1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
41 #include <asm/uaccess.h>
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
44 #define MEM_CGROUP_RECLAIM_RETRIES 5
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly
;
49 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
51 #define do_swap_account (0)
54 static DEFINE_MUTEX(memcg_tasklist
); /* can be hold under cgroup_mutex */
57 * Statistics for memory cgroup.
59 enum mem_cgroup_stat_index
{
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
65 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
68 MEM_CGROUP_STAT_NSTATS
,
71 struct mem_cgroup_stat_cpu
{
72 s64 count
[MEM_CGROUP_STAT_NSTATS
];
73 } ____cacheline_aligned_in_smp
;
75 struct mem_cgroup_stat
{
76 struct mem_cgroup_stat_cpu cpustat
[0];
80 * For accounting under irq disable, no need for increment preempt count.
82 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu
*stat
,
83 enum mem_cgroup_stat_index idx
, int val
)
85 stat
->count
[idx
] += val
;
88 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
89 enum mem_cgroup_stat_index idx
)
93 for_each_possible_cpu(cpu
)
94 ret
+= stat
->cpustat
[cpu
].count
[idx
];
99 * per-zone information in memory controller.
101 struct mem_cgroup_per_zone
{
103 * spin_lock to protect the per cgroup LRU
105 struct list_head lists
[NR_LRU_LISTS
];
106 unsigned long count
[NR_LRU_LISTS
];
108 struct zone_reclaim_stat reclaim_stat
;
110 /* Macro for accessing counter */
111 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
113 struct mem_cgroup_per_node
{
114 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
117 struct mem_cgroup_lru_info
{
118 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
133 struct cgroup_subsys_state css
;
135 * the counter to account for memory usage
137 struct res_counter res
;
139 * the counter to account for mem+swap usage.
141 struct res_counter memsw
;
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
146 struct mem_cgroup_lru_info info
;
149 protect against reclaim related member.
151 spinlock_t reclaim_param_lock
;
153 int prev_priority
; /* for recording reclaim priority */
156 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by hierarchy_mutex
159 struct mem_cgroup
*last_scanned_child
;
161 * Should the accounting and control be hierarchical, per subtree?
164 unsigned long last_oom_jiffies
;
167 unsigned int swappiness
;
170 * statistics. This must be placed at the end of memcg.
172 struct mem_cgroup_stat stat
;
176 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
178 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
179 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
184 /* only for here (for easy reading.) */
185 #define PCGF_CACHE (1UL << PCG_CACHE)
186 #define PCGF_USED (1UL << PCG_USED)
187 #define PCGF_LOCK (1UL << PCG_LOCK)
188 static const unsigned long
189 pcg_default_flags
[NR_CHARGE_TYPE
] = {
190 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* File Cache */
191 PCGF_USED
| PCGF_LOCK
, /* Anon */
192 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* Shmem */
196 /* for encoding cft->private value on file */
199 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201 #define MEMFILE_ATTR(val) ((val) & 0xffff)
203 static void mem_cgroup_get(struct mem_cgroup
*mem
);
204 static void mem_cgroup_put(struct mem_cgroup
*mem
);
206 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
207 struct page_cgroup
*pc
,
210 int val
= (charge
)? 1 : -1;
211 struct mem_cgroup_stat
*stat
= &mem
->stat
;
212 struct mem_cgroup_stat_cpu
*cpustat
;
215 cpustat
= &stat
->cpustat
[cpu
];
216 if (PageCgroupCache(pc
))
217 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_CACHE
, val
);
219 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_RSS
, val
);
222 __mem_cgroup_stat_add_safe(cpustat
,
223 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
225 __mem_cgroup_stat_add_safe(cpustat
,
226 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
230 static struct mem_cgroup_per_zone
*
231 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
233 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
236 static struct mem_cgroup_per_zone
*
237 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
239 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
240 int nid
= page_cgroup_nid(pc
);
241 int zid
= page_cgroup_zid(pc
);
246 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
249 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup
*mem
,
253 struct mem_cgroup_per_zone
*mz
;
256 for_each_online_node(nid
)
257 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
258 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
259 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
264 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
266 return container_of(cgroup_subsys_state(cont
,
267 mem_cgroup_subsys_id
), struct mem_cgroup
,
271 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
281 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
282 struct mem_cgroup
, css
);
285 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
287 struct mem_cgroup
*mem
= NULL
;
289 * Because we have no locks, mm->owner's may be being moved to other
290 * cgroup. We use css_tryget() here even if this looks
291 * pessimistic (rather than adding locks here).
295 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
298 } while (!css_tryget(&mem
->css
));
303 static bool mem_cgroup_is_obsolete(struct mem_cgroup
*mem
)
307 return css_is_removed(&mem
->css
);
311 * Following LRU functions are allowed to be used without PCG_LOCK.
312 * Operations are called by routine of global LRU independently from memcg.
313 * What we have to take care of here is validness of pc->mem_cgroup.
315 * Changes to pc->mem_cgroup happens when
318 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319 * It is added to LRU before charge.
320 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321 * When moving account, the page is not on LRU. It's isolated.
324 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
326 struct page_cgroup
*pc
;
327 struct mem_cgroup
*mem
;
328 struct mem_cgroup_per_zone
*mz
;
330 if (mem_cgroup_disabled())
332 pc
= lookup_page_cgroup(page
);
333 /* can happen while we handle swapcache. */
334 if (list_empty(&pc
->lru
) || !pc
->mem_cgroup
)
337 * We don't check PCG_USED bit. It's cleared when the "page" is finally
338 * removed from global LRU.
340 mz
= page_cgroup_zoneinfo(pc
);
341 mem
= pc
->mem_cgroup
;
342 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
343 list_del_init(&pc
->lru
);
347 void mem_cgroup_del_lru(struct page
*page
)
349 mem_cgroup_del_lru_list(page
, page_lru(page
));
352 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
354 struct mem_cgroup_per_zone
*mz
;
355 struct page_cgroup
*pc
;
357 if (mem_cgroup_disabled())
360 pc
= lookup_page_cgroup(page
);
362 * Used bit is set without atomic ops but after smp_wmb().
363 * For making pc->mem_cgroup visible, insert smp_rmb() here.
