USB: EHCI: fix bug in Iso scheduling
[linux-2.6/mini2440.git] / fs / splice.c
blobaa5f6f60b3055f8a35b59084f0c652cb0e5c2125
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
34 * Attempt to steal a page from a pipe buffer. This should perhaps go into
35 * a vm helper function, it's already simplified quite a bit by the
36 * addition of remove_mapping(). If success is returned, the caller may
37 * attempt to reuse this page for another destination.
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 struct pipe_buffer *buf)
42 struct page *page = buf->page;
43 struct address_space *mapping;
45 lock_page(page);
47 mapping = page_mapping(page);
48 if (mapping) {
49 WARN_ON(!PageUptodate(page));
52 * At least for ext2 with nobh option, we need to wait on
53 * writeback completing on this page, since we'll remove it
54 * from the pagecache. Otherwise truncate wont wait on the
55 * page, allowing the disk blocks to be reused by someone else
56 * before we actually wrote our data to them. fs corruption
57 * ensues.
59 wait_on_page_writeback(page);
61 if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
62 goto out_unlock;
65 * If we succeeded in removing the mapping, set LRU flag
66 * and return good.
68 if (remove_mapping(mapping, page)) {
69 buf->flags |= PIPE_BUF_FLAG_LRU;
70 return 0;
75 * Raced with truncate or failed to remove page from current
76 * address space, unlock and return failure.
78 out_unlock:
79 unlock_page(page);
80 return 1;
83 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
86 page_cache_release(buf->page);
87 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 * Check whether the contents of buf is OK to access. Since the content
92 * is a page cache page, IO may be in flight.
94 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
95 struct pipe_buffer *buf)
97 struct page *page = buf->page;
98 int err;
100 if (!PageUptodate(page)) {
101 lock_page(page);
104 * Page got truncated/unhashed. This will cause a 0-byte
105 * splice, if this is the first page.
107 if (!page->mapping) {
108 err = -ENODATA;
109 goto error;
113 * Uh oh, read-error from disk.
115 if (!PageUptodate(page)) {
116 err = -EIO;
117 goto error;
121 * Page is ok afterall, we are done.
123 unlock_page(page);
126 return 0;
127 error:
128 unlock_page(page);
129 return err;
132 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
133 .can_merge = 0,
134 .map = generic_pipe_buf_map,
135 .unmap = generic_pipe_buf_unmap,
136 .confirm = page_cache_pipe_buf_confirm,
137 .release = page_cache_pipe_buf_release,
138 .steal = page_cache_pipe_buf_steal,
139 .get = generic_pipe_buf_get,
142 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
143 struct pipe_buffer *buf)
145 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
146 return 1;
148 buf->flags |= PIPE_BUF_FLAG_LRU;
149 return generic_pipe_buf_steal(pipe, buf);
152 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
153 .can_merge = 0,
154 .map = generic_pipe_buf_map,
155 .unmap = generic_pipe_buf_unmap,
156 .confirm = generic_pipe_buf_confirm,
157 .release = page_cache_pipe_buf_release,
158 .steal = user_page_pipe_buf_steal,
159 .get = generic_pipe_buf_get,
163 * splice_to_pipe - fill passed data into a pipe
164 * @pipe: pipe to fill
165 * @spd: data to fill
167 * Description:
168 * @spd contains a map of pages and len/offset tuples, along with
169 * the struct pipe_buf_operations associated with these pages. This
170 * function will link that data to the pipe.
173 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
174 struct splice_pipe_desc *spd)
176 unsigned int spd_pages = spd->nr_pages;
177 int ret, do_wakeup, page_nr;
179 ret = 0;
180 do_wakeup = 0;
181 page_nr = 0;
183 if (pipe->inode)
184 mutex_lock(&pipe->inode->i_mutex);
186 for (;;) {
187 if (!pipe->readers) {
188 send_sig(SIGPIPE, current, 0);
189 if (!ret)
190 ret = -EPIPE;
191 break;
194 if (pipe->nrbufs < PIPE_BUFFERS) {
195 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
196 struct pipe_buffer *buf = pipe->bufs + newbuf;
198 buf->page = spd->pages[page_nr];
199 buf->offset = spd->partial[page_nr].offset;
200 buf->len = spd->partial[page_nr].len;
201 buf->private = spd->partial[page_nr].private;
202 buf->ops = spd->ops;
203 if (spd->flags & SPLICE_F_GIFT)
204 buf->flags |= PIPE_BUF_FLAG_GIFT;
206 pipe->nrbufs++;
207 page_nr++;
208 ret += buf->len;
210 if (pipe->inode)
211 do_wakeup = 1;
213 if (!--spd->nr_pages)
214 break;
215 if (pipe->nrbufs < PIPE_BUFFERS)
216 continue;
218 break;
221 if (spd->flags & SPLICE_F_NONBLOCK) {
222 if (!ret)
223 ret = -EAGAIN;
224 break;
227 if (signal_pending(current)) {
228 if (!ret)
229 ret = -ERESTARTSYS;
230 break;
233 if (do_wakeup) {
234 smp_mb();
235 if (waitqueue_active(&pipe->wait))
236 wake_up_interruptible_sync(&pipe->wait);
237 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
238 do_wakeup = 0;
241 pipe->waiting_writers++;
242 pipe_wait(pipe);
243 pipe->waiting_writers--;
246 if (pipe->inode) {
247 mutex_unlock(&pipe->inode->i_mutex);
249 if (do_wakeup) {
250 smp_mb();
251 if (waitqueue_active(&pipe->wait))
252 wake_up_interruptible(&pipe->wait);
253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
257 while (page_nr < spd_pages)
258 spd->spd_release(spd, page_nr++);
260 return ret;
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
265 page_cache_release(spd->pages[i]);
268 static int
269 __generic_file_splice_read(struct file *in, loff_t *ppos,
270 struct pipe_inode_info *pipe, size_t len,
271 unsigned int flags)
273 struct address_space *mapping = in->f_mapping;
274 unsigned int loff, nr_pages, req_pages;
275 struct page *pages[PIPE_BUFFERS];
276 struct partial_page partial[PIPE_BUFFERS];
277 struct page *page;
278 pgoff_t index, end_index;
279 loff_t isize;
280 int error, page_nr;
281 struct splice_pipe_desc spd = {
282 .pages = pages,
283 .partial = partial,
284 .flags = flags,
285 .ops = &page_cache_pipe_buf_ops,
286 .spd_release = spd_release_page,
289 index = *ppos >> PAGE_CACHE_SHIFT;
290 loff = *ppos & ~PAGE_CACHE_MASK;
291 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
292 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
295 * Lookup the (hopefully) full range of pages we need.
