oom: do not dump task state for non thread group leaders
[linux-2.6/mini2440.git] / mm / oom_kill.c
blob2846a58e5de980ddf0716740c8c5c29689610939
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
8 * The routines in this file are used to kill a process when
9 * we're seriously out of memory. This gets called from __alloc_pages()
10 * in mm/page_alloc.c when we really run out of memory.
12 * Since we won't call these routines often (on a well-configured
13 * machine) this file will double as a 'coding guide' and a signpost
14 * for newbie kernel hackers. It features several pointers to major
15 * kernel subsystems and hints as to where to find out what things do.
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29 #include <linux/security.h>
31 int sysctl_panic_on_oom;
32 int sysctl_oom_kill_allocating_task;
33 int sysctl_oom_dump_tasks;
34 static DEFINE_SPINLOCK(zone_scan_mutex);
35 /* #define DEBUG */
37 /**
38 * badness - calculate a numeric value for how bad this task has been
39 * @p: task struct of which task we should calculate
40 * @uptime: current uptime in seconds
41 * @mem: target memory controller
43 * The formula used is relatively simple and documented inline in the
44 * function. The main rationale is that we want to select a good task
45 * to kill when we run out of memory.
47 * Good in this context means that:
48 * 1) we lose the minimum amount of work done
49 * 2) we recover a large amount of memory
50 * 3) we don't kill anything innocent of eating tons of memory
51 * 4) we want to kill the minimum amount of processes (one)
52 * 5) we try to kill the process the user expects us to kill, this
53 * algorithm has been meticulously tuned to meet the principle
54 * of least surprise ... (be careful when you change it)
57 unsigned long badness(struct task_struct *p, unsigned long uptime)
59 unsigned long points, cpu_time, run_time, s;
60 struct mm_struct *mm;
61 struct task_struct *child;
63 task_lock(p);
64 mm = p->mm;
65 if (!mm) {
66 task_unlock(p);
67 return 0;
71 * The memory size of the process is the basis for the badness.
73 points = mm->total_vm;
76 * After this unlock we can no longer dereference local variable `mm'
78 task_unlock(p);
81 * swapoff can easily use up all memory, so kill those first.
83 if (p->flags & PF_SWAPOFF)
84 return ULONG_MAX;
87 * Processes which fork a lot of child processes are likely
88 * a good choice. We add half the vmsize of the children if they
89 * have an own mm. This prevents forking servers to flood the
90 * machine with an endless amount of children. In case a single
91 * child is eating the vast majority of memory, adding only half
92 * to the parents will make the child our kill candidate of choice.
94 list_for_each_entry(child, &p->children, sibling) {
95 task_lock(child);
96 if (child->mm != mm && child->mm)
97 points += child->mm->total_vm/2 + 1;
98 task_unlock(child);
102 * CPU time is in tens of seconds and run time is in thousands
103 * of seconds. There is no particular reason for this other than
104 * that it turned out to work very well in practice.
106 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
107 >> (SHIFT_HZ + 3);
109 if (uptime >= p->start_time.tv_sec)
110 run_time = (uptime - p->start_time.tv_sec) >> 10;
111 else
112 run_time = 0;
114 s = int_sqrt(cpu_time);
115 if (s)
116 points /= s;
117 s = int_sqrt(int_sqrt(run_time));
118 if (s)
119 points /= s;
122 * Niced processes are most likely less important, so double
123 * their badness points.
125 if (task_nice(p) > 0)
126 points *= 2;
129 * Superuser processes are usually more important, so we make it
130 * less likely that we kill those.
132 if (has_capability(p, CAP_SYS_ADMIN) ||
133 has_capability(p, CAP_SYS_RESOURCE))
134 points /= 4;
137 * We don't want to kill a process with direct hardware access.
138 * Not only could that mess up the hardware, but usually users
139 * tend to only have this flag set on applications they think
140 * of as important.