366 /* unused page is not rotated. */
367 if (!PageCgroupUsed(pc
))
369 mz
= page_cgroup_zoneinfo(pc
);
370 list_move(&pc
->lru
, &mz
->lists
[lru
]);
373 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
375 struct page_cgroup
*pc
;
376 struct mem_cgroup_per_zone
*mz
;
378 if (mem_cgroup_disabled())
380 pc
= lookup_page_cgroup(page
);
382 * Used bit is set without atomic ops but after smp_wmb().
383 * For making pc->mem_cgroup visible, insert smp_rmb() here.
386 if (!PageCgroupUsed(pc
))
389 mz
= page_cgroup_zoneinfo(pc
);
390 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
391 list_add(&pc
->lru
, &mz
->lists
[lru
]);
395 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
396 * lru because the page may.be reused after it's fully uncharged (because of
397 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
398 * it again. This function is only used to charge SwapCache. It's done under
399 * lock_page and expected that zone->lru_lock is never held.
401 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
404 struct zone
*zone
= page_zone(page
);
405 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
407 spin_lock_irqsave(&zone
->lru_lock
, flags
);
409 * Forget old LRU when this page_cgroup is *not* used. This Used bit
410 * is guarded by lock_page() because the page is SwapCache.
412 if (!PageCgroupUsed(pc
))
413 mem_cgroup_del_lru_list(page
, page_lru(page
));
414 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
417 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
420 struct zone
*zone
= page_zone(page
);
421 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
423 spin_lock_irqsave(&zone
->lru_lock
, flags
);
424 /* link when the page is linked to LRU but page_cgroup isn't */
425 if (PageLRU(page
) && list_empty(&pc
->lru
))
426 mem_cgroup_add_lru_list(page
, page_lru(page
));
427 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
431 void mem_cgroup_move_lists(struct page
*page
,
432 enum lru_list from
, enum lru_list to
)
434 if (mem_cgroup_disabled())
436 mem_cgroup_del_lru_list(page
, from
);
437 mem_cgroup_add_lru_list(page
, to
);
440 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
445 ret
= task
->mm
&& mm_match_cgroup(task
->mm
, mem
);
451 * Calculate mapped_ratio under memory controller. This will be used in
452 * vmscan.c for deteremining we have to reclaim mapped pages.
454 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup
*mem
)
459 * usage is recorded in bytes. But, here, we assume the number of
460 * physical pages can be represented by "long" on any arch.
462 total
= (long) (mem
->res
.usage
>> PAGE_SHIFT
) + 1L;
463 rss
= (long)mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
464 return (int)((rss
* 100L) / total
);
468 * prev_priority control...this will be used in memory reclaim path.
470 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
474 spin_lock(&mem
->reclaim_param_lock
);
475 prev_priority
= mem
->prev_priority
;
476 spin_unlock(&mem
->reclaim_param_lock
);
478 return prev_priority
;
481 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
483 spin_lock(&mem
->reclaim_param_lock
);
484 if (priority
< mem
->prev_priority
)
485 mem
->prev_priority
= priority
;
486 spin_unlock(&mem
->reclaim_param_lock
);
489 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
491 spin_lock(&mem
->reclaim_param_lock
);
492 mem
->prev_priority
= priority
;
493 spin_unlock(&mem
->reclaim_param_lock
);
496 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
498 unsigned long active
;
499 unsigned long inactive
;
501 unsigned long inactive_ratio
;
503 inactive
= mem_cgroup_get_all_zonestat(memcg
, LRU_INACTIVE_ANON
);
504 active
= mem_cgroup_get_all_zonestat(memcg
, LRU_ACTIVE_ANON
);
506 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
508 inactive_ratio
= int_sqrt(10 * gb
);
513 present_pages
[0] = inactive
;
514 present_pages
[1] = active
;
517 return inactive_ratio
;
520 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
522 unsigned long active
;
523 unsigned long inactive
;
524 unsigned long present_pages
[2];
525 unsigned long inactive_ratio
;
527 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
529 inactive
= present_pages
[0];
530 active
= present_pages
[1];
532 if (inactive
* inactive_ratio
< active
)
538 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
542 int nid
= zone
->zone_pgdat
->node_id
;
543 int zid
= zone_idx(zone
);
544 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
546 return MEM_CGROUP_ZSTAT(mz
, lru
);
549 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
552 int nid
= zone
->zone_pgdat
->node_id
;
553 int zid
= zone_idx(zone
);
554 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
556 return &mz
->reclaim_stat
;
559 struct zone_reclaim_stat
*
560 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
562 struct page_cgroup
*pc
;
563 struct mem_cgroup_per_zone
*mz
;
565 if (mem_cgroup_disabled())
568 pc
= lookup_page_cgroup(page
);
570 * Used bit is set without atomic ops but after smp_wmb().
571 * For making pc->mem_cgroup visible, insert smp_rmb() here.
574 if (!PageCgroupUsed(pc
))
577 mz
= page_cgroup_zoneinfo(pc
);
581 return &mz
->reclaim_stat
;
584 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
585 struct list_head
*dst
,
586 unsigned long *scanned
, int order
,
587 int mode
, struct zone
*z
,
588 struct mem_cgroup
*mem_cont
,
589 int active
, int file
)
591 unsigned long nr_taken
= 0;
595 struct list_head
*src
;
596 struct page_cgroup
*pc
, *tmp
;
597 int nid
= z
->zone_pgdat
->node_id
;
598 int zid
= zone_idx(z
);
599 struct mem_cgroup_per_zone
*mz
;
600 int lru
= LRU_FILE
* !!file
+ !!active
;
603 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
604 src
= &mz
->lists
[lru
];
607 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
608 if (scan
>= nr_to_scan
)
612 if (unlikely(!PageCgroupUsed(pc
)))
614 if (unlikely(!PageLRU(page
)))
618 if (__isolate_lru_page(page
, mode
, file
) == 0) {
619 list_move(&page
->lru
, dst
);
628 #define mem_cgroup_from_res_counter(counter, member) \
629 container_of(counter, struct mem_cgroup, member)
632 * This routine finds the DFS walk successor. This routine should be
633 * called with hierarchy_mutex held
635 static struct mem_cgroup
*
636 __mem_cgroup_get_next_node(struct mem_cgroup
*curr
, struct mem_cgroup
*root_mem
)
638 struct cgroup
*cgroup
, *curr_cgroup
, *root_cgroup
;
640 curr_cgroup
= curr
->css
.cgroup
;
641 root_cgroup
= root_mem
->css
.cgroup
;
643 if (!list_empty(&curr_cgroup
->children
)) {
645 * Walk down to children
647 cgroup
= list_entry(curr_cgroup
->children
.next
,
648 struct cgroup
, sibling
);
649 curr
= mem_cgroup_from_cont(cgroup
);
654 if (curr_cgroup
== root_cgroup
) {
655 /* caller handles NULL case */
663 if (curr_cgroup
->sibling
.next
!= &curr_cgroup
->parent
->children
) {
664 cgroup
= list_entry(curr_cgroup
->sibling
.next
, struct cgroup
,
666 curr
= mem_cgroup_from_cont(cgroup
);
671 * Go up to next parent and next parent's sibling if need be
673 curr_cgroup
= curr_cgroup
->parent
;
681 * Visit the first child (need not be the first child as per the ordering
682 * of the cgroup list, since we track last_scanned_child) of @mem and use
683 * that to reclaim free pages from.
