2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
38 * The per-CPU workqueue (if single thread, we always use the first
41 struct cpu_workqueue_struct
{
45 struct list_head worklist
;
46 wait_queue_head_t more_work
;
47 struct work_struct
*current_work
;
49 struct workqueue_struct
*wq
;
50 struct task_struct
*thread
;
52 int run_depth
; /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned
;
56 * The externally visible workqueue abstraction is an array of
59 struct workqueue_struct
{
60 struct cpu_workqueue_struct
*cpu_wq
;
61 struct list_head list
;
64 int freezeable
; /* Freeze threads during suspend */
66 struct lockdep_map lockdep_map
;
70 /* Serializes the accesses to the list of workqueues. */
71 static DEFINE_SPINLOCK(workqueue_lock
);
72 static LIST_HEAD(workqueues
);
74 static int singlethread_cpu __read_mostly
;
75 static cpumask_t cpu_singlethread_map __read_mostly
;
77 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
78 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
79 * which comes in between can't use for_each_online_cpu(). We could
80 * use cpu_possible_map, the cpumask below is more a documentation
83 static cpumask_t cpu_populated_map __read_mostly
;
85 /* If it's single threaded, it isn't in the list of workqueues. */
86 static inline int is_single_threaded(struct workqueue_struct
*wq
)
88 return wq
->singlethread
;
91 static const cpumask_t
*wq_cpu_map(struct workqueue_struct
*wq
)
93 return is_single_threaded(wq
)
94 ? &cpu_singlethread_map
: &cpu_populated_map
;
98 struct cpu_workqueue_struct
*wq_per_cpu(struct workqueue_struct
*wq
, int cpu
)
100 if (unlikely(is_single_threaded(wq
)))
101 cpu
= singlethread_cpu
;
102 return per_cpu_ptr(wq
->cpu_wq
, cpu
);
106 * Set the workqueue on which a work item is to be run
107 * - Must *only* be called if the pending flag is set
109 static inline void set_wq_data(struct work_struct
*work
,
110 struct cpu_workqueue_struct
*cwq
)
114 BUG_ON(!work_pending(work
));
116 new = (unsigned long) cwq
| (1UL << WORK_STRUCT_PENDING
);
117 new |= WORK_STRUCT_FLAG_MASK
& *work_data_bits(work
);
118 atomic_long_set(&work
->data
, new);
122 struct cpu_workqueue_struct
*get_wq_data(struct work_struct
*work
)
124 return (void *) (atomic_long_read(&work
->data
) & WORK_STRUCT_WQ_DATA_MASK
);
127 static void insert_work(struct cpu_workqueue_struct
*cwq
,
128 struct work_struct
*work
, int tail
)
130 set_wq_data(work
, cwq
);
132 * Ensure that we get the right work->data if we see the
133 * result of list_add() below, see try_to_grab_pending().
137 list_add_tail(&work
->entry
, &cwq
->worklist
);
139 list_add(&work
->entry
, &cwq
->worklist
);
140 wake_up(&cwq
->more_work
);
143 static void __queue_work(struct cpu_workqueue_struct
*cwq
,
144 struct work_struct
*work
)
148 spin_lock_irqsave(&cwq
->lock
, flags
);
149 insert_work(cwq
, work
, 1);
150 spin_unlock_irqrestore(&cwq
->lock
, flags
);
154 * queue_work - queue work on a workqueue
155 * @wq: workqueue to use
156 * @work: work to queue
158 * Returns 0 if @work was already on a queue, non-zero otherwise.
160 * We queue the work to the CPU on which it was submitted, but if the CPU dies
161 * it can be processed by another CPU.
163 int queue_work(struct workqueue_struct
*wq
, struct work_struct
*work
)
167 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
))) {
168 BUG_ON(!list_empty(&work
->entry
));
169 __queue_work(wq_per_cpu(wq
, get_cpu()), work
);
175 EXPORT_SYMBOL_GPL(queue_work
);
178 * queue_work_on - queue work on specific cpu
179 * @cpu: CPU number to execute work on
180 * @wq: workqueue to use
181 * @work: work to queue
183 * Returns 0 if @work was already on a queue, non-zero otherwise.
