splice: split up __splice_from_pipe()
[linux-2.6/mini2440.git] / fs / splice.c
blobfd6b278d447b3b7e36a629d2e2ecc4578bc6f6b8
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
43 struct page *page = buf->page;
44 struct address_space *mapping;
46 lock_page(page);
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
60 wait_on_page_writeback(page);
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
80 out_unlock:
81 unlock_page(page);
82 return 1;
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
99 struct page *page = buf->page;
100 int err;
102 if (!PageUptodate(page)) {
103 lock_page(page);
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
115 * Uh oh, read-error from disk.
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
123 * Page is ok afterall, we are done.
125 unlock_page(page);
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->private = spd->partial[page_nr].private;
204 buf->ops = spd->ops;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
208 pipe->nrbufs++;
209 page_nr++;
210 ret += buf->len;
212 if (pipe->inode)
213 do_wakeup = 1;
215 if (!--spd->nr_pages)
216 break;
217 if (pipe->nrbufs < PIPE_BUFFERS)
218 continue;
220 break;
223 if (spd->flags & SPLICE_F_NONBLOCK) {
224 if (!ret)
225 ret = -EAGAIN;
226 break;
229 if (signal_pending(current)) {
230 if (!ret)
231 ret = -ERESTARTSYS;
232 break;
235 if (do_wakeup) {
236 smp_mb();
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 do_wakeup = 0;
243 pipe->waiting_writers++;
244 pipe_wait(pipe);
245 pipe->waiting_writers--;
248 if (pipe->inode) {
249 mutex_unlock(&pipe->inode->i_mutex);
251 if (do_wakeup) {
252 smp_mb();
253 if (waitqueue_active(&pipe->wait))
254 wake_up_interruptible(&pipe->wait);
255 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
262 return ret;
265 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 page_cache_release(spd->pages[i]);
270 static int
271 __generic_file_splice_read(struct file *in, loff_t *ppos,
272 struct pipe_inode_info *pipe, size_t len,
273 unsigned int flags)
275 struct address_space *mapping = in->f_mapping;
276 unsigned int loff, nr_pages, req_pages;
277 struct page *pages[PIPE_BUFFERS];
278 struct partial_page partial[PIPE_BUFFERS];
279 struct page *page;
280 pgoff_t index, end_index;
281 loff_t isize;
282 int error, page_nr;
283 struct splice_pipe_desc spd = {
284 .pages = pages,
285 .partial = partial,
286 .flags = flags,
287 .ops = &page_cache_pipe_buf_ops,
288 .spd_release = spd_release_page,
291 index = *ppos >> PAGE_CACHE_SHIFT;
292 loff = *ppos & ~PAGE_CACHE_MASK;
293 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
294 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
297 * Lookup the (hopefully) full range of pages we need.
299 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
300 index += spd.nr_pages;
303 * If find_get_pages_contig() returned fewer pages than we needed,
304 * readahead/allocate the rest and fill in the holes.
306 if (spd.nr_pages < nr_pages)
307 page_cache_sync_readahead(mapping, &in->f_ra, in,
308 index, req_pages - spd.nr_pages);
310 error = 0;
311 while (spd.nr_pages < nr_pages) {
313 * Page could be there, find_get_pages_contig() breaks on
314 * the first hole.
316 page = find_get_page(mapping, index);
317 if (!page) {
319 * page didn't exist, allocate one.
321 page = page_cache_alloc_cold(mapping);
322 if (!page)
323 break;
325 error = add_to_page_cache_lru(page, mapping, index,
326 mapping_gfp_mask(mapping));
327 if (unlikely(error)) {
328 page_cache_release(page);
329 if (error == -EEXIST)
330 continue;
331 break;
334 * add_to_page_cache() locks the page, unlock it
335 * to avoid convoluting the logic below even more.
337 unlock_page(page);
340 pages[spd.nr_pages++] = page;
341 index++;
345 * Now loop over the map and see if we need to start IO on any
346 * pages, fill in the partial map, etc.
348 index = *ppos >> PAGE_CACHE_SHIFT;
349 nr_pages = spd.nr_pages;
350 spd.nr_pages = 0;
351 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
352 unsigned int this_len;
354 if (!len)
355 break;
358 * this_len is the max we'll use from this page
360 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
361 page = pages[page_nr];
363 if (PageReadahead(page))
364 page_cache_async_readahead(mapping, &in->f_ra, in,
365 page, index, req_pages - page_nr);
368 * If the page isn't uptodate, we may need to start io on it
370 if (!PageUptodate(page)) {
372 * If in nonblock mode then dont block on waiting
373 * for an in-flight io page
375 if (flags & SPLICE_F_NONBLOCK) {
376 if (!trylock_page(page)) {
377 error = -EAGAIN;
378 break;
380 } else
381 lock_page(page);
384 * Page was truncated, or invalidated by the
385 * filesystem. Redo the find/create, but this time the
386 * page is kept locked, so there's no chance of another
387 * race with truncate/invalidate.
