bnx2x: Potential race after iSCSI boot
[linux-2.6/mini2440.git] / mm / memcontrol.c
blob4d0ea3ceba6d2e40431f64f7e8d8c0f3c0022165
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
34 #include <linux/fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
39 #include "internal.h"
41 #include <asm/uaccess.h>
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44 #define MEM_CGROUP_RECLAIM_RETRIES 5
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly;
49 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50 #else
51 #define do_swap_account (0)
52 #endif
54 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
57 * Statistics for memory cgroup.
59 enum mem_cgroup_stat_index {
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
65 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
68 MEM_CGROUP_STAT_NSTATS,
71 struct mem_cgroup_stat_cpu {
72 s64 count[MEM_CGROUP_STAT_NSTATS];
73 } ____cacheline_aligned_in_smp;
75 struct mem_cgroup_stat {
76 struct mem_cgroup_stat_cpu cpustat[0];
80 * For accounting under irq disable, no need for increment preempt count.
82 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83 enum mem_cgroup_stat_index idx, int val)
85 stat->count[idx] += val;
88 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89 enum mem_cgroup_stat_index idx)
91 int cpu;
92 s64 ret = 0;
93 for_each_possible_cpu(cpu)
94 ret += stat->cpustat[cpu].count[idx];
95 return ret;
99 * per-zone information in memory controller.
101 struct mem_cgroup_per_zone {
103 * spin_lock to protect the per cgroup LRU
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
108 struct zone_reclaim_stat reclaim_stat;
110 /* Macro for accessing counter */
111 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
113 struct mem_cgroup_per_node {
114 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
117 struct mem_cgroup_lru_info {
118 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
132 struct mem_cgroup {
133 struct cgroup_subsys_state css;
135 * the counter to account for memory usage
137 struct res_counter res;
139 * the counter to account for mem+swap usage.
141 struct res_counter memsw;
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
146 struct mem_cgroup_lru_info info;
149 protect against reclaim related member.
151 spinlock_t reclaim_param_lock;
153 int prev_priority; /* for recording reclaim priority */
156 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by hierarchy_mutex
159 struct mem_cgroup *last_scanned_child;
161 * Should the accounting and control be hierarchical, per subtree?
163 bool use_hierarchy;
164 unsigned long last_oom_jiffies;
165 atomic_t refcnt;
167 unsigned int swappiness;
170 * statistics. This must be placed at the end of memcg.
172 struct mem_cgroup_stat stat;
175 enum charge_type {
176 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED,
178 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
181 NR_CHARGE_TYPE,
184 /* only for here (for easy reading.) */
185 #define PCGF_CACHE (1UL << PCG_CACHE)
186 #define PCGF_USED (1UL << PCG_USED)
187 #define PCGF_LOCK (1UL << PCG_LOCK)
188 static const unsigned long
189 pcg_default_flags[NR_CHARGE_TYPE] = {
190 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191 PCGF_USED | PCGF_LOCK, /* Anon */
192 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193 0, /* FORCE */
196 /* for encoding cft->private value on file */
197 #define _MEM (0)
198 #define _MEMSWAP (1)
199 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201 #define MEMFILE_ATTR(val) ((val) & 0xffff)
203 static void mem_cgroup_get(struct mem_cgroup *mem);
204 static void mem_cgroup_put(struct mem_cgroup *mem);
206 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207 struct page_cgroup *pc,
208 bool charge)
210 int val = (charge)? 1 : -1;
211 struct mem_cgroup_stat *stat = &mem->stat;
212 struct mem_cgroup_stat_cpu *cpustat;
213 int cpu = get_cpu();
215 cpustat = &stat->cpustat[cpu];
216 if (PageCgroupCache(pc))
217 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
218 else
219 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
221 if (charge)
222 __mem_cgroup_stat_add_safe(cpustat,
223 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224 else
225 __mem_cgroup_stat_add_safe(cpustat,
226 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
227 put_cpu();
230 static struct mem_cgroup_per_zone *
231 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
233 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
236 static struct mem_cgroup_per_zone *
237 page_cgroup_zoneinfo(struct page_cgroup *pc)
239 struct mem_cgroup *mem = pc->mem_cgroup;
240 int nid = page_cgroup_nid(pc);
241 int zid = page_cgroup_zid(pc);
243 if (!mem)
244 return NULL;
246 return mem_cgroup_zoneinfo(mem, nid, zid);
249 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
250 enum lru_list idx)
252 int nid, zid;
253 struct mem_cgroup_per_zone *mz;
254 u64 total = 0;
256 for_each_online_node(nid)
257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258 mz = mem_cgroup_zoneinfo(mem, nid, zid);
259 total += MEM_CGROUP_ZSTAT(mz, idx);
261 return total;
264 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
266 return container_of(cgroup_subsys_state(cont,
267 mem_cgroup_subsys_id), struct mem_cgroup,
268 css);
271 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
278 if (unlikely(!p))
279 return NULL;
281 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282 struct mem_cgroup, css);
285 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
287 struct mem_cgroup *mem = NULL;
289 * Because we have no locks, mm->owner's may be being moved to other
290 * cgroup. We use css_tryget() here even if this looks
291 * pessimistic (rather than adding locks here).
293 rcu_read_lock();
294 do {
295 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
296 if (unlikely(!mem))
297 break;
298 } while (!css_tryget(&mem->css));
299 rcu_read_unlock();
300 return mem;
303 static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
305 if (!mem)
306 return true;
307 return css_is_removed(&mem->css);
311 * Following LRU functions are allowed to be used without PCG_LOCK.
312 * Operations are called by routine of global LRU independently from memcg.
313 * What we have to take care of here is validness of pc->mem_cgroup.
315 * Changes to pc->mem_cgroup happens when
316 * 1. charge
317 * 2. moving account
318 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319 * It is added to LRU before charge.
320 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321 * When moving account, the page is not on LRU. It's isolated.
324 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
326 struct page_cgroup *pc;
327 struct mem_cgroup *mem;
328 struct mem_cgroup_per_zone *mz;
330 if (mem_cgroup_disabled())
331 return;
332 pc = lookup_page_cgroup(page);
333 /* can happen while we handle swapcache. */
334 if (list_empty(&pc->lru) || !pc->mem_cgroup)
335 return;
337 * We don't check PCG_USED bit. It's cleared when the "page" is finally
338 * removed from global LRU.
340 mz = page_cgroup_zoneinfo(pc);
341 mem = pc->mem_cgroup;
342 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
343 list_del_init(&pc->lru);
344 return;
347 void mem_cgroup_del_lru(struct page *page)
349 mem_cgroup_del_lru_list(page, page_lru(page));
352 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
354 struct mem_cgroup_per_zone *mz;
355 struct page_cgroup *pc;
357 if (mem_cgroup_disabled())
358 return;
360 pc = lookup_page_cgroup(page);
362 * Used bit is set without atomic ops but after smp_wmb().
363 * For making pc->mem_cgroup visible, insert smp_rmb() here.
