[CPUFREQ] fix up comment in cpufreq.h
[linux-2.6/mini2440.git] / net / ipv4 / ip_output.c
blob760dc8238d653e74351d30aa6fbeec6efc3c21d9
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Version: $Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Donald Becker, <becker@super.org>
13 * Alan Cox, <Alan.Cox@linux.org>
14 * Richard Underwood
15 * Stefan Becker, <stefanb@yello.ping.de>
16 * Jorge Cwik, <jorge@laser.satlink.net>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Hirokazu Takahashi, <taka@valinux.co.jp>
20 * See ip_input.c for original log
22 * Fixes:
23 * Alan Cox : Missing nonblock feature in ip_build_xmit.
24 * Mike Kilburn : htons() missing in ip_build_xmit.
25 * Bradford Johnson: Fix faulty handling of some frames when
26 * no route is found.
27 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
28 * (in case if packet not accepted by
29 * output firewall rules)
30 * Mike McLagan : Routing by source
31 * Alexey Kuznetsov: use new route cache
32 * Andi Kleen: Fix broken PMTU recovery and remove
33 * some redundant tests.
34 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
35 * Andi Kleen : Replace ip_reply with ip_send_reply.
36 * Andi Kleen : Split fast and slow ip_build_xmit path
37 * for decreased register pressure on x86
38 * and more readibility.
39 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
40 * silently drop skb instead of failing with -EPERM.
41 * Detlev Wengorz : Copy protocol for fragments.
42 * Hirokazu Takahashi: HW checksumming for outgoing UDP
43 * datagrams.
44 * Hirokazu Takahashi: sendfile() on UDP works now.
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/sched.h>
53 #include <linux/mm.h>
54 #include <linux/string.h>
55 #include <linux/errno.h>
56 #include <linux/config.h>
58 #include <linux/socket.h>
59 #include <linux/sockios.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/stat.h>
66 #include <linux/init.h>
68 #include <net/snmp.h>
69 #include <net/ip.h>
70 #include <net/protocol.h>
71 #include <net/route.h>
72 #include <net/tcp.h>
73 #include <net/udp.h>
74 #include <linux/skbuff.h>
75 #include <net/sock.h>
76 #include <net/arp.h>
77 #include <net/icmp.h>
78 #include <net/raw.h>
79 #include <net/checksum.h>
80 #include <net/inetpeer.h>
81 #include <net/checksum.h>
82 #include <linux/igmp.h>
83 #include <linux/netfilter_ipv4.h>
84 #include <linux/netfilter_bridge.h>
85 #include <linux/mroute.h>
86 #include <linux/netlink.h>
89 * Shall we try to damage output packets if routing dev changes?
92 int sysctl_ip_dynaddr;
93 int sysctl_ip_default_ttl = IPDEFTTL;
95 /* Generate a checksum for an outgoing IP datagram. */
96 __inline__ void ip_send_check(struct iphdr *iph)
98 iph->check = 0;
99 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
102 /* dev_loopback_xmit for use with netfilter. */
103 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
105 newskb->mac.raw = newskb->data;
106 __skb_pull(newskb, newskb->nh.raw - newskb->data);
107 newskb->pkt_type = PACKET_LOOPBACK;
108 newskb->ip_summed = CHECKSUM_UNNECESSARY;
109 BUG_TRAP(newskb->dst);
111 #ifdef CONFIG_NETFILTER_DEBUG
112 nf_debug_ip_loopback_xmit(newskb);
113 #endif
114 nf_reset(newskb);
115 netif_rx(newskb);
116 return 0;
119 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
121 int ttl = inet->uc_ttl;
123 if (ttl < 0)
124 ttl = dst_metric(dst, RTAX_HOPLIMIT);
125 return ttl;
129 * Add an ip header to a skbuff and send it out.