685 static struct mem_cgroup
*
686 mem_cgroup_get_next_node(struct mem_cgroup
*root_mem
)
688 struct cgroup
*cgroup
;
689 struct mem_cgroup
*orig
, *next
;
693 * Scan all children under the mem_cgroup mem
695 mutex_lock(&mem_cgroup_subsys
.hierarchy_mutex
);
697 orig
= root_mem
->last_scanned_child
;
698 obsolete
= mem_cgroup_is_obsolete(orig
);
700 if (list_empty(&root_mem
->css
.cgroup
->children
)) {
702 * root_mem might have children before and last_scanned_child
703 * may point to one of them. We put it later.
706 VM_BUG_ON(!obsolete
);
711 if (!orig
|| obsolete
) {
712 cgroup
= list_first_entry(&root_mem
->css
.cgroup
->children
,
713 struct cgroup
, sibling
);
714 next
= mem_cgroup_from_cont(cgroup
);
716 next
= __mem_cgroup_get_next_node(orig
, root_mem
);
720 mem_cgroup_get(next
);
721 root_mem
->last_scanned_child
= next
;
723 mem_cgroup_put(orig
);
724 mutex_unlock(&mem_cgroup_subsys
.hierarchy_mutex
);
725 return (next
) ? next
: root_mem
;
728 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
730 if (do_swap_account
) {
731 if (res_counter_check_under_limit(&mem
->res
) &&
732 res_counter_check_under_limit(&mem
->memsw
))
735 if (res_counter_check_under_limit(&mem
->res
))
740 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
742 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
743 unsigned int swappiness
;
746 if (cgrp
->parent
== NULL
)
747 return vm_swappiness
;
749 spin_lock(&memcg
->reclaim_param_lock
);
750 swappiness
= memcg
->swappiness
;
751 spin_unlock(&memcg
->reclaim_param_lock
);
757 * Dance down the hierarchy if needed to reclaim memory. We remember the
758 * last child we reclaimed from, so that we don't end up penalizing
759 * one child extensively based on its position in the children list.
761 * root_mem is the original ancestor that we've been reclaim from.
763 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
764 gfp_t gfp_mask
, bool noswap
)
766 struct mem_cgroup
*next_mem
;
770 * Reclaim unconditionally and don't check for return value.
771 * We need to reclaim in the current group and down the tree.
772 * One might think about checking for children before reclaiming,
773 * but there might be left over accounting, even after children
776 ret
+= try_to_free_mem_cgroup_pages(root_mem
, gfp_mask
, noswap
,
777 get_swappiness(root_mem
));
778 if (mem_cgroup_check_under_limit(root_mem
))
779 return 1; /* indicate reclaim has succeeded */
780 if (!root_mem
->use_hierarchy
)
783 next_mem
= mem_cgroup_get_next_node(root_mem
);
785 while (next_mem
!= root_mem
) {
786 if (mem_cgroup_is_obsolete(next_mem
)) {
787 next_mem
= mem_cgroup_get_next_node(root_mem
);
790 ret
+= try_to_free_mem_cgroup_pages(next_mem
, gfp_mask
, noswap
,
791 get_swappiness(next_mem
));
792 if (mem_cgroup_check_under_limit(root_mem
))
793 return 1; /* indicate reclaim has succeeded */
794 next_mem
= mem_cgroup_get_next_node(root_mem
);
799 bool mem_cgroup_oom_called(struct task_struct
*task
)
802 struct mem_cgroup
*mem
;
803 struct mm_struct
*mm
;
809 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
810 if (mem
&& time_before(jiffies
, mem
->last_oom_jiffies
+ HZ
/10))
816 * Unlike exported interface, "oom" parameter is added. if oom==true,
817 * oom-killer can be invoked.
819 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
820 gfp_t gfp_mask
, struct mem_cgroup
**memcg
,
823 struct mem_cgroup
*mem
, *mem_over_limit
;
824 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
825 struct res_counter
*fail_res
;
827 if (unlikely(test_thread_flag(TIF_MEMDIE
))) {
828 /* Don't account this! */
834 * We always charge the cgroup the mm_struct belongs to.
835 * The mm_struct's mem_cgroup changes on task migration if the
836 * thread group leader migrates. It's possible that mm is not
837 * set, if so charge the init_mm (happens for pagecache usage).
841 mem
= try_get_mem_cgroup_from_mm(mm
);
849 VM_BUG_ON(mem_cgroup_is_obsolete(mem
));
855 ret
= res_counter_charge(&mem
->res
, PAGE_SIZE
, &fail_res
);
857 if (!do_swap_account
)
859 ret
= res_counter_charge(&mem
->memsw
, PAGE_SIZE
,
863 /* mem+swap counter fails */
864 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
866 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
869 /* mem counter fails */
870 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
873 if (!(gfp_mask
& __GFP_WAIT
))
876 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, gfp_mask
,
882 * try_to_free_mem_cgroup_pages() might not give us a full
883 * picture of reclaim. Some pages are reclaimed and might be
884 * moved to swap cache or just unmapped from the cgroup.