297 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
298 index += spd.nr_pages;
301 * If find_get_pages_contig() returned fewer pages than we needed,
302 * readahead/allocate the rest and fill in the holes.
304 if (spd.nr_pages < nr_pages)
305 page_cache_sync_readahead(mapping, &in->f_ra, in,
306 index, req_pages - spd.nr_pages);
308 error = 0;
309 while (spd.nr_pages < nr_pages) {
311 * Page could be there, find_get_pages_contig() breaks on
312 * the first hole.
314 page = find_get_page(mapping, index);
315 if (!page) {
317 * page didn't exist, allocate one.
319 page = page_cache_alloc_cold(mapping);
320 if (!page)
321 break;
323 error = add_to_page_cache_lru(page, mapping, index,
324 mapping_gfp_mask(mapping));
325 if (unlikely(error)) {
326 page_cache_release(page);
327 if (error == -EEXIST)
328 continue;
329 break;
332 * add_to_page_cache() locks the page, unlock it
333 * to avoid convoluting the logic below even more.
335 unlock_page(page);
338 pages[spd.nr_pages++] = page;
339 index++;
343 * Now loop over the map and see if we need to start IO on any
344 * pages, fill in the partial map, etc.
346 index = *ppos >> PAGE_CACHE_SHIFT;
347 nr_pages = spd.nr_pages;
348 spd.nr_pages = 0;
349 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
350 unsigned int this_len;
352 if (!len)
353 break;
356 * this_len is the max we'll use from this page
358 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
359 page = pages[page_nr];
361 if (PageReadahead(page))
362 page_cache_async_readahead(mapping, &in->f_ra, in,
363 page, index, req_pages - page_nr);
366 * If the page isn't uptodate, we may need to start io on it
368 if (!PageUptodate(page)) {
370 * If in nonblock mode then dont block on waiting
371 * for an in-flight io page
373 if (flags & SPLICE_F_NONBLOCK) {
374 if (TestSetPageLocked(page)) {
375 error = -EAGAIN;
376 break;
378 } else
379 lock_page(page);
382 * page was truncated, stop here. if this isn't the
383 * first page, we'll just complete what we already
384 * added
386 if (!page->mapping) {
387 unlock_page(page);
388 break;
391 * page was already under io and is now done, great
393 if (PageUptodate(page)) {
394 unlock_page(page);
395 goto fill_it;
399 * need to read in the page
401 error = mapping->a_ops->readpage(in, page);
402 if (unlikely(error)) {
404 * We really should re-lookup the page here,
405 * but it complicates things a lot. Instead
406 * lets just do what we already stored, and
407 * we'll get it the next time we are called.
409 if (error == AOP_TRUNCATED_PAGE)
410 error = 0;
412 break;
415 fill_it:
417 * i_size must be checked after PageUptodate.
419 isize = i_size_read(mapping->host);
420 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
421 if (unlikely(!isize || index > end_index))
422 break;
425 * if this is the last page, see if we need to shrink
426 * the length and stop
428 if (end_index == index) {
429 unsigned int plen;
432 * max good bytes in this page
434 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
435 if (plen <= loff)
436 break;
439 * force quit after adding this page
441 this_len = min(this_len, plen - loff);
442 len = this_len;
445 partial[page_nr].offset = loff;
446 partial[page_nr].len = this_len;
447 len -= this_len;
448 loff = 0;
449 spd.nr_pages++;
450 index++;
454 * Release any pages at the end, if we quit early. 'page_nr' is how far
455 * we got, 'nr_pages' is how many pages are in the map.