132 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
133 u32 saddr, u32 daddr, struct ip_options *opt)
135 struct inet_sock *inet = inet_sk(sk);
136 struct rtable *rt = (struct rtable *)skb->dst;
137 struct iphdr *iph;
139 /* Build the IP header. */
140 if (opt)
141 iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr) + opt->optlen);
142 else
143 iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr));
145 iph->version = 4;
146 iph->ihl = 5;
147 iph->tos = inet->tos;
148 if (ip_dont_fragment(sk, &rt->u.dst))
149 iph->frag_off = htons(IP_DF);
150 else
151 iph->frag_off = 0;
152 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
153 iph->daddr = rt->rt_dst;
154 iph->saddr = rt->rt_src;
155 iph->protocol = sk->sk_protocol;
156 iph->tot_len = htons(skb->len);
157 ip_select_ident(iph, &rt->u.dst, sk);
158 skb->nh.iph = iph;
160 if (opt && opt->optlen) {
161 iph->ihl += opt->optlen>>2;
162 ip_options_build(skb, opt, daddr, rt, 0);
164 ip_send_check(iph);
166 skb->priority = sk->sk_priority;
168 /* Send it out. */
169 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
170 dst_output);
173 static inline int ip_finish_output2(struct sk_buff *skb)
175 struct dst_entry *dst = skb->dst;
176 struct hh_cache *hh = dst->hh;
177 struct net_device *dev = dst->dev;
178 int hh_len = LL_RESERVED_SPACE(dev);
180 /* Be paranoid, rather than too clever. */
181 if (unlikely(skb_headroom(skb) < hh_len && dev->hard_header)) {
182 struct sk_buff *skb2;
184 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
185 if (skb2 == NULL) {
186 kfree_skb(skb);
187 return -ENOMEM;
189 if (skb->sk)
190 skb_set_owner_w(skb2, skb->sk);
191 kfree_skb(skb);
192 skb = skb2;
195 #ifdef CONFIG_NETFILTER_DEBUG
196 nf_debug_ip_finish_output2(skb);
197 #endif /*CONFIG_NETFILTER_DEBUG*/
199 nf_reset(skb);
201 if (hh) {
202 int hh_alen;
204 read_lock_bh(&hh->hh_lock);
205 hh_alen = HH_DATA_ALIGN(hh->hh_len);
206 memcpy(skb->data - hh_alen, hh->hh_data, hh_alen);
207 read_unlock_bh(&hh->hh_lock);
208 skb_push(skb, hh->hh_len);
209 return hh->hh_output(skb);
210 } else if (dst->neighbour)
211 return dst->neighbour->output(skb);
213 if (net_ratelimit())
214 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
215 kfree_skb(skb);
216 return -EINVAL;
219 int ip_finish_output(struct sk_buff *skb)
221 struct net_device *dev = skb->dst->dev;
223 skb->dev = dev;
224 skb->protocol = htons(ETH_P_IP);
226 return NF_HOOK(PF_INET, NF_IP_POST_ROUTING, skb, NULL, dev,
227 ip_finish_output2);
230 int ip_mc_output(struct sk_buff *skb)
232 struct sock *sk = skb->sk;
233 struct rtable *rt = (struct rtable*)skb->dst;
234 struct net_device *dev = rt->u.dst.dev;
237 * If the indicated interface is up and running, send the packet.
239 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
241 skb->dev = dev;
242 skb->protocol = htons(ETH_P_IP);
245 * Multicasts are looped back for other local users
248 if (rt->rt_flags&RTCF_MULTICAST) {
249 if ((!sk || inet_sk(sk)->mc_loop)
250 #ifdef CONFIG_IP_MROUTE
251 /* Small optimization: do not loopback not local frames,
252 which returned after forwarding; they will be dropped
253 by ip_mr_input in any case.
254 Note, that local frames are looped back to be delivered
255 to local recipients.
257 This check is duplicated in ip_mr_input at the moment.
259 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
260 #endif
262 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
263 if (newskb)
264 NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
265 newskb->dev,
266 ip_dev_loopback_xmit);
269 /* Multicasts with ttl 0 must not go beyond the host */
271 if (skb->nh.iph->ttl == 0) {
272 kfree_skb(skb);
273 return 0;
277 if (rt->rt_flags&RTCF_BROADCAST) {
278 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
279 if (newskb)
280 NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
281 newskb->dev, ip_dev_loopback_xmit);
284 if (skb->len > dst_mtu(&rt->u.dst))
285 return ip_fragment(skb, ip_finish_output);
286 else
287 return ip_finish_output(skb);
290 int ip_output(struct sk_buff *skb)
292 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
294 if (skb->len > dst_mtu(skb->dst) && !skb_shinfo(skb)->tso_size)
295 return ip_fragment(skb, ip_finish_output);
296 else
297 return ip_finish_output(skb);
300 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
302 struct sock *sk = skb->sk;
303 struct inet_sock *inet = inet_sk(sk);
304 struct ip_options *opt = inet->opt;
305 struct rtable *rt;
306 struct iphdr *iph;
308 /* Skip all of this if the packet is already routed,
309 * f.e. by something like SCTP.
311 rt = (struct rtable *) skb->dst;
312 if (rt != NULL)
313 goto packet_routed;
315 /* Make sure we can route this packet. */
316 rt = (struct rtable *)__sk_dst_check(sk, 0);
317 if (rt == NULL) {
318 u32 daddr;
320 /* Use correct destination address if we have options. */
321 daddr = inet->daddr;
322 if(opt && opt->srr)
323 daddr = opt->faddr;
326 struct flowi fl = { .oif = sk->sk_bound_dev_if,
327 .nl_u = { .ip4_u =
328 { .daddr = daddr,
329 .saddr = inet->saddr,
330 .tos = RT_CONN_FLAGS(sk) } },
331 .proto = sk->sk_protocol,
332 .uli_u = { .ports =
333 { .sport = inet->sport,
334 .dport = inet->dport } } };
336 /* If this fails, retransmit mechanism of transport layer will
337 * keep trying until route appears or the connection times
338 * itself out.