365 smp_rmb();
366 /* unused page is not rotated. */
367 if (!PageCgroupUsed(pc))
368 return;
369 mz = page_cgroup_zoneinfo(pc);
370 list_move(&pc->lru, &mz->lists[lru]);
373 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
375 struct page_cgroup *pc;
376 struct mem_cgroup_per_zone *mz;
378 if (mem_cgroup_disabled())
379 return;
380 pc = lookup_page_cgroup(page);
382 * Used bit is set without atomic ops but after smp_wmb().
383 * For making pc->mem_cgroup visible, insert smp_rmb() here.
385 smp_rmb();
386 if (!PageCgroupUsed(pc))
387 return;
389 mz = page_cgroup_zoneinfo(pc);
390 MEM_CGROUP_ZSTAT(mz, lru) += 1;
391 list_add(&pc->lru, &mz->lists[lru]);
395 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
396 * lru because the page may.be reused after it's fully uncharged (because of
397 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
398 * it again. This function is only used to charge SwapCache. It's done under
399 * lock_page and expected that zone->lru_lock is never held.
401 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
403 unsigned long flags;
404 struct zone *zone = page_zone(page);
405 struct page_cgroup *pc = lookup_page_cgroup(page);
407 spin_lock_irqsave(&zone->lru_lock, flags);
409 * Forget old LRU when this page_cgroup is *not* used. This Used bit
410 * is guarded by lock_page() because the page is SwapCache.
412 if (!PageCgroupUsed(pc))
413 mem_cgroup_del_lru_list(page, page_lru(page));
414 spin_unlock_irqrestore(&zone->lru_lock, flags);
417 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
419 unsigned long flags;
420 struct zone *zone = page_zone(page);
421 struct page_cgroup *pc = lookup_page_cgroup(page);
423 spin_lock_irqsave(&zone->lru_lock, flags);
424 /* link when the page is linked to LRU but page_cgroup isn't */
425 if (PageLRU(page) && list_empty(&pc->lru))
426 mem_cgroup_add_lru_list(page, page_lru(page));
427 spin_unlock_irqrestore(&zone->lru_lock, flags);
431 void mem_cgroup_move_lists(struct page *page,
432 enum lru_list from, enum lru_list to)
434 if (mem_cgroup_disabled())
435 return;
436 mem_cgroup_del_lru_list(page, from);
437 mem_cgroup_add_lru_list(page, to);
440 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
442 int ret;
444 task_lock(task);
445 ret = task->mm && mm_match_cgroup(task->mm, mem);
446 task_unlock(task);
447 return ret;
451 * Calculate mapped_ratio under memory controller. This will be used in
452 * vmscan.c for deteremining we have to reclaim mapped pages.
454 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
456 long total, rss;
459 * usage is recorded in bytes. But, here, we assume the number of
460 * physical pages can be represented by "long" on any arch.
462 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
463 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
464 return (int)((rss * 100L) / total);
468 * prev_priority control...this will be used in memory reclaim path.
470 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
472 int prev_priority;
474 spin_lock(&mem->reclaim_param_lock);
475 prev_priority = mem->prev_priority;
476 spin_unlock(&mem->reclaim_param_lock);
478 return prev_priority;
481 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
483 spin_lock(&mem->reclaim_param_lock);
484 if (priority < mem->prev_priority)
485 mem->prev_priority = priority;
486 spin_unlock(&mem->reclaim_param_lock);
489 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
491 spin_lock(&mem->reclaim_param_lock);
492 mem->prev_priority = priority;
493 spin_unlock(&mem->reclaim_param_lock);
496 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
498 unsigned long active;
499 unsigned long inactive;
500 unsigned long gb;
501 unsigned long inactive_ratio;
503 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
504 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
506 gb = (inactive + active) >> (30 - PAGE_SHIFT);
507 if (gb)
508 inactive_ratio = int_sqrt(10 * gb);
509 else
510 inactive_ratio = 1;
512 if (present_pages) {
513 present_pages[0] = inactive;
514 present_pages[1] = active;
517 return inactive_ratio;
520 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
522 unsigned long active;
523 unsigned long inactive;
524 unsigned long present_pages[2];
525 unsigned long inactive_ratio;
527 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
529 inactive = present_pages[0];
530 active = present_pages[1];
532 if (inactive * inactive_ratio < active)
533 return 1;
535 return 0;
538 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
539 struct zone *zone,
540 enum lru_list lru)
542 int nid = zone->zone_pgdat->node_id;
543 int zid = zone_idx(zone);
544 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
546 return MEM_CGROUP_ZSTAT(mz, lru);
549 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
550 struct zone *zone)
552 int nid = zone->zone_pgdat->node_id;
553 int zid = zone_idx(zone);
554 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
556 return &mz->reclaim_stat;
559 struct zone_reclaim_stat *
560 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
562 struct page_cgroup *pc;
563 struct mem_cgroup_per_zone *mz;
565 if (mem_cgroup_disabled())
566 return NULL;
568 pc = lookup_page_cgroup(page);
570 * Used bit is set without atomic ops but after smp_wmb().
571 * For making pc->mem_cgroup visible, insert smp_rmb() here.
573 smp_rmb();
574 if (!PageCgroupUsed(pc))
575 return NULL;
577 mz = page_cgroup_zoneinfo(pc);
578 if (!mz)
579 return NULL;
581 return &mz->reclaim_stat;
584 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
585 struct list_head *dst,
586 unsigned long *scanned, int order,
587 int mode, struct zone *z,
588 struct mem_cgroup *mem_cont,
589 int active, int file)
591 unsigned long nr_taken = 0;
592 struct page *page;
593 unsigned long scan;
594 LIST_HEAD(pc_list);
595 struct list_head *src;
596 struct page_cgroup *pc, *tmp;
597 int nid = z->zone_pgdat->node_id;
598 int zid = zone_idx(z);
599 struct mem_cgroup_per_zone *mz;
600 int lru = LRU_FILE * !!file + !!active;
602 BUG_ON(!mem_cont);
603 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
604 src = &mz->lists[lru];
606 scan = 0;
607 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
608 if (scan >= nr_to_scan)
609 break;
611 page = pc->page;
612 if (unlikely(!PageCgroupUsed(pc)))
613 continue;
614 if (unlikely(!PageLRU(page)))
615 continue;
617 scan++;
618 if (__isolate_lru_page(page, mode, file) == 0) {
619 list_move(&page->lru, dst);
620 nr_taken++;
624 *scanned = scan;
625 return nr_taken;
628 #define mem_cgroup_from_res_counter(counter, member) \
629 container_of(counter, struct mem_cgroup, member)
632 * This routine finds the DFS walk successor. This routine should be
633 * called with hierarchy_mutex held
635 static struct mem_cgroup *
636 __mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
638 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
640 curr_cgroup = curr->css.cgroup;
641 root_cgroup = root_mem->css.cgroup;
643 if (!list_empty(&curr_cgroup->children)) {
645 * Walk down to children
647 cgroup = list_entry(curr_cgroup->children.next,
648 struct cgroup, sibling);
649 curr = mem_cgroup_from_cont(cgroup);
650 goto done;
653 visit_parent:
654 if (curr_cgroup == root_cgroup) {
655 /* caller handles NULL case */
656 curr = NULL;
657 goto done;
661 * Goto next sibling
663 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
664 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
665 sibling);
666 curr = mem_cgroup_from_cont(cgroup);
667 goto done;
671 * Go up to next parent and next parent's sibling if need be
673 curr_cgroup = curr_cgroup->parent;
674 goto visit_parent;
676 done:
677 return curr;
681 * Visit the first child (need not be the first child as per the ordering
682 * of the cgroup list, since we track last_scanned_child) of @mem and use
683 * that to reclaim free pages from.
