Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6/mini2440.git] / drivers / net / igb / igb_main.c
blob8b80fe3434352ce1835cb3097c68a9b32f1fe78a
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
62 static struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69 /* required last entry */
70 {0, }
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98 struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
126 static int igb_suspend(struct pci_dev *, pm_message_t);
127 #ifdef CONFIG_PM
128 static int igb_resume(struct pci_dev *);
129 #endif
130 static void igb_shutdown(struct pci_dev *);
131 #ifdef CONFIG_IGB_DCA
132 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
133 static struct notifier_block dca_notifier = {
134 .notifier_call = igb_notify_dca,
135 .next = NULL,
136 .priority = 0
138 #endif
140 #ifdef CONFIG_NET_POLL_CONTROLLER
141 /* for netdump / net console */
142 static void igb_netpoll(struct net_device *);
143 #endif
145 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
146 pci_channel_state_t);
147 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
148 static void igb_io_resume(struct pci_dev *);
150 static struct pci_error_handlers igb_err_handler = {
151 .error_detected = igb_io_error_detected,
152 .slot_reset = igb_io_slot_reset,
153 .resume = igb_io_resume,
157 static struct pci_driver igb_driver = {
158 .name = igb_driver_name,
159 .id_table = igb_pci_tbl,
160 .probe = igb_probe,
161 .remove = __devexit_p(igb_remove),
162 #ifdef CONFIG_PM
163 /* Power Managment Hooks */
164 .suspend = igb_suspend,
165 .resume = igb_resume,
166 #endif
167 .shutdown = igb_shutdown,
168 .err_handler = &igb_err_handler
171 static int global_quad_port_a; /* global quad port a indication */
173 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
178 #ifdef DEBUG
180 * igb_get_hw_dev_name - return device name string
181 * used by hardware layer to print debugging information
183 char *igb_get_hw_dev_name(struct e1000_hw *hw)
185 struct igb_adapter *adapter = hw->back;
186 return adapter->netdev->name;
188 #endif
191 * igb_init_module - Driver Registration Routine
193 * igb_init_module is the first routine called when the driver is
194 * loaded. All it does is register with the PCI subsystem.
196 static int __init igb_init_module(void)
198 int ret;
199 printk(KERN_INFO "%s - version %s\n",
200 igb_driver_string, igb_driver_version);
202 printk(KERN_INFO "%s\n", igb_copyright);
204 global_quad_port_a = 0;
206 #ifdef CONFIG_IGB_DCA
207 dca_register_notify(&dca_notifier);
208 #endif
210 ret = pci_register_driver(&igb_driver);
211 return ret;
214 module_init(igb_init_module);
217 * igb_exit_module - Driver Exit Cleanup Routine
219 * igb_exit_module is called just before the driver is removed
220 * from memory.
222 static void __exit igb_exit_module(void)
224 #ifdef CONFIG_IGB_DCA
225 dca_unregister_notify(&dca_notifier);
226 #endif
227 pci_unregister_driver(&igb_driver);
230 module_exit(igb_exit_module);
232 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
234 * igb_cache_ring_register - Descriptor ring to register mapping
235 * @adapter: board private structure to initialize
237 * Once we know the feature-set enabled for the device, we'll cache
238 * the register offset the descriptor ring is assigned to.
240 static void igb_cache_ring_register(struct igb_adapter *adapter)
242 int i;
244 switch (adapter->hw.mac.type) {
245 case e1000_82576:
246 /* The queues are allocated for virtualization such that VF 0
247 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
248 * In order to avoid collision we start at the first free queue
249 * and continue consuming queues in the same sequence
251 for (i = 0; i < adapter->num_rx_queues; i++)
252 adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
253 for (i = 0; i < adapter->num_tx_queues; i++)
254 adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
255 break;
256 case e1000_82575:
257 default:
258 for (i = 0; i < adapter->num_rx_queues; i++)
259 adapter->rx_ring[i].reg_idx = i;
260 for (i = 0; i < adapter->num_tx_queues; i++)
261 adapter->tx_ring[i].reg_idx = i;
262 break;
267 * igb_alloc_queues - Allocate memory for all rings
268 * @adapter: board private structure to initialize
270 * We allocate one ring per queue at run-time since we don't know the
271 * number of queues at compile-time.
273 static int igb_alloc_queues(struct igb_adapter *adapter)
275 int i;
277 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
278 sizeof(struct igb_ring), GFP_KERNEL);
279 if (!adapter->tx_ring)
280 return -ENOMEM;
282 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
283 sizeof(struct igb_ring), GFP_KERNEL);
284 if (!adapter->rx_ring) {
285 kfree(adapter->tx_ring);
286 return -ENOMEM;
289 adapter->rx_ring->buddy = adapter->tx_ring;
291 for (i = 0; i < adapter->num_tx_queues; i++) {
292 struct igb_ring *ring = &(adapter->tx_ring[i]);
293 ring->count = adapter->tx_ring_count;
294 ring->adapter = adapter;
295 ring->queue_index = i;
297 for (i = 0; i < adapter->num_rx_queues; i++) {
298 struct igb_ring *ring = &(adapter->rx_ring[i]);
299 ring->count = adapter->rx_ring_count;
300 ring->adapter = adapter;
301 ring->queue_index = i;
302 ring->itr_register = E1000_ITR;
304 /* set a default napi handler for each rx_ring */
305 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
308 igb_cache_ring_register(adapter);
309 return 0;
312 static void igb_free_queues(struct igb_adapter *adapter)
314 int i;
316 for (i = 0; i < adapter->num_rx_queues; i++)
317 netif_napi_del(&adapter->rx_ring[i].napi);
319 kfree(adapter->tx_ring);
320 kfree(adapter->rx_ring);
323 #define IGB_N0_QUEUE -1
324 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
325 int tx_queue, int msix_vector)
327 u32 msixbm = 0;
328 struct e1000_hw *hw = &adapter->hw;
329 u32 ivar, index;
331 switch (hw->mac.type) {
332 case e1000_82575:
333 /* The 82575 assigns vectors using a bitmask, which matches the
334 bitmask for the EICR/EIMS/EIMC registers. To assign one
335 or more queues to a vector, we write the appropriate bits
336 into the MSIXBM register for that vector. */
337 if (rx_queue > IGB_N0_QUEUE) {
338 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
339 adapter->rx_ring[rx_queue].eims_value = msixbm;
341 if (tx_queue > IGB_N0_QUEUE) {
342 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
343 adapter->tx_ring[tx_queue].eims_value =
344 E1000_EICR_TX_QUEUE0 << tx_queue;
346 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
347 break;
348 case e1000_82576:
349 /* 82576 uses a table-based method for assigning vectors.
350 Each queue has a single entry in the table to which we write
351 a vector number along with a "valid" bit. Sadly, the layout
352 of the table is somewhat counterintuitive. */
353 if (rx_queue > IGB_N0_QUEUE) {
354 index = (rx_queue >> 1);
355 ivar = array_rd32(E1000_IVAR0, index);
356 if (rx_queue & 0x1) {
357 /* vector goes into third byte of register */
358 ivar = ivar & 0xFF00FFFF;
359 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
360 } else {
361 /* vector goes into low byte of register */
362 ivar = ivar & 0xFFFFFF00;
363 ivar |= msix_vector | E1000_IVAR_VALID;
365 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
366 array_wr32(E1000_IVAR0, index, ivar);
368 if (tx_queue > IGB_N0_QUEUE) {
369 index = (tx_queue >> 1);
370 ivar = array_rd32(E1000_IVAR0, index);
371 if (tx_queue & 0x1) {
372 /* vector goes into high byte of register */
373 ivar = ivar & 0x00FFFFFF;
374 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
375 } else {
376 /* vector goes into second byte of register */
377 ivar = ivar & 0xFFFF00FF;
378 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
380 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
381 array_wr32(E1000_IVAR0, index, ivar);
383 break;
384 default:
385 BUG();
386 break;
391 * igb_configure_msix - Configure MSI-X hardware
393 * igb_configure_msix sets up the hardware to properly
394 * generate MSI-X interrupts.
396 static void igb_configure_msix(struct igb_adapter *adapter)
398 u32 tmp;
399 int i, vector = 0;
400 struct e1000_hw *hw = &adapter->hw;
402 adapter->eims_enable_mask = 0;
403 if (hw->mac.type == e1000_82576)
404 /* Turn on MSI-X capability first, or our settings
405 * won't stick. And it will take days to debug. */
406 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
407 E1000_GPIE_PBA | E1000_GPIE_EIAME |
408 E1000_GPIE_NSICR);
410 for (i = 0; i < adapter->num_tx_queues; i++) {
411 struct igb_ring *tx_ring = &adapter->tx_ring[i];
412 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
413 adapter->eims_enable_mask |= tx_ring->eims_value;
414 if (tx_ring->itr_val)
415 writel(tx_ring->itr_val,
416 hw->hw_addr + tx_ring->itr_register);
417 else
418 writel(1, hw->hw_addr + tx_ring->itr_register);
421 for (i = 0; i < adapter->num_rx_queues; i++) {
422 struct igb_ring *rx_ring = &adapter->rx_ring[i];
423 rx_ring->buddy = NULL;
424 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
425 adapter->eims_enable_mask |= rx_ring->eims_value;
426 if (rx_ring->itr_val)
427 writel(rx_ring->itr_val,
428 hw->hw_addr + rx_ring->itr_register);
429 else
430 writel(1, hw->hw_addr + rx_ring->itr_register);
434 /* set vector for other causes, i.e. link changes */
435 switch (hw->mac.type) {
436 case e1000_82575:
437 array_wr32(E1000_MSIXBM(0), vector++,
438 E1000_EIMS_OTHER);
440 tmp = rd32(E1000_CTRL_EXT);
441 /* enable MSI-X PBA support*/
442 tmp |= E1000_CTRL_EXT_PBA_CLR;
444 /* Auto-Mask interrupts upon ICR read. */
445 tmp |= E1000_CTRL_EXT_EIAME;
446 tmp |= E1000_CTRL_EXT_IRCA;
448 wr32(E1000_CTRL_EXT, tmp);
449 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
450 adapter->eims_other = E1000_EIMS_OTHER;
452 break;
454 case e1000_82576:
455 tmp = (vector++ | E1000_IVAR_VALID) << 8;
456 wr32(E1000_IVAR_MISC, tmp);
458 adapter->eims_enable_mask = (1 << (vector)) - 1;
459 adapter->eims_other = 1 << (vector - 1);
460 break;
461 default:
462 /* do nothing, since nothing else supports MSI-X */
463 break;
464 } /* switch (hw->mac.type) */
465 wrfl();
469 * igb_request_msix - Initialize MSI-X interrupts
471 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
472 * kernel.
474 static int igb_request_msix(struct igb_adapter *adapter)
476 struct net_device *netdev = adapter->netdev;
477 int i, err = 0, vector = 0;
479 vector = 0;
481 for (i = 0; i < adapter->num_tx_queues; i++) {
482 struct igb_ring *ring = &(adapter->tx_ring[i]);
483 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
484 err = request_irq(adapter->msix_entries[vector].vector,
485 &igb_msix_tx, 0, ring->name,
486 &(adapter->tx_ring[i]));
487 if (err)
488 goto out;
489 ring->itr_register = E1000_EITR(0) + (vector << 2);
490 ring->itr_val = 976; /* ~4000 ints/sec */
491 vector++;
493 for (i = 0; i < adapter->num_rx_queues; i++) {
494 struct igb_ring *ring = &(adapter->rx_ring[i]);
495 if (strlen(netdev->name) < (IFNAMSIZ - 5))
496 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
497 else
498 memcpy(ring->name, netdev->name, IFNAMSIZ);
499 err = request_irq(adapter->msix_entries[vector].vector,
500 &igb_msix_rx, 0, ring->name,
501 &(adapter->rx_ring[i]));
502 if (err)
503 goto out;
504 ring->itr_register = E1000_EITR(0) + (vector << 2);
505 ring->itr_val = adapter->itr;
506 /* overwrite the poll routine for MSIX, we've already done
507 * netif_napi_add */
508 ring->napi.poll = &igb_clean_rx_ring_msix;
509 vector++;
512 err = request_irq(adapter->msix_entries[vector].vector,
513 &igb_msix_other, 0, netdev->name, netdev);
514 if (err)
515 goto out;
517 igb_configure_msix(adapter);
518 return 0;
519 out:
520 return err;
523 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
525 if (adapter->msix_entries) {
526 pci_disable_msix(adapter->pdev);
527 kfree(adapter->msix_entries);
528 adapter->msix_entries = NULL;
529 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
530 pci_disable_msi(adapter->pdev);
531 return;
536 * igb_set_interrupt_capability - set MSI or MSI-X if supported
538 * Attempt to configure interrupts using the best available
539 * capabilities of the hardware and kernel.
541 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
543 int err;
544 int numvecs, i;
546 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
547 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
548 GFP_KERNEL);
549 if (!adapter->msix_entries)
550 goto msi_only;
552 for (i = 0; i < numvecs; i++)
553 adapter->msix_entries[i].entry = i;
555 err = pci_enable_msix(adapter->pdev,
556 adapter->msix_entries,
557 numvecs);
558 if (err == 0)
559 goto out;
561 igb_reset_interrupt_capability(adapter);
563 /* If we can't do MSI-X, try MSI */
564 msi_only:
565 adapter->num_rx_queues = 1;
566 adapter->num_tx_queues = 1;
567 if (!pci_enable_msi(adapter->pdev))
568 adapter->flags |= IGB_FLAG_HAS_MSI;
569 out:
570 /* Notify the stack of the (possibly) reduced Tx Queue count. */
571 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
572 return;
576 * igb_request_irq - initialize interrupts
578 * Attempts to configure interrupts using the best available
579 * capabilities of the hardware and kernel.
581 static int igb_request_irq(struct igb_adapter *adapter)
583 struct net_device *netdev = adapter->netdev;
584 struct e1000_hw *hw = &adapter->hw;
585 int err = 0;
587 if (adapter->msix_entries) {
588 err = igb_request_msix(adapter);
589 if (!err)
590 goto request_done;
591 /* fall back to MSI */
592 igb_reset_interrupt_capability(adapter);
593 if (!pci_enable_msi(adapter->pdev))
594 adapter->flags |= IGB_FLAG_HAS_MSI;
595 igb_free_all_tx_resources(adapter);
596 igb_free_all_rx_resources(adapter);
597 adapter->num_rx_queues = 1;
598 igb_alloc_queues(adapter);
599 } else {
600 switch (hw->mac.type) {
601 case e1000_82575:
602 wr32(E1000_MSIXBM(0),
603 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
604 break;
605 case e1000_82576:
606 wr32(E1000_IVAR0, E1000_IVAR_VALID);
607 break;
608 default:
609 break;
613 if (adapter->flags & IGB_FLAG_HAS_MSI) {
614 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
615 netdev->name, netdev);
616 if (!err)
617 goto request_done;
618 /* fall back to legacy interrupts */
619 igb_reset_interrupt_capability(adapter);
620 adapter->flags &= ~IGB_FLAG_HAS_MSI;
623 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
624 netdev->name, netdev);
626 if (err)
627 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
628 err);
630 request_done:
631 return err;
634 static void igb_free_irq(struct igb_adapter *adapter)
636 struct net_device *netdev = adapter->netdev;
638 if (adapter->msix_entries) {
639 int vector = 0, i;
641 for (i = 0; i < adapter->num_tx_queues; i++)
642 free_irq(adapter->msix_entries[vector++].vector,
643 &(adapter->tx_ring[i]));
644 for (i = 0; i < adapter->num_rx_queues; i++)
645 free_irq(adapter->msix_entries[vector++].vector,
646 &(adapter->rx_ring[i]));
648 free_irq(adapter->msix_entries[vector++].vector, netdev);
649 return;
652 free_irq(adapter->pdev->irq, netdev);
656 * igb_irq_disable - Mask off interrupt generation on the NIC
657 * @adapter: board private structure
659 static void igb_irq_disable(struct igb_adapter *adapter)
661 struct e1000_hw *hw = &adapter->hw;
663 if (adapter->msix_entries) {
664 wr32(E1000_EIAM, 0);
665 wr32(E1000_EIMC, ~0);
666 wr32(E1000_EIAC, 0);
669 wr32(E1000_IAM, 0);
670 wr32(E1000_IMC, ~0);
671 wrfl();
672 synchronize_irq(adapter->pdev->irq);
676 * igb_irq_enable - Enable default interrupt generation settings
677 * @adapter: board private structure
679 static void igb_irq_enable(struct igb_adapter *adapter)
681 struct e1000_hw *hw = &adapter->hw;
683 if (adapter->msix_entries) {
684 wr32(E1000_EIAC, adapter->eims_enable_mask);
685 wr32(E1000_EIAM, adapter->eims_enable_mask);
686 wr32(E1000_EIMS, adapter->eims_enable_mask);
687 wr32(E1000_IMS, E1000_IMS_LSC);
688 } else {
689 wr32(E1000_IMS, IMS_ENABLE_MASK);
690 wr32(E1000_IAM, IMS_ENABLE_MASK);
694 static void igb_update_mng_vlan(struct igb_adapter *adapter)
696 struct net_device *netdev = adapter->netdev;
697 u16 vid = adapter->hw.mng_cookie.vlan_id;
698 u16 old_vid = adapter->mng_vlan_id;
699 if (adapter->vlgrp) {
700 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
701 if (adapter->hw.mng_cookie.status &
702 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
703 igb_vlan_rx_add_vid(netdev, vid);
704 adapter->mng_vlan_id = vid;
705 } else
706 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
708 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
709 (vid != old_vid) &&
710 !vlan_group_get_device(adapter->vlgrp, old_vid))
711 igb_vlan_rx_kill_vid(netdev, old_vid);
712 } else
713 adapter->mng_vlan_id = vid;
718 * igb_release_hw_control - release control of the h/w to f/w
719 * @adapter: address of board private structure
721 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
722 * For ASF and Pass Through versions of f/w this means that the
723 * driver is no longer loaded.