457 while (page_nr < nr_pages)
458 page_cache_release(pages[page_nr++]);
459 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
461 if (spd.nr_pages)
462 return splice_to_pipe(pipe, &spd);
464 return error;
468 * generic_file_splice_read - splice data from file to a pipe
469 * @in: file to splice from
470 * @ppos: position in @in
471 * @pipe: pipe to splice to
472 * @len: number of bytes to splice
473 * @flags: splice modifier flags
475 * Description:
476 * Will read pages from given file and fill them into a pipe. Can be
477 * used as long as the address_space operations for the source implements
478 * a readpage() hook.
481 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
482 struct pipe_inode_info *pipe, size_t len,
483 unsigned int flags)
485 loff_t isize, left;
486 int ret;
488 isize = i_size_read(in->f_mapping->host);
489 if (unlikely(*ppos >= isize))
490 return 0;
492 left = isize - *ppos;
493 if (unlikely(left < len))
494 len = left;
496 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
497 if (ret > 0)
498 *ppos += ret;
500 return ret;
503 EXPORT_SYMBOL(generic_file_splice_read);
506 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
507 * using sendpage(). Return the number of bytes sent.
509 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
510 struct pipe_buffer *buf, struct splice_desc *sd)
512 struct file *file = sd->u.file;
513 loff_t pos = sd->pos;
514 int ret, more;
516 ret = buf->ops->confirm(pipe, buf);
517 if (!ret) {
518 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
520 ret = file->f_op->sendpage(file, buf->page, buf->offset,
521 sd->len, &pos, more);
524 return ret;
528 * This is a little more tricky than the file -> pipe splicing. There are
529 * basically three cases:
531 * - Destination page already exists in the address space and there
532 * are users of it. For that case we have no other option that
533 * copying the data. Tough luck.
534 * - Destination page already exists in the address space, but there
535 * are no users of it. Make sure it's uptodate, then drop it. Fall
536 * through to last case.
537 * - Destination page does not exist, we can add the pipe page to
538 * the page cache and avoid the copy.
540 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
541 * sd->flags), we attempt to migrate pages from the pipe to the output
542 * file address space page cache. This is possible if no one else has
543 * the pipe page referenced outside of the pipe and page cache. If
544 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
545 * a new page in the output file page cache and fill/dirty that.
547 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
548 struct splice_desc *sd)
550 struct file *file = sd->u.file;
551 struct address_space *mapping = file->f_mapping;
552 unsigned int offset, this_len;
553 struct page *page;
554 void *fsdata;
555 int ret;
558 * make sure the data in this buffer is uptodate
560 ret = buf->ops->confirm(pipe, buf);
561 if (unlikely(ret))
562 return ret;
564 offset = sd->pos & ~PAGE_CACHE_MASK;
566 this_len = sd->len;
567 if (this_len + offset > PAGE_CACHE_SIZE)
568 this_len = PAGE_CACHE_SIZE - offset;
570 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
571 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
572 if (unlikely(ret))
573 goto out;
575 if (buf->page != page) {
577 * Careful, ->map() uses KM_USER0!
579 char *src = buf->ops->map(pipe, buf, 1);
580 char *dst = kmap_atomic(page, KM_USER1);
582 memcpy(dst + offset, src + buf->offset, this_len);
583 flush_dcache_page(page);
584 kunmap_atomic(dst, KM_USER1);
585 buf->ops->unmap(pipe, buf, src);
587 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
588 page, fsdata);
589 out:
590 return ret;
594 * __splice_from_pipe - splice data from a pipe to given actor
595 * @pipe: pipe to splice from
596 * @sd: information to @actor
597 * @actor: handler that splices the data
599 * Description:
600 * This function does little more than loop over the pipe and call
601 * @actor to do the actual moving of a single struct pipe_buffer to
602 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
603 * pipe_to_user.
606 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
607 splice_actor *actor)
609 int ret, do_wakeup, err;
611 ret = 0;
612 do_wakeup = 0;
614 for (;;) {
615 if (pipe->nrbufs) {
616 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
617 const struct pipe_buf_operations *ops = buf->ops;
619 sd->len = buf->len;
620 if (sd->len > sd->total_len)
621 sd->len = sd->total_len;
623 err = actor(pipe, buf, sd);
624 if (err <= 0) {
625 if (!ret && err != -ENODATA)
626 ret = err;
628 break;
631 ret += err;
632 buf->offset += err;
633 buf->len -= err;
635 sd->len -= err;
636 sd->pos += err;
637 sd->total_len -= err;
638 if (sd->len)
639 continue;
641 if (!buf->len) {
642 buf->ops = NULL;
643 ops->release(pipe, buf);
644 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
645 pipe->nrbufs--;
646 if (pipe->inode)
647 do_wakeup = 1;
650 if (!sd->total_len)
651 break;
654 if (pipe->nrbufs)
655 continue;
656 if (!pipe->writers)
657 break;
658 if (!pipe->waiting_writers) {
659 if (ret)
660 break;
663 if (sd->flags & SPLICE_F_NONBLOCK) {
664 if (!ret)
665 ret = -EAGAIN;
666 break;
669 if (signal_pending(current)) {
670 if (!ret)
671 ret = -ERESTARTSYS;
672 break;
675 if (do_wakeup) {
676 smp_mb();
677 if (waitqueue_active(&pipe->wait))
678 wake_up_interruptible_sync(&pipe->wait);
679 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
680 do_wakeup = 0;
683 pipe_wait(pipe);
686 if (do_wakeup) {
687 smp_mb();
688 if (waitqueue_active(&pipe->wait))
689 wake_up_interruptible(&pipe->wait);
690 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
693 return ret;
695 EXPORT_SYMBOL(__splice_from_pipe);
698 * splice_from_pipe - splice data from a pipe to a file
699 * @pipe: pipe to splice from
700 * @out: file to splice to
701 * @ppos: position in @out
702 * @len: how many bytes to splice
703 * @flags: splice modifier flags
704 * @actor: handler that splices the data
706 * Description:
707 * See __splice_from_pipe. This function locks the input and output inodes,
708 * otherwise it's identical to __splice_from_pipe().