685 static struct mem_cgroup *
686 mem_cgroup_get_next_node(struct mem_cgroup *root_mem)
688 struct cgroup *cgroup;
689 struct mem_cgroup *orig, *next;
690 bool obsolete;
693 * Scan all children under the mem_cgroup mem
695 mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
697 orig = root_mem->last_scanned_child;
698 obsolete = mem_cgroup_is_obsolete(orig);
700 if (list_empty(&root_mem->css.cgroup->children)) {
702 * root_mem might have children before and last_scanned_child
703 * may point to one of them. We put it later.
705 if (orig)
706 VM_BUG_ON(!obsolete);
707 next = NULL;
708 goto done;
711 if (!orig || obsolete) {
712 cgroup = list_first_entry(&root_mem->css.cgroup->children,
713 struct cgroup, sibling);
714 next = mem_cgroup_from_cont(cgroup);
715 } else
716 next = __mem_cgroup_get_next_node(orig, root_mem);
718 done:
719 if (next)
720 mem_cgroup_get(next);
721 root_mem->last_scanned_child = next;
722 if (orig)
723 mem_cgroup_put(orig);
724 mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
725 return (next) ? next : root_mem;
728 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
730 if (do_swap_account) {
731 if (res_counter_check_under_limit(&mem->res) &&
732 res_counter_check_under_limit(&mem->memsw))
733 return true;
734 } else
735 if (res_counter_check_under_limit(&mem->res))
736 return true;
737 return false;
740 static unsigned int get_swappiness(struct mem_cgroup *memcg)
742 struct cgroup *cgrp = memcg->css.cgroup;
743 unsigned int swappiness;
745 /* root ? */
746 if (cgrp->parent == NULL)
747 return vm_swappiness;
749 spin_lock(&memcg->reclaim_param_lock);
750 swappiness = memcg->swappiness;
751 spin_unlock(&memcg->reclaim_param_lock);
753 return swappiness;
757 * Dance down the hierarchy if needed to reclaim memory. We remember the
758 * last child we reclaimed from, so that we don't end up penalizing
759 * one child extensively based on its position in the children list.
761 * root_mem is the original ancestor that we've been reclaim from.
763 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
764 gfp_t gfp_mask, bool noswap)
766 struct mem_cgroup *next_mem;
767 int ret = 0;
770 * Reclaim unconditionally and don't check for return value.
771 * We need to reclaim in the current group and down the tree.
772 * One might think about checking for children before reclaiming,
773 * but there might be left over accounting, even after children
774 * have left.
776 ret += try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
777 get_swappiness(root_mem));
778 if (mem_cgroup_check_under_limit(root_mem))
779 return 1; /* indicate reclaim has succeeded */
780 if (!root_mem->use_hierarchy)
781 return ret;
783 next_mem = mem_cgroup_get_next_node(root_mem);
785 while (next_mem != root_mem) {
786 if (mem_cgroup_is_obsolete(next_mem)) {
787 next_mem = mem_cgroup_get_next_node(root_mem);
788 continue;
790 ret += try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
791 get_swappiness(next_mem));
792 if (mem_cgroup_check_under_limit(root_mem))
793 return 1; /* indicate reclaim has succeeded */
794 next_mem = mem_cgroup_get_next_node(root_mem);
796 return ret;
799 bool mem_cgroup_oom_called(struct task_struct *task)
801 bool ret = false;
802 struct mem_cgroup *mem;
803 struct mm_struct *mm;
805 rcu_read_lock();
806 mm = task->mm;
807 if (!mm)
808 mm = &init_mm;
809 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
810 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
811 ret = true;
812 rcu_read_unlock();
813 return ret;
816 * Unlike exported interface, "oom" parameter is added. if oom==true,
817 * oom-killer can be invoked.
819 static int __mem_cgroup_try_charge(struct mm_struct *mm,
820 gfp_t gfp_mask, struct mem_cgroup **memcg,
821 bool oom)
823 struct mem_cgroup *mem, *mem_over_limit;
824 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
825 struct res_counter *fail_res;
827 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
828 /* Don't account this! */
829 *memcg = NULL;
830 return 0;
834 * We always charge the cgroup the mm_struct belongs to.
835 * The mm_struct's mem_cgroup changes on task migration if the
836 * thread group leader migrates. It's possible that mm is not
837 * set, if so charge the init_mm (happens for pagecache usage).
839 mem = *memcg;
840 if (likely(!mem)) {
841 mem = try_get_mem_cgroup_from_mm(mm);
842 *memcg = mem;
843 } else {
844 css_get(&mem->css);
846 if (unlikely(!mem))
847 return 0;
849 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
851 while (1) {
852 int ret;
853 bool noswap = false;
855 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
856 if (likely(!ret)) {
857 if (!do_swap_account)
858 break;
859 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
860 &fail_res);
861 if (likely(!ret))
862 break;
863 /* mem+swap counter fails */
864 res_counter_uncharge(&mem->res, PAGE_SIZE);
865 noswap = true;
866 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
867 memsw);
868 } else
869 /* mem counter fails */
870 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
871 res);
873 if (!(gfp_mask & __GFP_WAIT))
874 goto nomem;
876 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
877 noswap);
878 if (ret)
879 continue;
882 * try_to_free_mem_cgroup_pages() might not give us a full
883 * picture of reclaim. Some pages are reclaimed and might be
884 * moved to swap cache or just unmapped from the cgroup.
885 * Check the limit again to see if the reclaim reduced the
886 * current usage of the cgroup before giving up
889 if (mem_cgroup_check_under_limit(mem_over_limit))
890 continue;
892 if (!nr_retries--) {
893 if (oom) {
894 mutex_lock(&memcg_tasklist);
895 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
896 mutex_unlock(&memcg_tasklist);
897 mem_over_limit->last_oom_jiffies = jiffies;
899 goto nomem;
902 return 0;
903 nomem:
904 css_put(&mem->css);
905 return -ENOMEM;
908 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
910 struct mem_cgroup *mem;
911 swp_entry_t ent;
913 if (!PageSwapCache(page))
914 return NULL;
916 ent.val = page_private(page);
917 mem = lookup_swap_cgroup(ent);
918 if (!mem)
919 return NULL;
920 if (!css_tryget(&mem->css))
921 return NULL;
922 return mem;
926 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
927 * USED state. If already USED, uncharge and return.