726 static void igb_release_hw_control(struct igb_adapter *adapter)
728 struct e1000_hw *hw = &adapter->hw;
729 u32 ctrl_ext;
731 /* Let firmware take over control of h/w */
732 ctrl_ext = rd32(E1000_CTRL_EXT);
733 wr32(E1000_CTRL_EXT,
734 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
739 * igb_get_hw_control - get control of the h/w from f/w
740 * @adapter: address of board private structure
742 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
743 * For ASF and Pass Through versions of f/w this means that
744 * the driver is loaded.
747 static void igb_get_hw_control(struct igb_adapter *adapter)
749 struct e1000_hw *hw = &adapter->hw;
750 u32 ctrl_ext;
752 /* Let firmware know the driver has taken over */
753 ctrl_ext = rd32(E1000_CTRL_EXT);
754 wr32(E1000_CTRL_EXT,
755 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
759 * igb_configure - configure the hardware for RX and TX
760 * @adapter: private board structure
762 static void igb_configure(struct igb_adapter *adapter)
764 struct net_device *netdev = adapter->netdev;
765 int i;
767 igb_get_hw_control(adapter);
768 igb_set_multi(netdev);
770 igb_restore_vlan(adapter);
772 igb_configure_tx(adapter);
773 igb_setup_rctl(adapter);
774 igb_configure_rx(adapter);
776 igb_rx_fifo_flush_82575(&adapter->hw);
778 /* call IGB_DESC_UNUSED which always leaves
779 * at least 1 descriptor unused to make sure
780 * next_to_use != next_to_clean */
781 for (i = 0; i < adapter->num_rx_queues; i++) {
782 struct igb_ring *ring = &adapter->rx_ring[i];
783 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
787 adapter->tx_queue_len = netdev->tx_queue_len;
792 * igb_up - Open the interface and prepare it to handle traffic
793 * @adapter: board private structure
796 int igb_up(struct igb_adapter *adapter)
798 struct e1000_hw *hw = &adapter->hw;
799 int i;
801 /* hardware has been reset, we need to reload some things */
802 igb_configure(adapter);
804 clear_bit(__IGB_DOWN, &adapter->state);
806 for (i = 0; i < adapter->num_rx_queues; i++)
807 napi_enable(&adapter->rx_ring[i].napi);
808 if (adapter->msix_entries)
809 igb_configure_msix(adapter);
811 /* Clear any pending interrupts. */
812 rd32(E1000_ICR);
813 igb_irq_enable(adapter);
815 /* Fire a link change interrupt to start the watchdog. */
816 wr32(E1000_ICS, E1000_ICS_LSC);
817 return 0;
820 void igb_down(struct igb_adapter *adapter)
822 struct e1000_hw *hw = &adapter->hw;
823 struct net_device *netdev = adapter->netdev;
824 u32 tctl, rctl;
825 int i;
827 /* signal that we're down so the interrupt handler does not
828 * reschedule our watchdog timer */
829 set_bit(__IGB_DOWN, &adapter->state);
831 /* disable receives in the hardware */
832 rctl = rd32(E1000_RCTL);
833 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
834 /* flush and sleep below */
836 netif_tx_stop_all_queues(netdev);
838 /* disable transmits in the hardware */
839 tctl = rd32(E1000_TCTL);
840 tctl &= ~E1000_TCTL_EN;
841 wr32(E1000_TCTL, tctl);
842 /* flush both disables and wait for them to finish */
843 wrfl();
844 msleep(10);
846 for (i = 0; i < adapter->num_rx_queues; i++)
847 napi_disable(&adapter->rx_ring[i].napi);
849 igb_irq_disable(adapter);
851 del_timer_sync(&adapter->watchdog_timer);
852 del_timer_sync(&adapter->phy_info_timer);
854 netdev->tx_queue_len = adapter->tx_queue_len;
855 netif_carrier_off(netdev);
856 adapter->link_speed = 0;
857 adapter->link_duplex = 0;
859 if (!pci_channel_offline(adapter->pdev))
860 igb_reset(adapter);
861 igb_clean_all_tx_rings(adapter);
862 igb_clean_all_rx_rings(adapter);
865 void igb_reinit_locked(struct igb_adapter *adapter)
867 WARN_ON(in_interrupt());
868 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
869 msleep(1);
870 igb_down(adapter);
871 igb_up(adapter);
872 clear_bit(__IGB_RESETTING, &adapter->state);
875 void igb_reset(struct igb_adapter *adapter)
877 struct e1000_hw *hw = &adapter->hw;
878 struct e1000_mac_info *mac = &hw->mac;
879 struct e1000_fc_info *fc = &hw->fc;
880 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
881 u16 hwm;
883 /* Repartition Pba for greater than 9k mtu
884 * To take effect CTRL.RST is required.
886 if (mac->type != e1000_82576) {
887 pba = E1000_PBA_34K;
889 else {
890 pba = E1000_PBA_64K;
893 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
894 (mac->type < e1000_82576)) {
895 /* adjust PBA for jumbo frames */
896 wr32(E1000_PBA, pba);
898 /* To maintain wire speed transmits, the Tx FIFO should be
899 * large enough to accommodate two full transmit packets,
900 * rounded up to the next 1KB and expressed in KB. Likewise,
901 * the Rx FIFO should be large enough to accommodate at least
902 * one full receive packet and is similarly rounded up and
903 * expressed in KB. */
904 pba = rd32(E1000_PBA);
905 /* upper 16 bits has Tx packet buffer allocation size in KB */
906 tx_space = pba >> 16;
907 /* lower 16 bits has Rx packet buffer allocation size in KB */
908 pba &= 0xffff;
909 /* the tx fifo also stores 16 bytes of information about the tx
910 * but don't include ethernet FCS because hardware appends it */
911 min_tx_space = (adapter->max_frame_size +
912 sizeof(struct e1000_tx_desc) -
913 ETH_FCS_LEN) * 2;
914 min_tx_space = ALIGN(min_tx_space, 1024);
915 min_tx_space >>= 10;
916 /* software strips receive CRC, so leave room for it */
917 min_rx_space = adapter->max_frame_size;
918 min_rx_space = ALIGN(min_rx_space, 1024);
919 min_rx_space >>= 10;
921 /* If current Tx allocation is less than the min Tx FIFO size,
922 * and the min Tx FIFO size is less than the current Rx FIFO
923 * allocation, take space away from current Rx allocation */
924 if (tx_space < min_tx_space &&
925 ((min_tx_space - tx_space) < pba)) {
926 pba = pba - (min_tx_space - tx_space);
928 /* if short on rx space, rx wins and must trump tx
929 * adjustment */
930 if (pba < min_rx_space)
931 pba = min_rx_space;
933 wr32(E1000_PBA, pba);
936 /* flow control settings */
937 /* The high water mark must be low enough to fit one full frame
938 * (or the size used for early receive) above it in the Rx FIFO.
939 * Set it to the lower of:
940 * - 90% of the Rx FIFO size, or
941 * - the full Rx FIFO size minus one full frame */
942 hwm = min(((pba << 10) * 9 / 10),
943 ((pba << 10) - 2 * adapter->max_frame_size));
945 if (mac->type < e1000_82576) {
946 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
947 fc->low_water = fc->high_water - 8;
948 } else {
949 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
950 fc->low_water = fc->high_water - 16;
952 fc->pause_time = 0xFFFF;
953 fc->send_xon = 1;
954 fc->type = fc->original_type;
956 /* Allow time for pending master requests to run */
957 adapter->hw.mac.ops.reset_hw(&adapter->hw);
958 wr32(E1000_WUC, 0);
960 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
961 dev_err(&adapter->pdev->dev, "Hardware Error\n");
963 igb_update_mng_vlan(adapter);
965 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
966 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
968 igb_reset_adaptive(&adapter->hw);
969 igb_get_phy_info(&adapter->hw);
973 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
974 * @pdev: PCI device information struct
976 * Returns true if an adapter needs ioport resources
978 static int igb_is_need_ioport(struct pci_dev *pdev)
980 switch (pdev->device) {
981 /* Currently there are no adapters that need ioport resources */
982 default:
983 return false;
987 static const struct net_device_ops igb_netdev_ops = {
988 .ndo_open = igb_open,
989 .ndo_stop = igb_close,
990 .ndo_start_xmit = igb_xmit_frame_adv,
991 .ndo_get_stats = igb_get_stats,
992 .ndo_set_multicast_list = igb_set_multi,
993 .ndo_set_mac_address = igb_set_mac,
994 .ndo_change_mtu = igb_change_mtu,
995 .ndo_do_ioctl = igb_ioctl,
996 .ndo_tx_timeout = igb_tx_timeout,
997 .ndo_validate_addr = eth_validate_addr,
998 .ndo_vlan_rx_register = igb_vlan_rx_register,
999 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1000 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1001 #ifdef CONFIG_NET_POLL_CONTROLLER
1002 .ndo_poll_controller = igb_netpoll,
1003 #endif
1007 * igb_probe - Device Initialization Routine
1008 * @pdev: PCI device information struct
1009 * @ent: entry in igb_pci_tbl
1011 * Returns 0 on success, negative on failure
1013 * igb_probe initializes an adapter identified by a pci_dev structure.
1014 * The OS initialization, configuring of the adapter private structure,
1015 * and a hardware reset occur.
1017 static int __devinit igb_probe(struct pci_dev *pdev,
1018 const struct pci_device_id *ent)
1020 struct net_device *netdev;
1021 struct igb_adapter *adapter;
1022 struct e1000_hw *hw;
1023 struct pci_dev *us_dev;
1024 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1025 unsigned long mmio_start, mmio_len;
1026 int i, err, pci_using_dac, pos;
1027 u16 eeprom_data = 0, state = 0;
1028 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1029 u32 part_num;
1030 int bars, need_ioport;
1032 /* do not allocate ioport bars when not needed */
1033 need_ioport = igb_is_need_ioport(pdev);
1034 if (need_ioport) {
1035 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1036 err = pci_enable_device(pdev);
1037 } else {
1038 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1039 err = pci_enable_device_mem(pdev);
1041 if (err)
1042 return err;
1044 pci_using_dac = 0;
1045 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1046 if (!err) {
1047 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1048 if (!err)
1049 pci_using_dac = 1;
1050 } else {
1051 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1052 if (err) {
1053 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1054 if (err) {
1055 dev_err(&pdev->dev, "No usable DMA "
1056 "configuration, aborting\n");
1057 goto err_dma;
1062 /* 82575 requires that the pci-e link partner disable the L0s state */
1063 switch (pdev->device) {
1064 case E1000_DEV_ID_82575EB_COPPER:
1065 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1066 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1067 us_dev = pdev->bus->self;
1068 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1069 if (pos) {
1070 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1071 &state);
1072 state &= ~PCIE_LINK_STATE_L0S;
1073 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1074 state);
1075 dev_info(&pdev->dev,
1076 "Disabling ASPM L0s upstream switch port %s\n",
1077 pci_name(us_dev));
1079 default:
1080 break;
1083 err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1084 if (err)
1085 goto err_pci_reg;
1087 err = pci_enable_pcie_error_reporting(pdev);
1088 if (err) {
1089 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1090 "0x%x\n", err);
1091 /* non-fatal, continue */
1094 pci_set_master(pdev);
1095 pci_save_state(pdev);
1097 err = -ENOMEM;
1098 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1099 if (!netdev)
1100 goto err_alloc_etherdev;
1102 SET_NETDEV_DEV(netdev, &pdev->dev);
1104 pci_set_drvdata(pdev, netdev);
1105 adapter = netdev_priv(netdev);
1106 adapter->netdev = netdev;
1107 adapter->pdev = pdev;
1108 hw = &adapter->hw;
1109 hw->back = adapter;
1110 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1111 adapter->bars = bars;
1112 adapter->need_ioport = need_ioport;
1114 mmio_start = pci_resource_start(pdev, 0);
1115 mmio_len = pci_resource_len(pdev, 0);
1117 err = -EIO;
1118 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1119 if (!adapter->hw.hw_addr)
1120 goto err_ioremap;
1122 netdev->netdev_ops = &igb_netdev_ops;
1123 igb_set_ethtool_ops(netdev);
1124 netdev->watchdog_timeo = 5 * HZ;
1126 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1128 netdev->mem_start = mmio_start;
1129 netdev->mem_end = mmio_start + mmio_len;
1131 /* PCI config space info */
1132 hw->vendor_id = pdev->vendor;
1133 hw->device_id = pdev->device;
1134 hw->revision_id = pdev->revision;
1135 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1136 hw->subsystem_device_id = pdev->subsystem_device;
1138 /* setup the private structure */
1139 hw->back = adapter;
1140 /* Copy the default MAC, PHY and NVM function pointers */
1141 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1142 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1143 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1144 /* Initialize skew-specific constants */
1145 err = ei->get_invariants(hw);
1146 if (err)
1147 goto err_hw_init;
1149 err = igb_sw_init(adapter);
1150 if (err)
1151 goto err_sw_init;
1153 igb_get_bus_info_pcie(hw);
1155 /* set flags */
1156 switch (hw->mac.type) {
1157 case e1000_82575:
1158 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1159 break;
1160 case e1000_82576:
1161 default:
1162 break;
1165 hw->phy.autoneg_wait_to_complete = false;
1166 hw->mac.adaptive_ifs = true;
1168 /* Copper options */
1169 if (hw->phy.media_type == e1000_media_type_copper) {
1170 hw->phy.mdix = AUTO_ALL_MODES;
1171 hw->phy.disable_polarity_correction = false;
1172 hw->phy.ms_type = e1000_ms_hw_default;
1175 if (igb_check_reset_block(hw))
1176 dev_info(&pdev->dev,
1177 "PHY reset is blocked due to SOL/IDER session.\n");
1179 netdev->features = NETIF_F_SG |
1180 NETIF_F_HW_CSUM |
1181 NETIF_F_HW_VLAN_TX |
1182 NETIF_F_HW_VLAN_RX |
1183 NETIF_F_HW_VLAN_FILTER;
1185 netdev->features |= NETIF_F_TSO;
1186 netdev->features |= NETIF_F_TSO6;
1188 #ifdef CONFIG_IGB_LRO
1189 netdev->features |= NETIF_F_GRO;
1190 #endif
1192 netdev->vlan_features |= NETIF_F_TSO;
1193 netdev->vlan_features |= NETIF_F_TSO6;
1194 netdev->vlan_features |= NETIF_F_HW_CSUM;
1195 netdev->vlan_features |= NETIF_F_SG;
1197 if (pci_using_dac)
1198 netdev->features |= NETIF_F_HIGHDMA;
1200 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1202 /* before reading the NVM, reset the controller to put the device in a
1203 * known good starting state */
1204 hw->mac.ops.reset_hw(hw);
1206 /* make sure the NVM is good */
1207 if (igb_validate_nvm_checksum(hw) < 0) {
1208 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1209 err = -EIO;
1210 goto err_eeprom;
1213 /* copy the MAC address out of the NVM */
1214 if (hw->mac.ops.read_mac_addr(hw))
1215 dev_err(&pdev->dev, "NVM Read Error\n");
1217 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1218 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1220 if (!is_valid_ether_addr(netdev->perm_addr)) {