340 if (ip_route_output_flow(&rt, &fl, sk, 0))
341 goto no_route;
343 __sk_dst_set(sk, &rt->u.dst);
344 tcp_v4_setup_caps(sk, &rt->u.dst);
346 skb->dst = dst_clone(&rt->u.dst);
348 packet_routed:
349 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
350 goto no_route;
352 /* OK, we know where to send it, allocate and build IP header. */
353 iph = (struct iphdr *) skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
354 *((__u16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
355 iph->tot_len = htons(skb->len);
356 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
357 iph->frag_off = htons(IP_DF);
358 else
359 iph->frag_off = 0;
360 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
361 iph->protocol = sk->sk_protocol;
362 iph->saddr = rt->rt_src;
363 iph->daddr = rt->rt_dst;
364 skb->nh.iph = iph;
365 /* Transport layer set skb->h.foo itself. */
367 if (opt && opt->optlen) {
368 iph->ihl += opt->optlen >> 2;
369 ip_options_build(skb, opt, inet->daddr, rt, 0);
372 ip_select_ident_more(iph, &rt->u.dst, sk, skb_shinfo(skb)->tso_segs);
374 /* Add an IP checksum. */
375 ip_send_check(iph);
377 skb->priority = sk->sk_priority;
379 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
380 dst_output);
382 no_route:
383 IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
384 kfree_skb(skb);
385 return -EHOSTUNREACH;
389 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
391 to->pkt_type = from->pkt_type;
392 to->priority = from->priority;
393 to->protocol = from->protocol;
394 to->security = from->security;
395 dst_release(to->dst);
396 to->dst = dst_clone(from->dst);
397 to->dev = from->dev;
399 /* Copy the flags to each fragment. */
400 IPCB(to)->flags = IPCB(from)->flags;
402 #ifdef CONFIG_NET_SCHED
403 to->tc_index = from->tc_index;
404 #endif
405 #ifdef CONFIG_NETFILTER
406 to->nfmark = from->nfmark;
407 to->nfcache = from->nfcache;
408 /* Connection association is same as pre-frag packet */
409 nf_conntrack_put(to->nfct);
410 to->nfct = from->nfct;
411 nf_conntrack_get(to->nfct);
412 to->nfctinfo = from->nfctinfo;
413 #ifdef CONFIG_BRIDGE_NETFILTER
414 nf_bridge_put(to->nf_bridge);
415 to->nf_bridge = from->nf_bridge;
416 nf_bridge_get(to->nf_bridge);
417 #endif
418 #ifdef CONFIG_NETFILTER_DEBUG
419 to->nf_debug = from->nf_debug;
420 #endif
421 #endif
425 * This IP datagram is too large to be sent in one piece. Break it up into
426 * smaller pieces (each of size equal to IP header plus
427 * a block of the data of the original IP data part) that will yet fit in a
428 * single device frame, and queue such a frame for sending.
431 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
433 struct iphdr *iph;
434 int raw = 0;
435 int ptr;
436 struct net_device *dev;
437 struct sk_buff *skb2;
438 unsigned int mtu, hlen, left, len, ll_rs;
439 int offset;
440 int not_last_frag;
441 struct rtable *rt = (struct rtable*)skb->dst;
442 int err = 0;
444 dev = rt->u.dst.dev;
447 * Point into the IP datagram header.
450 iph = skb->nh.iph;
452 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
453 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
454 htonl(dst_mtu(&rt->u.dst)));
455 kfree_skb(skb);
456 return -EMSGSIZE;
460 * Setup starting values.
463 hlen = iph->ihl * 4;
464 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
466 /* When frag_list is given, use it. First, check its validity:
467 * some transformers could create wrong frag_list or break existing
468 * one, it is not prohibited. In this case fall back to copying.
470 * LATER: this step can be merged to real generation of fragments,
471 * we can switch to copy when see the first bad fragment.