885 * Check the limit again to see if the reclaim reduced the
886 * current usage of the cgroup before giving up
889 if (mem_cgroup_check_under_limit(mem_over_limit
))
894 mutex_lock(&memcg_tasklist
);
895 mem_cgroup_out_of_memory(mem_over_limit
, gfp_mask
);
896 mutex_unlock(&memcg_tasklist
);
897 mem_over_limit
->last_oom_jiffies
= jiffies
;
908 static struct mem_cgroup
*try_get_mem_cgroup_from_swapcache(struct page
*page
)
910 struct mem_cgroup
*mem
;
913 if (!PageSwapCache(page
))
916 ent
.val
= page_private(page
);
917 mem
= lookup_swap_cgroup(ent
);
920 if (!css_tryget(&mem
->css
))
926 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
927 * USED state. If already USED, uncharge and return.
930 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
931 struct page_cgroup
*pc
,
932 enum charge_type ctype
)
934 /* try_charge() can return NULL to *memcg, taking care of it. */
938 lock_page_cgroup(pc
);
939 if (unlikely(PageCgroupUsed(pc
))) {
940 unlock_page_cgroup(pc
);
941 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
943 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
947 pc
->mem_cgroup
= mem
;
949 pc
->flags
= pcg_default_flags
[ctype
];
951 mem_cgroup_charge_statistics(mem
, pc
, true);
953 unlock_page_cgroup(pc
);
957 * mem_cgroup_move_account - move account of the page
958 * @pc: page_cgroup of the page.
959 * @from: mem_cgroup which the page is moved from.
960 * @to: mem_cgroup which the page is moved to. @from != @to.
962 * The caller must confirm following.
963 * - page is not on LRU (isolate_page() is useful.)
965 * returns 0 at success,
966 * returns -EBUSY when lock is busy or "pc" is unstable.
968 * This function does "uncharge" from old cgroup but doesn't do "charge" to
969 * new cgroup. It should be done by a caller.
972 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
973 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
975 struct mem_cgroup_per_zone
*from_mz
, *to_mz
;
979 VM_BUG_ON(from
== to
);
980 VM_BUG_ON(PageLRU(pc
->page
));
982 nid
= page_cgroup_nid(pc
);
983 zid
= page_cgroup_zid(pc
);
984 from_mz
= mem_cgroup_zoneinfo(from
, nid
, zid
);
985 to_mz
= mem_cgroup_zoneinfo(to
, nid
, zid
);
987 if (!trylock_page_cgroup(pc
))
990 if (!PageCgroupUsed(pc
))
993 if (pc
->mem_cgroup
!= from
)
996 res_counter_uncharge(&from
->res
, PAGE_SIZE
);
997 mem_cgroup_charge_statistics(from
, pc
, false);
999 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
1000 css_put(&from
->css
);
1003 pc
->mem_cgroup
= to
;
1004 mem_cgroup_charge_statistics(to
, pc
, true);
1007 unlock_page_cgroup(pc
);
1012 * move charges to its parent.
1015 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1016 struct mem_cgroup
*child
,
1019 struct page
*page
= pc
->page
;
1020 struct cgroup
*cg
= child
->css
.cgroup
;
1021 struct cgroup
*pcg
= cg
->parent
;
1022 struct mem_cgroup
*parent
;
1030 parent
= mem_cgroup_from_cont(pcg
);
1033 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
1037 if (!get_page_unless_zero(page
)) {
1042 ret
= isolate_lru_page(page
);
1047 ret
= mem_cgroup_move_account(pc
, child
, parent
);
1049 putback_lru_page(page
);
1052 /* drop extra refcnt by try_charge() */
1053 css_put(&parent
->css
);
1060 /* drop extra refcnt by try_charge() */
1061 css_put(&parent
->css
);
1062 /* uncharge if move fails */
1063 res_counter_uncharge(&parent
->res
, PAGE_SIZE
);
1064 if (do_swap_account
)
1065 res_counter_uncharge(&parent
->memsw
, PAGE_SIZE
);
1070 * Charge the memory controller for page usage.
1072 * 0 if the charge was successful
1073 * < 0 if the cgroup is over its limit
1075 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1076 gfp_t gfp_mask
, enum charge_type ctype
,
1077 struct mem_cgroup
*memcg
)
1079 struct mem_cgroup
*mem
;
1080 struct page_cgroup
*pc
;
1083 pc
= lookup_page_cgroup(page
);
1084 /* can happen at boot */
1090 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
1094 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1098 int mem_cgroup_newpage_charge(struct page
*page
,
1099 struct mm_struct
*mm
, gfp_t gfp_mask
)
1101 if (mem_cgroup_disabled())
1103 if (PageCompound(page
))
1106 * If already mapped, we don't have to account.
1107 * If page cache, page->mapping has address_space.
1108 * But page->mapping may have out-of-use anon_vma pointer,
1109 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1112 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
1116 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1117 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
1120 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
1123 struct mem_cgroup
*mem
= NULL
;
1126 if (mem_cgroup_disabled())
1128 if (PageCompound(page
))
1131 * Corner case handling. This is called from add_to_page_cache()
1132 * in usual. But some FS (shmem) precharges this page before calling it
1133 * and call add_to_page_cache() with GFP_NOWAIT.
1135 * For GFP_NOWAIT case, the page may be pre-charged before calling
1136 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1137 * charge twice. (It works but has to pay a bit larger cost.)
1138 * And when the page is SwapCache, it should take swap information
1139 * into account. This is under lock_page() now.
1141 if (!(gfp_mask
& __GFP_WAIT
)) {
1142 struct page_cgroup
*pc
;
1145 pc
= lookup_page_cgroup(page
);
1148 lock_page_cgroup(pc
);
1149 if (PageCgroupUsed(pc
)) {
1150 unlock_page_cgroup(pc
);
1153 unlock_page_cgroup(pc
);
1156 if (do_swap_account
&& PageSwapCache(page
)) {
1157 mem
= try_get_mem_cgroup_from_swapcache(page
);
1162 /* SwapCache may be still linked to LRU now. */
1163 mem_cgroup_lru_del_before_commit_swapcache(page
);
1166 if (unlikely(!mm
&& !mem
))
1169 if (page_is_file_cache(page
))
1170 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1171 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
1173 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1174 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
1177 if (PageSwapCache(page
))
1178 mem_cgroup_lru_add_after_commit_swapcache(page
);
1180 if (do_swap_account
&& !ret
&& PageSwapCache(page
)) {
1181 swp_entry_t ent
= {.val
= page_private(page
)};
1182 /* avoid double counting */
1183 mem
= swap_cgroup_record(ent
, NULL
);
1185 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1186 mem_cgroup_put(mem
);
1193 * While swap-in, try_charge -> commit or cancel, the page is locked.