930 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
931 struct page_cgroup *pc,
932 enum charge_type ctype)
934 /* try_charge() can return NULL to *memcg, taking care of it. */
935 if (!mem)
936 return;
938 lock_page_cgroup(pc);
939 if (unlikely(PageCgroupUsed(pc))) {
940 unlock_page_cgroup(pc);
941 res_counter_uncharge(&mem->res, PAGE_SIZE);
942 if (do_swap_account)
943 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
944 css_put(&mem->css);
945 return;
947 pc->mem_cgroup = mem;
948 smp_wmb();
949 pc->flags = pcg_default_flags[ctype];
951 mem_cgroup_charge_statistics(mem, pc, true);
953 unlock_page_cgroup(pc);
957 * mem_cgroup_move_account - move account of the page
958 * @pc: page_cgroup of the page.
959 * @from: mem_cgroup which the page is moved from.
960 * @to: mem_cgroup which the page is moved to. @from != @to.
962 * The caller must confirm following.
963 * - page is not on LRU (isolate_page() is useful.)
965 * returns 0 at success,
966 * returns -EBUSY when lock is busy or "pc" is unstable.
968 * This function does "uncharge" from old cgroup but doesn't do "charge" to
969 * new cgroup. It should be done by a caller.
972 static int mem_cgroup_move_account(struct page_cgroup *pc,
973 struct mem_cgroup *from, struct mem_cgroup *to)
975 struct mem_cgroup_per_zone *from_mz, *to_mz;
976 int nid, zid;
977 int ret = -EBUSY;
979 VM_BUG_ON(from == to);
980 VM_BUG_ON(PageLRU(pc->page));
982 nid = page_cgroup_nid(pc);
983 zid = page_cgroup_zid(pc);
984 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
985 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
987 if (!trylock_page_cgroup(pc))
988 return ret;
990 if (!PageCgroupUsed(pc))
991 goto out;
993 if (pc->mem_cgroup != from)
994 goto out;
996 res_counter_uncharge(&from->res, PAGE_SIZE);
997 mem_cgroup_charge_statistics(from, pc, false);
998 if (do_swap_account)
999 res_counter_uncharge(&from->memsw, PAGE_SIZE);
1000 css_put(&from->css);
1002 css_get(&to->css);
1003 pc->mem_cgroup = to;
1004 mem_cgroup_charge_statistics(to, pc, true);
1005 ret = 0;
1006 out:
1007 unlock_page_cgroup(pc);
1008 return ret;
1012 * move charges to its parent.
1015 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1016 struct mem_cgroup *child,
1017 gfp_t gfp_mask)
1019 struct page *page = pc->page;
1020 struct cgroup *cg = child->css.cgroup;
1021 struct cgroup *pcg = cg->parent;
1022 struct mem_cgroup *parent;
1023 int ret;
1025 /* Is ROOT ? */
1026 if (!pcg)
1027 return -EINVAL;
1030 parent = mem_cgroup_from_cont(pcg);
1033 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1034 if (ret || !parent)
1035 return ret;
1037 if (!get_page_unless_zero(page)) {
1038 ret = -EBUSY;
1039 goto uncharge;
1042 ret = isolate_lru_page(page);
1044 if (ret)
1045 goto cancel;
1047 ret = mem_cgroup_move_account(pc, child, parent);
1049 putback_lru_page(page);
1050 if (!ret) {
1051 put_page(page);
1052 /* drop extra refcnt by try_charge() */
1053 css_put(&parent->css);
1054 return 0;
1057 cancel:
1058 put_page(page);
1059 uncharge:
1060 /* drop extra refcnt by try_charge() */
1061 css_put(&parent->css);
1062 /* uncharge if move fails */
1063 res_counter_uncharge(&parent->res, PAGE_SIZE);
1064 if (do_swap_account)
1065 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1066 return ret;
1070 * Charge the memory controller for page usage.
1071 * Return
1072 * 0 if the charge was successful
1073 * < 0 if the cgroup is over its limit
1075 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1076 gfp_t gfp_mask, enum charge_type ctype,
1077 struct mem_cgroup *memcg)
1079 struct mem_cgroup *mem;
1080 struct page_cgroup *pc;
1081 int ret;
1083 pc = lookup_page_cgroup(page);
1084 /* can happen at boot */
1085 if (unlikely(!pc))
1086 return 0;
1087 prefetchw(pc);
1089 mem = memcg;
1090 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1091 if (ret || !mem)
1092 return ret;
1094 __mem_cgroup_commit_charge(mem, pc, ctype);
1095 return 0;
1098 int mem_cgroup_newpage_charge(struct page *page,
1099 struct mm_struct *mm, gfp_t gfp_mask)
1101 if (mem_cgroup_disabled())
1102 return 0;
1103 if (PageCompound(page))
1104 return 0;
1106 * If already mapped, we don't have to account.
1107 * If page cache, page->mapping has address_space.
1108 * But page->mapping may have out-of-use anon_vma pointer,
1109 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1110 * is NULL.
1112 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1113 return 0;
1114 if (unlikely(!mm))
1115 mm = &init_mm;
1116 return mem_cgroup_charge_common(page, mm, gfp_mask,
1117 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1120 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1121 gfp_t gfp_mask)
1123 struct mem_cgroup *mem = NULL;
1124 int ret;
1126 if (mem_cgroup_disabled())
1127 return 0;
1128 if (PageCompound(page))
1129 return 0;
1131 * Corner case handling. This is called from add_to_page_cache()
1132 * in usual. But some FS (shmem) precharges this page before calling it
1133 * and call add_to_page_cache() with GFP_NOWAIT.
1135 * For GFP_NOWAIT case, the page may be pre-charged before calling
1136 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1137 * charge twice. (It works but has to pay a bit larger cost.)
1138 * And when the page is SwapCache, it should take swap information
1139 * into account. This is under lock_page() now.
1141 if (!(gfp_mask & __GFP_WAIT)) {
1142 struct page_cgroup *pc;
1145 pc = lookup_page_cgroup(page);
1146 if (!pc)
1147 return 0;
1148 lock_page_cgroup(pc);
1149 if (PageCgroupUsed(pc)) {
1150 unlock_page_cgroup(pc);
1151 return 0;
1153 unlock_page_cgroup(pc);
1156 if (do_swap_account && PageSwapCache(page)) {
1157 mem = try_get_mem_cgroup_from_swapcache(page);
1158 if (mem)
1159 mm = NULL;
1160 else
1161 mem = NULL;
1162 /* SwapCache may be still linked to LRU now. */
1163 mem_cgroup_lru_del_before_commit_swapcache(page);
1166 if (unlikely(!mm && !mem))
1167 mm = &init_mm;
1169 if (page_is_file_cache(page))
1170 return mem_cgroup_charge_common(page, mm, gfp_mask,
1171 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1173 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1174 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1175 if (mem)
1176 css_put(&mem->css);
1177 if (PageSwapCache(page))
1178 mem_cgroup_lru_add_after_commit_swapcache(page);
1180 if (do_swap_account && !ret && PageSwapCache(page)) {
1181 swp_entry_t ent = {.val = page_private(page)};
1182 /* avoid double counting */
1183 mem = swap_cgroup_record(ent, NULL);
1184 if (mem) {
1185 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1186 mem_cgroup_put(mem);
1189 return ret;
1193 * While swap-in, try_charge -> commit or cancel, the page is locked.