473 if (skb_shinfo(skb)->frag_list) {
474 struct sk_buff *frag;
475 int first_len = skb_pagelen(skb);
477 if (first_len - hlen > mtu ||
478 ((first_len - hlen) & 7) ||
479 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
480 skb_cloned(skb))
481 goto slow_path;
483 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
484 /* Correct geometry. */
485 if (frag->len > mtu ||
486 ((frag->len & 7) && frag->next) ||
487 skb_headroom(frag) < hlen)
488 goto slow_path;
490 /* Partially cloned skb? */
491 if (skb_shared(frag))
492 goto slow_path;
494 BUG_ON(frag->sk);
495 if (skb->sk) {
496 sock_hold(skb->sk);
497 frag->sk = skb->sk;
498 frag->destructor = sock_wfree;
499 skb->truesize -= frag->truesize;
503 /* Everything is OK. Generate! */
505 err = 0;
506 offset = 0;
507 frag = skb_shinfo(skb)->frag_list;
508 skb_shinfo(skb)->frag_list = NULL;
509 skb->data_len = first_len - skb_headlen(skb);
510 skb->len = first_len;
511 iph->tot_len = htons(first_len);
512 iph->frag_off = htons(IP_MF);
513 ip_send_check(iph);
515 for (;;) {
516 /* Prepare header of the next frame,
517 * before previous one went down. */
518 if (frag) {
519 frag->ip_summed = CHECKSUM_NONE;
520 frag->h.raw = frag->data;
521 frag->nh.raw = __skb_push(frag, hlen);
522 memcpy(frag->nh.raw, iph, hlen);
523 iph = frag->nh.iph;
524 iph->tot_len = htons(frag->len);
525 ip_copy_metadata(frag, skb);
526 if (offset == 0)
527 ip_options_fragment(frag);
528 offset += skb->len - hlen;
529 iph->frag_off = htons(offset>>3);
530 if (frag->next != NULL)
531 iph->frag_off |= htons(IP_MF);
532 /* Ready, complete checksum */
533 ip_send_check(iph);
536 err = output(skb);
538 if (err || !frag)
539 break;
541 skb = frag;
542 frag = skb->next;
543 skb->next = NULL;
546 if (err == 0) {
547 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
548 return 0;
551 while (frag) {
552 skb = frag->next;
553 kfree_skb(frag);
554 frag = skb;
556 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
557 return err;
560 slow_path:
561 left = skb->len - hlen; /* Space per frame */
562 ptr = raw + hlen; /* Where to start from */
564 #ifdef CONFIG_BRIDGE_NETFILTER
565 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
566 * we need to make room for the encapsulating header */
567 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, nf_bridge_pad(skb));
568 mtu -= nf_bridge_pad(skb);
569 #else
570 ll_rs = LL_RESERVED_SPACE(rt->u.dst.dev);
571 #endif
573 * Fragment the datagram.
576 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
577 not_last_frag = iph->frag_off & htons(IP_MF);
580 * Keep copying data until we run out.
583 while(left > 0) {
584 len = left;
585 /* IF: it doesn't fit, use 'mtu' - the data space left */
586 if (len > mtu)
587 len = mtu;
588 /* IF: we are not sending upto and including the packet end
589 then align the next start on an eight byte boundary */
590 if (len < left) {
591 len &= ~7;
594 * Allocate buffer.
597 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
598 NETDEBUG(printk(KERN_INFO "IP: frag: no memory for new fragment!\n"));
599 err = -ENOMEM;
600 goto fail;
604 * Set up data on packet
607 ip_copy_metadata(skb2, skb);
608 skb_reserve(skb2, ll_rs);
609 skb_put(skb2, len + hlen);
610 skb2->nh.raw = skb2->data;
611 skb2->h.raw = skb2->data + hlen;
614 * Charge the memory for the fragment to any owner
615 * it might possess
618 if (skb->sk)
619 skb_set_owner_w(skb2, skb->sk);
622 * Copy the packet header into the new buffer.
625 memcpy(skb2->nh.raw, skb->data, hlen);
628 * Copy a block of the IP datagram.
630 if (skb_copy_bits(skb, ptr, skb2->h.raw, len))
631 BUG();
632 left -= len;
635 * Fill in the new header fields.
637 iph = skb2->nh.iph;
638 iph->frag_off = htons((offset >> 3));
640 /* ANK: dirty, but effective trick. Upgrade options only if
641 * the segment to be fragmented was THE FIRST (otherwise,
642 * options are already fixed) and make it ONCE
643 * on the initial skb, so that all the following fragments
644 * will inherit fixed options.
646 if (offset == 0)
647 ip_options_fragment(skb);
650 * Added AC : If we are fragmenting a fragment that's not the
651 * last fragment then keep MF on each bit
653 if (left > 0 || not_last_frag)
654 iph->frag_off |= htons(IP_MF);
655 ptr += len;
656 offset += len;
659 * Put this fragment into the sending queue.
662 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
664 iph->tot_len = htons(len + hlen);
666 ip_send_check(iph);
668 err = output(skb2);
669 if (err)
670 goto fail;
672 kfree_skb(skb);
673 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
674 return err;
676 fail:
677 kfree_skb(skb);
678 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
679 return err;
683 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
685 struct iovec *iov = from;
687 if (skb->ip_summed == CHECKSUM_HW) {
688 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
689 return -EFAULT;
690 } else {
691 unsigned int csum = 0;
692 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
693 return -EFAULT;
694 skb->csum = csum_block_add(skb->csum, csum, odd);
696 return 0;
699 static inline unsigned int
700 csum_page(struct page *page, int offset, int copy)
702 char *kaddr;
703 unsigned int csum;
704 kaddr = kmap(page);
705 csum = csum_partial(kaddr + offset, copy, 0);
706 kunmap(page);
707 return csum;
711 * ip_append_data() and ip_append_page() can make one large IP datagram
712 * from many pieces of data. Each pieces will be holded on the socket
713 * until ip_push_pending_frames() is called. Each piece can be a page
714 * or non-page data.