1221 dev_err(&pdev->dev, "Invalid MAC Address\n");
1222 err = -EIO;
1223 goto err_eeprom;
1226 init_timer(&adapter->watchdog_timer);
1227 adapter->watchdog_timer.function = &igb_watchdog;
1228 adapter->watchdog_timer.data = (unsigned long) adapter;
1230 init_timer(&adapter->phy_info_timer);
1231 adapter->phy_info_timer.function = &igb_update_phy_info;
1232 adapter->phy_info_timer.data = (unsigned long) adapter;
1234 INIT_WORK(&adapter->reset_task, igb_reset_task);
1235 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1237 /* Initialize link & ring properties that are user-changeable */
1238 adapter->tx_ring->count = 256;
1239 for (i = 0; i < adapter->num_tx_queues; i++)
1240 adapter->tx_ring[i].count = adapter->tx_ring->count;
1241 adapter->rx_ring->count = 256;
1242 for (i = 0; i < adapter->num_rx_queues; i++)
1243 adapter->rx_ring[i].count = adapter->rx_ring->count;
1245 adapter->fc_autoneg = true;
1246 hw->mac.autoneg = true;
1247 hw->phy.autoneg_advertised = 0x2f;
1249 hw->fc.original_type = e1000_fc_default;
1250 hw->fc.type = e1000_fc_default;
1252 adapter->itr_setting = 3;
1253 adapter->itr = IGB_START_ITR;
1255 igb_validate_mdi_setting(hw);
1257 adapter->rx_csum = 1;
1259 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1260 * enable the ACPI Magic Packet filter
1263 if (hw->bus.func == 0 ||
1264 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1265 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1266 &eeprom_data);
1268 if (eeprom_data & eeprom_apme_mask)
1269 adapter->eeprom_wol |= E1000_WUFC_MAG;
1271 /* now that we have the eeprom settings, apply the special cases where
1272 * the eeprom may be wrong or the board simply won't support wake on
1273 * lan on a particular port */
1274 switch (pdev->device) {
1275 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1276 adapter->eeprom_wol = 0;
1277 break;
1278 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1279 case E1000_DEV_ID_82576_FIBER:
1280 case E1000_DEV_ID_82576_SERDES:
1281 /* Wake events only supported on port A for dual fiber
1282 * regardless of eeprom setting */
1283 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1284 adapter->eeprom_wol = 0;
1285 break;
1288 /* initialize the wol settings based on the eeprom settings */
1289 adapter->wol = adapter->eeprom_wol;
1290 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1292 /* reset the hardware with the new settings */
1293 igb_reset(adapter);
1295 /* let the f/w know that the h/w is now under the control of the
1296 * driver. */
1297 igb_get_hw_control(adapter);
1299 /* tell the stack to leave us alone until igb_open() is called */
1300 netif_carrier_off(netdev);
1301 netif_tx_stop_all_queues(netdev);
1303 strcpy(netdev->name, "eth%d");
1304 err = register_netdev(netdev);
1305 if (err)
1306 goto err_register;
1308 #ifdef CONFIG_IGB_DCA
1309 if (dca_add_requester(&pdev->dev) == 0) {
1310 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1311 dev_info(&pdev->dev, "DCA enabled\n");
1312 /* Always use CB2 mode, difference is masked
1313 * in the CB driver. */
1314 wr32(E1000_DCA_CTRL, 2);
1315 igb_setup_dca(adapter);
1317 #endif
1319 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1320 /* print bus type/speed/width info */
1321 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1322 netdev->name,
1323 ((hw->bus.speed == e1000_bus_speed_2500)
1324 ? "2.5Gb/s" : "unknown"),
1325 ((hw->bus.width == e1000_bus_width_pcie_x4)
1326 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1327 ? "Width x1" : "unknown"),
1328 netdev->dev_addr);
1330 igb_read_part_num(hw, &part_num);
1331 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1332 (part_num >> 8), (part_num & 0xff));
1334 dev_info(&pdev->dev,
1335 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1336 adapter->msix_entries ? "MSI-X" :
1337 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1338 adapter->num_rx_queues, adapter->num_tx_queues);
1340 return 0;
1342 err_register:
1343 igb_release_hw_control(adapter);
1344 err_eeprom:
1345 if (!igb_check_reset_block(hw))
1346 igb_reset_phy(hw);
1348 if (hw->flash_address)
1349 iounmap(hw->flash_address);
1351 igb_remove_device(hw);
1352 igb_free_queues(adapter);
1353 err_sw_init:
1354 err_hw_init:
1355 iounmap(hw->hw_addr);
1356 err_ioremap:
1357 free_netdev(netdev);
1358 err_alloc_etherdev:
1359 pci_release_selected_regions(pdev, bars);
1360 err_pci_reg:
1361 err_dma:
1362 pci_disable_device(pdev);
1363 return err;
1367 * igb_remove - Device Removal Routine
1368 * @pdev: PCI device information struct
1370 * igb_remove is called by the PCI subsystem to alert the driver
1371 * that it should release a PCI device. The could be caused by a
1372 * Hot-Plug event, or because the driver is going to be removed from
1373 * memory.
1375 static void __devexit igb_remove(struct pci_dev *pdev)
1377 struct net_device *netdev = pci_get_drvdata(pdev);
1378 struct igb_adapter *adapter = netdev_priv(netdev);
1379 #ifdef CONFIG_IGB_DCA
1380 struct e1000_hw *hw = &adapter->hw;
1381 #endif
1382 int err;
1384 /* flush_scheduled work may reschedule our watchdog task, so
1385 * explicitly disable watchdog tasks from being rescheduled */
1386 set_bit(__IGB_DOWN, &adapter->state);
1387 del_timer_sync(&adapter->watchdog_timer);
1388 del_timer_sync(&adapter->phy_info_timer);
1390 flush_scheduled_work();
1392 #ifdef CONFIG_IGB_DCA
1393 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1394 dev_info(&pdev->dev, "DCA disabled\n");
1395 dca_remove_requester(&pdev->dev);
1396 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1397 wr32(E1000_DCA_CTRL, 1);
1399 #endif
1401 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1402 * would have already happened in close and is redundant. */
1403 igb_release_hw_control(adapter);
1405 unregister_netdev(netdev);
1407 if (!igb_check_reset_block(&adapter->hw))
1408 igb_reset_phy(&adapter->hw);
1410 igb_remove_device(&adapter->hw);
1411 igb_reset_interrupt_capability(adapter);
1413 igb_free_queues(adapter);
1415 iounmap(adapter->hw.hw_addr);
1416 if (adapter->hw.flash_address)
1417 iounmap(adapter->hw.flash_address);
1418 pci_release_selected_regions(pdev, adapter->bars);
1420 free_netdev(netdev);
1422 err = pci_disable_pcie_error_reporting(pdev);
1423 if (err)
1424 dev_err(&pdev->dev,
1425 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1427 pci_disable_device(pdev);
1431 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1432 * @adapter: board private structure to initialize
1434 * igb_sw_init initializes the Adapter private data structure.
1435 * Fields are initialized based on PCI device information and
1436 * OS network device settings (MTU size).
1438 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1440 struct e1000_hw *hw = &adapter->hw;
1441 struct net_device *netdev = adapter->netdev;
1442 struct pci_dev *pdev = adapter->pdev;
1444 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1446 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1447 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1448 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1449 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1450 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1451 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1453 /* Number of supported queues. */
1454 /* Having more queues than CPUs doesn't make sense. */
1455 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1456 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
1458 /* This call may decrease the number of queues depending on
1459 * interrupt mode. */
1460 igb_set_interrupt_capability(adapter);
1462 if (igb_alloc_queues(adapter)) {
1463 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1464 return -ENOMEM;
1467 /* Explicitly disable IRQ since the NIC can be in any state. */
1468 igb_irq_disable(adapter);
1470 set_bit(__IGB_DOWN, &adapter->state);
1471 return 0;
1475 * igb_open - Called when a network interface is made active
1476 * @netdev: network interface device structure
1478 * Returns 0 on success, negative value on failure
1480 * The open entry point is called when a network interface is made
1481 * active by the system (IFF_UP). At this point all resources needed
1482 * for transmit and receive operations are allocated, the interrupt
1483 * handler is registered with the OS, the watchdog timer is started,
1484 * and the stack is notified that the interface is ready.
1486 static int igb_open(struct net_device *netdev)
1488 struct igb_adapter *adapter = netdev_priv(netdev);
1489 struct e1000_hw *hw = &adapter->hw;
1490 int err;
1491 int i;
1493 /* disallow open during test */
1494 if (test_bit(__IGB_TESTING, &adapter->state))
1495 return -EBUSY;
1497 /* allocate transmit descriptors */
1498 err = igb_setup_all_tx_resources(adapter);
1499 if (err)
1500 goto err_setup_tx;
1502 /* allocate receive descriptors */
1503 err = igb_setup_all_rx_resources(adapter);
1504 if (err)
1505 goto err_setup_rx;
1507 /* e1000_power_up_phy(adapter); */
1509 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1510 if ((adapter->hw.mng_cookie.status &
1511 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1512 igb_update_mng_vlan(adapter);
1514 /* before we allocate an interrupt, we must be ready to handle it.
1515 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1516 * as soon as we call pci_request_irq, so we have to setup our
1517 * clean_rx handler before we do so. */
1518 igb_configure(adapter);
1520 err = igb_request_irq(adapter);
1521 if (err)
1522 goto err_req_irq;
1524 /* From here on the code is the same as igb_up() */
1525 clear_bit(__IGB_DOWN, &adapter->state);
1527 for (i = 0; i < adapter->num_rx_queues; i++)
1528 napi_enable(&adapter->rx_ring[i].napi);
1530 /* Clear any pending interrupts. */
1531 rd32(E1000_ICR);
1533 igb_irq_enable(adapter);
1535 netif_tx_start_all_queues(netdev);
1537 /* Fire a link status change interrupt to start the watchdog. */
1538 wr32(E1000_ICS, E1000_ICS_LSC);
1540 return 0;
1542 err_req_irq:
1543 igb_release_hw_control(adapter);
1544 /* e1000_power_down_phy(adapter); */
1545 igb_free_all_rx_resources(adapter);
1546 err_setup_rx:
1547 igb_free_all_tx_resources(adapter);
1548 err_setup_tx:
1549 igb_reset(adapter);
1551 return err;
1555 * igb_close - Disables a network interface
1556 * @netdev: network interface device structure
1558 * Returns 0, this is not allowed to fail
1560 * The close entry point is called when an interface is de-activated
1561 * by the OS. The hardware is still under the driver's control, but
1562 * needs to be disabled. A global MAC reset is issued to stop the
1563 * hardware, and all transmit and receive resources are freed.
1565 static int igb_close(struct net_device *netdev)
1567 struct igb_adapter *adapter = netdev_priv(netdev);
1569 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1570 igb_down(adapter);
1572 igb_free_irq(adapter);
1574 igb_free_all_tx_resources(adapter);
1575 igb_free_all_rx_resources(adapter);
1577 /* kill manageability vlan ID if supported, but not if a vlan with
1578 * the same ID is registered on the host OS (let 8021q kill it) */
1579 if ((adapter->hw.mng_cookie.status &
1580 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1581 !(adapter->vlgrp &&
1582 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1583 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1585 return 0;
1589 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1590 * @adapter: board private structure
1591 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1593 * Return 0 on success, negative on failure
1596 int igb_setup_tx_resources(struct igb_adapter *adapter,
1597 struct igb_ring *tx_ring)
1599 struct pci_dev *pdev = adapter->pdev;
1600 int size;
1602 size = sizeof(struct igb_buffer) * tx_ring->count;
1603 tx_ring->buffer_info = vmalloc(size);
1604 if (!tx_ring->buffer_info)
1605 goto err;
1606 memset(tx_ring->buffer_info, 0, size);
1608 /* round up to nearest 4K */
1609 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1610 tx_ring->size = ALIGN(tx_ring->size, 4096);
1612 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1613 &tx_ring->dma);
1615 if (!tx_ring->desc)
1616 goto err;
1618 tx_ring->adapter = adapter;
1619 tx_ring->next_to_use = 0;
1620 tx_ring->next_to_clean = 0;
1621 return 0;
1623 err:
1624 vfree(tx_ring->buffer_info);
1625 dev_err(&adapter->pdev->dev,
1626 "Unable to allocate memory for the transmit descriptor ring\n");
1627 return -ENOMEM;
1631 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1632 * (Descriptors) for all queues
1633 * @adapter: board private structure
1635 * Return 0 on success, negative on failure
1637 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1639 int i, err = 0;
1640 int r_idx;
1642 for (i = 0; i < adapter->num_tx_queues; i++) {
1643 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1644 if (err) {
1645 dev_err(&adapter->pdev->dev,
1646 "Allocation for Tx Queue %u failed\n", i);
1647 for (i--; i >= 0; i--)
1648 igb_free_tx_resources(&adapter->tx_ring[i]);
1649 break;
1653 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1654 r_idx = i % adapter->num_tx_queues;
1655 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1657 return err;
1661 * igb_configure_tx - Configure transmit Unit after Reset
1662 * @adapter: board private structure
1664 * Configure the Tx unit of the MAC after a reset.
1666 static void igb_configure_tx(struct igb_adapter *adapter)
1668 u64 tdba;
1669 struct e1000_hw *hw = &adapter->hw;
1670 u32 tctl;
1671 u32 txdctl, txctrl;
1672 int i, j;
1674 for (i = 0; i < adapter->num_tx_queues; i++) {
1675 struct igb_ring *ring = &(adapter->tx_ring[i]);
1676 j = ring->reg_idx;
1677 wr32(E1000_TDLEN(j),
1678 ring->count * sizeof(struct e1000_tx_desc));
1679 tdba = ring->dma;
1680 wr32(E1000_TDBAL(j),
1681 tdba & 0x00000000ffffffffULL);
1682 wr32(E1000_TDBAH(j), tdba >> 32);
1684 ring->head = E1000_TDH(j);
1685 ring->tail = E1000_TDT(j);
1686 writel(0, hw->hw_addr + ring->tail);
1687 writel(0, hw->hw_addr + ring->head);
1688 txdctl = rd32(E1000_TXDCTL(j));
1689 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1690 wr32(E1000_TXDCTL(j), txdctl);
1692 /* Turn off Relaxed Ordering on head write-backs. The
1693 * writebacks MUST be delivered in order or it will
1694 * completely screw up our bookeeping.
