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1994 struct net_device *dev = dev_id;
1995 struct gfar_private *priv = netdev_priv(dev);
1997 /* Save ievent for future reference */
1998 u32 events = gfar_read(&priv->regs->ievent);
2000 /* Check for reception */
2001 if (events & IEVENT_RX_MASK)
2002 gfar_receive(irq, dev_id);
2004 /* Check for transmit completion */
2005 if (events & IEVENT_TX_MASK)
2006 gfar_transmit(irq, dev_id);
2008 /* Check for errors */
2009 if (events & IEVENT_ERR_MASK)
2010 gfar_error(irq, dev_id);
2012 return IRQ_HANDLED;
2015 /* Called every time the controller might need to be made
2016 * aware of new link state. The PHY code conveys this
2017 * information through variables in the phydev structure, and this
2018 * function converts those variables into the appropriate
2019 * register values, and can bring down the device if needed.
2021 static void adjust_link(struct net_device *dev)
2023 struct gfar_private *priv = netdev_priv(dev);
2024 struct gfar __iomem *regs = priv->regs;
2025 unsigned long flags;
2026 struct phy_device *phydev = priv->phydev;
2027 int new_state = 0;
2029 spin_lock_irqsave(&priv->txlock, flags);
2030 if (phydev->link) {
2031 u32 tempval = gfar_read(&regs->maccfg2);
2032 u32 ecntrl = gfar_read(&regs->ecntrl);
2034 /* Now we make sure that we can be in full duplex mode.
2035 * If not, we operate in half-duplex mode. */
2036 if (phydev->duplex != priv->oldduplex) {
2037 new_state = 1;
2038 if (!(phydev->duplex))
2039 tempval &= ~(MACCFG2_FULL_DUPLEX);
2040 else
2041 tempval |= MACCFG2_FULL_DUPLEX;
2043 priv->oldduplex = phydev->duplex;
2046 if (phydev->speed != priv->oldspeed) {
2047 new_state = 1;
2048 switch (phydev->speed) {
2049 case 1000:
2050 tempval =
2051 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2053 ecntrl &= ~(ECNTRL_R100);
2054 break;
2055 case 100:
2056 case 10:
2057 tempval =
2058 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2060 /* Reduced mode distinguishes
2061 * between 10 and 100 */
2062 if (phydev->speed == SPEED_100)
2063 ecntrl |= ECNTRL_R100;
2064 else
2065 ecntrl &= ~(ECNTRL_R100);
2066 break;
2067 default:
2068 if (netif_msg_link(priv))
2069 printk(KERN_WARNING
2070 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2071 dev->name, phydev->speed);
2072 break;
2075 priv->oldspeed = phydev->speed;
2078 gfar_write(&regs->maccfg2, tempval);
2079 gfar_write(&regs->ecntrl, ecntrl);
2081 if (!priv->oldlink) {
2082 new_state = 1;
2083 priv->oldlink = 1;
2085 } else if (priv->oldlink) {
2086 new_state = 1;
2087 priv->oldlink = 0;
2088 priv->oldspeed = 0;
2089 priv->oldduplex = -1;
2092 if (new_state && netif_msg_link(priv))
2093 phy_print_status(phydev);
2095 spin_unlock_irqrestore(&priv->txlock, flags);
2098 /* Update the hash table based on the current list of multicast
2099 * addresses we subscribe to. Also, change the promiscuity of
2100 * the device based on the flags (this function is called
2101 * whenever dev->flags is changed */
2102 static void gfar_set_multi(struct net_device *dev)
2104 struct dev_mc_list *mc_ptr;
2105 struct gfar_private *priv = netdev_priv(dev);