711 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
712 loff_t *ppos, size_t len, unsigned int flags,
713 splice_actor *actor)
715 ssize_t ret;
716 struct inode *inode = out->f_mapping->host;
717 struct splice_desc sd = {
718 .total_len = len,
719 .flags = flags,
720 .pos = *ppos,
721 .u.file = out,
725 * The actor worker might be calling ->prepare_write and
726 * ->commit_write. Most of the time, these expect i_mutex to
727 * be held. Since this may result in an ABBA deadlock with
728 * pipe->inode, we have to order lock acquiry here.
730 inode_double_lock(inode, pipe->inode);
731 ret = __splice_from_pipe(pipe, &sd, actor);
732 inode_double_unlock(inode, pipe->inode);
734 return ret;
738 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
739 * @pipe: pipe info
740 * @out: file to write to
741 * @ppos: position in @out
742 * @len: number of bytes to splice
743 * @flags: splice modifier flags
745 * Description:
746 * Will either move or copy pages (determined by @flags options) from
747 * the given pipe inode to the given file. The caller is responsible
748 * for acquiring i_mutex on both inodes.
751 ssize_t
752 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
753 loff_t *ppos, size_t len, unsigned int flags)
755 struct address_space *mapping = out->f_mapping;
756 struct inode *inode = mapping->host;
757 struct splice_desc sd = {
758 .total_len = len,
759 .flags = flags,
760 .pos = *ppos,
761 .u.file = out,
763 ssize_t ret;
764 int err;
766 err = remove_suid(out->f_path.dentry);
767 if (unlikely(err))
768 return err;
770 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
771 if (ret > 0) {
772 unsigned long nr_pages;
774 *ppos += ret;
775 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
778 * If file or inode is SYNC and we actually wrote some data,
779 * sync it.
781 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
782 err = generic_osync_inode(inode, mapping,
783 OSYNC_METADATA|OSYNC_DATA);
785 if (err)
786 ret = err;
788 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
791 return ret;
794 EXPORT_SYMBOL(generic_file_splice_write_nolock);
797 * generic_file_splice_write - splice data from a pipe to a file
798 * @pipe: pipe info
799 * @out: file to write to
800 * @ppos: position in @out
801 * @len: number of bytes to splice
802 * @flags: splice modifier flags
804 * Description:
805 * Will either move or copy pages (determined by @flags options) from
806 * the given pipe inode to the given file.
809 ssize_t
810 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
811 loff_t *ppos, size_t len, unsigned int flags)
813 struct address_space *mapping = out->f_mapping;
814 struct inode *inode = mapping->host;
815 struct splice_desc sd = {
816 .total_len = len,
817 .flags = flags,
818 .pos = *ppos,
819 .u.file = out,
821 ssize_t ret;
823 inode_double_lock(inode, pipe->inode);
824 ret = remove_suid(out->f_path.dentry);
825 if (likely(!ret))
826 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
827 inode_double_unlock(inode, pipe->inode);
828 if (ret > 0) {
829 unsigned long nr_pages;
831 *ppos += ret;
832 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
835 * If file or inode is SYNC and we actually wrote some data,
836 * sync it.
838 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
839 int err;
841 mutex_lock(&inode->i_mutex);
842 err = generic_osync_inode(inode, mapping,
843 OSYNC_METADATA|OSYNC_DATA);
844 mutex_unlock(&inode->i_mutex);
846 if (err)
847 ret = err;
849 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
852 return ret;
855 EXPORT_SYMBOL(generic_file_splice_write);
858 * generic_splice_sendpage - splice data from a pipe to a socket
859 * @pipe: pipe to splice from
860 * @out: socket to write to
861 * @ppos: position in @out
862 * @len: number of bytes to splice
863 * @flags: splice modifier flags
865 * Description:
866 * Will send @len bytes from the pipe to a network socket. No data copying
867 * is involved.
870 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
871 loff_t *ppos, size_t len, unsigned int flags)
873 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
876 EXPORT_SYMBOL(generic_splice_sendpage);
879 * Attempt to initiate a splice from pipe to file.
881 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
882 loff_t *ppos, size_t len, unsigned int flags)
884 int ret;
886 if (unlikely(!out->f_op || !out->f_op->splice_write))
887 return -EINVAL;
889 if (unlikely(!(out->f_mode & FMODE_WRITE)))
890 return -EBADF;
892 ret = rw_verify_area(WRITE, out, ppos, len);
893 if (unlikely(ret < 0))
894 return ret;
896 return out->f_op->splice_write(pipe, out, ppos, len, flags);
900 * Attempt to initiate a splice from a file to a pipe.