1194 * And when try_charge() successfully returns, one refcnt to memcg without
1195 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1196 * "commit()" or removed by "cancel()"
1198 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
1200 gfp_t mask
, struct mem_cgroup
**ptr
)
1202 struct mem_cgroup
*mem
;
1205 if (mem_cgroup_disabled())
1208 if (!do_swap_account
)
1211 * A racing thread's fault, or swapoff, may have already updated
1212 * the pte, and even removed page from swap cache: return success
1213 * to go on to do_swap_page()'s pte_same() test, which should fail.
1215 if (!PageSwapCache(page
))
1217 mem
= try_get_mem_cgroup_from_swapcache(page
);
1221 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
1222 /* drop extra refcnt from tryget */
1228 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
1231 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
1233 struct page_cgroup
*pc
;
1235 if (mem_cgroup_disabled())
1239 pc
= lookup_page_cgroup(page
);
1240 mem_cgroup_lru_del_before_commit_swapcache(page
);
1241 __mem_cgroup_commit_charge(ptr
, pc
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1242 mem_cgroup_lru_add_after_commit_swapcache(page
);
1244 * Now swap is on-memory. This means this page may be
1245 * counted both as mem and swap....double count.
1246 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1247 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1248 * may call delete_from_swap_cache() before reach here.
1250 if (do_swap_account
&& PageSwapCache(page
)) {
1251 swp_entry_t ent
= {.val
= page_private(page
)};
1252 struct mem_cgroup
*memcg
;
1253 memcg
= swap_cgroup_record(ent
, NULL
);
1255 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1256 mem_cgroup_put(memcg
);
1260 /* add this page(page_cgroup) to the LRU we want. */
1264 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
1266 if (mem_cgroup_disabled())
1270 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1271 if (do_swap_account
)
1272 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1278 * uncharge if !page_mapped(page)
1280 static struct mem_cgroup
*
1281 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
1283 struct page_cgroup
*pc
;
1284 struct mem_cgroup
*mem
= NULL
;
1285 struct mem_cgroup_per_zone
*mz
;
1287 if (mem_cgroup_disabled())
1290 if (PageSwapCache(page
))
1294 * Check if our page_cgroup is valid
1296 pc
= lookup_page_cgroup(page
);
1297 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
1300 lock_page_cgroup(pc
);
1302 mem
= pc
->mem_cgroup
;
1304 if (!PageCgroupUsed(pc
))
1308 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1309 if (page_mapped(page
))
1312 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
1313 if (!PageAnon(page
)) { /* Shared memory */
1314 if (page
->mapping
&& !page_is_file_cache(page
))
1316 } else if (page_mapped(page
)) /* Anon */
1323 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1324 if (do_swap_account
&& (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
))
1325 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1327 mem_cgroup_charge_statistics(mem
, pc
, false);
1328 ClearPageCgroupUsed(pc
);
1330 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1331 * freed from LRU. This is safe because uncharged page is expected not
1332 * to be reused (freed soon). Exception is SwapCache, it's handled by
1333 * special functions.
1336 mz
= page_cgroup_zoneinfo(pc
);
1337 unlock_page_cgroup(pc
);
1339 /* at swapout, this memcg will be accessed to record to swap */
1340 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
1346 unlock_page_cgroup(pc
);
1350 void mem_cgroup_uncharge_page(struct page
*page
)
1353 if (page_mapped(page
))
1355 if (page
->mapping
&& !PageAnon(page
))
1357 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1360 void mem_cgroup_uncharge_cache_page(struct page
*page
)
1362 VM_BUG_ON(page_mapped(page
));
1363 VM_BUG_ON(page
->mapping
);
1364 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
1368 * called from __delete_from_swap_cache() and drop "page" account.
1369 * memcg information is recorded to swap_cgroup of "ent"
1371 void mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
)
1373 struct mem_cgroup
*memcg
;
1375 memcg
= __mem_cgroup_uncharge_common(page
,
1376 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
);
1377 /* record memcg information */
1378 if (do_swap_account
&& memcg
) {
1379 swap_cgroup_record(ent
, memcg
);
1380 mem_cgroup_get(memcg
);
1383 css_put(&memcg
->css
);
1386 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1388 * called from swap_entry_free(). remove record in swap_cgroup and
1389 * uncharge "memsw" account.
1391 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
1393 struct mem_cgroup
*memcg
;
1395 if (!do_swap_account
)
1398 memcg
= swap_cgroup_record(ent
, NULL
);
1400 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1401 mem_cgroup_put(memcg
);
1407 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1410 int mem_cgroup_prepare_migration(struct page
*page
, struct mem_cgroup
**ptr
)
1412 struct page_cgroup
*pc
;
1413 struct mem_cgroup
*mem
= NULL
;
1416 if (mem_cgroup_disabled())
1419 pc
= lookup_page_cgroup(page
);
1420 lock_page_cgroup(pc
);
1421 if (PageCgroupUsed(pc
)) {
1422 mem
= pc
->mem_cgroup
;
1425 unlock_page_cgroup(pc
);
1428 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
1435 /* remove redundant charge if migration failed*/
1436 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
1437 struct page
*oldpage
, struct page
*newpage
)
1439 struct page
*target
, *unused
;
1440 struct page_cgroup
*pc
;
1441 enum charge_type ctype
;
1446 /* at migration success, oldpage->mapping is NULL. */
1447 if (oldpage
->mapping
) {
1455 if (PageAnon(target
))
1456 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
1457 else if (page_is_file_cache(target
))
1458 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
1460 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
1462 /* unused page is not on radix-tree now. */
1464 __mem_cgroup_uncharge_common(unused
, ctype
);
1466 pc
= lookup_page_cgroup(target
);
1468 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1469 * So, double-counting is effectively avoided.
1471 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1474 * Both of oldpage and newpage are still under lock_page().