185 * We queue the work to a specific CPU, the caller must ensure it
189 queue_work_on(int cpu
, struct workqueue_struct
*wq
, struct work_struct
*work
)
193 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
))) {
194 BUG_ON(!list_empty(&work
->entry
));
195 __queue_work(wq_per_cpu(wq
, cpu
), work
);
200 EXPORT_SYMBOL_GPL(queue_work_on
);
202 static void delayed_work_timer_fn(unsigned long __data
)
204 struct delayed_work
*dwork
= (struct delayed_work
*)__data
;
205 struct cpu_workqueue_struct
*cwq
= get_wq_data(&dwork
->work
);
206 struct workqueue_struct
*wq
= cwq
->wq
;
208 __queue_work(wq_per_cpu(wq
, smp_processor_id()), &dwork
->work
);
212 * queue_delayed_work - queue work on a workqueue after delay
213 * @wq: workqueue to use
214 * @dwork: delayable work to queue
215 * @delay: number of jiffies to wait before queueing
217 * Returns 0 if @work was already on a queue, non-zero otherwise.
219 int queue_delayed_work(struct workqueue_struct
*wq
,
220 struct delayed_work
*dwork
, unsigned long delay
)
223 return queue_work(wq
, &dwork
->work
);
225 return queue_delayed_work_on(-1, wq
, dwork
, delay
);
227 EXPORT_SYMBOL_GPL(queue_delayed_work
);
230 * queue_delayed_work_on - queue work on specific CPU after delay
231 * @cpu: CPU number to execute work on
232 * @wq: workqueue to use
233 * @dwork: work to queue
234 * @delay: number of jiffies to wait before queueing
236 * Returns 0 if @work was already on a queue, non-zero otherwise.
238 int queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
239 struct delayed_work
*dwork
, unsigned long delay
)
242 struct timer_list
*timer
= &dwork
->timer
;
243 struct work_struct
*work
= &dwork
->work
;
245 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
))) {
246 BUG_ON(timer_pending(timer
));
247 BUG_ON(!list_empty(&work
->entry
));
249 timer_stats_timer_set_start_info(&dwork
->timer
);
251 /* This stores cwq for the moment, for the timer_fn */
252 set_wq_data(work
, wq_per_cpu(wq
, raw_smp_processor_id()));
253 timer
->expires
= jiffies
+ delay
;
254 timer
->data
= (unsigned long)dwork
;
255 timer
->function
= delayed_work_timer_fn
;
257 if (unlikely(cpu
>= 0))
258 add_timer_on(timer
, cpu
);
265 EXPORT_SYMBOL_GPL(queue_delayed_work_on
);
267 static void run_workqueue(struct cpu_workqueue_struct
*cwq
)
269 spin_lock_irq(&cwq
->lock
);
271 if (cwq
->run_depth
> 3) {
272 /* morton gets to eat his hat */
273 printk("%s: recursion depth exceeded: %d\n",
274 __func__
, cwq
->run_depth
);
277 while (!list_empty(&cwq
->worklist
)) {
278 struct work_struct
*work
= list_entry(cwq
->worklist
.next
,
279 struct work_struct
, entry
);
280 work_func_t f
= work
->func
;
281 #ifdef CONFIG_LOCKDEP
283 * It is permissible to free the struct work_struct
284 * from inside the function that is called from it,
285 * this we need to take into account for lockdep too.
286 * To avoid bogus "held lock freed" warnings as well
287 * as problems when looking into work->lockdep_map,
288 * make a copy and use that here.