902 static long do_splice_to(struct file *in, loff_t *ppos,
903 struct pipe_inode_info *pipe, size_t len,
904 unsigned int flags)
906 int ret;
908 if (unlikely(!in->f_op || !in->f_op->splice_read))
909 return -EINVAL;
911 if (unlikely(!(in->f_mode & FMODE_READ)))
912 return -EBADF;
914 ret = rw_verify_area(READ, in, ppos, len);
915 if (unlikely(ret < 0))
916 return ret;
918 return in->f_op->splice_read(in, ppos, pipe, len, flags);
922 * splice_direct_to_actor - splices data directly between two non-pipes
923 * @in: file to splice from
924 * @sd: actor information on where to splice to
925 * @actor: handles the data splicing
927 * Description:
928 * This is a special case helper to splice directly between two
929 * points, without requiring an explicit pipe. Internally an allocated
930 * pipe is cached in the process, and reused during the lifetime of
931 * that process.
934 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
935 splice_direct_actor *actor)
937 struct pipe_inode_info *pipe;
938 long ret, bytes;
939 umode_t i_mode;
940 size_t len;
941 int i, flags;
944 * We require the input being a regular file, as we don't want to
945 * randomly drop data for eg socket -> socket splicing. Use the
946 * piped splicing for that!
948 i_mode = in->f_path.dentry->d_inode->i_mode;
949 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
950 return -EINVAL;
953 * neither in nor out is a pipe, setup an internal pipe attached to
954 * 'out' and transfer the wanted data from 'in' to 'out' through that
956 pipe = current->splice_pipe;
957 if (unlikely(!pipe)) {
958 pipe = alloc_pipe_info(NULL);
959 if (!pipe)
960 return -ENOMEM;
963 * We don't have an immediate reader, but we'll read the stuff
964 * out of the pipe right after the splice_to_pipe(). So set
965 * PIPE_READERS appropriately.
967 pipe->readers = 1;
969 current->splice_pipe = pipe;
973 * Do the splice.
975 ret = 0;
976 bytes = 0;
977 len = sd->total_len;
978 flags = sd->flags;
981 * Don't block on output, we have to drain the direct pipe.
983 sd->flags &= ~SPLICE_F_NONBLOCK;
985 while (len) {
986 size_t read_len;
987 loff_t pos = sd->pos, prev_pos = pos;
989 ret = do_splice_to(in, &pos, pipe, len, flags);
990 if (unlikely(ret <= 0))
991 goto out_release;
993 read_len = ret;
994 sd->total_len = read_len;
997 * NOTE: nonblocking mode only applies to the input. We
998 * must not do the output in nonblocking mode as then we
999 * could get stuck data in the internal pipe:
1001 ret = actor(pipe, sd);
1002 if (unlikely(ret <= 0)) {
1003 sd->pos = prev_pos;
1004 goto out_release;
1007 bytes += ret;
1008 len -= ret;
1009 sd->pos = pos;
1011 if (ret < read_len) {
1012 sd->pos = prev_pos + ret;
1013 goto out_release;
1017 done:
1018 pipe->nrbufs = pipe->curbuf = 0;
1019 file_accessed(in);
1020 return bytes;
1022 out_release:
1024 * If we did an incomplete transfer we must release
1025 * the pipe buffers in question:
1027 for (i = 0; i < PIPE_BUFFERS; i++) {
1028 struct pipe_buffer *buf = pipe->bufs + i;
1030 if (buf->ops) {
1031 buf->ops->release(pipe, buf);
1032 buf->ops = NULL;
1036 if (!bytes)
1037 bytes = ret;
1039 goto done;
1041 EXPORT_SYMBOL(splice_direct_to_actor);
1043 static int direct_splice_actor(struct pipe_inode_info *pipe,
1044 struct splice_desc *sd)
1046 struct file *file = sd->u.file;
1048 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1052 * do_splice_direct - splices data directly between two files
1053 * @in: file to splice from
1054 * @ppos: input file offset
1055 * @out: file to splice to
1056 * @len: number of bytes to splice
1057 * @flags: splice modifier flags
1059 * Description:
1060 * For use by do_sendfile(). splice can easily emulate sendfile, but
1061 * doing it in the application would incur an extra system call
1062 * (splice in + splice out, as compared to just sendfile()). So this helper
1063 * can splice directly through a process-private pipe.
1066 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1067 size_t len, unsigned int flags)
1069 struct splice_desc sd = {
1070 .len = len,
1071 .total_len = len,
1072 .flags = flags,
1073 .pos = *ppos,
1074 .u.file = out,
1076 long ret;
1078 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1079 if (ret > 0)
1080 *ppos = sd.pos;
1082 return ret;
1086 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1087 * location, so checking ->i_pipe is not enough to verify that this is a
1088 * pipe.
1090 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1092 if (S_ISFIFO(inode->i_mode))
1093 return inode->i_pipe;
1095 return NULL;
1099 * Determine where to splice to/from.