1475 * Then, we don't have to care about race in radix-tree.
1476 * But we have to be careful that this page is unmapped or not.
1478 * There is a case for !page_mapped(). At the start of
1479 * migration, oldpage was mapped. But now, it's zapped.
1480 * But we know *target* page is not freed/reused under us.
1481 * mem_cgroup_uncharge_page() does all necessary checks.
1483 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
1484 mem_cgroup_uncharge_page(target
);
1488 * A call to try to shrink memory usage under specified resource controller.
1489 * This is typically used for page reclaiming for shmem for reducing side
1490 * effect of page allocation from shmem, which is used by some mem_cgroup.
1492 int mem_cgroup_shrink_usage(struct page
*page
,
1493 struct mm_struct
*mm
,
1496 struct mem_cgroup
*mem
= NULL
;
1498 int retry
= MEM_CGROUP_RECLAIM_RETRIES
;
1500 if (mem_cgroup_disabled())
1503 mem
= try_get_mem_cgroup_from_swapcache(page
);
1505 mem
= try_get_mem_cgroup_from_mm(mm
);
1510 progress
= mem_cgroup_hierarchical_reclaim(mem
, gfp_mask
, true);
1511 progress
+= mem_cgroup_check_under_limit(mem
);
1512 } while (!progress
&& --retry
);
1520 static DEFINE_MUTEX(set_limit_mutex
);
1522 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
1523 unsigned long long val
)
1526 int retry_count
= MEM_CGROUP_RECLAIM_RETRIES
;
1531 while (retry_count
) {
1532 if (signal_pending(current
)) {
1537 * Rather than hide all in some function, I do this in
1538 * open coded manner. You see what this really does.
1539 * We have to guarantee mem->res.limit < mem->memsw.limit.
1541 mutex_lock(&set_limit_mutex
);
1542 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1543 if (memswlimit
< val
) {
1545 mutex_unlock(&set_limit_mutex
);
1548 ret
= res_counter_set_limit(&memcg
->res
, val
);
1549 mutex_unlock(&set_limit_mutex
);
1554 progress
= mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
,
1556 if (!progress
) retry_count
--;
1562 int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
1563 unsigned long long val
)
1565 int retry_count
= MEM_CGROUP_RECLAIM_RETRIES
;
1566 u64 memlimit
, oldusage
, curusage
;
1569 if (!do_swap_account
)
1572 while (retry_count
) {
1573 if (signal_pending(current
)) {
1578 * Rather than hide all in some function, I do this in
1579 * open coded manner. You see what this really does.
1580 * We have to guarantee mem->res.limit < mem->memsw.limit.
1582 mutex_lock(&set_limit_mutex
);
1583 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1584 if (memlimit
> val
) {
1586 mutex_unlock(&set_limit_mutex
);
1589 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
1590 mutex_unlock(&set_limit_mutex
);
1595 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1596 mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
, true);
1597 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1598 if (curusage
>= oldusage
)
1605 * This routine traverse page_cgroup in given list and drop them all.
1606 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1608 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
1609 int node
, int zid
, enum lru_list lru
)
1612 struct mem_cgroup_per_zone
*mz
;
1613 struct page_cgroup
*pc
, *busy
;
1614 unsigned long flags
, loop
;
1615 struct list_head
*list
;
1618 zone
= &NODE_DATA(node
)->node_zones
[zid
];
1619 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
1620 list
= &mz
->lists
[lru
];
1622 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
1623 /* give some margin against EBUSY etc...*/
1628 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1629 if (list_empty(list
)) {
1630 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1633 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
1635 list_move(&pc
->lru
, list
);
1637 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1640 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1642 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
1646 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
1647 /* found lock contention or "pc" is obsolete. */
1654 if (!ret
&& !list_empty(list
))
1660 * make mem_cgroup's charge to be 0 if there is no task.
1661 * This enables deleting this mem_cgroup.
1663 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
1666 int node
, zid
, shrink
;
1667 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1668 struct cgroup
*cgrp
= mem
->css
.cgroup
;
1673 /* should free all ? */
1677 while (mem
->res
.usage
> 0) {
1679 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
1682 if (signal_pending(current
))
1684 /* This is for making all *used* pages to be on LRU. */
1685 lru_add_drain_all();
1687 for_each_node_state(node
, N_POSSIBLE
) {
1688 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
1691 ret
= mem_cgroup_force_empty_list(mem
,
1700 /* it seems parent cgroup doesn't have enough mem */
1711 /* returns EBUSY if there is a task or if we come here twice. */
1712 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
1716 /* we call try-to-free pages for make this cgroup empty */
1717 lru_add_drain_all();
1718 /* try to free all pages in this cgroup */
1720 while (nr_retries
&& mem
->res
.usage
> 0) {
1723 if (signal_pending(current
)) {
1727 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
1728 false, get_swappiness(mem
));
1731 /* maybe some writeback is necessary */
1732 congestion_wait(WRITE
, HZ
/10);
1737 /* try move_account...there may be some *locked* pages. */
1744 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
1746 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
1750 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
1752 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
1755 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
1759 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1760 struct cgroup
*parent
= cont
->parent
;
1761 struct mem_cgroup
*parent_mem
= NULL
;
1764 parent_mem
= mem_cgroup_from_cont(parent
);
1768 * If parent's use_hiearchy is set, we can't make any modifications
1769 * in the child subtrees. If it is unset, then the change can
1770 * occur, provided the current cgroup has no children.
1772 * For the root cgroup, parent_mem is NULL, we allow value to be
1773 * set if there are no children.
1775 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
1776 (val
== 1 || val
== 0)) {
1777 if (list_empty(&cont
->children
))
1778 mem
->use_hierarchy
= val
;
1788 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
1790 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1794 type
= MEMFILE_TYPE(cft
->private);
1795 name
= MEMFILE_ATTR(cft
->private);
1798 val
= res_counter_read_u64(&mem
->res
, name
);
1801 if (do_swap_account
)
1802 val
= res_counter_read_u64(&mem
->memsw
, name
);
1811 * The user of this function is...