290 struct lockdep_map lockdep_map
= work
->lockdep_map
;
293 cwq
->current_work
= work
;
294 list_del_init(cwq
->worklist
.next
);
295 spin_unlock_irq(&cwq
->lock
);
297 BUG_ON(get_wq_data(work
) != cwq
);
298 work_clear_pending(work
);
299 lock_acquire(&cwq
->wq
->lockdep_map
, 0, 0, 0, 2, _THIS_IP_
);
300 lock_acquire(&lockdep_map
, 0, 0, 0, 2, _THIS_IP_
);
302 lock_release(&lockdep_map
, 1, _THIS_IP_
);
303 lock_release(&cwq
->wq
->lockdep_map
, 1, _THIS_IP_
);
305 if (unlikely(in_atomic() || lockdep_depth(current
) > 0)) {
306 printk(KERN_ERR
"BUG: workqueue leaked lock or atomic: "
308 current
->comm
, preempt_count(),
309 task_pid_nr(current
));
310 printk(KERN_ERR
" last function: ");
311 print_symbol("%s\n", (unsigned long)f
);
312 debug_show_held_locks(current
);
316 spin_lock_irq(&cwq
->lock
);
317 cwq
->current_work
= NULL
;
320 spin_unlock_irq(&cwq
->lock
);
323 static int worker_thread(void *__cwq
)
325 struct cpu_workqueue_struct
*cwq
= __cwq
;
328 if (cwq
->wq
->freezeable
)
331 set_user_nice(current
, -5);
334 prepare_to_wait(&cwq
->more_work
, &wait
, TASK_INTERRUPTIBLE
);
335 if (!freezing(current
) &&
336 !kthread_should_stop() &&
337 list_empty(&cwq
->worklist
))
339 finish_wait(&cwq
->more_work
, &wait
);
343 if (kthread_should_stop())
353 struct work_struct work
;
354 struct completion done
;
357 static void wq_barrier_func(struct work_struct
*work
)
359 struct wq_barrier
*barr
= container_of(work
, struct wq_barrier
, work
);
360 complete(&barr
->done
);
363 static void insert_wq_barrier(struct cpu_workqueue_struct
*cwq
,
364 struct wq_barrier
*barr
, int tail
)
366 INIT_WORK(&barr
->work
, wq_barrier_func
);
367 __set_bit(WORK_STRUCT_PENDING
, work_data_bits(&barr
->work
));
369 init_completion(&barr
->done
);
371 insert_work(cwq
, &barr
->work
, tail
);
374 static int flush_cpu_workqueue(struct cpu_workqueue_struct
*cwq
)
378 if (cwq
->thread
== current
) {
380 * Probably keventd trying to flush its own queue. So simply run
381 * it by hand rather than deadlocking.
386 struct wq_barrier barr
;
389 spin_lock_irq(&cwq
->lock
);
390 if (!list_empty(&cwq
->worklist
) || cwq
->current_work
!= NULL
) {
391 insert_wq_barrier(cwq
, &barr
, 1);
394 spin_unlock_irq(&cwq
->lock
);
397 wait_for_completion(&barr
.done
);
404 * flush_workqueue - ensure that any scheduled work has run to completion.
405 * @wq: workqueue to flush
407 * Forces execution of the workqueue and blocks until its completion.
408 * This is typically used in driver shutdown handlers.
410 * We sleep until all works which were queued on entry have been handled,
411 * but we are not livelocked by new incoming ones.
413 * This function used to run the workqueues itself. Now we just wait for the
414 * helper threads to do it.
416 void flush_workqueue(struct workqueue_struct
*wq
)
418 const cpumask_t
*cpu_map
= wq_cpu_map(wq
);
422 lock_acquire(&wq
->lockdep_map
, 0, 0, 0, 2, _THIS_IP_
);
423 lock_release(&wq
->lockdep_map
, 1, _THIS_IP_
);
424 for_each_cpu_mask_nr(cpu
, *cpu_map
)
425 flush_cpu_workqueue(per_cpu_ptr(wq
->cpu_wq
, cpu
));
427 EXPORT_SYMBOL_GPL(flush_workqueue
);
430 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
431 * so this work can't be re-armed in any way.
433 static int try_to_grab_pending(struct work_struct
*work
)
435 struct cpu_workqueue_struct
*cwq
;
438 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
)))
442 * The queueing is in progress, or it is already queued. Try to
443 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
446 cwq
= get_wq_data(work
);
450 spin_lock_irq(&cwq
->lock
);
451 if (!list_empty(&work
->entry
)) {
453 * This work is queued, but perhaps we locked the wrong cwq.
454 * In that case we must see the new value after rmb(), see
455 * insert_work()->wmb().