716 * Not only UDP, other transport protocols - e.g. raw sockets - can use
717 * this interface potentially.
719 * LATER: length must be adjusted by pad at tail, when it is required.
721 int ip_append_data(struct sock *sk,
722 int getfrag(void *from, char *to, int offset, int len,
723 int odd, struct sk_buff *skb),
724 void *from, int length, int transhdrlen,
725 struct ipcm_cookie *ipc, struct rtable *rt,
726 unsigned int flags)
728 struct inet_sock *inet = inet_sk(sk);
729 struct sk_buff *skb;
731 struct ip_options *opt = NULL;
732 int hh_len;
733 int exthdrlen;
734 int mtu;
735 int copy;
736 int err;
737 int offset = 0;
738 unsigned int maxfraglen, fragheaderlen;
739 int csummode = CHECKSUM_NONE;
741 if (flags&MSG_PROBE)
742 return 0;
744 if (skb_queue_empty(&sk->sk_write_queue)) {
746 * setup for corking.
748 opt = ipc->opt;
749 if (opt) {
750 if (inet->cork.opt == NULL) {
751 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
752 if (unlikely(inet->cork.opt == NULL))
753 return -ENOBUFS;
755 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
756 inet->cork.flags |= IPCORK_OPT;
757 inet->cork.addr = ipc->addr;
759 dst_hold(&rt->u.dst);
760 inet->cork.fragsize = mtu = dst_mtu(rt->u.dst.path);
761 inet->cork.rt = rt;
762 inet->cork.length = 0;
763 sk->sk_sndmsg_page = NULL;
764 sk->sk_sndmsg_off = 0;
765 if ((exthdrlen = rt->u.dst.header_len) != 0) {
766 length += exthdrlen;
767 transhdrlen += exthdrlen;
769 } else {
770 rt = inet->cork.rt;
771 if (inet->cork.flags & IPCORK_OPT)
772 opt = inet->cork.opt;
774 transhdrlen = 0;
775 exthdrlen = 0;
776 mtu = inet->cork.fragsize;
778 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
780 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
781 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
783 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
784 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
785 return -EMSGSIZE;
789 * transhdrlen > 0 means that this is the first fragment and we wish
790 * it won't be fragmented in the future.
792 if (transhdrlen &&
793 length + fragheaderlen <= mtu &&
794 rt->u.dst.dev->features&(NETIF_F_IP_CSUM|NETIF_F_NO_CSUM|NETIF_F_HW_CSUM) &&
795 !exthdrlen)
796 csummode = CHECKSUM_HW;
798 inet->cork.length += length;
800 /* So, what's going on in the loop below?
802 * We use calculated fragment length to generate chained skb,
803 * each of segments is IP fragment ready for sending to network after
804 * adding appropriate IP header.
807 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
808 goto alloc_new_skb;
810 while (length > 0) {
811 /* Check if the remaining data fits into current packet. */
812 copy = mtu - skb->len;
813 if (copy < length)
814 copy = maxfraglen - skb->len;
815 if (copy <= 0) {
816 char *data;
817 unsigned int datalen;
818 unsigned int fraglen;
819 unsigned int fraggap;
820 unsigned int alloclen;
821 struct sk_buff *skb_prev;
822 alloc_new_skb:
823 skb_prev = skb;
824 if (skb_prev)
825 fraggap = skb_prev->len - maxfraglen;
826 else
827 fraggap = 0;
830 * If remaining data exceeds the mtu,
831 * we know we need more fragment(s).
833 datalen = length + fraggap;
834 if (datalen > mtu - fragheaderlen)
835 datalen = maxfraglen - fragheaderlen;
836 fraglen = datalen + fragheaderlen;
838 if ((flags & MSG_MORE) &&
839 !(rt->u.dst.dev->features&NETIF_F_SG))
840 alloclen = mtu;
841 else
842 alloclen = datalen + fragheaderlen;
844 /* The last fragment gets additional space at tail.
845 * Note, with MSG_MORE we overallocate on fragments,
846 * because we have no idea what fragment will be
847 * the last.
849 if (datalen == length)
850 alloclen += rt->u.dst.trailer_len;
852 if (transhdrlen) {
853 skb = sock_alloc_send_skb(sk,
854 alloclen + hh_len + 15,
855 (flags & MSG_DONTWAIT), &err);
856 } else {
857 skb = NULL;
858 if (atomic_read(&sk->sk_wmem_alloc) <=
859 2 * sk->sk_sndbuf)
860 skb = sock_wmalloc(sk,
861 alloclen + hh_len + 15, 1,
862 sk->sk_allocation);
863 if (unlikely(skb == NULL))
864 err = -ENOBUFS;
866 if (skb == NULL)
867 goto error;
870 * Fill in the control structures
872 skb->ip_summed = csummode;
873 skb->csum = 0;
874 skb_reserve(skb, hh_len);
877 * Find where to start putting bytes.