1696 txctrl = rd32(E1000_DCA_TXCTRL(j));
1697 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1698 wr32(E1000_DCA_TXCTRL(j), txctrl);
1703 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1705 /* Program the Transmit Control Register */
1707 tctl = rd32(E1000_TCTL);
1708 tctl &= ~E1000_TCTL_CT;
1709 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1710 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1712 igb_config_collision_dist(hw);
1714 /* Setup Transmit Descriptor Settings for eop descriptor */
1715 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1717 /* Enable transmits */
1718 tctl |= E1000_TCTL_EN;
1720 wr32(E1000_TCTL, tctl);
1724 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1725 * @adapter: board private structure
1726 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1728 * Returns 0 on success, negative on failure
1731 int igb_setup_rx_resources(struct igb_adapter *adapter,
1732 struct igb_ring *rx_ring)
1734 struct pci_dev *pdev = adapter->pdev;
1735 int size, desc_len;
1737 size = sizeof(struct igb_buffer) * rx_ring->count;
1738 rx_ring->buffer_info = vmalloc(size);
1739 if (!rx_ring->buffer_info)
1740 goto err;
1741 memset(rx_ring->buffer_info, 0, size);
1743 desc_len = sizeof(union e1000_adv_rx_desc);
1745 /* Round up to nearest 4K */
1746 rx_ring->size = rx_ring->count * desc_len;
1747 rx_ring->size = ALIGN(rx_ring->size, 4096);
1749 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1750 &rx_ring->dma);
1752 if (!rx_ring->desc)
1753 goto err;
1755 rx_ring->next_to_clean = 0;
1756 rx_ring->next_to_use = 0;
1758 rx_ring->adapter = adapter;
1760 return 0;
1762 err:
1763 vfree(rx_ring->buffer_info);
1764 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1765 "the receive descriptor ring\n");
1766 return -ENOMEM;
1770 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1771 * (Descriptors) for all queues
1772 * @adapter: board private structure
1774 * Return 0 on success, negative on failure
1776 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1778 int i, err = 0;
1780 for (i = 0; i < adapter->num_rx_queues; i++) {
1781 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1782 if (err) {
1783 dev_err(&adapter->pdev->dev,
1784 "Allocation for Rx Queue %u failed\n", i);
1785 for (i--; i >= 0; i--)
1786 igb_free_rx_resources(&adapter->rx_ring[i]);
1787 break;
1791 return err;
1795 * igb_setup_rctl - configure the receive control registers
1796 * @adapter: Board private structure
1798 static void igb_setup_rctl(struct igb_adapter *adapter)
1800 struct e1000_hw *hw = &adapter->hw;
1801 u32 rctl;
1802 u32 srrctl = 0;
1803 int i, j;
1805 rctl = rd32(E1000_RCTL);
1807 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1808 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1810 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1811 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1814 * enable stripping of CRC. It's unlikely this will break BMC
1815 * redirection as it did with e1000. Newer features require
1816 * that the HW strips the CRC.
1818 rctl |= E1000_RCTL_SECRC;
1821 * disable store bad packets and clear size bits.
1823 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1825 /* enable LPE when to prevent packets larger than max_frame_size */
1826 rctl |= E1000_RCTL_LPE;
1828 /* Setup buffer sizes */
1829 switch (adapter->rx_buffer_len) {
1830 case IGB_RXBUFFER_256:
1831 rctl |= E1000_RCTL_SZ_256;
1832 break;
1833 case IGB_RXBUFFER_512:
1834 rctl |= E1000_RCTL_SZ_512;
1835 break;
1836 default:
1837 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1838 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1839 break;
1842 /* 82575 and greater support packet-split where the protocol
1843 * header is placed in skb->data and the packet data is
1844 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1845 * In the case of a non-split, skb->data is linearly filled,
1846 * followed by the page buffers. Therefore, skb->data is
1847 * sized to hold the largest protocol header.
1849 /* allocations using alloc_page take too long for regular MTU
1850 * so only enable packet split for jumbo frames */
1851 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1852 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1853 srrctl |= adapter->rx_ps_hdr_size <<
1854 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1855 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1856 } else {
1857 adapter->rx_ps_hdr_size = 0;
1858 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1861 for (i = 0; i < adapter->num_rx_queues; i++) {
1862 j = adapter->rx_ring[i].reg_idx;
1863 wr32(E1000_SRRCTL(j), srrctl);
1866 wr32(E1000_RCTL, rctl);
1870 * igb_configure_rx - Configure receive Unit after Reset
1871 * @adapter: board private structure
1873 * Configure the Rx unit of the MAC after a reset.
1875 static void igb_configure_rx(struct igb_adapter *adapter)
1877 u64 rdba;
1878 struct e1000_hw *hw = &adapter->hw;
1879 u32 rctl, rxcsum;
1880 u32 rxdctl;
1881 int i, j;
1883 /* disable receives while setting up the descriptors */
1884 rctl = rd32(E1000_RCTL);
1885 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1886 wrfl();
1887 mdelay(10);
1889 if (adapter->itr_setting > 3)
1890 wr32(E1000_ITR, adapter->itr);
1892 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1893 * the Base and Length of the Rx Descriptor Ring */
1894 for (i = 0; i < adapter->num_rx_queues; i++) {
1895 struct igb_ring *ring = &(adapter->rx_ring[i]);
1896 j = ring->reg_idx;
1897 rdba = ring->dma;
1898 wr32(E1000_RDBAL(j),
1899 rdba & 0x00000000ffffffffULL);
1900 wr32(E1000_RDBAH(j), rdba >> 32);
1901 wr32(E1000_RDLEN(j),
1902 ring->count * sizeof(union e1000_adv_rx_desc));
1904 ring->head = E1000_RDH(j);
1905 ring->tail = E1000_RDT(j);
1906 writel(0, hw->hw_addr + ring->tail);
1907 writel(0, hw->hw_addr + ring->head);
1909 rxdctl = rd32(E1000_RXDCTL(j));
1910 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1911 rxdctl &= 0xFFF00000;
1912 rxdctl |= IGB_RX_PTHRESH;
1913 rxdctl |= IGB_RX_HTHRESH << 8;
1914 rxdctl |= IGB_RX_WTHRESH << 16;
1915 wr32(E1000_RXDCTL(j), rxdctl);
1918 if (adapter->num_rx_queues > 1) {
1919 u32 random[10];
1920 u32 mrqc;
1921 u32 j, shift;
1922 union e1000_reta {
1923 u32 dword;
1924 u8 bytes[4];
1925 } reta;
1927 get_random_bytes(&random[0], 40);
1929 if (hw->mac.type >= e1000_82576)
1930 shift = 0;
1931 else
1932 shift = 6;
1933 for (j = 0; j < (32 * 4); j++) {
1934 reta.bytes[j & 3] =
1935 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1936 if ((j & 3) == 3)
1937 writel(reta.dword,
1938 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1940 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1942 /* Fill out hash function seeds */
1943 for (j = 0; j < 10; j++)
1944 array_wr32(E1000_RSSRK(0), j, random[j]);
1946 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1947 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1948 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1949 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1950 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1951 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1952 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1953 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1956 wr32(E1000_MRQC, mrqc);
1958 /* Multiqueue and raw packet checksumming are mutually
1959 * exclusive. Note that this not the same as TCP/IP
1960 * checksumming, which works fine. */
1961 rxcsum = rd32(E1000_RXCSUM);
1962 rxcsum |= E1000_RXCSUM_PCSD;
1963 wr32(E1000_RXCSUM, rxcsum);
1964 } else {
1965 /* Enable Receive Checksum Offload for TCP and UDP */
1966 rxcsum = rd32(E1000_RXCSUM);
1967 if (adapter->rx_csum) {
1968 rxcsum |= E1000_RXCSUM_TUOFL;
1970 /* Enable IPv4 payload checksum for UDP fragments
1971 * Must be used in conjunction with packet-split. */
1972 if (adapter->rx_ps_hdr_size)
1973 rxcsum |= E1000_RXCSUM_IPPCSE;
1974 } else {
1975 rxcsum &= ~E1000_RXCSUM_TUOFL;
1976 /* don't need to clear IPPCSE as it defaults to 0 */
1978 wr32(E1000_RXCSUM, rxcsum);
1981 if (adapter->vlgrp)
1982 wr32(E1000_RLPML,
1983 adapter->max_frame_size + VLAN_TAG_SIZE);
1984 else
1985 wr32(E1000_RLPML, adapter->max_frame_size);
1987 /* Enable Receives */
1988 wr32(E1000_RCTL, rctl);
1992 * igb_free_tx_resources - Free Tx Resources per Queue
1993 * @tx_ring: Tx descriptor ring for a specific queue
1995 * Free all transmit software resources
1997 void igb_free_tx_resources(struct igb_ring *tx_ring)
1999 struct pci_dev *pdev = tx_ring->adapter->pdev;
2001 igb_clean_tx_ring(tx_ring);
2003 vfree(tx_ring->buffer_info);
2004 tx_ring->buffer_info = NULL;
2006 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2008 tx_ring->desc = NULL;
2012 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2013 * @adapter: board private structure
2015 * Free all transmit software resources
2017 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2019 int i;
2021 for (i = 0; i < adapter->num_tx_queues; i++)
2022 igb_free_tx_resources(&adapter->tx_ring[i]);
2025 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2026 struct igb_buffer *buffer_info)
2028 if (buffer_info->dma) {
2029 pci_unmap_page(adapter->pdev,
2030 buffer_info->dma,
2031 buffer_info->length,
2032 PCI_DMA_TODEVICE);
2033 buffer_info->dma = 0;
2035 if (buffer_info->skb) {
2036 dev_kfree_skb_any(buffer_info->skb);
2037 buffer_info->skb = NULL;
2039 buffer_info->time_stamp = 0;
2040 /* buffer_info must be completely set up in the transmit path */
2044 * igb_clean_tx_ring - Free Tx Buffers
2045 * @tx_ring: ring to be cleaned
2047 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2049 struct igb_adapter *adapter = tx_ring->adapter;
2050 struct igb_buffer *buffer_info;
2051 unsigned long size;
2052 unsigned int i;
2054 if (!tx_ring->buffer_info)
2055 return;
2056 /* Free all the Tx ring sk_buffs */
2058 for (i = 0; i < tx_ring->count; i++) {
2059 buffer_info = &tx_ring->buffer_info[i];
2060 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2063 size = sizeof(struct igb_buffer) * tx_ring->count;
2064 memset(tx_ring->buffer_info, 0, size);
2066 /* Zero out the descriptor ring */
2068 memset(tx_ring->desc, 0, tx_ring->size);
2070 tx_ring->next_to_use = 0;
2071 tx_ring->next_to_clean = 0;
2073 writel(0, adapter->hw.hw_addr + tx_ring->head);
2074 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2078 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2079 * @adapter: board private structure
2081 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2083 int i;
2085 for (i = 0; i < adapter->num_tx_queues; i++)
2086 igb_clean_tx_ring(&adapter->tx_ring[i]);
2090 * igb_free_rx_resources - Free Rx Resources
2091 * @rx_ring: ring to clean the resources from
2093 * Free all receive software resources
2095 void igb_free_rx_resources(struct igb_ring *rx_ring)
2097 struct pci_dev *pdev = rx_ring->adapter->pdev;
2099 igb_clean_rx_ring(rx_ring);
2101 vfree(rx_ring->buffer_info);
2102 rx_ring->buffer_info = NULL;
2104 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2106 rx_ring->desc = NULL;
2110 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2111 * @adapter: board private structure
2113 * Free all receive software resources
2115 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2117 int i;
2119 for (i = 0; i < adapter->num_rx_queues; i++)
2120 igb_free_rx_resources(&adapter->rx_ring[i]);
2124 * igb_clean_rx_ring - Free Rx Buffers per Queue
2125 * @rx_ring: ring to free buffers from
2127 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2129 struct igb_adapter *adapter = rx_ring->adapter;
2130 struct igb_buffer *buffer_info;
2131 struct pci_dev *pdev = adapter->pdev;
2132 unsigned long size;
2133 unsigned int i;
2135 if (!rx_ring->buffer_info)
2136 return;
2137 /* Free all the Rx ring sk_buffs */
2138 for (i = 0; i < rx_ring->count; i++) {
2139 buffer_info = &rx_ring->buffer_info[i];
2140 if (buffer_info->dma) {
2141 if (adapter->rx_ps_hdr_size)
2142 pci_unmap_single(pdev, buffer_info->dma,
2143 adapter->rx_ps_hdr_size,
2144 PCI_DMA_FROMDEVICE);
2145 else
2146 pci_unmap_single(pdev, buffer_info->dma,
2147 adapter->rx_buffer_len,
2148 PCI_DMA_FROMDEVICE);
2149 buffer_info->dma = 0;
2152 if (buffer_info->skb) {
2153 dev_kfree_skb(buffer_info->skb);
2154 buffer_info->skb = NULL;
2156 if (buffer_info->page) {
2157 if (buffer_info->page_dma)
2158 pci_unmap_page(pdev, buffer_info->page_dma,
2159 PAGE_SIZE / 2,
2160 PCI_DMA_FROMDEVICE);
2161 put_page(buffer_info->page);
2162 buffer_info->page = NULL;
2163 buffer_info->page_dma = 0;
2164 buffer_info->page_offset = 0;
2168 size = sizeof(struct igb_buffer) * rx_ring->count;
2169 memset(rx_ring->buffer_info, 0, size);
2171 /* Zero out the descriptor ring */
2172 memset(rx_ring->desc, 0, rx_ring->size);
2174 rx_ring->next_to_clean = 0;
2175 rx_ring->next_to_use = 0;
2177 writel(0, adapter->hw.hw_addr + rx_ring->head);
2178 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2182 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2183 * @adapter: board private structure
2185 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2187 int i;
2189 for (i = 0; i < adapter->num_rx_queues; i++)
2190 igb_clean_rx_ring(&adapter->rx_ring[i]);
2194 * igb_set_mac - Change the Ethernet Address of the NIC
2195 * @netdev: network interface device structure
2196 * @p: pointer to an address structure
2198 * Returns 0 on success, negative on failure
2200 static int igb_set_mac(struct net_device *netdev, void *p)
2202 struct igb_adapter *adapter = netdev_priv(netdev);
2203 struct sockaddr *addr = p;
2205 if (!is_valid_ether_addr(addr->sa_data))
2206 return -EADDRNOTAVAIL;
2208 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2209 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2211 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2213 return 0;
2217 * igb_set_multi - Multicast and Promiscuous mode set
2218 * @netdev: network interface device structure
2220 * The set_multi entry point is called whenever the multicast address
2221 * list or the network interface flags are updated. This routine is
2222 * responsible for configuring the hardware for proper multicast,
2223 * promiscuous mode, and all-multi behavior.
2225 static void igb_set_multi(struct net_device *netdev)
2227 struct igb_adapter *adapter = netdev_priv(netdev);
2228 struct e1000_hw *hw = &adapter->hw;
2229 struct e1000_mac_info *mac = &hw->mac;
2230 struct dev_mc_list *mc_ptr;
2231 u8 *mta_list;
2232 u32 rctl;
2233 int i;
2235 /* Check for Promiscuous and All Multicast modes */
2237 rctl = rd32(E1000_RCTL);
2239 if (netdev->flags & IFF_PROMISC) {
2240 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2241 rctl &= ~E1000_RCTL_VFE;
2242 } else {
2243 if (netdev->flags & IFF_ALLMULTI) {
2244 rctl |= E1000_RCTL_MPE;
2245 rctl &= ~E1000_RCTL_UPE;
2246 } else
2247 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2248 rctl |= E1000_RCTL_VFE;
2250 wr32(E1000_RCTL, rctl);
2252 if (!netdev->mc_count) {
2253 /* nothing to program, so clear mc list */
2254 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2255 mac->rar_entry_count);
2256 return;
2259 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2260 if (!mta_list)
2261 return;
2263 /* The shared function expects a packed array of only addresses. */
2264 mc_ptr = netdev->mc_list;
2266 for (i = 0; i < netdev->mc_count; i++) {
2267 if (!mc_ptr)
2268 break;
2269 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2270 mc_ptr = mc_ptr->next;
2272 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2273 mac->rar_entry_count);
2274 kfree(mta_list);
2277 /* Need to wait a few seconds after link up to get diagnostic information from
2278 * the phy */
2279 static void igb_update_phy_info(unsigned long data)
2281 struct igb_adapter *adapter = (struct igb_adapter *) data;
2282 igb_get_phy_info(&adapter->hw);
2286 * igb_watchdog - Timer Call-back
2287 * @data: pointer to adapter cast into an unsigned long
2289 static void igb_watchdog(unsigned long data)
2291 struct igb_adapter *adapter = (struct igb_adapter *)data;
2292 /* Do the rest outside of interrupt context */
2293 schedule_work(&adapter->watchdog_task);
2296 static void igb_watchdog_task(struct work_struct *work)
2298 struct igb_adapter *adapter = container_of(work,
2299 struct igb_adapter, watchdog_task);
2300 struct e1000_hw *hw = &adapter->hw;
2302 struct net_device *netdev = adapter->netdev;
2303 struct igb_ring *tx_ring = adapter->tx_ring;
2304 struct e1000_mac_info *mac = &adapter->hw.mac;
2305 u32 link;
2306 u32 eics = 0;
2307 s32 ret_val;
2308 int i;
2310 if ((netif_carrier_ok(netdev)) &&
2311 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2312 goto link_up;
2314 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2315 if ((ret_val == E1000_ERR_PHY) &&
2316 (hw->phy.type == e1000_phy_igp_3) &&
2317 (rd32(E1000_CTRL) &
2318 E1000_PHY_CTRL_GBE_DISABLE))
2319 dev_info(&adapter->pdev->dev,
2320 "Gigabit has been disabled, downgrading speed\n");
2322 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2323 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2324 link = mac->serdes_has_link;
2325 else
2326 link = rd32(E1000_STATUS) &
2327 E1000_STATUS_LU;
2329 if (link) {
2330 if (!netif_carrier_ok(netdev)) {
2331 u32 ctrl;
2332 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2333 &adapter->link_speed,
2334 &adapter->link_duplex);
2336 ctrl = rd32(E1000_CTRL);
2337 /* Links status message must follow this format */
2338 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2339 "Flow Control: %s\n",
2340 netdev->name,
2341 adapter->link_speed,
2342 adapter->link_duplex == FULL_DUPLEX ?