1194 * And when try_charge() successfully returns, one refcnt to memcg without
1195 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1196 * "commit()" or removed by "cancel()"
1198 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1199 struct page *page,
1200 gfp_t mask, struct mem_cgroup **ptr)
1202 struct mem_cgroup *mem;
1203 int ret;
1205 if (mem_cgroup_disabled())
1206 return 0;
1208 if (!do_swap_account)
1209 goto charge_cur_mm;
1211 * A racing thread's fault, or swapoff, may have already updated
1212 * the pte, and even removed page from swap cache: return success
1213 * to go on to do_swap_page()'s pte_same() test, which should fail.
1215 if (!PageSwapCache(page))
1216 return 0;
1217 mem = try_get_mem_cgroup_from_swapcache(page);
1218 if (!mem)
1219 goto charge_cur_mm;
1220 *ptr = mem;
1221 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1222 /* drop extra refcnt from tryget */
1223 css_put(&mem->css);
1224 return ret;
1225 charge_cur_mm:
1226 if (unlikely(!mm))
1227 mm = &init_mm;
1228 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1231 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1233 struct page_cgroup *pc;
1235 if (mem_cgroup_disabled())
1236 return;
1237 if (!ptr)
1238 return;
1239 pc = lookup_page_cgroup(page);
1240 mem_cgroup_lru_del_before_commit_swapcache(page);
1241 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1242 mem_cgroup_lru_add_after_commit_swapcache(page);
1244 * Now swap is on-memory. This means this page may be
1245 * counted both as mem and swap....double count.
1246 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1247 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1248 * may call delete_from_swap_cache() before reach here.
1250 if (do_swap_account && PageSwapCache(page)) {
1251 swp_entry_t ent = {.val = page_private(page)};
1252 struct mem_cgroup *memcg;
1253 memcg = swap_cgroup_record(ent, NULL);
1254 if (memcg) {
1255 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1256 mem_cgroup_put(memcg);
1260 /* add this page(page_cgroup) to the LRU we want. */
1264 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1266 if (mem_cgroup_disabled())
1267 return;
1268 if (!mem)
1269 return;
1270 res_counter_uncharge(&mem->res, PAGE_SIZE);
1271 if (do_swap_account)
1272 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1273 css_put(&mem->css);
1278 * uncharge if !page_mapped(page)
1280 static struct mem_cgroup *
1281 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1283 struct page_cgroup *pc;
1284 struct mem_cgroup *mem = NULL;
1285 struct mem_cgroup_per_zone *mz;
1287 if (mem_cgroup_disabled())
1288 return NULL;
1290 if (PageSwapCache(page))
1291 return NULL;
1294 * Check if our page_cgroup is valid
1296 pc = lookup_page_cgroup(page);
1297 if (unlikely(!pc || !PageCgroupUsed(pc)))
1298 return NULL;
1300 lock_page_cgroup(pc);
1302 mem = pc->mem_cgroup;
1304 if (!PageCgroupUsed(pc))
1305 goto unlock_out;
1307 switch (ctype) {
1308 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1309 if (page_mapped(page))
1310 goto unlock_out;
1311 break;
1312 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1313 if (!PageAnon(page)) { /* Shared memory */
1314 if (page->mapping && !page_is_file_cache(page))
1315 goto unlock_out;
1316 } else if (page_mapped(page)) /* Anon */
1317 goto unlock_out;
1318 break;
1319 default:
1320 break;
1323 res_counter_uncharge(&mem->res, PAGE_SIZE);
1324 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1325 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1327 mem_cgroup_charge_statistics(mem, pc, false);
1328 ClearPageCgroupUsed(pc);
1330 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1331 * freed from LRU. This is safe because uncharged page is expected not
1332 * to be reused (freed soon). Exception is SwapCache, it's handled by
1333 * special functions.
1336 mz = page_cgroup_zoneinfo(pc);
1337 unlock_page_cgroup(pc);
1339 /* at swapout, this memcg will be accessed to record to swap */
1340 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1341 css_put(&mem->css);
1343 return mem;
1345 unlock_out:
1346 unlock_page_cgroup(pc);
1347 return NULL;
1350 void mem_cgroup_uncharge_page(struct page *page)
1352 /* early check. */
1353 if (page_mapped(page))
1354 return;
1355 if (page->mapping && !PageAnon(page))
1356 return;
1357 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1360 void mem_cgroup_uncharge_cache_page(struct page *page)
1362 VM_BUG_ON(page_mapped(page));
1363 VM_BUG_ON(page->mapping);
1364 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1368 * called from __delete_from_swap_cache() and drop "page" account.
1369 * memcg information is recorded to swap_cgroup of "ent"
1371 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1373 struct mem_cgroup *memcg;
1375 memcg = __mem_cgroup_uncharge_common(page,
1376 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1377 /* record memcg information */
1378 if (do_swap_account && memcg) {
1379 swap_cgroup_record(ent, memcg);
1380 mem_cgroup_get(memcg);
1382 if (memcg)
1383 css_put(&memcg->css);
1386 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1388 * called from swap_entry_free(). remove record in swap_cgroup and
1389 * uncharge "memsw" account.
1391 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1393 struct mem_cgroup *memcg;
1395 if (!do_swap_account)
1396 return;
1398 memcg = swap_cgroup_record(ent, NULL);
1399 if (memcg) {
1400 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1401 mem_cgroup_put(memcg);
1404 #endif
1407 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1408 * page belongs to.
1410 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1412 struct page_cgroup *pc;
1413 struct mem_cgroup *mem = NULL;
1414 int ret = 0;
1416 if (mem_cgroup_disabled())
1417 return 0;
1419 pc = lookup_page_cgroup(page);
1420 lock_page_cgroup(pc);
1421 if (PageCgroupUsed(pc)) {
1422 mem = pc->mem_cgroup;
1423 css_get(&mem->css);
1425 unlock_page_cgroup(pc);
1427 if (mem) {
1428 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1429 css_put(&mem->css);
1431 *ptr = mem;
1432 return ret;
1435 /* remove redundant charge if migration failed*/
1436 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1437 struct page *oldpage, struct page *newpage)
1439 struct page *target, *unused;
1440 struct page_cgroup *pc;
1441 enum charge_type ctype;
1443 if (!mem)
1444 return;
1446 /* at migration success, oldpage->mapping is NULL. */
1447 if (oldpage->mapping) {
1448 target = oldpage;
1449 unused = NULL;
1450 } else {
1451 target = newpage;
1452 unused = oldpage;
1455 if (PageAnon(target))
1456 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1457 else if (page_is_file_cache(target))
1458 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1459 else
1460 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1462 /* unused page is not on radix-tree now. */
1463 if (unused)
1464 __mem_cgroup_uncharge_common(unused, ctype);
1466 pc = lookup_page_cgroup(target);
1468 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1469 * So, double-counting is effectively avoided.
1471 __mem_cgroup_commit_charge(mem, pc, ctype);
1474 * Both of oldpage and newpage are still under lock_page().
1475 * Then, we don't have to care about race in radix-tree.