2106 struct gfar __iomem *regs = priv->regs;
2107 u32 tempval;
2109 if(dev->flags & IFF_PROMISC) {
2110 /* Set RCTRL to PROM */
2111 tempval = gfar_read(&regs->rctrl);
2112 tempval |= RCTRL_PROM;
2113 gfar_write(&regs->rctrl, tempval);
2114 } else {
2115 /* Set RCTRL to not PROM */
2116 tempval = gfar_read(&regs->rctrl);
2117 tempval &= ~(RCTRL_PROM);
2118 gfar_write(&regs->rctrl, tempval);
2121 if(dev->flags & IFF_ALLMULTI) {
2122 /* Set the hash to rx all multicast frames */
2123 gfar_write(&regs->igaddr0, 0xffffffff);
2124 gfar_write(&regs->igaddr1, 0xffffffff);
2125 gfar_write(&regs->igaddr2, 0xffffffff);
2126 gfar_write(&regs->igaddr3, 0xffffffff);
2127 gfar_write(&regs->igaddr4, 0xffffffff);
2128 gfar_write(&regs->igaddr5, 0xffffffff);
2129 gfar_write(&regs->igaddr6, 0xffffffff);
2130 gfar_write(&regs->igaddr7, 0xffffffff);
2131 gfar_write(&regs->gaddr0, 0xffffffff);
2132 gfar_write(&regs->gaddr1, 0xffffffff);
2133 gfar_write(&regs->gaddr2, 0xffffffff);
2134 gfar_write(&regs->gaddr3, 0xffffffff);
2135 gfar_write(&regs->gaddr4, 0xffffffff);
2136 gfar_write(&regs->gaddr5, 0xffffffff);
2137 gfar_write(&regs->gaddr6, 0xffffffff);
2138 gfar_write(&regs->gaddr7, 0xffffffff);
2139 } else {
2140 int em_num;
2141 int idx;
2143 /* zero out the hash */
2144 gfar_write(&regs->igaddr0, 0x0);
2145 gfar_write(&regs->igaddr1, 0x0);
2146 gfar_write(&regs->igaddr2, 0x0);
2147 gfar_write(&regs->igaddr3, 0x0);
2148 gfar_write(&regs->igaddr4, 0x0);
2149 gfar_write(&regs->igaddr5, 0x0);
2150 gfar_write(&regs->igaddr6, 0x0);
2151 gfar_write(&regs->igaddr7, 0x0);
2152 gfar_write(&regs->gaddr0, 0x0);
2153 gfar_write(&regs->gaddr1, 0x0);
2154 gfar_write(&regs->gaddr2, 0x0);
2155 gfar_write(&regs->gaddr3, 0x0);
2156 gfar_write(&regs->gaddr4, 0x0);
2157 gfar_write(&regs->gaddr5, 0x0);
2158 gfar_write(&regs->gaddr6, 0x0);
2159 gfar_write(&regs->gaddr7, 0x0);
2161 /* If we have extended hash tables, we need to
2162 * clear the exact match registers to prepare for
2163 * setting them */
2164 if (priv->extended_hash) {
2165 em_num = GFAR_EM_NUM + 1;
2166 gfar_clear_exact_match(dev);
2167 idx = 1;
2168 } else {
2169 idx = 0;
2170 em_num = 0;
2173 if(dev->mc_count == 0)
2174 return;
2176 /* Parse the list, and set the appropriate bits */
2177 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2178 if (idx < em_num) {
2179 gfar_set_mac_for_addr(dev, idx,
2180 mc_ptr->dmi_addr);
2181 idx++;
2182 } else
2183 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2187 return;
2191 /* Clears each of the exact match registers to zero, so they
2192 * don't interfere with normal reception */
2193 static void gfar_clear_exact_match(struct net_device *dev)
2195 int idx;
2196 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2198 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2199 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2202 /* Set the appropriate hash bit for the given addr */
2203 /* The algorithm works like so:
2204 * 1) Take the Destination Address (ie the multicast address), and
2205 * do a CRC on it (little endian), and reverse the bits of the
2206 * result.