2343 "Full Duplex" : "Half Duplex",
2344 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2345 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2346 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2347 E1000_CTRL_TFCE) ? "TX" : "None")));
2349 /* tweak tx_queue_len according to speed/duplex and
2350 * adjust the timeout factor */
2351 netdev->tx_queue_len = adapter->tx_queue_len;
2352 adapter->tx_timeout_factor = 1;
2353 switch (adapter->link_speed) {
2354 case SPEED_10:
2355 netdev->tx_queue_len = 10;
2356 adapter->tx_timeout_factor = 14;
2357 break;
2358 case SPEED_100:
2359 netdev->tx_queue_len = 100;
2360 /* maybe add some timeout factor ? */
2361 break;
2364 netif_carrier_on(netdev);
2365 netif_tx_wake_all_queues(netdev);
2367 if (!test_bit(__IGB_DOWN, &adapter->state))
2368 mod_timer(&adapter->phy_info_timer,
2369 round_jiffies(jiffies + 2 * HZ));
2371 } else {
2372 if (netif_carrier_ok(netdev)) {
2373 adapter->link_speed = 0;
2374 adapter->link_duplex = 0;
2375 /* Links status message must follow this format */
2376 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2377 netdev->name);
2378 netif_carrier_off(netdev);
2379 netif_tx_stop_all_queues(netdev);
2380 if (!test_bit(__IGB_DOWN, &adapter->state))
2381 mod_timer(&adapter->phy_info_timer,
2382 round_jiffies(jiffies + 2 * HZ));
2386 link_up:
2387 igb_update_stats(adapter);
2389 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2390 adapter->tpt_old = adapter->stats.tpt;
2391 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2392 adapter->colc_old = adapter->stats.colc;
2394 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2395 adapter->gorc_old = adapter->stats.gorc;
2396 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2397 adapter->gotc_old = adapter->stats.gotc;
2399 igb_update_adaptive(&adapter->hw);
2401 if (!netif_carrier_ok(netdev)) {
2402 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2403 /* We've lost link, so the controller stops DMA,
2404 * but we've got queued Tx work that's never going
2405 * to get done, so reset controller to flush Tx.
2406 * (Do the reset outside of interrupt context). */
2407 adapter->tx_timeout_count++;
2408 schedule_work(&adapter->reset_task);
2412 /* Cause software interrupt to ensure rx ring is cleaned */
2413 if (adapter->msix_entries) {
2414 for (i = 0; i < adapter->num_rx_queues; i++)
2415 eics |= adapter->rx_ring[i].eims_value;
2416 wr32(E1000_EICS, eics);
2417 } else {
2418 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2421 /* Force detection of hung controller every watchdog period */
2422 tx_ring->detect_tx_hung = true;
2424 /* Reset the timer */
2425 if (!test_bit(__IGB_DOWN, &adapter->state))
2426 mod_timer(&adapter->watchdog_timer,
2427 round_jiffies(jiffies + 2 * HZ));
2430 enum latency_range {
2431 lowest_latency = 0,
2432 low_latency = 1,
2433 bulk_latency = 2,
2434 latency_invalid = 255
2439 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2441 * Stores a new ITR value based on strictly on packet size. This
2442 * algorithm is less sophisticated than that used in igb_update_itr,
2443 * due to the difficulty of synchronizing statistics across multiple
2444 * receive rings. The divisors and thresholds used by this fuction
2445 * were determined based on theoretical maximum wire speed and testing
2446 * data, in order to minimize response time while increasing bulk
2447 * throughput.
2448 * This functionality is controlled by the InterruptThrottleRate module
2449 * parameter (see igb_param.c)
2450 * NOTE: This function is called only when operating in a multiqueue
2451 * receive environment.
2452 * @rx_ring: pointer to ring
2454 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2456 int new_val = rx_ring->itr_val;
2457 int avg_wire_size = 0;
2458 struct igb_adapter *adapter = rx_ring->adapter;
2460 if (!rx_ring->total_packets)
2461 goto clear_counts; /* no packets, so don't do anything */
2463 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2464 * ints/sec - ITR timer value of 120 ticks.
2466 if (adapter->link_speed != SPEED_1000) {
2467 new_val = 120;
2468 goto set_itr_val;
2470 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2472 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2473 avg_wire_size += 24;
2475 /* Don't starve jumbo frames */
2476 avg_wire_size = min(avg_wire_size, 3000);
2478 /* Give a little boost to mid-size frames */
2479 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2480 new_val = avg_wire_size / 3;
2481 else
2482 new_val = avg_wire_size / 2;
2484 set_itr_val:
2485 if (new_val != rx_ring->itr_val) {
2486 rx_ring->itr_val = new_val;
2487 rx_ring->set_itr = 1;
2489 clear_counts:
2490 rx_ring->total_bytes = 0;
2491 rx_ring->total_packets = 0;
2495 * igb_update_itr - update the dynamic ITR value based on statistics
2496 * Stores a new ITR value based on packets and byte
2497 * counts during the last interrupt. The advantage of per interrupt
2498 * computation is faster updates and more accurate ITR for the current
2499 * traffic pattern. Constants in this function were computed
2500 * based on theoretical maximum wire speed and thresholds were set based
2501 * on testing data as well as attempting to minimize response time
2502 * while increasing bulk throughput.
2503 * this functionality is controlled by the InterruptThrottleRate module
2504 * parameter (see igb_param.c)
2505 * NOTE: These calculations are only valid when operating in a single-
2506 * queue environment.
2507 * @adapter: pointer to adapter
2508 * @itr_setting: current adapter->itr
2509 * @packets: the number of packets during this measurement interval
2510 * @bytes: the number of bytes during this measurement interval
2512 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2513 int packets, int bytes)
2515 unsigned int retval = itr_setting;
2517 if (packets == 0)
2518 goto update_itr_done;
2520 switch (itr_setting) {
2521 case lowest_latency:
2522 /* handle TSO and jumbo frames */
2523 if (bytes/packets > 8000)
2524 retval = bulk_latency;
2525 else if ((packets < 5) && (bytes > 512))
2526 retval = low_latency;
2527 break;
2528 case low_latency: /* 50 usec aka 20000 ints/s */
2529 if (bytes > 10000) {
2530 /* this if handles the TSO accounting */
2531 if (bytes/packets > 8000) {
2532 retval = bulk_latency;
2533 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2534 retval = bulk_latency;
2535 } else if ((packets > 35)) {
2536 retval = lowest_latency;
2538 } else if (bytes/packets > 2000) {
2539 retval = bulk_latency;
2540 } else if (packets <= 2 && bytes < 512) {
2541 retval = lowest_latency;
2543 break;
2544 case bulk_latency: /* 250 usec aka 4000 ints/s */
2545 if (bytes > 25000) {
2546 if (packets > 35)
2547 retval = low_latency;
2548 } else if (bytes < 6000) {
2549 retval = low_latency;
2551 break;
2554 update_itr_done:
2555 return retval;
2558 static void igb_set_itr(struct igb_adapter *adapter)
2560 u16 current_itr;
2561 u32 new_itr = adapter->itr;
2563 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2564 if (adapter->link_speed != SPEED_1000) {
2565 current_itr = 0;
2566 new_itr = 4000;
2567 goto set_itr_now;
2570 adapter->rx_itr = igb_update_itr(adapter,
2571 adapter->rx_itr,
2572 adapter->rx_ring->total_packets,
2573 adapter->rx_ring->total_bytes);
2575 if (adapter->rx_ring->buddy) {
2576 adapter->tx_itr = igb_update_itr(adapter,
2577 adapter->tx_itr,
2578 adapter->tx_ring->total_packets,
2579 adapter->tx_ring->total_bytes);
2581 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2582 } else {
2583 current_itr = adapter->rx_itr;
2586 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2587 if (adapter->itr_setting == 3 &&
2588 current_itr == lowest_latency)
2589 current_itr = low_latency;
2591 switch (current_itr) {
2592 /* counts and packets in update_itr are dependent on these numbers */
2593 case lowest_latency:
2594 new_itr = 70000;
2595 break;
2596 case low_latency:
2597 new_itr = 20000; /* aka hwitr = ~200 */
2598 break;
2599 case bulk_latency:
2600 new_itr = 4000;
2601 break;
2602 default:
2603 break;
2606 set_itr_now:
2607 adapter->rx_ring->total_bytes = 0;
2608 adapter->rx_ring->total_packets = 0;
2609 if (adapter->rx_ring->buddy) {
2610 adapter->rx_ring->buddy->total_bytes = 0;
2611 adapter->rx_ring->buddy->total_packets = 0;
2614 if (new_itr != adapter->itr) {
2615 /* this attempts to bias the interrupt rate towards Bulk
2616 * by adding intermediate steps when interrupt rate is
2617 * increasing */
2618 new_itr = new_itr > adapter->itr ?
2619 min(adapter->itr + (new_itr >> 2), new_itr) :
2620 new_itr;
2621 /* Don't write the value here; it resets the adapter's
2622 * internal timer, and causes us to delay far longer than
2623 * we should between interrupts. Instead, we write the ITR
2624 * value at the beginning of the next interrupt so the timing
2625 * ends up being correct.
2627 adapter->itr = new_itr;
2628 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2629 adapter->rx_ring->set_itr = 1;
2632 return;
2636 #define IGB_TX_FLAGS_CSUM 0x00000001
2637 #define IGB_TX_FLAGS_VLAN 0x00000002
2638 #define IGB_TX_FLAGS_TSO 0x00000004
2639 #define IGB_TX_FLAGS_IPV4 0x00000008
2640 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2641 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2643 static inline int igb_tso_adv(struct igb_adapter *adapter,
2644 struct igb_ring *tx_ring,
2645 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2647 struct e1000_adv_tx_context_desc *context_desc;
2648 unsigned int i;
2649 int err;
2650 struct igb_buffer *buffer_info;
2651 u32 info = 0, tu_cmd = 0;
2652 u32 mss_l4len_idx, l4len;
2653 *hdr_len = 0;
2655 if (skb_header_cloned(skb)) {
2656 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2657 if (err)
2658 return err;
2661 l4len = tcp_hdrlen(skb);
2662 *hdr_len += l4len;
2664 if (skb->protocol == htons(ETH_P_IP)) {
2665 struct iphdr *iph = ip_hdr(skb);
2666 iph->tot_len = 0;
2667 iph->check = 0;
2668 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2669 iph->daddr, 0,
2670 IPPROTO_TCP,
2672 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2673 ipv6_hdr(skb)->payload_len = 0;
2674 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2675 &ipv6_hdr(skb)->daddr,
2676 0, IPPROTO_TCP, 0);
2679 i = tx_ring->next_to_use;
2681 buffer_info = &tx_ring->buffer_info[i];
2682 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2683 /* VLAN MACLEN IPLEN */
2684 if (tx_flags & IGB_TX_FLAGS_VLAN)
2685 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2686 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2687 *hdr_len += skb_network_offset(skb);
2688 info |= skb_network_header_len(skb);
2689 *hdr_len += skb_network_header_len(skb);
2690 context_desc->vlan_macip_lens = cpu_to_le32(info);
2692 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2693 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2695 if (skb->protocol == htons(ETH_P_IP))
2696 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2697 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2699 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2701 /* MSS L4LEN IDX */
2702 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2703 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2705 /* Context index must be unique per ring. */
2706 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2707 mss_l4len_idx |= tx_ring->queue_index << 4;
2709 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2710 context_desc->seqnum_seed = 0;
2712 buffer_info->time_stamp = jiffies;
2713 buffer_info->next_to_watch = i;
2714 buffer_info->dma = 0;
2715 i++;
2716 if (i == tx_ring->count)
2717 i = 0;
2719 tx_ring->next_to_use = i;
2721 return true;
2724 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2725 struct igb_ring *tx_ring,
2726 struct sk_buff *skb, u32 tx_flags)
2728 struct e1000_adv_tx_context_desc *context_desc;
2729 unsigned int i;
2730 struct igb_buffer *buffer_info;
2731 u32 info = 0, tu_cmd = 0;
2733 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2734 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2735 i = tx_ring->next_to_use;
2736 buffer_info = &tx_ring->buffer_info[i];
2737 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2739 if (tx_flags & IGB_TX_FLAGS_VLAN)
2740 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2741 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2742 if (skb->ip_summed == CHECKSUM_PARTIAL)
2743 info |= skb_network_header_len(skb);
2745 context_desc->vlan_macip_lens = cpu_to_le32(info);
2747 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2749 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2750 switch (skb->protocol) {
2751 case cpu_to_be16(ETH_P_IP):
2752 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2753 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2754 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2755 break;
2756 case cpu_to_be16(ETH_P_IPV6):
2757 /* XXX what about other V6 headers?? */
2758 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2759 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2760 break;
2761 default:
2762 if (unlikely(net_ratelimit()))
2763 dev_warn(&adapter->pdev->dev,
2764 "partial checksum but proto=%x!\n",
2765 skb->protocol);
2766 break;
2770 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2771 context_desc->seqnum_seed = 0;
2772 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2773 context_desc->mss_l4len_idx =
2774 cpu_to_le32(tx_ring->queue_index << 4);
2776 buffer_info->time_stamp = jiffies;
2777 buffer_info->next_to_watch = i;
2778 buffer_info->dma = 0;
2780 i++;
2781 if (i == tx_ring->count)
2782 i = 0;
2783 tx_ring->next_to_use = i;
2785 return true;
2789 return false;
2792 #define IGB_MAX_TXD_PWR 16
2793 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2795 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2796 struct igb_ring *tx_ring, struct sk_buff *skb,
2797 unsigned int first)
2799 struct igb_buffer *buffer_info;
2800 unsigned int len = skb_headlen(skb);
2801 unsigned int count = 0, i;
2802 unsigned int f;
2804 i = tx_ring->next_to_use;
2806 buffer_info = &tx_ring->buffer_info[i];
2807 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2808 buffer_info->length = len;
2809 /* set time_stamp *before* dma to help avoid a possible race */
2810 buffer_info->time_stamp = jiffies;
2811 buffer_info->next_to_watch = i;
2812 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2813 PCI_DMA_TODEVICE);
2814 count++;
2815 i++;
2816 if (i == tx_ring->count)
2817 i = 0;
2819 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2820 struct skb_frag_struct *frag;
2822 frag = &skb_shinfo(skb)->frags[f];
2823 len = frag->size;
2825 buffer_info = &tx_ring->buffer_info[i];
2826 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2827 buffer_info->length = len;
2828 buffer_info->time_stamp = jiffies;
2829 buffer_info->next_to_watch = i;
2830 buffer_info->dma = pci_map_page(adapter->pdev,
2831 frag->page,
2832 frag->page_offset,
2833 len,
2834 PCI_DMA_TODEVICE);
2836 count++;
2837 i++;
2838 if (i == tx_ring->count)
2839 i = 0;
2842 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2843 tx_ring->buffer_info[i].skb = skb;
2844 tx_ring->buffer_info[first].next_to_watch = i;
2846 return count;
2849 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2850 struct igb_ring *tx_ring,
2851 int tx_flags, int count, u32 paylen,
2852 u8 hdr_len)
2854 union e1000_adv_tx_desc *tx_desc = NULL;
2855 struct igb_buffer *buffer_info;
2856 u32 olinfo_status = 0, cmd_type_len;
2857 unsigned int i;
2859 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2860 E1000_ADVTXD_DCMD_DEXT);
2862 if (tx_flags & IGB_TX_FLAGS_VLAN)