1101 static long do_splice(struct file *in, loff_t __user *off_in,
1102 struct file *out, loff_t __user *off_out,
1103 size_t len, unsigned int flags)
1105 struct pipe_inode_info *pipe;
1106 loff_t offset, *off;
1107 long ret;
1109 pipe = pipe_info(in->f_path.dentry->d_inode);
1110 if (pipe) {
1111 if (off_in)
1112 return -ESPIPE;
1113 if (off_out) {
1114 if (out->f_op->llseek == no_llseek)
1115 return -EINVAL;
1116 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1117 return -EFAULT;
1118 off = &offset;
1119 } else
1120 off = &out->f_pos;
1122 ret = do_splice_from(pipe, out, off, len, flags);
1124 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1125 ret = -EFAULT;
1127 return ret;
1130 pipe = pipe_info(out->f_path.dentry->d_inode);
1131 if (pipe) {
1132 if (off_out)
1133 return -ESPIPE;
1134 if (off_in) {
1135 if (in->f_op->llseek == no_llseek)
1136 return -EINVAL;
1137 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1138 return -EFAULT;
1139 off = &offset;
1140 } else
1141 off = &in->f_pos;
1143 ret = do_splice_to(in, off, pipe, len, flags);
1145 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1146 ret = -EFAULT;
1148 return ret;
1151 return -EINVAL;
1155 * Do a copy-from-user while holding the mmap_semaphore for reading, in a
1156 * manner safe from deadlocking with simultaneous mmap() (grabbing mmap_sem
1157 * for writing) and page faulting on the user memory pointed to by src.
1158 * This assumes that we will very rarely hit the partial != 0 path, or this
1159 * will not be a win.
1161 static int copy_from_user_mmap_sem(void *dst, const void __user *src, size_t n)
1163 int partial;
1165 if (!access_ok(VERIFY_READ, src, n))
1166 return -EFAULT;
1168 pagefault_disable();
1169 partial = __copy_from_user_inatomic(dst, src, n);
1170 pagefault_enable();
1173 * Didn't copy everything, drop the mmap_sem and do a faulting copy
1175 if (unlikely(partial)) {
1176 up_read(&current->mm->mmap_sem);
1177 partial = copy_from_user(dst, src, n);
1178 down_read(&current->mm->mmap_sem);
1181 return partial;
1185 * Map an iov into an array of pages and offset/length tupples. With the
1186 * partial_page structure, we can map several non-contiguous ranges into
1187 * our ones pages[] map instead of splitting that operation into pieces.
1188 * Could easily be exported as a generic helper for other users, in which
1189 * case one would probably want to add a 'max_nr_pages' parameter as well.
1191 static int get_iovec_page_array(const struct iovec __user *iov,
1192 unsigned int nr_vecs, struct page **pages,
1193 struct partial_page *partial, int aligned)
1195 int buffers = 0, error = 0;
1197 down_read(&current->mm->mmap_sem);
1199 while (nr_vecs) {
1200 unsigned long off, npages;
1201 struct iovec entry;
1202 void __user *base;
1203 size_t len;
1204 int i;
1206 error = -EFAULT;
1207 if (copy_from_user_mmap_sem(&entry, iov, sizeof(entry)))
1208 break;
1210 base = entry.iov_base;
1211 len = entry.iov_len;
1214 * Sanity check this iovec. 0 read succeeds.
1216 error = 0;
1217 if (unlikely(!len))
1218 break;
1219 error = -EFAULT;
1220 if (!access_ok(VERIFY_READ, base, len))
1221 break;
1224 * Get this base offset and number of pages, then map
1225 * in the user pages.
1227 off = (unsigned long) base & ~PAGE_MASK;
1230 * If asked for alignment, the offset must be zero and the
1231 * length a multiple of the PAGE_SIZE.
1233 error = -EINVAL;
1234 if (aligned && (off || len & ~PAGE_MASK))
1235 break;
1237 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1238 if (npages > PIPE_BUFFERS - buffers)
1239 npages = PIPE_BUFFERS - buffers;
1241 error = get_user_pages(current, current->mm,
1242 (unsigned long) base, npages, 0, 0,
1243 &pages[buffers], NULL);
1245 if (unlikely(error <= 0))
1246 break;
1249 * Fill this contiguous range into the partial page map.
1251 for (i = 0; i < error; i++) {
1252 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1254 partial[buffers].offset = off;
1255 partial[buffers].len = plen;
1257 off = 0;
1258 len -= plen;
1259 buffers++;
1263 * We didn't complete this iov, stop here since it probably
1264 * means we have to move some of this into a pipe to
1265 * be able to continue.
1267 if (len)
1268 break;
1271 * Don't continue if we mapped fewer pages than we asked for,
1272 * or if we mapped the max number of pages that we have
1273 * room for.
1275 if (error < npages || buffers == PIPE_BUFFERS)
1276 break;
1278 nr_vecs--;
1279 iov++;
1282 up_read(&current->mm->mmap_sem);
1284 if (buffers)
1285 return buffers;
1287 return error;
1290 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1291 struct splice_desc *sd)
1293 char *src;
1294 int ret;
1296 ret = buf->ops->confirm(pipe, buf);
1297 if (unlikely(ret))
1298 return ret;
1301 * See if we can use the atomic maps, by prefaulting in the
1302 * pages and doing an atomic copy
1304 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1305 src = buf->ops->map(pipe, buf, 1);
1306 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1307 sd->len);
1308 buf->ops->unmap(pipe, buf, src);
1309 if (!ret) {
1310 ret = sd->len;
1311 goto out;
1316 * No dice, use slow non-atomic map and copy
1318 src = buf->ops->map(pipe, buf, 0);
1320 ret = sd->len;
1321 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1322 ret = -EFAULT;
1324 buf->ops->unmap(pipe, buf, src);
1325 out:
1326 if (ret > 0)
1327 sd->u.userptr += ret;
1328 return ret;
1332 * For lack of a better implementation, implement vmsplice() to userspace
1333 * as a simple copy of the pipes pages to the user iov.