879 data = skb_put(skb, fraglen);
880 skb->nh.raw = data + exthdrlen;
881 data += fragheaderlen;
882 skb->h.raw = data + exthdrlen;
884 if (fraggap) {
885 skb->csum = skb_copy_and_csum_bits(
886 skb_prev, maxfraglen,
887 data + transhdrlen, fraggap, 0);
888 skb_prev->csum = csum_sub(skb_prev->csum,
889 skb->csum);
890 data += fraggap;
891 skb_trim(skb_prev, maxfraglen);
894 copy = datalen - transhdrlen - fraggap;
895 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
896 err = -EFAULT;
897 kfree_skb(skb);
898 goto error;
901 offset += copy;
902 length -= datalen - fraggap;
903 transhdrlen = 0;
904 exthdrlen = 0;
905 csummode = CHECKSUM_NONE;
908 * Put the packet on the pending queue.
910 __skb_queue_tail(&sk->sk_write_queue, skb);
911 continue;
914 if (copy > length)
915 copy = length;
917 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
918 unsigned int off;
920 off = skb->len;
921 if (getfrag(from, skb_put(skb, copy),
922 offset, copy, off, skb) < 0) {
923 __skb_trim(skb, off);
924 err = -EFAULT;
925 goto error;
927 } else {
928 int i = skb_shinfo(skb)->nr_frags;
929 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
930 struct page *page = sk->sk_sndmsg_page;
931 int off = sk->sk_sndmsg_off;
932 unsigned int left;
934 if (page && (left = PAGE_SIZE - off) > 0) {
935 if (copy >= left)
936 copy = left;
937 if (page != frag->page) {
938 if (i == MAX_SKB_FRAGS) {
939 err = -EMSGSIZE;
940 goto error;
942 get_page(page);
943 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
944 frag = &skb_shinfo(skb)->frags[i];
946 } else if (i < MAX_SKB_FRAGS) {
947 if (copy > PAGE_SIZE)
948 copy = PAGE_SIZE;
949 page = alloc_pages(sk->sk_allocation, 0);
950 if (page == NULL) {
951 err = -ENOMEM;
952 goto error;
954 sk->sk_sndmsg_page = page;
955 sk->sk_sndmsg_off = 0;
957 skb_fill_page_desc(skb, i, page, 0, 0);
958 frag = &skb_shinfo(skb)->frags[i];
959 skb->truesize += PAGE_SIZE;
960 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
961 } else {
962 err = -EMSGSIZE;
963 goto error;
965 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
966 err = -EFAULT;
967 goto error;
969 sk->sk_sndmsg_off += copy;
970 frag->size += copy;
971 skb->len += copy;
972 skb->data_len += copy;
974 offset += copy;
975 length -= copy;
978 return 0;
980 error:
981 inet->cork.length -= length;
982 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
983 return err;
986 ssize_t ip_append_page(struct sock *sk, struct page *page,
987 int offset, size_t size, int flags)
989 struct inet_sock *inet = inet_sk(sk);
990 struct sk_buff *skb;
991 struct rtable *rt;
992 struct ip_options *opt = NULL;
993 int hh_len;
994 int mtu;
995 int len;
996 int err;
997 unsigned int maxfraglen, fragheaderlen, fraggap;
999 if (inet->hdrincl)
1000 return -EPERM;
1002 if (flags&MSG_PROBE)
1003 return 0;
1005 if (skb_queue_empty(&sk->sk_write_queue))
1006 return -EINVAL;
1008 rt = inet->cork.rt;
1009 if (inet->cork.flags & IPCORK_OPT)
1010 opt = inet->cork.opt;
1012 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1013 return -EOPNOTSUPP;
1015 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1016 mtu = inet->cork.fragsize;
1018 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1019 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1021 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1022 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1023 return -EMSGSIZE;
1026 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1027 return -EINVAL;
1029 inet->cork.length += size;
1031 while (size > 0) {
1032 int i;
1034 /* Check if the remaining data fits into current packet. */
1035 len = mtu - skb->len;
1036 if (len < size)
1037 len = maxfraglen - skb->len;
1038 if (len <= 0) {
1039 struct sk_buff *skb_prev;
1040 char *data;
1041 struct iphdr *iph;
1042 int alloclen;
1044 skb_prev = skb;
1045 if (skb_prev)
1046 fraggap = skb_prev->len - maxfraglen;
1047 else
1048 fraggap = 0;
1050 alloclen = fragheaderlen + hh_len + fraggap + 15;
1051 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1052 if (unlikely(!skb)) {
1053 err = -ENOBUFS;
1054 goto error;
1058 * Fill in the control structures
1060 skb->ip_summed = CHECKSUM_NONE;
1061 skb->csum = 0;
1062 skb_reserve(skb, hh_len);
1065 * Find where to start putting bytes.