2863 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2865 if (tx_flags & IGB_TX_FLAGS_TSO) {
2866 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2868 /* insert tcp checksum */
2869 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2871 /* insert ip checksum */
2872 if (tx_flags & IGB_TX_FLAGS_IPV4)
2873 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2875 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2876 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2879 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2880 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2881 IGB_TX_FLAGS_VLAN)))
2882 olinfo_status |= tx_ring->queue_index << 4;
2884 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2886 i = tx_ring->next_to_use;
2887 while (count--) {
2888 buffer_info = &tx_ring->buffer_info[i];
2889 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2890 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2891 tx_desc->read.cmd_type_len =
2892 cpu_to_le32(cmd_type_len | buffer_info->length);
2893 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2894 i++;
2895 if (i == tx_ring->count)
2896 i = 0;
2899 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2900 /* Force memory writes to complete before letting h/w
2901 * know there are new descriptors to fetch. (Only
2902 * applicable for weak-ordered memory model archs,
2903 * such as IA-64). */
2904 wmb();
2906 tx_ring->next_to_use = i;
2907 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2908 /* we need this if more than one processor can write to our tail
2909 * at a time, it syncronizes IO on IA64/Altix systems */
2910 mmiowb();
2913 static int __igb_maybe_stop_tx(struct net_device *netdev,
2914 struct igb_ring *tx_ring, int size)
2916 struct igb_adapter *adapter = netdev_priv(netdev);
2918 netif_stop_subqueue(netdev, tx_ring->queue_index);
2920 /* Herbert's original patch had:
2921 * smp_mb__after_netif_stop_queue();
2922 * but since that doesn't exist yet, just open code it. */
2923 smp_mb();
2925 /* We need to check again in a case another CPU has just
2926 * made room available. */
2927 if (IGB_DESC_UNUSED(tx_ring) < size)
2928 return -EBUSY;
2930 /* A reprieve! */
2931 netif_wake_subqueue(netdev, tx_ring->queue_index);
2932 ++adapter->restart_queue;
2933 return 0;
2936 static int igb_maybe_stop_tx(struct net_device *netdev,
2937 struct igb_ring *tx_ring, int size)
2939 if (IGB_DESC_UNUSED(tx_ring) >= size)
2940 return 0;
2941 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2944 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2946 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2947 struct net_device *netdev,
2948 struct igb_ring *tx_ring)
2950 struct igb_adapter *adapter = netdev_priv(netdev);
2951 unsigned int first;
2952 unsigned int tx_flags = 0;
2953 unsigned int len;
2954 u8 hdr_len = 0;
2955 int tso = 0;
2957 len = skb_headlen(skb);
2959 if (test_bit(__IGB_DOWN, &adapter->state)) {
2960 dev_kfree_skb_any(skb);
2961 return NETDEV_TX_OK;
2964 if (skb->len <= 0) {
2965 dev_kfree_skb_any(skb);
2966 return NETDEV_TX_OK;
2969 /* need: 1 descriptor per page,
2970 * + 2 desc gap to keep tail from touching head,
2971 * + 1 desc for skb->data,
2972 * + 1 desc for context descriptor,
2973 * otherwise try next time */
2974 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2975 /* this is a hard error */
2976 return NETDEV_TX_BUSY;
2978 skb_orphan(skb);
2980 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2981 tx_flags |= IGB_TX_FLAGS_VLAN;
2982 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2985 if (skb->protocol == htons(ETH_P_IP))
2986 tx_flags |= IGB_TX_FLAGS_IPV4;
2988 first = tx_ring->next_to_use;
2990 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2991 &hdr_len) : 0;
2993 if (tso < 0) {
2994 dev_kfree_skb_any(skb);
2995 return NETDEV_TX_OK;
2998 if (tso)
2999 tx_flags |= IGB_TX_FLAGS_TSO;
3000 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3001 if (skb->ip_summed == CHECKSUM_PARTIAL)
3002 tx_flags |= IGB_TX_FLAGS_CSUM;
3004 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3005 igb_tx_map_adv(adapter, tx_ring, skb, first),
3006 skb->len, hdr_len);
3008 netdev->trans_start = jiffies;
3010 /* Make sure there is space in the ring for the next send. */
3011 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3013 return NETDEV_TX_OK;
3016 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3018 struct igb_adapter *adapter = netdev_priv(netdev);
3019 struct igb_ring *tx_ring;
3021 int r_idx = 0;
3022 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3023 tx_ring = adapter->multi_tx_table[r_idx];
3025 /* This goes back to the question of how to logically map a tx queue
3026 * to a flow. Right now, performance is impacted slightly negatively
3027 * if using multiple tx queues. If the stack breaks away from a
3028 * single qdisc implementation, we can look at this again. */
3029 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3033 * igb_tx_timeout - Respond to a Tx Hang
3034 * @netdev: network interface device structure
3036 static void igb_tx_timeout(struct net_device *netdev)
3038 struct igb_adapter *adapter = netdev_priv(netdev);
3039 struct e1000_hw *hw = &adapter->hw;
3041 /* Do the reset outside of interrupt context */
3042 adapter->tx_timeout_count++;
3043 schedule_work(&adapter->reset_task);
3044 wr32(E1000_EICS, adapter->eims_enable_mask &
3045 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3048 static void igb_reset_task(struct work_struct *work)
3050 struct igb_adapter *adapter;
3051 adapter = container_of(work, struct igb_adapter, reset_task);
3053 igb_reinit_locked(adapter);
3057 * igb_get_stats - Get System Network Statistics
3058 * @netdev: network interface device structure
3060 * Returns the address of the device statistics structure.
3061 * The statistics are actually updated from the timer callback.
3063 static struct net_device_stats *
3064 igb_get_stats(struct net_device *netdev)
3066 struct igb_adapter *adapter = netdev_priv(netdev);
3068 /* only return the current stats */
3069 return &adapter->net_stats;
3073 * igb_change_mtu - Change the Maximum Transfer Unit
3074 * @netdev: network interface device structure
3075 * @new_mtu: new value for maximum frame size
3077 * Returns 0 on success, negative on failure
3079 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3081 struct igb_adapter *adapter = netdev_priv(netdev);
3082 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3084 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3085 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3086 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3087 return -EINVAL;
3090 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3091 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3092 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3093 return -EINVAL;
3096 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3097 msleep(1);
3098 /* igb_down has a dependency on max_frame_size */
3099 adapter->max_frame_size = max_frame;
3100 if (netif_running(netdev))
3101 igb_down(adapter);
3103 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3104 * means we reserve 2 more, this pushes us to allocate from the next
3105 * larger slab size.
3106 * i.e. RXBUFFER_2048 --> size-4096 slab
3109 if (max_frame <= IGB_RXBUFFER_256)
3110 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3111 else if (max_frame <= IGB_RXBUFFER_512)
3112 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3113 else if (max_frame <= IGB_RXBUFFER_1024)
3114 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3115 else if (max_frame <= IGB_RXBUFFER_2048)
3116 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3117 else
3118 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3119 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3120 #else
3121 adapter->rx_buffer_len = PAGE_SIZE / 2;
3122 #endif
3123 /* adjust allocation if LPE protects us, and we aren't using SBP */
3124 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3125 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3126 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3128 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3129 netdev->mtu, new_mtu);
3130 netdev->mtu = new_mtu;
3132 if (netif_running(netdev))
3133 igb_up(adapter);
3134 else
3135 igb_reset(adapter);
3137 clear_bit(__IGB_RESETTING, &adapter->state);
3139 return 0;
3143 * igb_update_stats - Update the board statistics counters
3144 * @adapter: board private structure
3147 void igb_update_stats(struct igb_adapter *adapter)
3149 struct e1000_hw *hw = &adapter->hw;
3150 struct pci_dev *pdev = adapter->pdev;
3151 u16 phy_tmp;
3153 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3156 * Prevent stats update while adapter is being reset, or if the pci
3157 * connection is down.
3159 if (adapter->link_speed == 0)
3160 return;
3161 if (pci_channel_offline(pdev))
3162 return;
3164 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3165 adapter->stats.gprc += rd32(E1000_GPRC);
3166 adapter->stats.gorc += rd32(E1000_GORCL);
3167 rd32(E1000_GORCH); /* clear GORCL */
3168 adapter->stats.bprc += rd32(E1000_BPRC);
3169 adapter->stats.mprc += rd32(E1000_MPRC);
3170 adapter->stats.roc += rd32(E1000_ROC);
3172 adapter->stats.prc64 += rd32(E1000_PRC64);
3173 adapter->stats.prc127 += rd32(E1000_PRC127);
3174 adapter->stats.prc255 += rd32(E1000_PRC255);
3175 adapter->stats.prc511 += rd32(E1000_PRC511);
3176 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3177 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3178 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3179 adapter->stats.sec += rd32(E1000_SEC);
3181 adapter->stats.mpc += rd32(E1000_MPC);
3182 adapter->stats.scc += rd32(E1000_SCC);
3183 adapter->stats.ecol += rd32(E1000_ECOL);
3184 adapter->stats.mcc += rd32(E1000_MCC);
3185 adapter->stats.latecol += rd32(E1000_LATECOL);
3186 adapter->stats.dc += rd32(E1000_DC);
3187 adapter->stats.rlec += rd32(E1000_RLEC);
3188 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3189 adapter->stats.xontxc += rd32(E1000_XONTXC);
3190 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3191 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3192 adapter->stats.fcruc += rd32(E1000_FCRUC);
3193 adapter->stats.gptc += rd32(E1000_GPTC);
3194 adapter->stats.gotc += rd32(E1000_GOTCL);
3195 rd32(E1000_GOTCH); /* clear GOTCL */
3196 adapter->stats.rnbc += rd32(E1000_RNBC);
3197 adapter->stats.ruc += rd32(E1000_RUC);
3198 adapter->stats.rfc += rd32(E1000_RFC);
3199 adapter->stats.rjc += rd32(E1000_RJC);
3200 adapter->stats.tor += rd32(E1000_TORH);
3201 adapter->stats.tot += rd32(E1000_TOTH);
3202 adapter->stats.tpr += rd32(E1000_TPR);
3204 adapter->stats.ptc64 += rd32(E1000_PTC64);
3205 adapter->stats.ptc127 += rd32(E1000_PTC127);
3206 adapter->stats.ptc255 += rd32(E1000_PTC255);
3207 adapter->stats.ptc511 += rd32(E1000_PTC511);
3208 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3209 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3211 adapter->stats.mptc += rd32(E1000_MPTC);
3212 adapter->stats.bptc += rd32(E1000_BPTC);
3214 /* used for adaptive IFS */
3216 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3217 adapter->stats.tpt += hw->mac.tx_packet_delta;
3218 hw->mac.collision_delta = rd32(E1000_COLC);
3219 adapter->stats.colc += hw->mac.collision_delta;
3221 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3222 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3223 adapter->stats.tncrs += rd32(E1000_TNCRS);
3224 adapter->stats.tsctc += rd32(E1000_TSCTC);
3225 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3227 adapter->stats.iac += rd32(E1000_IAC);
3228 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3229 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3230 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3231 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3232 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3233 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3234 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3235 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3237 /* Fill out the OS statistics structure */
3238 adapter->net_stats.multicast = adapter->stats.mprc;
3239 adapter->net_stats.collisions = adapter->stats.colc;
3241 /* Rx Errors */
3243 /* RLEC on some newer hardware can be incorrect so build
3244 * our own version based on RUC and ROC */
3245 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3246 adapter->stats.crcerrs + adapter->stats.algnerrc +
3247 adapter->stats.ruc + adapter->stats.roc +
3248 adapter->stats.cexterr;
3249 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3250 adapter->stats.roc;
3251 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3252 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3253 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3255 /* Tx Errors */
3256 adapter->net_stats.tx_errors = adapter->stats.ecol +
3257 adapter->stats.latecol;
3258 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3259 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3260 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3262 /* Tx Dropped needs to be maintained elsewhere */
3264 /* Phy Stats */
3265 if (hw->phy.media_type == e1000_media_type_copper) {
3266 if ((adapter->link_speed == SPEED_1000) &&
3267 (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3268 &phy_tmp))) {
3269 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3270 adapter->phy_stats.idle_errors += phy_tmp;
3274 /* Management Stats */
3275 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3276 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3277 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3281 static irqreturn_t igb_msix_other(int irq, void *data)
3283 struct net_device *netdev = data;
3284 struct igb_adapter *adapter = netdev_priv(netdev);
3285 struct e1000_hw *hw = &adapter->hw;
3286 u32 icr = rd32(E1000_ICR);
3288 /* reading ICR causes bit 31 of EICR to be cleared */
3289 if (!(icr & E1000_ICR_LSC))
3290 goto no_link_interrupt;
3291 hw->mac.get_link_status = 1;
3292 /* guard against interrupt when we're going down */
3293 if (!test_bit(__IGB_DOWN, &adapter->state))
3294 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3296 no_link_interrupt:
3297 wr32(E1000_IMS, E1000_IMS_LSC);
3298 wr32(E1000_EIMS, adapter->eims_other);
3300 return IRQ_HANDLED;
3303 static irqreturn_t igb_msix_tx(int irq, void *data)
3305 struct igb_ring *tx_ring = data;
3306 struct igb_adapter *adapter = tx_ring->adapter;
3307 struct e1000_hw *hw = &adapter->hw;
3309 #ifdef CONFIG_IGB_DCA
3310 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3311 igb_update_tx_dca(tx_ring);
3312 #endif
3313 tx_ring->total_bytes = 0;
3314 tx_ring->total_packets = 0;
3316 /* auto mask will automatically reenable the interrupt when we write
3317 * EICS */
3318 if (!igb_clean_tx_irq(tx_ring))
3319 /* Ring was not completely cleaned, so fire another interrupt */
3320 wr32(E1000_EICS, tx_ring->eims_value);
3321 else
3322 wr32(E1000_EIMS, tx_ring->eims_value);
3324 return IRQ_HANDLED;
3327 static void igb_write_itr(struct igb_ring *ring)
3329 struct e1000_hw *hw = &ring->adapter->hw;
3330 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3331 switch (hw->mac.type) {
3332 case e1000_82576:
3333 wr32(ring->itr_register,
3334 ring->itr_val |
3335 0x80000000);
3336 break;
3337 default:
3338 wr32(ring->itr_register,
3339 ring->itr_val |
3340 (ring->itr_val << 16));
3341 break;
3343 ring->set_itr = 0;
3347 static irqreturn_t igb_msix_rx(int irq, void *data)
3349 struct igb_ring *rx_ring = data;
3351 /* Write the ITR value calculated at the end of the
3352 * previous interrupt.