389 if (!page->mapping) {
390 unlock_page(page);
391 page = find_or_create_page(mapping, index,
392 mapping_gfp_mask(mapping));
394 if (!page) {
395 error = -ENOMEM;
396 break;
398 page_cache_release(pages[page_nr]);
399 pages[page_nr] = page;
402 * page was already under io and is now done, great
404 if (PageUptodate(page)) {
405 unlock_page(page);
406 goto fill_it;
410 * need to read in the page
412 error = mapping->a_ops->readpage(in, page);
413 if (unlikely(error)) {
415 * We really should re-lookup the page here,
416 * but it complicates things a lot. Instead
417 * lets just do what we already stored, and
418 * we'll get it the next time we are called.
420 if (error == AOP_TRUNCATED_PAGE)
421 error = 0;
423 break;
426 fill_it:
428 * i_size must be checked after PageUptodate.
430 isize = i_size_read(mapping->host);
431 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
432 if (unlikely(!isize || index > end_index))
433 break;
436 * if this is the last page, see if we need to shrink
437 * the length and stop
439 if (end_index == index) {
440 unsigned int plen;
443 * max good bytes in this page
445 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
446 if (plen <= loff)
447 break;
450 * force quit after adding this page
452 this_len = min(this_len, plen - loff);
453 len = this_len;
456 partial[page_nr].offset = loff;
457 partial[page_nr].len = this_len;
458 len -= this_len;
459 loff = 0;
460 spd.nr_pages++;
461 index++;
465 * Release any pages at the end, if we quit early. 'page_nr' is how far
466 * we got, 'nr_pages' is how many pages are in the map.
468 while (page_nr < nr_pages)
469 page_cache_release(pages[page_nr++]);
470 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
472 if (spd.nr_pages)
473 return splice_to_pipe(pipe, &spd);
475 return error;
479 * generic_file_splice_read - splice data from file to a pipe
480 * @in: file to splice from
481 * @ppos: position in @in
482 * @pipe: pipe to splice to
483 * @len: number of bytes to splice
484 * @flags: splice modifier flags
486 * Description:
487 * Will read pages from given file and fill them into a pipe. Can be
488 * used as long as the address_space operations for the source implements
489 * a readpage() hook.
492 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
493 struct pipe_inode_info *pipe, size_t len,
494 unsigned int flags)
496 loff_t isize, left;
497 int ret;
499 isize = i_size_read(in->f_mapping->host);
500 if (unlikely(*ppos >= isize))
501 return 0;
503 left = isize - *ppos;
504 if (unlikely(left < len))
505 len = left;
507 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
508 if (ret > 0)
509 *ppos += ret;
511 return ret;
514 EXPORT_SYMBOL(generic_file_splice_read);
517 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
518 * using sendpage(). Return the number of bytes sent.
520 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
521 struct pipe_buffer *buf, struct splice_desc *sd)
523 struct file *file = sd->u.file;
524 loff_t pos = sd->pos;
525 int ret, more;
527 ret = buf->ops->confirm(pipe, buf);
528 if (!ret) {
529 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
531 ret = file->f_op->sendpage(file, buf->page, buf->offset,
532 sd->len, &pos, more);
535 return ret;
539 * This is a little more tricky than the file -> pipe splicing. There are
540 * basically three cases:
542 * - Destination page already exists in the address space and there
543 * are users of it. For that case we have no other option that
544 * copying the data. Tough luck.
545 * - Destination page already exists in the address space, but there
546 * are no users of it. Make sure it's uptodate, then drop it. Fall
547 * through to last case.
548 * - Destination page does not exist, we can add the pipe page to
549 * the page cache and avoid the copy.
551 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
552 * sd->flags), we attempt to migrate pages from the pipe to the output
553 * file address space page cache. This is possible if no one else has
554 * the pipe page referenced outside of the pipe and page cache. If
555 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
556 * a new page in the output file page cache and fill/dirty that.