1476 * But we have to be careful that this page is unmapped or not.
1478 * There is a case for !page_mapped(). At the start of
1479 * migration, oldpage was mapped. But now, it's zapped.
1480 * But we know *target* page is not freed/reused under us.
1481 * mem_cgroup_uncharge_page() does all necessary checks.
1483 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1484 mem_cgroup_uncharge_page(target);
1488 * A call to try to shrink memory usage under specified resource controller.
1489 * This is typically used for page reclaiming for shmem for reducing side
1490 * effect of page allocation from shmem, which is used by some mem_cgroup.
1492 int mem_cgroup_shrink_usage(struct page *page,
1493 struct mm_struct *mm,
1494 gfp_t gfp_mask)
1496 struct mem_cgroup *mem = NULL;
1497 int progress = 0;
1498 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1500 if (mem_cgroup_disabled())
1501 return 0;
1502 if (page)
1503 mem = try_get_mem_cgroup_from_swapcache(page);
1504 if (!mem && mm)
1505 mem = try_get_mem_cgroup_from_mm(mm);
1506 if (unlikely(!mem))
1507 return 0;
1509 do {
1510 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1511 progress += mem_cgroup_check_under_limit(mem);
1512 } while (!progress && --retry);
1514 css_put(&mem->css);
1515 if (!retry)
1516 return -ENOMEM;
1517 return 0;
1520 static DEFINE_MUTEX(set_limit_mutex);
1522 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1523 unsigned long long val)
1526 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1527 int progress;
1528 u64 memswlimit;
1529 int ret = 0;
1531 while (retry_count) {
1532 if (signal_pending(current)) {
1533 ret = -EINTR;
1534 break;
1537 * Rather than hide all in some function, I do this in
1538 * open coded manner. You see what this really does.
1539 * We have to guarantee mem->res.limit < mem->memsw.limit.
1541 mutex_lock(&set_limit_mutex);
1542 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1543 if (memswlimit < val) {
1544 ret = -EINVAL;
1545 mutex_unlock(&set_limit_mutex);
1546 break;
1548 ret = res_counter_set_limit(&memcg->res, val);
1549 mutex_unlock(&set_limit_mutex);
1551 if (!ret)
1552 break;
1554 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1555 false);
1556 if (!progress) retry_count--;
1559 return ret;
1562 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1563 unsigned long long val)
1565 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1566 u64 memlimit, oldusage, curusage;
1567 int ret;
1569 if (!do_swap_account)
1570 return -EINVAL;
1572 while (retry_count) {
1573 if (signal_pending(current)) {
1574 ret = -EINTR;
1575 break;
1578 * Rather than hide all in some function, I do this in
1579 * open coded manner. You see what this really does.
1580 * We have to guarantee mem->res.limit < mem->memsw.limit.
1582 mutex_lock(&set_limit_mutex);
1583 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1584 if (memlimit > val) {
1585 ret = -EINVAL;
1586 mutex_unlock(&set_limit_mutex);
1587 break;
1589 ret = res_counter_set_limit(&memcg->memsw, val);
1590 mutex_unlock(&set_limit_mutex);
1592 if (!ret)
1593 break;
1595 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1596 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1597 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1598 if (curusage >= oldusage)
1599 retry_count--;
1601 return ret;
1605 * This routine traverse page_cgroup in given list and drop them all.
1606 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1608 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1609 int node, int zid, enum lru_list lru)
1611 struct zone *zone;
1612 struct mem_cgroup_per_zone *mz;
1613 struct page_cgroup *pc, *busy;
1614 unsigned long flags, loop;
1615 struct list_head *list;
1616 int ret = 0;
1618 zone = &NODE_DATA(node)->node_zones[zid];
1619 mz = mem_cgroup_zoneinfo(mem, node, zid);
1620 list = &mz->lists[lru];
1622 loop = MEM_CGROUP_ZSTAT(mz, lru);
1623 /* give some margin against EBUSY etc...*/
1624 loop += 256;
1625 busy = NULL;
1626 while (loop--) {
1627 ret = 0;
1628 spin_lock_irqsave(&zone->lru_lock, flags);
1629 if (list_empty(list)) {
1630 spin_unlock_irqrestore(&zone->lru_lock, flags);
1631 break;
1633 pc = list_entry(list->prev, struct page_cgroup, lru);
1634 if (busy == pc) {
1635 list_move(&pc->lru, list);
1636 busy = 0;
1637 spin_unlock_irqrestore(&zone->lru_lock, flags);
1638 continue;
1640 spin_unlock_irqrestore(&zone->lru_lock, flags);
1642 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1643 if (ret == -ENOMEM)
1644 break;
1646 if (ret == -EBUSY || ret == -EINVAL) {
1647 /* found lock contention or "pc" is obsolete. */
1648 busy = pc;
1649 cond_resched();
1650 } else
1651 busy = NULL;
1654 if (!ret && !list_empty(list))
1655 return -EBUSY;
1656 return ret;
1660 * make mem_cgroup's charge to be 0 if there is no task.
1661 * This enables deleting this mem_cgroup.
1663 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1665 int ret;
1666 int node, zid, shrink;
1667 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1668 struct cgroup *cgrp = mem->css.cgroup;
1670 css_get(&mem->css);
1672 shrink = 0;
1673 /* should free all ? */
1674 if (free_all)
1675 goto try_to_free;
1676 move_account:
1677 while (mem->res.usage > 0) {
1678 ret = -EBUSY;
1679 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1680 goto out;
1681 ret = -EINTR;
1682 if (signal_pending(current))
1683 goto out;
1684 /* This is for making all *used* pages to be on LRU. */
1685 lru_add_drain_all();
1686 ret = 0;
1687 for_each_node_state(node, N_POSSIBLE) {
1688 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1689 enum lru_list l;
1690 for_each_lru(l) {
1691 ret = mem_cgroup_force_empty_list(mem,
1692 node, zid, l);
1693 if (ret)
1694 break;
1697 if (ret)
1698 break;
1700 /* it seems parent cgroup doesn't have enough mem */
1701 if (ret == -ENOMEM)
1702 goto try_to_free;
1703 cond_resched();
1705 ret = 0;
1706 out:
1707 css_put(&mem->css);
1708 return ret;
1710 try_to_free:
1711 /* returns EBUSY if there is a task or if we come here twice. */
1712 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1713 ret = -EBUSY;
1714 goto out;
1716 /* we call try-to-free pages for make this cgroup empty */
1717 lru_add_drain_all();
1718 /* try to free all pages in this cgroup */
1719 shrink = 1;
1720 while (nr_retries && mem->res.usage > 0) {
1721 int progress;
1723 if (signal_pending(current)) {
1724 ret = -EINTR;
1725 goto out;
1727 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1728 false, get_swappiness(mem));
1729 if (!progress) {
1730 nr_retries--;
1731 /* maybe some writeback is necessary */
1732 congestion_wait(WRITE, HZ/10);
1736 lru_add_drain();
1737 /* try move_account...there may be some *locked* pages. */
1738 if (mem->res.usage)
1739 goto move_account;
1740 ret = 0;
1741 goto out;
1744 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1746 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1750 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1752 return mem_cgroup_from_cont(cont)->use_hierarchy;
1755 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1756 u64 val)
1758 int retval = 0;
1759 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1760 struct cgroup *parent = cont->parent;
1761 struct mem_cgroup *parent_mem = NULL;
1763 if (parent)
1764 parent_mem = mem_cgroup_from_cont(parent);
1766 cgroup_lock();
1768 * If parent's use_hiearchy is set, we can't make any modifications
1769 * in the child subtrees. If it is unset, then the change can
1770 * occur, provided the current cgroup has no children.