3355 igb_write_itr(rx_ring);
3357 if (napi_schedule_prep(&rx_ring->napi))
3358 __napi_schedule(&rx_ring->napi);
3360 #ifdef CONFIG_IGB_DCA
3361 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3362 igb_update_rx_dca(rx_ring);
3363 #endif
3364 return IRQ_HANDLED;
3367 #ifdef CONFIG_IGB_DCA
3368 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3370 u32 dca_rxctrl;
3371 struct igb_adapter *adapter = rx_ring->adapter;
3372 struct e1000_hw *hw = &adapter->hw;
3373 int cpu = get_cpu();
3374 int q = rx_ring->reg_idx;
3376 if (rx_ring->cpu != cpu) {
3377 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3378 if (hw->mac.type == e1000_82576) {
3379 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3380 dca_rxctrl |= dca_get_tag(cpu) <<
3381 E1000_DCA_RXCTRL_CPUID_SHIFT;
3382 } else {
3383 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3384 dca_rxctrl |= dca_get_tag(cpu);
3386 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3387 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3388 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3389 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3390 rx_ring->cpu = cpu;
3392 put_cpu();
3395 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3397 u32 dca_txctrl;
3398 struct igb_adapter *adapter = tx_ring->adapter;
3399 struct e1000_hw *hw = &adapter->hw;
3400 int cpu = get_cpu();
3401 int q = tx_ring->reg_idx;
3403 if (tx_ring->cpu != cpu) {
3404 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3405 if (hw->mac.type == e1000_82576) {
3406 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3407 dca_txctrl |= dca_get_tag(cpu) <<
3408 E1000_DCA_TXCTRL_CPUID_SHIFT;
3409 } else {
3410 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3411 dca_txctrl |= dca_get_tag(cpu);
3413 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3414 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3415 tx_ring->cpu = cpu;
3417 put_cpu();
3420 static void igb_setup_dca(struct igb_adapter *adapter)
3422 int i;
3424 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3425 return;
3427 for (i = 0; i < adapter->num_tx_queues; i++) {
3428 adapter->tx_ring[i].cpu = -1;
3429 igb_update_tx_dca(&adapter->tx_ring[i]);
3431 for (i = 0; i < adapter->num_rx_queues; i++) {
3432 adapter->rx_ring[i].cpu = -1;
3433 igb_update_rx_dca(&adapter->rx_ring[i]);
3437 static int __igb_notify_dca(struct device *dev, void *data)
3439 struct net_device *netdev = dev_get_drvdata(dev);
3440 struct igb_adapter *adapter = netdev_priv(netdev);
3441 struct e1000_hw *hw = &adapter->hw;
3442 unsigned long event = *(unsigned long *)data;
3444 switch (event) {
3445 case DCA_PROVIDER_ADD:
3446 /* if already enabled, don't do it again */
3447 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3448 break;
3449 /* Always use CB2 mode, difference is masked
3450 * in the CB driver. */
3451 wr32(E1000_DCA_CTRL, 2);
3452 if (dca_add_requester(dev) == 0) {
3453 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3454 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3455 igb_setup_dca(adapter);
3456 break;
3458 /* Fall Through since DCA is disabled. */
3459 case DCA_PROVIDER_REMOVE:
3460 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3461 /* without this a class_device is left
3462 * hanging around in the sysfs model */
3463 dca_remove_requester(dev);
3464 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3465 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3466 wr32(E1000_DCA_CTRL, 1);
3468 break;
3471 return 0;
3474 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3475 void *p)
3477 int ret_val;
3479 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3480 __igb_notify_dca);
3482 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3484 #endif /* CONFIG_IGB_DCA */
3487 * igb_intr_msi - Interrupt Handler
3488 * @irq: interrupt number
3489 * @data: pointer to a network interface device structure
3491 static irqreturn_t igb_intr_msi(int irq, void *data)
3493 struct net_device *netdev = data;
3494 struct igb_adapter *adapter = netdev_priv(netdev);
3495 struct e1000_hw *hw = &adapter->hw;
3496 /* read ICR disables interrupts using IAM */
3497 u32 icr = rd32(E1000_ICR);
3499 igb_write_itr(adapter->rx_ring);
3501 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3502 hw->mac.get_link_status = 1;
3503 if (!test_bit(__IGB_DOWN, &adapter->state))
3504 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3507 napi_schedule(&adapter->rx_ring[0].napi);
3509 return IRQ_HANDLED;
3513 * igb_intr - Interrupt Handler
3514 * @irq: interrupt number
3515 * @data: pointer to a network interface device structure
3517 static irqreturn_t igb_intr(int irq, void *data)
3519 struct net_device *netdev = data;
3520 struct igb_adapter *adapter = netdev_priv(netdev);
3521 struct e1000_hw *hw = &adapter->hw;
3522 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3523 * need for the IMC write */
3524 u32 icr = rd32(E1000_ICR);
3525 u32 eicr = 0;
3526 if (!icr)
3527 return IRQ_NONE; /* Not our interrupt */
3529 igb_write_itr(adapter->rx_ring);
3531 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3532 * not set, then the adapter didn't send an interrupt */
3533 if (!(icr & E1000_ICR_INT_ASSERTED))
3534 return IRQ_NONE;
3536 eicr = rd32(E1000_EICR);
3538 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3539 hw->mac.get_link_status = 1;
3540 /* guard against interrupt when we're going down */
3541 if (!test_bit(__IGB_DOWN, &adapter->state))
3542 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3545 napi_schedule(&adapter->rx_ring[0].napi);
3547 return IRQ_HANDLED;
3551 * igb_poll - NAPI Rx polling callback
3552 * @napi: napi polling structure
3553 * @budget: count of how many packets we should handle
3555 static int igb_poll(struct napi_struct *napi, int budget)
3557 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3558 struct igb_adapter *adapter = rx_ring->adapter;
3559 struct net_device *netdev = adapter->netdev;
3560 int tx_clean_complete, work_done = 0;
3562 /* this poll routine only supports one tx and one rx queue */
3563 #ifdef CONFIG_IGB_DCA
3564 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3565 igb_update_tx_dca(&adapter->tx_ring[0]);
3566 #endif
3567 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3569 #ifdef CONFIG_IGB_DCA
3570 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3571 igb_update_rx_dca(&adapter->rx_ring[0]);
3572 #endif
3573 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3575 /* If no Tx and not enough Rx work done, exit the polling mode */
3576 if ((tx_clean_complete && (work_done < budget)) ||
3577 !netif_running(netdev)) {
3578 if (adapter->itr_setting & 3)
3579 igb_set_itr(adapter);
3580 napi_complete(napi);
3581 if (!test_bit(__IGB_DOWN, &adapter->state))
3582 igb_irq_enable(adapter);
3583 return 0;
3586 return 1;
3589 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3591 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3592 struct igb_adapter *adapter = rx_ring->adapter;
3593 struct e1000_hw *hw = &adapter->hw;
3594 struct net_device *netdev = adapter->netdev;
3595 int work_done = 0;
3597 #ifdef CONFIG_IGB_DCA
3598 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3599 igb_update_rx_dca(rx_ring);
3600 #endif
3601 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3604 /* If not enough Rx work done, exit the polling mode */
3605 if ((work_done == 0) || !netif_running(netdev)) {
3606 napi_complete(napi);
3608 if (adapter->itr_setting & 3) {
3609 if (adapter->num_rx_queues == 1)
3610 igb_set_itr(adapter);
3611 else
3612 igb_update_ring_itr(rx_ring);
3615 if (!test_bit(__IGB_DOWN, &adapter->state))
3616 wr32(E1000_EIMS, rx_ring->eims_value);
3618 return 0;
3621 return 1;
3625 * igb_clean_tx_irq - Reclaim resources after transmit completes
3626 * @adapter: board private structure
3627 * returns true if ring is completely cleaned
3629 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3631 struct igb_adapter *adapter = tx_ring->adapter;
3632 struct net_device *netdev = adapter->netdev;
3633 struct e1000_hw *hw = &adapter->hw;
3634 struct igb_buffer *buffer_info;
3635 struct sk_buff *skb;
3636 union e1000_adv_tx_desc *tx_desc, *eop_desc;
3637 unsigned int total_bytes = 0, total_packets = 0;
3638 unsigned int i, eop, count = 0;
3639 bool cleaned = false;
3641 i = tx_ring->next_to_clean;
3642 eop = tx_ring->buffer_info[i].next_to_watch;
3643 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3645 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3646 (count < tx_ring->count)) {
3647 for (cleaned = false; !cleaned; count++) {
3648 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3649 buffer_info = &tx_ring->buffer_info[i];
3650 cleaned = (i == eop);
3651 skb = buffer_info->skb;
3653 if (skb) {
3654 unsigned int segs, bytecount;
3655 /* gso_segs is currently only valid for tcp */
3656 segs = skb_shinfo(skb)->gso_segs ?: 1;
3657 /* multiply data chunks by size of headers */
3658 bytecount = ((segs - 1) * skb_headlen(skb)) +
3659 skb->len;
3660 total_packets += segs;
3661 total_bytes += bytecount;
3664 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3665 tx_desc->wb.status = 0;
3667 i++;
3668 if (i == tx_ring->count)
3669 i = 0;
3672 eop = tx_ring->buffer_info[i].next_to_watch;
3673 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3676 tx_ring->next_to_clean = i;
3678 if (unlikely(count &&
3679 netif_carrier_ok(netdev) &&
3680 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3681 /* Make sure that anybody stopping the queue after this
3682 * sees the new next_to_clean.
3684 smp_mb();
3685 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3686 !(test_bit(__IGB_DOWN, &adapter->state))) {
3687 netif_wake_subqueue(netdev, tx_ring->queue_index);
3688 ++adapter->restart_queue;
3692 if (tx_ring->detect_tx_hung) {
3693 /* Detect a transmit hang in hardware, this serializes the
3694 * check with the clearing of time_stamp and movement of i */
3695 tx_ring->detect_tx_hung = false;
3696 if (tx_ring->buffer_info[i].time_stamp &&
3697 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3698 (adapter->tx_timeout_factor * HZ))
3699 && !(rd32(E1000_STATUS) &
3700 E1000_STATUS_TXOFF)) {
3702 /* detected Tx unit hang */
3703 dev_err(&adapter->pdev->dev,
3704 "Detected Tx Unit Hang\n"
3705 " Tx Queue <%d>\n"
3706 " TDH <%x>\n"
3707 " TDT <%x>\n"
3708 " next_to_use <%x>\n"
3709 " next_to_clean <%x>\n"
3710 "buffer_info[next_to_clean]\n"
3711 " time_stamp <%lx>\n"
3712 " next_to_watch <%x>\n"
3713 " jiffies <%lx>\n"
3714 " desc.status <%x>\n",
3715 tx_ring->queue_index,
3716 readl(adapter->hw.hw_addr + tx_ring->head),
3717 readl(adapter->hw.hw_addr + tx_ring->tail),
3718 tx_ring->next_to_use,
3719 tx_ring->next_to_clean,
3720 tx_ring->buffer_info[i].time_stamp,
3721 eop,
3722 jiffies,
3723 eop_desc->wb.status);
3724 netif_stop_subqueue(netdev, tx_ring->queue_index);
3727 tx_ring->total_bytes += total_bytes;
3728 tx_ring->total_packets += total_packets;
3729 tx_ring->tx_stats.bytes += total_bytes;
3730 tx_ring->tx_stats.packets += total_packets;
3731 adapter->net_stats.tx_bytes += total_bytes;
3732 adapter->net_stats.tx_packets += total_packets;
3733 return (count < tx_ring->count);
3737 * igb_receive_skb - helper function to handle rx indications
3738 * @ring: pointer to receive ring receving this packet
3739 * @status: descriptor status field as written by hardware
3740 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3741 * @skb: pointer to sk_buff to be indicated to stack
3743 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3744 union e1000_adv_rx_desc * rx_desc,
3745 struct sk_buff *skb)
3747 struct igb_adapter * adapter = ring->adapter;
3748 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3750 skb_record_rx_queue(skb, ring->queue_index);
3751 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3752 if (vlan_extracted)
3753 vlan_gro_receive(&ring->napi, adapter->vlgrp,
3754 le16_to_cpu(rx_desc->wb.upper.vlan),
3755 skb);
3756 else
3757 napi_gro_receive(&ring->napi, skb);
3758 } else {
3759 if (vlan_extracted)
3760 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3761 le16_to_cpu(rx_desc->wb.upper.vlan));
3762 else
3763 netif_receive_skb(skb);
3768 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3769 u32 status_err, struct sk_buff *skb)
3771 skb->ip_summed = CHECKSUM_NONE;
3773 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3774 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3775 return;
3776 /* TCP/UDP checksum error bit is set */
3777 if (status_err &
3778 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3779 /* let the stack verify checksum errors */
3780 adapter->hw_csum_err++;
3781 return;
3783 /* It must be a TCP or UDP packet with a valid checksum */
3784 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3785 skb->ip_summed = CHECKSUM_UNNECESSARY;
3787 adapter->hw_csum_good++;
3790 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3791 int *work_done, int budget)
3793 struct igb_adapter *adapter = rx_ring->adapter;
3794 struct net_device *netdev = adapter->netdev;
3795 struct pci_dev *pdev = adapter->pdev;
3796 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3797 struct igb_buffer *buffer_info , *next_buffer;
3798 struct sk_buff *skb;
3799 unsigned int i;
3800 u32 length, hlen, staterr;
3801 bool cleaned = false;
3802 int cleaned_count = 0;
3803 unsigned int total_bytes = 0, total_packets = 0;
3805 i = rx_ring->next_to_clean;
3806 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3807 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3809 while (staterr & E1000_RXD_STAT_DD) {
3810 if (*work_done >= budget)
3811 break;
3812 (*work_done)++;
3813 buffer_info = &rx_ring->buffer_info[i];
3815 /* HW will not DMA in data larger than the given buffer, even
3816 * if it parses the (NFS, of course) header to be larger. In
3817 * that case, it fills the header buffer and spills the rest
3818 * into the page.