458 if (cwq
== get_wq_data(work
)) {
459 list_del_init(&work
->entry
);
463 spin_unlock_irq(&cwq
->lock
);
468 static void wait_on_cpu_work(struct cpu_workqueue_struct
*cwq
,
469 struct work_struct
*work
)
471 struct wq_barrier barr
;
474 spin_lock_irq(&cwq
->lock
);
475 if (unlikely(cwq
->current_work
== work
)) {
476 insert_wq_barrier(cwq
, &barr
, 0);
479 spin_unlock_irq(&cwq
->lock
);
481 if (unlikely(running
))
482 wait_for_completion(&barr
.done
);
485 static void wait_on_work(struct work_struct
*work
)
487 struct cpu_workqueue_struct
*cwq
;
488 struct workqueue_struct
*wq
;
489 const cpumask_t
*cpu_map
;
494 lock_acquire(&work
->lockdep_map
, 0, 0, 0, 2, _THIS_IP_
);
495 lock_release(&work
->lockdep_map
, 1, _THIS_IP_
);
497 cwq
= get_wq_data(work
);
502 cpu_map
= wq_cpu_map(wq
);
504 for_each_cpu_mask_nr(cpu
, *cpu_map
)
505 wait_on_cpu_work(per_cpu_ptr(wq
->cpu_wq
, cpu
), work
);
508 static int __cancel_work_timer(struct work_struct
*work
,
509 struct timer_list
* timer
)
514 ret
= (timer
&& likely(del_timer(timer
)));
516 ret
= try_to_grab_pending(work
);
518 } while (unlikely(ret
< 0));
520 work_clear_pending(work
);
525 * cancel_work_sync - block until a work_struct's callback has terminated
526 * @work: the work which is to be flushed
528 * Returns true if @work was pending.
530 * cancel_work_sync() will cancel the work if it is queued. If the work's
531 * callback appears to be running, cancel_work_sync() will block until it
534 * It is possible to use this function if the work re-queues itself. It can
535 * cancel the work even if it migrates to another workqueue, however in that
536 * case it only guarantees that work->func() has completed on the last queued
539 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
540 * pending, otherwise it goes into a busy-wait loop until the timer expires.
542 * The caller must ensure that workqueue_struct on which this work was last
543 * queued can't be destroyed before this function returns.
545 int cancel_work_sync(struct work_struct
*work
)
547 return __cancel_work_timer(work
, NULL
);
549 EXPORT_SYMBOL_GPL(cancel_work_sync
);
552 * cancel_delayed_work_sync - reliably kill off a delayed work.
553 * @dwork: the delayed work struct
555 * Returns true if @dwork was pending.
557 * It is possible to use this function if @dwork rearms itself via queue_work()
558 * or queue_delayed_work(). See also the comment for cancel_work_sync().
560 int cancel_delayed_work_sync(struct delayed_work
*dwork
)
562 return __cancel_work_timer(&dwork
->work
, &dwork
->timer
);
564 EXPORT_SYMBOL(cancel_delayed_work_sync
);
566 static struct workqueue_struct
*keventd_wq __read_mostly
;
569 * schedule_work - put work task in global workqueue
570 * @work: job to be done
572 * This puts a job in the kernel-global workqueue.
574 int schedule_work(struct work_struct
*work
)
576 return queue_work(keventd_wq
, work
);
578 EXPORT_SYMBOL(schedule_work
);
581 * schedule_work_on - put work task on a specific cpu
582 * @cpu: cpu to put the work task on
583 * @work: job to be done
585 * This puts a job on a specific cpu
587 int schedule_work_on(int cpu
, struct work_struct
*work
)
589 return queue_work_on(cpu
, keventd_wq
, work
);
591 EXPORT_SYMBOL(schedule_work_on
);
594 * schedule_delayed_work - put work task in global workqueue after delay
595 * @dwork: job to be done
596 * @delay: number of jiffies to wait or 0 for immediate execution
598 * After waiting for a given time this puts a job in the kernel-global
601 int schedule_delayed_work(struct delayed_work
*dwork
,
604 return queue_delayed_work(keventd_wq
, dwork
, delay
);
606 EXPORT_SYMBOL(schedule_delayed_work
);
609 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
611 * @dwork: job to be done
612 * @delay: number of jiffies to wait
614 * After waiting for a given time this puts a job in the kernel-global
615 * workqueue on the specified CPU.