1772 * For the root cgroup, parent_mem is NULL, we allow value to be
1773 * set if there are no children.
1775 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1776 (val == 1 || val == 0)) {
1777 if (list_empty(&cont->children))
1778 mem->use_hierarchy = val;
1779 else
1780 retval = -EBUSY;
1781 } else
1782 retval = -EINVAL;
1783 cgroup_unlock();
1785 return retval;
1788 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1790 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1791 u64 val = 0;
1792 int type, name;
1794 type = MEMFILE_TYPE(cft->private);
1795 name = MEMFILE_ATTR(cft->private);
1796 switch (type) {
1797 case _MEM:
1798 val = res_counter_read_u64(&mem->res, name);
1799 break;
1800 case _MEMSWAP:
1801 if (do_swap_account)
1802 val = res_counter_read_u64(&mem->memsw, name);
1803 break;
1804 default:
1805 BUG();
1806 break;
1808 return val;
1811 * The user of this function is...
1812 * RES_LIMIT.
1814 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1815 const char *buffer)
1817 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1818 int type, name;
1819 unsigned long long val;
1820 int ret;
1822 type = MEMFILE_TYPE(cft->private);
1823 name = MEMFILE_ATTR(cft->private);
1824 switch (name) {
1825 case RES_LIMIT:
1826 /* This function does all necessary parse...reuse it */
1827 ret = res_counter_memparse_write_strategy(buffer, &val);
1828 if (ret)
1829 break;
1830 if (type == _MEM)
1831 ret = mem_cgroup_resize_limit(memcg, val);
1832 else
1833 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1834 break;
1835 default:
1836 ret = -EINVAL; /* should be BUG() ? */
1837 break;
1839 return ret;
1842 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1843 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1845 struct cgroup *cgroup;
1846 unsigned long long min_limit, min_memsw_limit, tmp;
1848 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1849 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1850 cgroup = memcg->css.cgroup;
1851 if (!memcg->use_hierarchy)
1852 goto out;
1854 while (cgroup->parent) {
1855 cgroup = cgroup->parent;
1856 memcg = mem_cgroup_from_cont(cgroup);
1857 if (!memcg->use_hierarchy)
1858 break;
1859 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1860 min_limit = min(min_limit, tmp);
1861 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1862 min_memsw_limit = min(min_memsw_limit, tmp);
1864 out:
1865 *mem_limit = min_limit;
1866 *memsw_limit = min_memsw_limit;
1867 return;
1870 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1872 struct mem_cgroup *mem;
1873 int type, name;
1875 mem = mem_cgroup_from_cont(cont);
1876 type = MEMFILE_TYPE(event);
1877 name = MEMFILE_ATTR(event);
1878 switch (name) {
1879 case RES_MAX_USAGE:
1880 if (type == _MEM)
1881 res_counter_reset_max(&mem->res);
1882 else
1883 res_counter_reset_max(&mem->memsw);
1884 break;
1885 case RES_FAILCNT:
1886 if (type == _MEM)
1887 res_counter_reset_failcnt(&mem->res);
1888 else
1889 res_counter_reset_failcnt(&mem->memsw);
1890 break;
1892 return 0;
1895 static const struct mem_cgroup_stat_desc {
1896 const char *msg;
1897 u64 unit;
1898 } mem_cgroup_stat_desc[] = {
1899 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1900 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1901 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1902 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1905 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1906 struct cgroup_map_cb *cb)
1908 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1909 struct mem_cgroup_stat *stat = &mem_cont->stat;
1910 int i;
1912 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1913 s64 val;
1915 val = mem_cgroup_read_stat(stat, i);
1916 val *= mem_cgroup_stat_desc[i].unit;
1917 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1919 /* showing # of active pages */
1921 unsigned long active_anon, inactive_anon;
1922 unsigned long active_file, inactive_file;
1923 unsigned long unevictable;
1925 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1926 LRU_INACTIVE_ANON);
1927 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1928 LRU_ACTIVE_ANON);
1929 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1930 LRU_INACTIVE_FILE);
1931 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1932 LRU_ACTIVE_FILE);
1933 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1934 LRU_UNEVICTABLE);
1936 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1937 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1938 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1939 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1940 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1944 unsigned long long limit, memsw_limit;
1945 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1946 cb->fill(cb, "hierarchical_memory_limit", limit);
1947 if (do_swap_account)
1948 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1951 #ifdef CONFIG_DEBUG_VM
1952 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1955 int nid, zid;
1956 struct mem_cgroup_per_zone *mz;
1957 unsigned long recent_rotated[2] = {0, 0};
1958 unsigned long recent_scanned[2] = {0, 0};
1960 for_each_online_node(nid)
1961 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1962 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1964 recent_rotated[0] +=
1965 mz->reclaim_stat.recent_rotated[0];
1966 recent_rotated[1] +=
1967 mz->reclaim_stat.recent_rotated[1];
1968 recent_scanned[0] +=
1969 mz->reclaim_stat.recent_scanned[0];
1970 recent_scanned[1] +=
1971 mz->reclaim_stat.recent_scanned[1];
1973 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1974 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1975 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1976 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1978 #endif
1980 return 0;
1983 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1985 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1987 return get_swappiness(memcg);
1990 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1991 u64 val)
1993 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1994 struct mem_cgroup *parent;
1996 if (val > 100)
1997 return -EINVAL;
1999 if (cgrp->parent == NULL)
2000 return -EINVAL;
2002 parent = mem_cgroup_from_cont(cgrp->parent);
2004 cgroup_lock();
2006 /* If under hierarchy, only empty-root can set this value */
2007 if ((parent->use_hierarchy) ||
2008 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2009 cgroup_unlock();
2010 return -EINVAL;
2013 spin_lock(&memcg->reclaim_param_lock);
2014 memcg->swappiness = val;
2015 spin_unlock(&memcg->reclaim_param_lock);
2017 cgroup_unlock();
2019 return 0;
2023 static struct cftype mem_cgroup_files[] = {
2025 .name = "usage_in_bytes",
2026 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2027 .read_u64 = mem_cgroup_read,
2030 .name = "max_usage_in_bytes",
2031 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2032 .trigger = mem_cgroup_reset,
2033 .read_u64 = mem_cgroup_read,
2036 .name = "limit_in_bytes",
2037 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2038 .write_string = mem_cgroup_write,
2039 .read_u64 = mem_cgroup_read,
2042 .name = "failcnt",
2043 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2044 .trigger = mem_cgroup_reset,
2045 .read_u64 = mem_cgroup_read,
2048 .name = "stat",
2049 .read_map = mem_control_stat_show,
2052 .name = "force_empty",
2053 .trigger = mem_cgroup_force_empty_write,
2056 .name = "use_hierarchy",
2057 .write_u64 = mem_cgroup_hierarchy_write,
2058 .read_u64 = mem_cgroup_hierarchy_read,
2061 .name = "swappiness",
2062 .read_u64 = mem_cgroup_swappiness_read,
2063 .write_u64 = mem_cgroup_swappiness_write,
2067 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2068 static struct cftype memsw_cgroup_files[] = {
2070 .name = "memsw.usage_in_bytes",
2071 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2072 .read_u64 = mem_cgroup_read,
2075 .name = "memsw.max_usage_in_bytes",
2076 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2077 .trigger = mem_cgroup_reset,
2078 .read_u64 = mem_cgroup_read,
2081 .name = "memsw.limit_in_bytes",
2082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2083 .write_string = mem_cgroup_write,
2084 .read_u64 = mem_cgroup_read,
2087 .name = "memsw.failcnt",
2088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2089 .trigger = mem_cgroup_reset,
2090 .read_u64 = mem_cgroup_read,
2094 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2096 if (!do_swap_account)
2097 return 0;
2098 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2099 ARRAY_SIZE(memsw_cgroup_files));
2101 #else
2102 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2104 return 0;
2106 #endif
2108 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2110 struct mem_cgroup_per_node *pn;
2111 struct mem_cgroup_per_zone *mz;
2112 enum lru_list l;
2113 int zone, tmp = node;
2115 * This routine is called against possible nodes.