1067 data = skb_put(skb, fragheaderlen + fraggap);
1068 skb->nh.iph = iph = (struct iphdr *)data;
1069 data += fragheaderlen;
1070 skb->h.raw = data;
1072 if (fraggap) {
1073 skb->csum = skb_copy_and_csum_bits(
1074 skb_prev, maxfraglen,
1075 data, fraggap, 0);
1076 skb_prev->csum = csum_sub(skb_prev->csum,
1077 skb->csum);
1078 skb_trim(skb_prev, maxfraglen);
1082 * Put the packet on the pending queue.
1084 __skb_queue_tail(&sk->sk_write_queue, skb);
1085 continue;
1088 i = skb_shinfo(skb)->nr_frags;
1089 if (len > size)
1090 len = size;
1091 if (skb_can_coalesce(skb, i, page, offset)) {
1092 skb_shinfo(skb)->frags[i-1].size += len;
1093 } else if (i < MAX_SKB_FRAGS) {
1094 get_page(page);
1095 skb_fill_page_desc(skb, i, page, offset, len);
1096 } else {
1097 err = -EMSGSIZE;
1098 goto error;
1101 if (skb->ip_summed == CHECKSUM_NONE) {
1102 unsigned int csum;
1103 csum = csum_page(page, offset, len);
1104 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1107 skb->len += len;
1108 skb->data_len += len;
1109 offset += len;
1110 size -= len;
1112 return 0;
1114 error:
1115 inet->cork.length -= size;
1116 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1117 return err;
1121 * Combined all pending IP fragments on the socket as one IP datagram
1122 * and push them out.
1124 int ip_push_pending_frames(struct sock *sk)
1126 struct sk_buff *skb, *tmp_skb;
1127 struct sk_buff **tail_skb;
1128 struct inet_sock *inet = inet_sk(sk);
1129 struct ip_options *opt = NULL;
1130 struct rtable *rt = inet->cork.rt;
1131 struct iphdr *iph;
1132 int df = 0;
1133 __u8 ttl;
1134 int err = 0;
1136 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1137 goto out;
1138 tail_skb = &(skb_shinfo(skb)->frag_list);
1140 /* move skb->data to ip header from ext header */
1141 if (skb->data < skb->nh.raw)
1142 __skb_pull(skb, skb->nh.raw - skb->data);
1143 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1144 __skb_pull(tmp_skb, skb->h.raw - skb->nh.raw);
1145 *tail_skb = tmp_skb;
1146 tail_skb = &(tmp_skb->next);
1147 skb->len += tmp_skb->len;
1148 skb->data_len += tmp_skb->len;
1149 skb->truesize += tmp_skb->truesize;
1150 __sock_put(tmp_skb->sk);
1151 tmp_skb->destructor = NULL;
1152 tmp_skb->sk = NULL;
1155 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1156 * to fragment the frame generated here. No matter, what transforms
1157 * how transforms change size of the packet, it will come out.
1159 if (inet->pmtudisc != IP_PMTUDISC_DO)
1160 skb->local_df = 1;
1162 /* DF bit is set when we want to see DF on outgoing frames.
1163 * If local_df is set too, we still allow to fragment this frame
1164 * locally. */
1165 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1166 (skb->len <= dst_mtu(&rt->u.dst) &&
1167 ip_dont_fragment(sk, &rt->u.dst)))
1168 df = htons(IP_DF);
1170 if (inet->cork.flags & IPCORK_OPT)
1171 opt = inet->cork.opt;
1173 if (rt->rt_type == RTN_MULTICAST)
1174 ttl = inet->mc_ttl;
1175 else
1176 ttl = ip_select_ttl(inet, &rt->u.dst);
1178 iph = (struct iphdr *)skb->data;
1179 iph->version = 4;
1180 iph->ihl = 5;
1181 if (opt) {
1182 iph->ihl += opt->optlen>>2;
1183 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1185 iph->tos = inet->tos;
1186 iph->tot_len = htons(skb->len);
1187 iph->frag_off = df;
1188 if (!df) {
1189 __ip_select_ident(iph, &rt->u.dst, 0);
1190 } else {
1191 iph->id = htons(inet->id++);
1193 iph->ttl = ttl;
1194 iph->protocol = sk->sk_protocol;
1195 iph->saddr = rt->rt_src;
1196 iph->daddr = rt->rt_dst;
1197 ip_send_check(iph);
1199 skb->priority = sk->sk_priority;
1200 skb->dst = dst_clone(&rt->u.dst);
1202 /* Netfilter gets whole the not fragmented skb. */
1203 err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL,
1204 skb->dst->dev, dst_output);
1205 if (err) {
1206 if (err > 0)
1207 err = inet->recverr ? net_xmit_errno(err) : 0;
1208 if (err)
1209 goto error;
1212 out:
1213 inet->cork.flags &= ~IPCORK_OPT;
1214 if (inet->cork.opt) {
1215 kfree(inet->cork.opt);
1216 inet->cork.opt = NULL;
1218 if (inet->cork.rt) {
1219 ip_rt_put(inet->cork.rt);
1220 inet->cork.rt = NULL;
1222 return err;
1224 error:
1225 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1226 goto out;
1230 * Throw away all pending data on the socket.