617 int schedule_delayed_work_on(int cpu
,
618 struct delayed_work
*dwork
, unsigned long delay
)
620 return queue_delayed_work_on(cpu
, keventd_wq
, dwork
, delay
);
622 EXPORT_SYMBOL(schedule_delayed_work_on
);
625 * schedule_on_each_cpu - call a function on each online CPU from keventd
626 * @func: the function to call
628 * Returns zero on success.
629 * Returns -ve errno on failure.
631 * schedule_on_each_cpu() is very slow.
633 int schedule_on_each_cpu(work_func_t func
)
636 struct work_struct
*works
;
638 works
= alloc_percpu(struct work_struct
);
643 for_each_online_cpu(cpu
) {
644 struct work_struct
*work
= per_cpu_ptr(works
, cpu
);
646 INIT_WORK(work
, func
);
647 set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
));
648 __queue_work(per_cpu_ptr(keventd_wq
->cpu_wq
, cpu
), work
);
650 flush_workqueue(keventd_wq
);
656 void flush_scheduled_work(void)
658 flush_workqueue(keventd_wq
);
660 EXPORT_SYMBOL(flush_scheduled_work
);
663 * execute_in_process_context - reliably execute the routine with user context
664 * @fn: the function to execute
665 * @ew: guaranteed storage for the execute work structure (must
666 * be available when the work executes)
668 * Executes the function immediately if process context is available,
669 * otherwise schedules the function for delayed execution.
671 * Returns: 0 - function was executed
672 * 1 - function was scheduled for execution
674 int execute_in_process_context(work_func_t fn
, struct execute_work
*ew
)
676 if (!in_interrupt()) {
681 INIT_WORK(&ew
->work
, fn
);
682 schedule_work(&ew
->work
);
686 EXPORT_SYMBOL_GPL(execute_in_process_context
);
690 return keventd_wq
!= NULL
;
693 int current_is_keventd(void)
695 struct cpu_workqueue_struct
*cwq
;
696 int cpu
= raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
701 cwq
= per_cpu_ptr(keventd_wq
->cpu_wq
, cpu
);
702 if (current
== cwq
->thread
)
709 static struct cpu_workqueue_struct
*
710 init_cpu_workqueue(struct workqueue_struct
*wq
, int cpu
)
712 struct cpu_workqueue_struct
*cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
715 spin_lock_init(&cwq
->lock
);
716 INIT_LIST_HEAD(&cwq
->worklist
);
717 init_waitqueue_head(&cwq
->more_work
);
722 static int create_workqueue_thread(struct cpu_workqueue_struct
*cwq
, int cpu
)
724 struct workqueue_struct
*wq
= cwq
->wq
;
725 const char *fmt
= is_single_threaded(wq
) ? "%s" : "%s/%d";
726 struct task_struct
*p
;
728 p
= kthread_create(worker_thread
, cwq
, fmt
, wq
->name
, cpu
);
730 * Nobody can add the work_struct to this cwq,
731 * if (caller is __create_workqueue)
732 * nobody should see this wq
733 * else // caller is CPU_UP_PREPARE
734 * cpu is not on cpu_online_map
735 * so we can abort safely.