142 if (has_capability(p, CAP_SYS_RAWIO))
143 points /= 4;
146 * If p's nodes don't overlap ours, it may still help to kill p
147 * because p may have allocated or otherwise mapped memory on
148 * this node before. However it will be less likely.
150 if (!cpuset_mems_allowed_intersects(current, p))
151 points /= 8;
154 * Adjust the score by oomkilladj.
156 if (p->oomkilladj) {
157 if (p->oomkilladj > 0) {
158 if (!points)
159 points = 1;
160 points <<= p->oomkilladj;
161 } else
162 points >>= -(p->oomkilladj);
165 #ifdef DEBUG
166 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
167 p->pid, p->comm, points);
168 #endif
169 return points;
173 * Determine the type of allocation constraint.
175 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
176 gfp_t gfp_mask)
178 #ifdef CONFIG_NUMA
179 struct zone *zone;
180 struct zoneref *z;
181 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
182 nodemask_t nodes = node_states[N_HIGH_MEMORY];
184 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
185 if (cpuset_zone_allowed_softwall(zone, gfp_mask))
186 node_clear(zone_to_nid(zone), nodes);
187 else
188 return CONSTRAINT_CPUSET;
190 if (!nodes_empty(nodes))
191 return CONSTRAINT_MEMORY_POLICY;
192 #endif
194 return CONSTRAINT_NONE;
198 * Simple selection loop. We chose the process with the highest
199 * number of 'points'. We expect the caller will lock the tasklist.
201 * (not docbooked, we don't want this one cluttering up the manual)
203 static struct task_struct *select_bad_process(unsigned long *ppoints,
204 struct mem_cgroup *mem)
206 struct task_struct *g, *p;
207 struct task_struct *chosen = NULL;
208 struct timespec uptime;
209 *ppoints = 0;
211 do_posix_clock_monotonic_gettime(&uptime);
212 do_each_thread(g, p) {
213 unsigned long points;
216 * skip kernel threads and tasks which have already released
217 * their mm.
219 if (!p->mm)
220 continue;
221 /* skip the init task */
222 if (is_global_init(p))
223 continue;
224 if (mem && !task_in_mem_cgroup(p, mem))
225 continue;
228 * This task already has access to memory reserves and is
229 * being killed. Don't allow any other task access to the
230 * memory reserve.
232 * Note: this may have a chance of deadlock if it gets
233 * blocked waiting for another task which itself is waiting
234 * for memory. Is there a better alternative?
236 if (test_tsk_thread_flag(p, TIF_MEMDIE))
237 return ERR_PTR(-1UL);
240 * This is in the process of releasing memory so wait for it
241 * to finish before killing some other task by mistake.
243 * However, if p is the current task, we allow the 'kill' to
244 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
245 * which will allow it to gain access to memory reserves in
246 * the process of exiting and releasing its resources.
247 * Otherwise we could get an easy OOM deadlock.
249 if (p->flags & PF_EXITING) {
250 if (p != current)
251 return ERR_PTR(-1UL);
253 chosen = p;
254 *ppoints = ULONG_MAX;
257 if (p->oomkilladj == OOM_DISABLE)
258 continue;
260 points = badness(p, uptime.tv_sec);
261 if (points > *ppoints || !chosen) {
262 chosen = p;
263 *ppoints = points;
265 } while_each_thread(g, p);
267 return chosen;
271 * dump_tasks - dump current memory state of all system tasks
272 * @mem: target memory controller
274 * Dumps the current memory state of all system tasks, excluding kernel threads.
275 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
276 * score, and name.
278 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
279 * shown.
281 * Call with tasklist_lock read-locked.
283 static void dump_tasks(const struct mem_cgroup *mem)
285 struct task_struct *g, *p;
287 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
288 "name\n");
289 do_each_thread(g, p) {
291 * total_vm and rss sizes do not exist for tasks with a
292 * detached mm so there's no need to report them.