1232 void ip_flush_pending_frames(struct sock *sk)
1234 struct inet_sock *inet = inet_sk(sk);
1235 struct sk_buff *skb;
1237 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1238 kfree_skb(skb);
1240 inet->cork.flags &= ~IPCORK_OPT;
1241 if (inet->cork.opt) {
1242 kfree(inet->cork.opt);
1243 inet->cork.opt = NULL;
1245 if (inet->cork.rt) {
1246 ip_rt_put(inet->cork.rt);
1247 inet->cork.rt = NULL;
1253 * Fetch data from kernel space and fill in checksum if needed.
1255 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1256 int len, int odd, struct sk_buff *skb)
1258 unsigned int csum;
1260 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1261 skb->csum = csum_block_add(skb->csum, csum, odd);
1262 return 0;
1266 * Generic function to send a packet as reply to another packet.
1267 * Used to send TCP resets so far. ICMP should use this function too.
1269 * Should run single threaded per socket because it uses the sock
1270 * structure to pass arguments.
1272 * LATER: switch from ip_build_xmit to ip_append_*
1274 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1275 unsigned int len)
1277 struct inet_sock *inet = inet_sk(sk);
1278 struct {
1279 struct ip_options opt;
1280 char data[40];
1281 } replyopts;
1282 struct ipcm_cookie ipc;
1283 u32 daddr;
1284 struct rtable *rt = (struct rtable*)skb->dst;
1286 if (ip_options_echo(&replyopts.opt, skb))
1287 return;
1289 daddr = ipc.addr = rt->rt_src;
1290 ipc.opt = NULL;
1292 if (replyopts.opt.optlen) {
1293 ipc.opt = &replyopts.opt;
1295 if (ipc.opt->srr)
1296 daddr = replyopts.opt.faddr;
1300 struct flowi fl = { .nl_u = { .ip4_u =
1301 { .daddr = daddr,
1302 .saddr = rt->rt_spec_dst,
1303 .tos = RT_TOS(skb->nh.iph->tos) } },
1304 /* Not quite clean, but right. */
1305 .uli_u = { .ports =
1306 { .sport = skb->h.th->dest,
1307 .dport = skb->h.th->source } },
1308 .proto = sk->sk_protocol };
1309 if (ip_route_output_key(&rt, &fl))
1310 return;
1313 /* And let IP do all the hard work.
1315 This chunk is not reenterable, hence spinlock.
1316 Note that it uses the fact, that this function is called
1317 with locally disabled BH and that sk cannot be already spinlocked.
1319 bh_lock_sock(sk);
1320 inet->tos = skb->nh.iph->tos;
1321 sk->sk_priority = skb->priority;
1322 sk->sk_protocol = skb->nh.iph->protocol;
1323 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1324 &ipc, rt, MSG_DONTWAIT);
1325 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1326 if (arg->csumoffset >= 0)
1327 *((u16 *)skb->h.raw + arg->csumoffset) = csum_fold(csum_add(skb->csum, arg->csum));
1328 skb->ip_summed = CHECKSUM_NONE;
1329 ip_push_pending_frames(sk);
1332 bh_unlock_sock(sk);
1334 ip_rt_put(rt);
1338 * IP protocol layer initialiser
1341 static struct packet_type ip_packet_type = {
1342 .type = __constant_htons(ETH_P_IP),
1343 .func = ip_rcv,
1347 * IP registers the packet type and then calls the subprotocol initialisers
1350 void __init ip_init(void)
1352 dev_add_pack(&ip_packet_type);
1354 ip_rt_init();
1355 inet_initpeers();
1357 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1358 igmp_mc_proc_init();
1359 #endif
1362 EXPORT_SYMBOL(ip_finish_output);
1363 EXPORT_SYMBOL(ip_fragment);
1364 EXPORT_SYMBOL(ip_generic_getfrag);
1365 EXPORT_SYMBOL(ip_queue_xmit);
1366 EXPORT_SYMBOL(ip_send_check);
1368 #ifdef CONFIG_SYSCTL
1369 EXPORT_SYMBOL(sysctl_ip_default_ttl);
1370 #endif