2116 * But it's BUG to call kmalloc() against offline node.
2118 * TODO: this routine can waste much memory for nodes which will
2119 * never be onlined. It's better to use memory hotplug callback
2120 * function.
2122 if (!node_state(node, N_NORMAL_MEMORY))
2123 tmp = -1;
2124 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2125 if (!pn)
2126 return 1;
2128 mem->info.nodeinfo[node] = pn;
2129 memset(pn, 0, sizeof(*pn));
2131 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2132 mz = &pn->zoneinfo[zone];
2133 for_each_lru(l)
2134 INIT_LIST_HEAD(&mz->lists[l]);
2136 return 0;
2139 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2141 kfree(mem->info.nodeinfo[node]);
2144 static int mem_cgroup_size(void)
2146 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2147 return sizeof(struct mem_cgroup) + cpustat_size;
2150 static struct mem_cgroup *mem_cgroup_alloc(void)
2152 struct mem_cgroup *mem;
2153 int size = mem_cgroup_size();
2155 if (size < PAGE_SIZE)
2156 mem = kmalloc(size, GFP_KERNEL);
2157 else
2158 mem = vmalloc(size);
2160 if (mem)
2161 memset(mem, 0, size);
2162 return mem;
2166 * At destroying mem_cgroup, references from swap_cgroup can remain.
2167 * (scanning all at force_empty is too costly...)
2169 * Instead of clearing all references at force_empty, we remember
2170 * the number of reference from swap_cgroup and free mem_cgroup when
2171 * it goes down to 0.
2173 * Removal of cgroup itself succeeds regardless of refs from swap.
2176 static void __mem_cgroup_free(struct mem_cgroup *mem)
2178 int node;
2180 for_each_node_state(node, N_POSSIBLE)
2181 free_mem_cgroup_per_zone_info(mem, node);
2183 if (mem_cgroup_size() < PAGE_SIZE)
2184 kfree(mem);
2185 else
2186 vfree(mem);
2189 static void mem_cgroup_get(struct mem_cgroup *mem)
2191 atomic_inc(&mem->refcnt);
2194 static void mem_cgroup_put(struct mem_cgroup *mem)
2196 if (atomic_dec_and_test(&mem->refcnt))
2197 __mem_cgroup_free(mem);
2201 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2202 static void __init enable_swap_cgroup(void)
2204 if (!mem_cgroup_disabled() && really_do_swap_account)
2205 do_swap_account = 1;
2207 #else
2208 static void __init enable_swap_cgroup(void)
2211 #endif
2213 static struct cgroup_subsys_state * __ref
2214 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2216 struct mem_cgroup *mem, *parent;
2217 int node;
2219 mem = mem_cgroup_alloc();
2220 if (!mem)
2221 return ERR_PTR(-ENOMEM);
2223 for_each_node_state(node, N_POSSIBLE)
2224 if (alloc_mem_cgroup_per_zone_info(mem, node))
2225 goto free_out;
2226 /* root ? */
2227 if (cont->parent == NULL) {
2228 enable_swap_cgroup();
2229 parent = NULL;
2230 } else {
2231 parent = mem_cgroup_from_cont(cont->parent);
2232 mem->use_hierarchy = parent->use_hierarchy;
2235 if (parent && parent->use_hierarchy) {
2236 res_counter_init(&mem->res, &parent->res);
2237 res_counter_init(&mem->memsw, &parent->memsw);
2238 } else {
2239 res_counter_init(&mem->res, NULL);
2240 res_counter_init(&mem->memsw, NULL);
2242 mem->last_scanned_child = NULL;
2243 spin_lock_init(&mem->reclaim_param_lock);
2245 if (parent)
2246 mem->swappiness = get_swappiness(parent);
2247 atomic_set(&mem->refcnt, 1);
2248 return &mem->css;
2249 free_out:
2250 __mem_cgroup_free(mem);
2251 return ERR_PTR(-ENOMEM);
2254 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2255 struct cgroup *cont)
2257 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2258 mem_cgroup_force_empty(mem, false);
2261 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2262 struct cgroup *cont)
2264 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2265 struct mem_cgroup *last_scanned_child = mem->last_scanned_child;
2267 if (last_scanned_child) {
2268 VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child));
2269 mem_cgroup_put(last_scanned_child);
2271 mem_cgroup_put(mem);
2274 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2275 struct cgroup *cont)
2277 int ret;
2279 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2280 ARRAY_SIZE(mem_cgroup_files));
2282 if (!ret)
2283 ret = register_memsw_files(cont, ss);
2284 return ret;
2287 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2288 struct cgroup *cont,
2289 struct cgroup *old_cont,
2290 struct task_struct *p)
2292 mutex_lock(&memcg_tasklist);
2294 * FIXME: It's better to move charges of this process from old
2295 * memcg to new memcg. But it's just on TODO-List now.
2297 mutex_unlock(&memcg_tasklist);
2300 struct cgroup_subsys mem_cgroup_subsys = {
2301 .name = "memory",
2302 .subsys_id = mem_cgroup_subsys_id,
2303 .create = mem_cgroup_create,
2304 .pre_destroy = mem_cgroup_pre_destroy,
2305 .destroy = mem_cgroup_destroy,
2306 .populate = mem_cgroup_populate,
2307 .attach = mem_cgroup_move_task,
2308 .early_init = 0,
2311 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2313 static int __init disable_swap_account(char *s)
2315 really_do_swap_account = 0;
2316 return 1;
2318 __setup("noswapaccount", disable_swap_account);
2319 #endif