1335 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1336 unsigned long nr_segs, unsigned int flags)
1338 struct pipe_inode_info *pipe;
1339 struct splice_desc sd;
1340 ssize_t size;
1341 int error;
1342 long ret;
1344 pipe = pipe_info(file->f_path.dentry->d_inode);
1345 if (!pipe)
1346 return -EBADF;
1348 if (pipe->inode)
1349 mutex_lock(&pipe->inode->i_mutex);
1351 error = ret = 0;
1352 while (nr_segs) {
1353 void __user *base;
1354 size_t len;
1357 * Get user address base and length for this iovec.
1359 error = get_user(base, &iov->iov_base);
1360 if (unlikely(error))
1361 break;
1362 error = get_user(len, &iov->iov_len);
1363 if (unlikely(error))
1364 break;
1367 * Sanity check this iovec. 0 read succeeds.
1369 if (unlikely(!len))
1370 break;
1371 if (unlikely(!base)) {
1372 error = -EFAULT;
1373 break;
1376 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1377 error = -EFAULT;
1378 break;
1381 sd.len = 0;
1382 sd.total_len = len;
1383 sd.flags = flags;
1384 sd.u.userptr = base;
1385 sd.pos = 0;
1387 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1388 if (size < 0) {
1389 if (!ret)
1390 ret = size;
1392 break;
1395 ret += size;
1397 if (size < len)
1398 break;
1400 nr_segs--;
1401 iov++;
1404 if (pipe->inode)
1405 mutex_unlock(&pipe->inode->i_mutex);
1407 if (!ret)
1408 ret = error;
1410 return ret;
1414 * vmsplice splices a user address range into a pipe. It can be thought of
1415 * as splice-from-memory, where the regular splice is splice-from-file (or
1416 * to file). In both cases the output is a pipe, naturally.
1418 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1419 unsigned long nr_segs, unsigned int flags)
1421 struct pipe_inode_info *pipe;
1422 struct page *pages[PIPE_BUFFERS];
1423 struct partial_page partial[PIPE_BUFFERS];
1424 struct splice_pipe_desc spd = {
1425 .pages = pages,
1426 .partial = partial,
1427 .flags = flags,
1428 .ops = &user_page_pipe_buf_ops,
1429 .spd_release = spd_release_page,
1432 pipe = pipe_info(file->f_path.dentry->d_inode);
1433 if (!pipe)
1434 return -EBADF;
1436 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1437 flags & SPLICE_F_GIFT);
1438 if (spd.nr_pages <= 0)
1439 return spd.nr_pages;
1441 return splice_to_pipe(pipe, &spd);
1445 * Note that vmsplice only really supports true splicing _from_ user memory
1446 * to a pipe, not the other way around. Splicing from user memory is a simple
1447 * operation that can be supported without any funky alignment restrictions
1448 * or nasty vm tricks. We simply map in the user memory and fill them into
1449 * a pipe. The reverse isn't quite as easy, though. There are two possible
1450 * solutions for that:
1452 * - memcpy() the data internally, at which point we might as well just
1453 * do a regular read() on the buffer anyway.
1454 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1455 * has restriction limitations on both ends of the pipe).
1457 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1460 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1461 unsigned long nr_segs, unsigned int flags)
1463 struct file *file;
1464 long error;
1465 int fput;
1467 if (unlikely(nr_segs > UIO_MAXIOV))
1468 return -EINVAL;
1469 else if (unlikely(!nr_segs))
1470 return 0;
1472 error = -EBADF;
1473 file = fget_light(fd, &fput);
1474 if (file) {
1475 if (file->f_mode & FMODE_WRITE)
1476 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1477 else if (file->f_mode & FMODE_READ)
1478 error = vmsplice_to_user(file, iov, nr_segs, flags);
1480 fput_light(file, fput);
1483 return error;
1486 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1487 int fd_out, loff_t __user *off_out,
1488 size_t len, unsigned int flags)
1490 long error;
1491 struct file *in, *out;
1492 int fput_in, fput_out;
1494 if (unlikely(!len))
1495 return 0;
1497 error = -EBADF;
1498 in = fget_light(fd_in, &fput_in);
1499 if (in) {
1500 if (in->f_mode & FMODE_READ) {
1501 out = fget_light(fd_out, &fput_out);
1502 if (out) {
1503 if (out->f_mode & FMODE_WRITE)
1504 error = do_splice(in, off_in,
1505 out, off_out,
1506 len, flags);
1507 fput_light(out, fput_out);
1511 fput_light(in, fput_in);
1514 return error;
1518 * Make sure there's data to read. Wait for input if we can, otherwise
1519 * return an appropriate error.
1521 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1523 int ret;
1526 * Check ->nrbufs without the inode lock first. This function
1527 * is speculative anyways, so missing one is ok.