2207 * 2) Use the 8 most significant bits as a hash into a 256-entry
2208 * table. The table is controlled through 8 32-bit registers:
2209 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2210 * gaddr7. This means that the 3 most significant bits in the
2211 * hash index which gaddr register to use, and the 5 other bits
2212 * indicate which bit (assuming an IBM numbering scheme, which
2213 * for PowerPC (tm) is usually the case) in the register holds
2214 * the entry. */
2215 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2217 u32 tempval;
2218 struct gfar_private *priv = netdev_priv(dev);
2219 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2220 int width = priv->hash_width;
2221 u8 whichbit = (result >> (32 - width)) & 0x1f;
2222 u8 whichreg = result >> (32 - width + 5);
2223 u32 value = (1 << (31-whichbit));
2225 tempval = gfar_read(priv->hash_regs[whichreg]);
2226 tempval |= value;
2227 gfar_write(priv->hash_regs[whichreg], tempval);
2229 return;
2233 /* There are multiple MAC Address register pairs on some controllers
2234 * This function sets the numth pair to a given address
2236 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2238 struct gfar_private *priv = netdev_priv(dev);
2239 int idx;
2240 char tmpbuf[MAC_ADDR_LEN];
2241 u32 tempval;
2242 u32 __iomem *macptr = &priv->regs->macstnaddr1;
2244 macptr += num*2;
2246 /* Now copy it into the mac registers backwards, cuz */
2247 /* little endian is silly */
2248 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2249 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2251 gfar_write(macptr, *((u32 *) (tmpbuf)));
2253 tempval = *((u32 *) (tmpbuf + 4));
2255 gfar_write(macptr+1, tempval);
2258 /* GFAR error interrupt handler */
2259 static irqreturn_t gfar_error(int irq, void *dev_id)
2261 struct net_device *dev = dev_id;
2262 struct gfar_private *priv = netdev_priv(dev);
2264 /* Save ievent for future reference */
2265 u32 events = gfar_read(&priv->regs->ievent);
2267 /* Clear IEVENT */
2268 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2270 /* Magic Packet is not an error. */
2271 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2272 (events & IEVENT_MAG))
2273 events &= ~IEVENT_MAG;
2275 /* Hmm... */
2276 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2277 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2278 dev->name, events, gfar_read(&priv->regs->imask));
2280 /* Update the error counters */
2281 if (events & IEVENT_TXE) {
2282 dev->stats.tx_errors++;
2284 if (events & IEVENT_LC)
2285 dev->stats.tx_window_errors++;
2286 if (events & IEVENT_CRL)
2287 dev->stats.tx_aborted_errors++;
2288 if (events & IEVENT_XFUN) {
2289 if (netif_msg_tx_err(priv))
2290 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2291 "packet dropped.\n", dev->name);
2292 dev->stats.tx_dropped++;
2293 priv->extra_stats.tx_underrun++;
2295 /* Reactivate the Tx Queues */
2296 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2298 if (netif_msg_tx_err(priv))
2299 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2301 if (events & IEVENT_BSY) {
2302 dev->stats.rx_errors++;
2303 priv->extra_stats.rx_bsy++;
2305 gfar_receive(irq, dev_id);
2307 if (netif_msg_rx_err(priv))
2308 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2309 dev->name, gfar_read(&priv->regs->rstat));
2311 if (events & IEVENT_BABR) {
2312 dev->stats.rx_errors++;
2313 priv->extra_stats.rx_babr++;
2315 if (netif_msg_rx_err(priv))
2316 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2318 if (events & IEVENT_EBERR) {
2319 priv->extra_stats.eberr++;
2320 if (netif_msg_rx_err(priv))
2321 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2323 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2324 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2326 if (events & IEVENT_BABT) {
2327 priv->extra_stats.tx_babt++;
2328 if (netif_msg_tx_err(priv))
2329 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2331 return IRQ_HANDLED;
2334 /* work with hotplug and coldplug */
2335 MODULE_ALIAS("platform:fsl-gianfar");
2337 static struct of_device_id gfar_match[] =
2340 .type = "network",
2341 .compatible = "gianfar",
2346 /* Structure for a device driver */
2347 static struct of_platform_driver gfar_driver = {
2348 .name = "fsl-gianfar",
2349 .match_table = gfar_match,
2351 .probe = gfar_probe,
2352 .remove = gfar_remove,
2353 .suspend = gfar_suspend,
2354 .resume = gfar_resume,
2357 static int __init gfar_init(void)
2359 return of_register_platform_driver(&gfar_driver);
2362 static void __exit gfar_exit(void)
2364 of_unregister_platform_driver(&gfar_driver);
2367 module_init(gfar_init);
2368 module_exit(gfar_exit);