294 if (!p->mm)
295 continue;
296 if (mem && !task_in_mem_cgroup(p, mem))
297 continue;
298 if (!thread_group_leader(p))
299 continue;
301 task_lock(p);
302 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
303 p->pid, p->uid, p->tgid, p->mm->total_vm,
304 get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj,
305 p->comm);
306 task_unlock(p);
307 } while_each_thread(g, p);
311 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
312 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
313 * set.
315 static void __oom_kill_task(struct task_struct *p, int verbose)
317 if (is_global_init(p)) {
318 WARN_ON(1);
319 printk(KERN_WARNING "tried to kill init!\n");
320 return;
323 if (!p->mm) {
324 WARN_ON(1);
325 printk(KERN_WARNING "tried to kill an mm-less task!\n");
326 return;
329 if (verbose)
330 printk(KERN_ERR "Killed process %d (%s)\n",
331 task_pid_nr(p), p->comm);
334 * We give our sacrificial lamb high priority and access to
335 * all the memory it needs. That way it should be able to
336 * exit() and clear out its resources quickly...
338 p->rt.time_slice = HZ;
339 set_tsk_thread_flag(p, TIF_MEMDIE);
341 force_sig(SIGKILL, p);
344 static int oom_kill_task(struct task_struct *p)
346 struct mm_struct *mm;
347 struct task_struct *g, *q;
349 mm = p->mm;
351 /* WARNING: mm may not be dereferenced since we did not obtain its
352 * value from get_task_mm(p). This is OK since all we need to do is
353 * compare mm to q->mm below.
355 * Furthermore, even if mm contains a non-NULL value, p->mm may
356 * change to NULL at any time since we do not hold task_lock(p).
357 * However, this is of no concern to us.
360 if (mm == NULL)
361 return 1;
364 * Don't kill the process if any threads are set to OOM_DISABLE
366 do_each_thread(g, q) {
367 if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
368 return 1;
369 } while_each_thread(g, q);
371 __oom_kill_task(p, 1);
374 * kill all processes that share the ->mm (i.e. all threads),
375 * but are in a different thread group. Don't let them have access
376 * to memory reserves though, otherwise we might deplete all memory.
378 do_each_thread(g, q) {
379 if (q->mm == mm && !same_thread_group(q, p))
380 force_sig(SIGKILL, q);
381 } while_each_thread(g, q);
383 return 0;
386 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
387 unsigned long points, struct mem_cgroup *mem,
388 const char *message)
390 struct task_struct *c;
392 if (printk_ratelimit()) {
393 printk(KERN_WARNING "%s invoked oom-killer: "
394 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
395 current->comm, gfp_mask, order, current->oomkilladj);
396 dump_stack();
397 show_mem();
398 if (sysctl_oom_dump_tasks)
399 dump_tasks(mem);
403 * If the task is already exiting, don't alarm the sysadmin or kill
404 * its children or threads, just set TIF_MEMDIE so it can die quickly
406 if (p->flags & PF_EXITING) {
407 __oom_kill_task(p, 0);
408 return 0;
411 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
412 message, task_pid_nr(p), p->comm, points);
414 /* Try to kill a child first */
415 list_for_each_entry(c, &p->children, sibling) {
416 if (c->mm == p->mm)
417 continue;
418 if (!oom_kill_task(c))
419 return 0;
421 return oom_kill_task(p);
424 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
425 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
427 unsigned long points = 0;
428 struct task_struct *p;
430 cgroup_lock();
431 read_lock(&tasklist_lock);
432 retry:
433 p = select_bad_process(&points, mem);
434 if (PTR_ERR(p) == -1UL)
435 goto out;
437 if (!p)
438 p = current;
440 if (oom_kill_process(p, gfp_mask, 0, points, mem,
441 "Memory cgroup out of memory"))
442 goto retry;
443 out:
444 read_unlock(&tasklist_lock);
445 cgroup_unlock();
447 #endif
449 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
451 int register_oom_notifier(struct notifier_block *nb)
453 return blocking_notifier_chain_register(&oom_notify_list, nb);
455 EXPORT_SYMBOL_GPL(register_oom_notifier);
457 int unregister_oom_notifier(struct notifier_block *nb)
459 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
461 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
464 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
465 * if a parallel OOM killing is already taking place that includes a zone in
466 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
468 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
470 struct zoneref *z;
471 struct zone *zone;
472 int ret = 1;
474 spin_lock(&zone_scan_mutex);
475 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
476 if (zone_is_oom_locked(zone)) {
477 ret = 0;
478 goto out;
482 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
484 * Lock each zone in the zonelist under zone_scan_mutex so a
485 * parallel invocation of try_set_zone_oom() doesn't succeed
486 * when it shouldn't.