745 static void start_workqueue_thread(struct cpu_workqueue_struct
*cwq
, int cpu
)
747 struct task_struct
*p
= cwq
->thread
;
751 kthread_bind(p
, cpu
);
756 struct workqueue_struct
*__create_workqueue_key(const char *name
,
759 struct lock_class_key
*key
,
760 const char *lock_name
)
762 struct workqueue_struct
*wq
;
763 struct cpu_workqueue_struct
*cwq
;
766 wq
= kzalloc(sizeof(*wq
), GFP_KERNEL
);
770 wq
->cpu_wq
= alloc_percpu(struct cpu_workqueue_struct
);
777 lockdep_init_map(&wq
->lockdep_map
, lock_name
, key
, 0);
778 wq
->singlethread
= singlethread
;
779 wq
->freezeable
= freezeable
;
780 INIT_LIST_HEAD(&wq
->list
);
783 cwq
= init_cpu_workqueue(wq
, singlethread_cpu
);
784 err
= create_workqueue_thread(cwq
, singlethread_cpu
);
785 start_workqueue_thread(cwq
, -1);
788 spin_lock(&workqueue_lock
);
789 list_add(&wq
->list
, &workqueues
);
790 spin_unlock(&workqueue_lock
);
792 for_each_possible_cpu(cpu
) {
793 cwq
= init_cpu_workqueue(wq
, cpu
);
794 if (err
|| !cpu_online(cpu
))
796 err
= create_workqueue_thread(cwq
, cpu
);
797 start_workqueue_thread(cwq
, cpu
);
803 destroy_workqueue(wq
);
808 EXPORT_SYMBOL_GPL(__create_workqueue_key
);
810 static void cleanup_workqueue_thread(struct cpu_workqueue_struct
*cwq
)
813 * Our caller is either destroy_workqueue() or CPU_DEAD,
814 * get_online_cpus() protects cwq->thread.
816 if (cwq
->thread
== NULL
)
819 lock_acquire(&cwq
->wq
->lockdep_map
, 0, 0, 0, 2, _THIS_IP_
);
820 lock_release(&cwq
->wq
->lockdep_map
, 1, _THIS_IP_
);
822 flush_cpu_workqueue(cwq
);
824 * If the caller is CPU_DEAD and cwq->worklist was not empty,
825 * a concurrent flush_workqueue() can insert a barrier after us.
826 * However, in that case run_workqueue() won't return and check
827 * kthread_should_stop() until it flushes all work_struct's.
828 * When ->worklist becomes empty it is safe to exit because no
829 * more work_structs can be queued on this cwq: flush_workqueue
830 * checks list_empty(), and a "normal" queue_work() can't use
833 kthread_stop(cwq
->thread
);
838 * destroy_workqueue - safely terminate a workqueue
839 * @wq: target workqueue
841 * Safely destroy a workqueue. All work currently pending will be done first.
843 void destroy_workqueue(struct workqueue_struct
*wq
)
845 const cpumask_t
*cpu_map
= wq_cpu_map(wq
);
849 spin_lock(&workqueue_lock
);
851 spin_unlock(&workqueue_lock
);
853 for_each_cpu_mask_nr(cpu
, *cpu_map
)
854 cleanup_workqueue_thread(per_cpu_ptr(wq
->cpu_wq
, cpu
));
857 free_percpu(wq
->cpu_wq
);
860 EXPORT_SYMBOL_GPL(destroy_workqueue
);
862 static int __devinit
workqueue_cpu_callback(struct notifier_block
*nfb
,
863 unsigned long action
,
866 unsigned int cpu
= (unsigned long)hcpu
;
867 struct cpu_workqueue_struct
*cwq
;
868 struct workqueue_struct
*wq
;
870 action
&= ~CPU_TASKS_FROZEN
;
874 cpu_set(cpu
, cpu_populated_map
);
877 list_for_each_entry(wq
, &workqueues
, list
) {
878 cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
882 if (!create_workqueue_thread(cwq
, cpu
))
884 printk(KERN_ERR
"workqueue [%s] for %i failed\n",
889 start_workqueue_thread(cwq
, cpu
);
892 case CPU_UP_CANCELED
:
893 start_workqueue_thread(cwq
, -1);
895 cleanup_workqueue_thread(cwq
);
901 case CPU_UP_CANCELED
:
903 cpu_clear(cpu
, cpu_populated_map
);
909 void __init
init_workqueues(void)
911 cpu_populated_map
= cpu_online_map
;
912 singlethread_cpu
= first_cpu(cpu_possible_map
);
913 cpu_singlethread_map
= cpumask_of_cpu(singlethread_cpu
);
914 hotcpu_notifier(workqueue_cpu_callback
, 0);
915 keventd_wq
= create_workqueue("events");