1814 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
1817 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
1819 unsigned long long val
;
1822 type
= MEMFILE_TYPE(cft
->private);
1823 name
= MEMFILE_ATTR(cft
->private);
1826 /* This function does all necessary parse...reuse it */
1827 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
1831 ret
= mem_cgroup_resize_limit(memcg
, val
);
1833 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
1836 ret
= -EINVAL
; /* should be BUG() ? */
1842 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
1843 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
1845 struct cgroup
*cgroup
;
1846 unsigned long long min_limit
, min_memsw_limit
, tmp
;
1848 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1849 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1850 cgroup
= memcg
->css
.cgroup
;
1851 if (!memcg
->use_hierarchy
)
1854 while (cgroup
->parent
) {
1855 cgroup
= cgroup
->parent
;
1856 memcg
= mem_cgroup_from_cont(cgroup
);
1857 if (!memcg
->use_hierarchy
)
1859 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1860 min_limit
= min(min_limit
, tmp
);
1861 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1862 min_memsw_limit
= min(min_memsw_limit
, tmp
);
1865 *mem_limit
= min_limit
;
1866 *memsw_limit
= min_memsw_limit
;
1870 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
1872 struct mem_cgroup
*mem
;
1875 mem
= mem_cgroup_from_cont(cont
);
1876 type
= MEMFILE_TYPE(event
);
1877 name
= MEMFILE_ATTR(event
);
1881 res_counter_reset_max(&mem
->res
);
1883 res_counter_reset_max(&mem
->memsw
);
1887 res_counter_reset_failcnt(&mem
->res
);
1889 res_counter_reset_failcnt(&mem
->memsw
);
1895 static const struct mem_cgroup_stat_desc
{
1898 } mem_cgroup_stat_desc
[] = {
1899 [MEM_CGROUP_STAT_CACHE
] = { "cache", PAGE_SIZE
, },
1900 [MEM_CGROUP_STAT_RSS
] = { "rss", PAGE_SIZE
, },
1901 [MEM_CGROUP_STAT_PGPGIN_COUNT
] = {"pgpgin", 1, },
1902 [MEM_CGROUP_STAT_PGPGOUT_COUNT
] = {"pgpgout", 1, },
1905 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
1906 struct cgroup_map_cb
*cb
)
1908 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
1909 struct mem_cgroup_stat
*stat
= &mem_cont
->stat
;
1912 for (i
= 0; i
< ARRAY_SIZE(stat
->cpustat
[0].count
); i
++) {
1915 val
= mem_cgroup_read_stat(stat
, i
);
1916 val
*= mem_cgroup_stat_desc
[i
].unit
;
1917 cb
->fill(cb
, mem_cgroup_stat_desc
[i
].msg
, val
);
1919 /* showing # of active pages */
1921 unsigned long active_anon
, inactive_anon
;
1922 unsigned long active_file
, inactive_file
;
1923 unsigned long unevictable
;
1925 inactive_anon
= mem_cgroup_get_all_zonestat(mem_cont
,
1927 active_anon
= mem_cgroup_get_all_zonestat(mem_cont
,
1929 inactive_file
= mem_cgroup_get_all_zonestat(mem_cont
,
1931 active_file
= mem_cgroup_get_all_zonestat(mem_cont
,
1933 unevictable
= mem_cgroup_get_all_zonestat(mem_cont
,
1936 cb
->fill(cb
, "active_anon", (active_anon
) * PAGE_SIZE
);
1937 cb
->fill(cb
, "inactive_anon", (inactive_anon
) * PAGE_SIZE
);
1938 cb
->fill(cb
, "active_file", (active_file
) * PAGE_SIZE
);
1939 cb
->fill(cb
, "inactive_file", (inactive_file
) * PAGE_SIZE
);
1940 cb
->fill(cb
, "unevictable", unevictable
* PAGE_SIZE
);
1944 unsigned long long limit
, memsw_limit
;
1945 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
1946 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
1947 if (do_swap_account
)
1948 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
1951 #ifdef CONFIG_DEBUG_VM
1952 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
1956 struct mem_cgroup_per_zone
*mz
;
1957 unsigned long recent_rotated
[2] = {0, 0};
1958 unsigned long recent_scanned
[2] = {0, 0};
1960 for_each_online_node(nid
)
1961 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1962 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1964 recent_rotated
[0] +=
1965 mz
->reclaim_stat
.recent_rotated
[0];
1966 recent_rotated
[1] +=
1967 mz
->reclaim_stat
.recent_rotated
[1];
1968 recent_scanned
[0] +=
1969 mz
->reclaim_stat
.recent_scanned
[0];
1970 recent_scanned
[1] +=
1971 mz
->reclaim_stat
.recent_scanned
[1];
1973 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
1974 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
1975 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
1976 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
1983 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
1985 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
1987 return get_swappiness(memcg
);
1990 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1993 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
1994 struct mem_cgroup
*parent
;
1999 if (cgrp
->parent
== NULL
)
2002 parent
= mem_cgroup_from_cont(cgrp
->parent
);
2006 /* If under hierarchy, only empty-root can set this value */
2007 if ((parent
->use_hierarchy
) ||
2008 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
2013 spin_lock(&memcg
->reclaim_param_lock
);
2014 memcg
->swappiness
= val
;
2015 spin_unlock(&memcg
->reclaim_param_lock
);
2023 static struct cftype mem_cgroup_files
[] = {
2025 .name
= "usage_in_bytes",
2026 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
2027 .read_u64
= mem_cgroup_read
,
2030 .name
= "max_usage_in_bytes",
2031 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
2032 .trigger
= mem_cgroup_reset
,
2033 .read_u64
= mem_cgroup_read
,
2036 .name
= "limit_in_bytes",
2037 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
2038 .write_string
= mem_cgroup_write
,
2039 .read_u64
= mem_cgroup_read
,
2043 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
2044 .trigger
= mem_cgroup_reset
,
2045 .read_u64
= mem_cgroup_read
,
2049 .read_map
= mem_control_stat_show
,
2052 .name
= "force_empty",
2053 .trigger
= mem_cgroup_force_empty_write
,
2056 .name
= "use_hierarchy",
2057 .write_u64
= mem_cgroup_hierarchy_write
,
2058 .read_u64
= mem_cgroup_hierarchy_read
,
2061 .name
= "swappiness",
2062 .read_u64
= mem_cgroup_swappiness_read
,
2063 .write_u64
= mem_cgroup_swappiness_write
,
2067 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2068 static struct cftype memsw_cgroup_files
[] = {
2070 .name
= "memsw.usage_in_bytes",
2071 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
2072 .read_u64
= mem_cgroup_read
,
2075 .name
= "memsw.max_usage_in_bytes",
2076 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
2077 .trigger
= mem_cgroup_reset
,
2078 .read_u64
= mem_cgroup_read
,
2081 .name
= "memsw.limit_in_bytes",
2082 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
2083 .write_string
= mem_cgroup_write
,
2084 .read_u64
= mem_cgroup_read
,
2087 .name
= "memsw.failcnt",
2088 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
2089 .trigger
= mem_cgroup_reset
,
2090 .read_u64
= mem_cgroup_read
,
2094 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2096 if (!do_swap_account
)
2098 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
2099 ARRAY_SIZE(memsw_cgroup_files
));
2102 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2108 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2110 struct mem_cgroup_per_node
*pn
;
2111 struct mem_cgroup_per_zone
*mz
;
2113 int zone
, tmp
= node
;
2115 * This routine is called against possible nodes.