1529 if (pipe->nrbufs)
1530 return 0;
1532 ret = 0;
1533 mutex_lock(&pipe->inode->i_mutex);
1535 while (!pipe->nrbufs) {
1536 if (signal_pending(current)) {
1537 ret = -ERESTARTSYS;
1538 break;
1540 if (!pipe->writers)
1541 break;
1542 if (!pipe->waiting_writers) {
1543 if (flags & SPLICE_F_NONBLOCK) {
1544 ret = -EAGAIN;
1545 break;
1548 pipe_wait(pipe);
1551 mutex_unlock(&pipe->inode->i_mutex);
1552 return ret;
1556 * Make sure there's writeable room. Wait for room if we can, otherwise
1557 * return an appropriate error.
1559 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1561 int ret;
1564 * Check ->nrbufs without the inode lock first. This function
1565 * is speculative anyways, so missing one is ok.
1567 if (pipe->nrbufs < PIPE_BUFFERS)
1568 return 0;
1570 ret = 0;
1571 mutex_lock(&pipe->inode->i_mutex);
1573 while (pipe->nrbufs >= PIPE_BUFFERS) {
1574 if (!pipe->readers) {
1575 send_sig(SIGPIPE, current, 0);
1576 ret = -EPIPE;
1577 break;
1579 if (flags & SPLICE_F_NONBLOCK) {
1580 ret = -EAGAIN;
1581 break;
1583 if (signal_pending(current)) {
1584 ret = -ERESTARTSYS;
1585 break;
1587 pipe->waiting_writers++;
1588 pipe_wait(pipe);
1589 pipe->waiting_writers--;
1592 mutex_unlock(&pipe->inode->i_mutex);
1593 return ret;
1597 * Link contents of ipipe to opipe.
1599 static int link_pipe(struct pipe_inode_info *ipipe,
1600 struct pipe_inode_info *opipe,
1601 size_t len, unsigned int flags)
1603 struct pipe_buffer *ibuf, *obuf;
1604 int ret = 0, i = 0, nbuf;
1607 * Potential ABBA deadlock, work around it by ordering lock
1608 * grabbing by inode address. Otherwise two different processes
1609 * could deadlock (one doing tee from A -> B, the other from B -> A).
1611 inode_double_lock(ipipe->inode, opipe->inode);
1613 do {
1614 if (!opipe->readers) {
1615 send_sig(SIGPIPE, current, 0);
1616 if (!ret)
1617 ret = -EPIPE;
1618 break;
1622 * If we have iterated all input buffers or ran out of
1623 * output room, break.
1625 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1626 break;
1628 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1629 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1632 * Get a reference to this pipe buffer,
1633 * so we can copy the contents over.
1635 ibuf->ops->get(ipipe, ibuf);
1637 obuf = opipe->bufs + nbuf;
1638 *obuf = *ibuf;
1641 * Don't inherit the gift flag, we need to
1642 * prevent multiple steals of this page.
1644 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1646 if (obuf->len > len)
1647 obuf->len = len;
1649 opipe->nrbufs++;
1650 ret += obuf->len;
1651 len -= obuf->len;
1652 i++;
1653 } while (len);
1656 * return EAGAIN if we have the potential of some data in the
1657 * future, otherwise just return 0
1659 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1660 ret = -EAGAIN;
1662 inode_double_unlock(ipipe->inode, opipe->inode);
1665 * If we put data in the output pipe, wakeup any potential readers.
1667 if (ret > 0) {
1668 smp_mb();
1669 if (waitqueue_active(&opipe->wait))
1670 wake_up_interruptible(&opipe->wait);
1671 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1674 return ret;
1678 * This is a tee(1) implementation that works on pipes. It doesn't copy
1679 * any data, it simply references the 'in' pages on the 'out' pipe.
1680 * The 'flags' used are the SPLICE_F_* variants, currently the only
1681 * applicable one is SPLICE_F_NONBLOCK.
1683 static long do_tee(struct file *in, struct file *out, size_t len,
1684 unsigned int flags)
1686 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1687 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1688 int ret = -EINVAL;
1691 * Duplicate the contents of ipipe to opipe without actually
1692 * copying the data.
1694 if (ipipe && opipe && ipipe != opipe) {
1696 * Keep going, unless we encounter an error. The ipipe/opipe
1697 * ordering doesn't really matter.
1699 ret = link_ipipe_prep(ipipe, flags);
1700 if (!ret) {
1701 ret = link_opipe_prep(opipe, flags);
1702 if (!ret)
1703 ret = link_pipe(ipipe, opipe, len, flags);
1707 return ret;
1710 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1712 struct file *in;
1713 int error, fput_in;
1715 if (unlikely(!len))
1716 return 0;
1718 error = -EBADF;
1719 in = fget_light(fdin, &fput_in);
1720 if (in) {
1721 if (in->f_mode & FMODE_READ) {
1722 int fput_out;
1723 struct file *out = fget_light(fdout, &fput_out);
1725 if (out) {
1726 if (out->f_mode & FMODE_WRITE)
1727 error = do_tee(in, out, len, flags);
1728 fput_light(out, fput_out);
1731 fput_light(in, fput_in);
1734 return error;