488 zone_set_flag(zone, ZONE_OOM_LOCKED);
491 out:
492 spin_unlock(&zone_scan_mutex);
493 return ret;
497 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
498 * allocation attempts with zonelists containing them may now recall the OOM
499 * killer, if necessary.
501 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
503 struct zoneref *z;
504 struct zone *zone;
506 spin_lock(&zone_scan_mutex);
507 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
508 zone_clear_flag(zone, ZONE_OOM_LOCKED);
510 spin_unlock(&zone_scan_mutex);
514 * out_of_memory - kill the "best" process when we run out of memory
515 * @zonelist: zonelist pointer
516 * @gfp_mask: memory allocation flags
517 * @order: amount of memory being requested as a power of 2
519 * If we run out of memory, we have the choice between either
520 * killing a random task (bad), letting the system crash (worse)
521 * OR try to be smart about which process to kill. Note that we
522 * don't have to be perfect here, we just have to be good.
524 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
526 struct task_struct *p;
527 unsigned long points = 0;
528 unsigned long freed = 0;
529 enum oom_constraint constraint;
531 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
532 if (freed > 0)
533 /* Got some memory back in the last second. */
534 return;
536 if (sysctl_panic_on_oom == 2)
537 panic("out of memory. Compulsory panic_on_oom is selected.\n");
540 * Check if there were limitations on the allocation (only relevant for
541 * NUMA) that may require different handling.
543 constraint = constrained_alloc(zonelist, gfp_mask);
544 read_lock(&tasklist_lock);
546 switch (constraint) {
547 case CONSTRAINT_MEMORY_POLICY:
548 oom_kill_process(current, gfp_mask, order, points, NULL,
549 "No available memory (MPOL_BIND)");
550 break;
552 case CONSTRAINT_NONE:
553 if (sysctl_panic_on_oom)
554 panic("out of memory. panic_on_oom is selected\n");
555 /* Fall-through */
556 case CONSTRAINT_CPUSET:
557 if (sysctl_oom_kill_allocating_task) {
558 oom_kill_process(current, gfp_mask, order, points, NULL,
559 "Out of memory (oom_kill_allocating_task)");
560 break;
562 retry:
564 * Rambo mode: Shoot down a process and hope it solves whatever
565 * issues we may have.
567 p = select_bad_process(&points, NULL);
569 if (PTR_ERR(p) == -1UL)
570 goto out;
572 /* Found nothing?!?! Either we hang forever, or we panic. */
573 if (!p) {
574 read_unlock(&tasklist_lock);
575 panic("Out of memory and no killable processes...\n");
578 if (oom_kill_process(p, gfp_mask, order, points, NULL,
579 "Out of memory"))
580 goto retry;
582 break;
585 out:
586 read_unlock(&tasklist_lock);
589 * Give "p" a good chance of killing itself before we
590 * retry to allocate memory unless "p" is current
592 if (!test_thread_flag(TIF_MEMDIE))
593 schedule_timeout_uninterruptible(1);