2116 * But it's BUG to call kmalloc() against offline node.
2118 * TODO: this routine can waste much memory for nodes which will
2119 * never be onlined. It's better to use memory hotplug callback
2122 if (!node_state(node
, N_NORMAL_MEMORY
))
2124 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
2128 mem
->info
.nodeinfo
[node
] = pn
;
2129 memset(pn
, 0, sizeof(*pn
));
2131 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
2132 mz
= &pn
->zoneinfo
[zone
];
2134 INIT_LIST_HEAD(&mz
->lists
[l
]);
2139 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2141 kfree(mem
->info
.nodeinfo
[node
]);
2144 static int mem_cgroup_size(void)
2146 int cpustat_size
= nr_cpu_ids
* sizeof(struct mem_cgroup_stat_cpu
);
2147 return sizeof(struct mem_cgroup
) + cpustat_size
;
2150 static struct mem_cgroup
*mem_cgroup_alloc(void)
2152 struct mem_cgroup
*mem
;
2153 int size
= mem_cgroup_size();
2155 if (size
< PAGE_SIZE
)
2156 mem
= kmalloc(size
, GFP_KERNEL
);
2158 mem
= vmalloc(size
);
2161 memset(mem
, 0, size
);
2166 * At destroying mem_cgroup, references from swap_cgroup can remain.
2167 * (scanning all at force_empty is too costly...)
2169 * Instead of clearing all references at force_empty, we remember
2170 * the number of reference from swap_cgroup and free mem_cgroup when
2171 * it goes down to 0.
2173 * Removal of cgroup itself succeeds regardless of refs from swap.
2176 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
2180 for_each_node_state(node
, N_POSSIBLE
)
2181 free_mem_cgroup_per_zone_info(mem
, node
);
2183 if (mem_cgroup_size() < PAGE_SIZE
)
2189 static void mem_cgroup_get(struct mem_cgroup
*mem
)
2191 atomic_inc(&mem
->refcnt
);
2194 static void mem_cgroup_put(struct mem_cgroup
*mem
)
2196 if (atomic_dec_and_test(&mem
->refcnt
))
2197 __mem_cgroup_free(mem
);
2201 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2202 static void __init
enable_swap_cgroup(void)
2204 if (!mem_cgroup_disabled() && really_do_swap_account
)
2205 do_swap_account
= 1;
2208 static void __init
enable_swap_cgroup(void)
2213 static struct cgroup_subsys_state
* __ref
2214 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
2216 struct mem_cgroup
*mem
, *parent
;
2219 mem
= mem_cgroup_alloc();
2221 return ERR_PTR(-ENOMEM
);
2223 for_each_node_state(node
, N_POSSIBLE
)
2224 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
2227 if (cont
->parent
== NULL
) {
2228 enable_swap_cgroup();
2231 parent
= mem_cgroup_from_cont(cont
->parent
);
2232 mem
->use_hierarchy
= parent
->use_hierarchy
;
2235 if (parent
&& parent
->use_hierarchy
) {
2236 res_counter_init(&mem
->res
, &parent
->res
);
2237 res_counter_init(&mem
->memsw
, &parent
->memsw
);
2239 res_counter_init(&mem
->res
, NULL
);
2240 res_counter_init(&mem
->memsw
, NULL
);
2242 mem
->last_scanned_child
= NULL
;
2243 spin_lock_init(&mem
->reclaim_param_lock
);
2246 mem
->swappiness
= get_swappiness(parent
);
2247 atomic_set(&mem
->refcnt
, 1);
2250 __mem_cgroup_free(mem
);
2251 return ERR_PTR(-ENOMEM
);
2254 static void mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
2255 struct cgroup
*cont
)
2257 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2258 mem_cgroup_force_empty(mem
, false);
2261 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
2262 struct cgroup
*cont
)
2264 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2265 struct mem_cgroup
*last_scanned_child
= mem
->last_scanned_child
;
2267 if (last_scanned_child
) {
2268 VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child
));
2269 mem_cgroup_put(last_scanned_child
);
2271 mem_cgroup_put(mem
);
2274 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
2275 struct cgroup
*cont
)
2279 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
2280 ARRAY_SIZE(mem_cgroup_files
));
2283 ret
= register_memsw_files(cont
, ss
);
2287 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
2288 struct cgroup
*cont
,
2289 struct cgroup
*old_cont
,
2290 struct task_struct
*p
)
2292 mutex_lock(&memcg_tasklist
);
2294 * FIXME: It's better to move charges of this process from old
2295 * memcg to new memcg. But it's just on TODO-List now.
2297 mutex_unlock(&memcg_tasklist
);
2300 struct cgroup_subsys mem_cgroup_subsys
= {
2302 .subsys_id
= mem_cgroup_subsys_id
,
2303 .create
= mem_cgroup_create
,
2304 .pre_destroy
= mem_cgroup_pre_destroy
,
2305 .destroy
= mem_cgroup_destroy
,
2306 .populate
= mem_cgroup_populate
,
2307 .attach
= mem_cgroup_move_task
,
2311 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2313 static int __init
disable_swap_account(char *s
)
2315 really_do_swap_account
= 0;
2318 __setup("noswapaccount", disable_swap_account
);