3820 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3821 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3822 if (hlen > adapter->rx_ps_hdr_size)
3823 hlen = adapter->rx_ps_hdr_size;
3825 length = le16_to_cpu(rx_desc->wb.upper.length);
3826 cleaned = true;
3827 cleaned_count++;
3829 skb = buffer_info->skb;
3830 prefetch(skb->data - NET_IP_ALIGN);
3831 buffer_info->skb = NULL;
3832 if (!adapter->rx_ps_hdr_size) {
3833 pci_unmap_single(pdev, buffer_info->dma,
3834 adapter->rx_buffer_len +
3835 NET_IP_ALIGN,
3836 PCI_DMA_FROMDEVICE);
3837 skb_put(skb, length);
3838 goto send_up;
3841 if (!skb_shinfo(skb)->nr_frags) {
3842 pci_unmap_single(pdev, buffer_info->dma,
3843 adapter->rx_ps_hdr_size +
3844 NET_IP_ALIGN,
3845 PCI_DMA_FROMDEVICE);
3846 skb_put(skb, hlen);
3849 if (length) {
3850 pci_unmap_page(pdev, buffer_info->page_dma,
3851 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3852 buffer_info->page_dma = 0;
3854 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3855 buffer_info->page,
3856 buffer_info->page_offset,
3857 length);
3859 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3860 (page_count(buffer_info->page) != 1))
3861 buffer_info->page = NULL;
3862 else
3863 get_page(buffer_info->page);
3865 skb->len += length;
3866 skb->data_len += length;
3868 skb->truesize += length;
3870 send_up:
3871 i++;
3872 if (i == rx_ring->count)
3873 i = 0;
3874 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3875 prefetch(next_rxd);
3876 next_buffer = &rx_ring->buffer_info[i];
3878 if (!(staterr & E1000_RXD_STAT_EOP)) {
3879 buffer_info->skb = next_buffer->skb;
3880 buffer_info->dma = next_buffer->dma;
3881 next_buffer->skb = skb;
3882 next_buffer->dma = 0;
3883 goto next_desc;
3886 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3887 dev_kfree_skb_irq(skb);
3888 goto next_desc;
3891 total_bytes += skb->len;
3892 total_packets++;
3894 igb_rx_checksum_adv(adapter, staterr, skb);
3896 skb->protocol = eth_type_trans(skb, netdev);
3898 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3900 next_desc:
3901 rx_desc->wb.upper.status_error = 0;
3903 /* return some buffers to hardware, one at a time is too slow */
3904 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3905 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3906 cleaned_count = 0;
3909 /* use prefetched values */
3910 rx_desc = next_rxd;
3911 buffer_info = next_buffer;
3913 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3916 rx_ring->next_to_clean = i;
3917 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3919 if (cleaned_count)
3920 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3922 rx_ring->total_packets += total_packets;
3923 rx_ring->total_bytes += total_bytes;
3924 rx_ring->rx_stats.packets += total_packets;
3925 rx_ring->rx_stats.bytes += total_bytes;
3926 adapter->net_stats.rx_bytes += total_bytes;
3927 adapter->net_stats.rx_packets += total_packets;
3928 return cleaned;
3933 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3934 * @adapter: address of board private structure
3936 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3937 int cleaned_count)
3939 struct igb_adapter *adapter = rx_ring->adapter;
3940 struct net_device *netdev = adapter->netdev;
3941 struct pci_dev *pdev = adapter->pdev;
3942 union e1000_adv_rx_desc *rx_desc;
3943 struct igb_buffer *buffer_info;
3944 struct sk_buff *skb;
3945 unsigned int i;
3947 i = rx_ring->next_to_use;
3948 buffer_info = &rx_ring->buffer_info[i];
3950 while (cleaned_count--) {
3951 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3953 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3954 if (!buffer_info->page) {
3955 buffer_info->page = alloc_page(GFP_ATOMIC);
3956 if (!buffer_info->page) {
3957 adapter->alloc_rx_buff_failed++;
3958 goto no_buffers;
3960 buffer_info->page_offset = 0;
3961 } else {
3962 buffer_info->page_offset ^= PAGE_SIZE / 2;
3964 buffer_info->page_dma =
3965 pci_map_page(pdev,
3966 buffer_info->page,
3967 buffer_info->page_offset,
3968 PAGE_SIZE / 2,
3969 PCI_DMA_FROMDEVICE);
3972 if (!buffer_info->skb) {
3973 int bufsz;
3975 if (adapter->rx_ps_hdr_size)
3976 bufsz = adapter->rx_ps_hdr_size;
3977 else
3978 bufsz = adapter->rx_buffer_len;
3979 bufsz += NET_IP_ALIGN;
3980 skb = netdev_alloc_skb(netdev, bufsz);
3982 if (!skb) {
3983 adapter->alloc_rx_buff_failed++;
3984 goto no_buffers;
3987 /* Make buffer alignment 2 beyond a 16 byte boundary
3988 * this will result in a 16 byte aligned IP header after
3989 * the 14 byte MAC header is removed
3991 skb_reserve(skb, NET_IP_ALIGN);
3993 buffer_info->skb = skb;
3994 buffer_info->dma = pci_map_single(pdev, skb->data,
3995 bufsz,
3996 PCI_DMA_FROMDEVICE);
3999 /* Refresh the desc even if buffer_addrs didn't change because
4000 * each write-back erases this info. */
4001 if (adapter->rx_ps_hdr_size) {
4002 rx_desc->read.pkt_addr =
4003 cpu_to_le64(buffer_info->page_dma);
4004 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4005 } else {
4006 rx_desc->read.pkt_addr =
4007 cpu_to_le64(buffer_info->dma);
4008 rx_desc->read.hdr_addr = 0;
4011 i++;
4012 if (i == rx_ring->count)
4013 i = 0;
4014 buffer_info = &rx_ring->buffer_info[i];
4017 no_buffers:
4018 if (rx_ring->next_to_use != i) {
4019 rx_ring->next_to_use = i;
4020 if (i == 0)
4021 i = (rx_ring->count - 1);
4022 else
4023 i--;
4025 /* Force memory writes to complete before letting h/w
4026 * know there are new descriptors to fetch. (Only
4027 * applicable for weak-ordered memory model archs,
4028 * such as IA-64). */
4029 wmb();
4030 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4035 * igb_mii_ioctl -
4036 * @netdev:
4037 * @ifreq:
4038 * @cmd:
4040 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4042 struct igb_adapter *adapter = netdev_priv(netdev);
4043 struct mii_ioctl_data *data = if_mii(ifr);
4045 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4046 return -EOPNOTSUPP;
4048 switch (cmd) {
4049 case SIOCGMIIPHY:
4050 data->phy_id = adapter->hw.phy.addr;
4051 break;
4052 case SIOCGMIIREG:
4053 if (!capable(CAP_NET_ADMIN))
4054 return -EPERM;
4055 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4056 &data->val_out))
4057 return -EIO;
4058 break;
4059 case SIOCSMIIREG:
4060 default:
4061 return -EOPNOTSUPP;
4063 return 0;
4067 * igb_ioctl -
4068 * @netdev:
4069 * @ifreq:
4070 * @cmd:
4072 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4074 switch (cmd) {
4075 case SIOCGMIIPHY:
4076 case SIOCGMIIREG:
4077 case SIOCSMIIREG:
4078 return igb_mii_ioctl(netdev, ifr, cmd);
4079 default:
4080 return -EOPNOTSUPP;
4084 static void igb_vlan_rx_register(struct net_device *netdev,
4085 struct vlan_group *grp)
4087 struct igb_adapter *adapter = netdev_priv(netdev);
4088 struct e1000_hw *hw = &adapter->hw;
4089 u32 ctrl, rctl;
4091 igb_irq_disable(adapter);
4092 adapter->vlgrp = grp;
4094 if (grp) {
4095 /* enable VLAN tag insert/strip */
4096 ctrl = rd32(E1000_CTRL);
4097 ctrl |= E1000_CTRL_VME;
4098 wr32(E1000_CTRL, ctrl);
4100 /* enable VLAN receive filtering */
4101 rctl = rd32(E1000_RCTL);
4102 rctl &= ~E1000_RCTL_CFIEN;
4103 wr32(E1000_RCTL, rctl);
4104 igb_update_mng_vlan(adapter);
4105 wr32(E1000_RLPML,
4106 adapter->max_frame_size + VLAN_TAG_SIZE);
4107 } else {
4108 /* disable VLAN tag insert/strip */
4109 ctrl = rd32(E1000_CTRL);
4110 ctrl &= ~E1000_CTRL_VME;
4111 wr32(E1000_CTRL, ctrl);
4113 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4114 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4115 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4117 wr32(E1000_RLPML,
4118 adapter->max_frame_size);
4121 if (!test_bit(__IGB_DOWN, &adapter->state))
4122 igb_irq_enable(adapter);
4125 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4127 struct igb_adapter *adapter = netdev_priv(netdev);
4128 struct e1000_hw *hw = &adapter->hw;
4129 u32 vfta, index;
4131 if ((adapter->hw.mng_cookie.status &
4132 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4133 (vid == adapter->mng_vlan_id))
4134 return;
4135 /* add VID to filter table */
4136 index = (vid >> 5) & 0x7F;
4137 vfta = array_rd32(E1000_VFTA, index);
4138 vfta |= (1 << (vid & 0x1F));
4139 igb_write_vfta(&adapter->hw, index, vfta);
4142 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4144 struct igb_adapter *adapter = netdev_priv(netdev);
4145 struct e1000_hw *hw = &adapter->hw;
4146 u32 vfta, index;
4148 igb_irq_disable(adapter);
4149 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4151 if (!test_bit(__IGB_DOWN, &adapter->state))
4152 igb_irq_enable(adapter);
4154 if ((adapter->hw.mng_cookie.status &
4155 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4156 (vid == adapter->mng_vlan_id)) {
4157 /* release control to f/w */
4158 igb_release_hw_control(adapter);
4159 return;
4162 /* remove VID from filter table */
4163 index = (vid >> 5) & 0x7F;
4164 vfta = array_rd32(E1000_VFTA, index);
4165 vfta &= ~(1 << (vid & 0x1F));
4166 igb_write_vfta(&adapter->hw, index, vfta);
4169 static void igb_restore_vlan(struct igb_adapter *adapter)
4171 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4173 if (adapter->vlgrp) {
4174 u16 vid;
4175 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4176 if (!vlan_group_get_device(adapter->vlgrp, vid))
4177 continue;
4178 igb_vlan_rx_add_vid(adapter->netdev, vid);
4183 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4185 struct e1000_mac_info *mac = &adapter->hw.mac;
4187 mac->autoneg = 0;
4189 /* Fiber NICs only allow 1000 gbps Full duplex */
4190 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4191 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4192 dev_err(&adapter->pdev->dev,
4193 "Unsupported Speed/Duplex configuration\n");
4194 return -EINVAL;
4197 switch (spddplx) {
4198 case SPEED_10 + DUPLEX_HALF:
4199 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4200 break;
4201 case SPEED_10 + DUPLEX_FULL:
4202 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4203 break;
4204 case SPEED_100 + DUPLEX_HALF:
4205 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4206 break;
4207 case SPEED_100 + DUPLEX_FULL:
4208 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4209 break;
4210 case SPEED_1000 + DUPLEX_FULL:
4211 mac->autoneg = 1;
4212 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4213 break;
4214 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4215 default:
4216 dev_err(&adapter->pdev->dev,
4217 "Unsupported Speed/Duplex configuration\n");
4218 return -EINVAL;
4220 return 0;
4224 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4226 struct net_device *netdev = pci_get_drvdata(pdev);
4227 struct igb_adapter *adapter = netdev_priv(netdev);
4228 struct e1000_hw *hw = &adapter->hw;
4229 u32 ctrl, rctl, status;
4230 u32 wufc = adapter->wol;
4231 #ifdef CONFIG_PM
4232 int retval = 0;
4233 #endif
4235 netif_device_detach(netdev);
4237 if (netif_running(netdev))
4238 igb_close(netdev);
4240 igb_reset_interrupt_capability(adapter);
4242 igb_free_queues(adapter);
4244 #ifdef CONFIG_PM
4245 retval = pci_save_state(pdev);
4246 if (retval)
4247 return retval;
4248 #endif
4250 status = rd32(E1000_STATUS);
4251 if (status & E1000_STATUS_LU)
4252 wufc &= ~E1000_WUFC_LNKC;
4254 if (wufc) {
4255 igb_setup_rctl(adapter);
4256 igb_set_multi(netdev);
4258 /* turn on all-multi mode if wake on multicast is enabled */
4259 if (wufc & E1000_WUFC_MC) {
4260 rctl = rd32(E1000_RCTL);
4261 rctl |= E1000_RCTL_MPE;
4262 wr32(E1000_RCTL, rctl);
4265 ctrl = rd32(E1000_CTRL);
4266 /* advertise wake from D3Cold */
4267 #define E1000_CTRL_ADVD3WUC 0x00100000
4268 /* phy power management enable */
4269 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4270 ctrl |= E1000_CTRL_ADVD3WUC;
4271 wr32(E1000_CTRL, ctrl);
4273 /* Allow time for pending master requests to run */
4274 igb_disable_pcie_master(&adapter->hw);
4276 wr32(E1000_WUC, E1000_WUC_PME_EN);
4277 wr32(E1000_WUFC, wufc);
4278 } else {
4279 wr32(E1000_WUC, 0);
4280 wr32(E1000_WUFC, 0);
4283 /* make sure adapter isn't asleep if manageability/wol is enabled */
4284 if (wufc || adapter->en_mng_pt) {
4285 pci_enable_wake(pdev, PCI_D3hot, 1);
4286 pci_enable_wake(pdev, PCI_D3cold, 1);
4287 } else {
4288 igb_shutdown_fiber_serdes_link_82575(hw);
4289 pci_enable_wake(pdev, PCI_D3hot, 0);
4290 pci_enable_wake(pdev, PCI_D3cold, 0);
4293 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4294 * would have already happened in close and is redundant. */
4295 igb_release_hw_control(adapter);
4297 pci_disable_device(pdev);
4299 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4301 return 0;
4304 #ifdef CONFIG_PM
4305 static int igb_resume(struct pci_dev *pdev)
4307 struct net_device *netdev = pci_get_drvdata(pdev);
4308 struct igb_adapter *adapter = netdev_priv(netdev);
4309 struct e1000_hw *hw = &adapter->hw;
4310 u32 err;
4312 pci_set_power_state(pdev, PCI_D0);
4313 pci_restore_state(pdev);
4315 if (adapter->need_ioport)
4316 err = pci_enable_device(pdev);
4317 else
4318 err = pci_enable_device_mem(pdev);
4319 if (err) {
4320 dev_err(&pdev->dev,
4321 "igb: Cannot enable PCI device from suspend\n");
4322 return err;
4324 pci_set_master(pdev);
4326 pci_enable_wake(pdev, PCI_D3hot, 0);
4327 pci_enable_wake(pdev, PCI_D3cold, 0);
4329 igb_set_interrupt_capability(adapter);
4331 if (igb_alloc_queues(adapter)) {
4332 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4333 return -ENOMEM;
4336 /* e1000_power_up_phy(adapter); */
4338 igb_reset(adapter);
4339 wr32(E1000_WUS, ~0);
4341 if (netif_running(netdev)) {
4342 err = igb_open(netdev);
4343 if (err)
4344 return err;
4347 netif_device_attach(netdev);
4349 /* let the f/w know that the h/w is now under the control of the
4350 * driver. */
4351 igb_get_hw_control(adapter);
4353 return 0;
4355 #endif
4357 static void igb_shutdown(struct pci_dev *pdev)
4359 igb_suspend(pdev, PMSG_SUSPEND);
4362 #ifdef CONFIG_NET_POLL_CONTROLLER
4364 * Polling 'interrupt' - used by things like netconsole to send skbs
4365 * without having to re-enable interrupts. It's not called while
4366 * the interrupt routine is executing.
4368 static void igb_netpoll(struct net_device *netdev)
4370 struct igb_adapter *adapter = netdev_priv(netdev);
4371 int i;
4372 int work_done = 0;
4374 igb_irq_disable(adapter);
4375 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4377 for (i = 0; i < adapter->num_tx_queues; i++)
4378 igb_clean_tx_irq(&adapter->tx_ring[i]);
4380 for (i = 0; i < adapter->num_rx_queues; i++)
4381 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4382 &work_done,
4383 adapter->rx_ring[i].napi.weight);
4385 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4386 igb_irq_enable(adapter);
4388 #endif /* CONFIG_NET_POLL_CONTROLLER */
4391 * igb_io_error_detected - called when PCI error is detected
4392 * @pdev: Pointer to PCI device
4393 * @state: The current pci connection state
4395 * This function is called after a PCI bus error affecting
4396 * this device has been detected.
4398 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4399 pci_channel_state_t state)
4401 struct net_device *netdev = pci_get_drvdata(pdev);
4402 struct igb_adapter *adapter = netdev_priv(netdev);
4404 netif_device_detach(netdev);
4406 if (netif_running(netdev))
4407 igb_down(adapter);
4408 pci_disable_device(pdev);
4410 /* Request a slot slot reset. */
4411 return PCI_ERS_RESULT_NEED_RESET;
4415 * igb_io_slot_reset - called after the pci bus has been reset.
4416 * @pdev: Pointer to PCI device
4418 * Restart the card from scratch, as if from a cold-boot. Implementation
4419 * resembles the first-half of the igb_resume routine.
4421 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4423 struct net_device *netdev = pci_get_drvdata(pdev);
4424 struct igb_adapter *adapter = netdev_priv(netdev);
4425 struct e1000_hw *hw = &adapter->hw;
4426 pci_ers_result_t result;
4427 int err;
4429 if (adapter->need_ioport)
4430 err = pci_enable_device(pdev);
4431 else
4432 err = pci_enable_device_mem(pdev);
4434 if (err) {
4435 dev_err(&pdev->dev,
4436 "Cannot re-enable PCI device after reset.\n");
4437 result = PCI_ERS_RESULT_DISCONNECT;
4438 } else {
4439 pci_set_master(pdev);
4440 pci_restore_state(pdev);
4442 pci_enable_wake(pdev, PCI_D3hot, 0);
4443 pci_enable_wake(pdev, PCI_D3cold, 0);
4445 igb_reset(adapter);
4446 wr32(E1000_WUS, ~0);
4447 result = PCI_ERS_RESULT_RECOVERED;
4450 err = pci_cleanup_aer_uncorrect_error_status(pdev);
4451 if (err) {
4452 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4453 "failed 0x%0x\n", err);
4454 /* non-fatal, continue */
4457 return result;
4461 * igb_io_resume - called when traffic can start flowing again.
4462 * @pdev: Pointer to PCI device
4464 * This callback is called when the error recovery driver tells us that
4465 * its OK to resume normal operation. Implementation resembles the
4466 * second-half of the igb_resume routine.
4468 static void igb_io_resume(struct pci_dev *pdev)
4470 struct net_device *netdev = pci_get_drvdata(pdev);
4471 struct igb_adapter *adapter = netdev_priv(netdev);
4473 if (netif_running(netdev)) {
4474 if (igb_up(adapter)) {
4475 dev_err(&pdev->dev, "igb_up failed after reset\n");
4476 return;
4480 netif_device_attach(netdev);
4482 /* let the f/w know that the h/w is now under the control of the
4483 * driver. */
4484 igb_get_hw_control(adapter);
4487 /* igb_main.c */