558 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
559 struct splice_desc *sd)
561 struct file *file = sd->u.file;
562 struct address_space *mapping = file->f_mapping;
563 unsigned int offset, this_len;
564 struct page *page;
565 void *fsdata;
566 int ret;
569 * make sure the data in this buffer is uptodate
571 ret = buf->ops->confirm(pipe, buf);
572 if (unlikely(ret))
573 return ret;
575 offset = sd->pos & ~PAGE_CACHE_MASK;
577 this_len = sd->len;
578 if (this_len + offset > PAGE_CACHE_SIZE)
579 this_len = PAGE_CACHE_SIZE - offset;
581 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
582 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
583 if (unlikely(ret))
584 goto out;
586 if (buf->page != page) {
588 * Careful, ->map() uses KM_USER0!
590 char *src = buf->ops->map(pipe, buf, 1);
591 char *dst = kmap_atomic(page, KM_USER1);
593 memcpy(dst + offset, src + buf->offset, this_len);
594 flush_dcache_page(page);
595 kunmap_atomic(dst, KM_USER1);
596 buf->ops->unmap(pipe, buf, src);
598 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
599 page, fsdata);
600 out:
601 return ret;
604 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
606 smp_mb();
607 if (waitqueue_active(&pipe->wait))
608 wake_up_interruptible(&pipe->wait);
609 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
613 * splice_from_pipe_feed - feed available data from a pipe to a file
614 * @pipe: pipe to splice from
615 * @sd: information to @actor
616 * @actor: handler that splices the data
618 * Description:
620 * This function loops over the pipe and calls @actor to do the
621 * actual moving of a single struct pipe_buffer to the desired
622 * destination. It returns when there's no more buffers left in
623 * the pipe or if the requested number of bytes (@sd->total_len)
624 * have been copied. It returns a positive number (one) if the
625 * pipe needs to be filled with more data, zero if the required
626 * number of bytes have been copied and -errno on error.
628 * This, together with splice_from_pipe_{begin,end,next}, may be
629 * used to implement the functionality of __splice_from_pipe() when
630 * locking is required around copying the pipe buffers to the
631 * destination.
633 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
634 splice_actor *actor)
636 int ret;
638 while (pipe->nrbufs) {
639 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
640 const struct pipe_buf_operations *ops = buf->ops;
642 sd->len = buf->len;
643 if (sd->len > sd->total_len)
644 sd->len = sd->total_len;
646 ret = actor(pipe, buf, sd);
647 if (ret <= 0) {
648 if (ret == -ENODATA)
649 ret = 0;
650 return ret;
652 buf->offset += ret;
653 buf->len -= ret;
655 sd->num_spliced += ret;
656 sd->len -= ret;
657 sd->pos += ret;
658 sd->total_len -= ret;
660 if (!buf->len) {
661 buf->ops = NULL;
662 ops->release(pipe, buf);
663 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
664 pipe->nrbufs--;
665 if (pipe->inode)
666 sd->need_wakeup = true;
669 if (!sd->total_len)
670 return 0;
673 return 1;
675 EXPORT_SYMBOL(splice_from_pipe_feed);
678 * splice_from_pipe_next - wait for some data to splice from
679 * @pipe: pipe to splice from
680 * @sd: information about the splice operation
682 * Description:
683 * This function will wait for some data and return a positive
684 * value (one) if pipe buffers are available. It will return zero
685 * or -errno if no more data needs to be spliced.
687 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
689 while (!pipe->nrbufs) {
690 if (!pipe->writers)
691 return 0;
693 if (!pipe->waiting_writers && sd->num_spliced)
694 return 0;
696 if (sd->flags & SPLICE_F_NONBLOCK)
697 return -EAGAIN;
699 if (signal_pending(current))
700 return -ERESTARTSYS;
702 if (sd->need_wakeup) {
703 wakeup_pipe_writers(pipe);
704 sd->need_wakeup = false;
707 pipe_wait(pipe);
710 return 1;
712 EXPORT_SYMBOL(splice_from_pipe_next);
715 * splice_from_pipe_begin - start splicing from pipe
716 * @pipe: pipe to splice from
718 * Description:
719 * This function should be called before a loop containing
720 * splice_from_pipe_next() and splice_from_pipe_feed() to
721 * initialize the necessary fields of @sd.
723 void splice_from_pipe_begin(struct splice_desc *sd)
725 sd->num_spliced = 0;
726 sd->need_wakeup = false;
728 EXPORT_SYMBOL(splice_from_pipe_begin);
731 * splice_from_pipe_end - finish splicing from pipe
732 * @pipe: pipe to splice from
733 * @sd: information about the splice operation
735 * Description:
736 * This function will wake up pipe writers if necessary. It should
737 * be called after a loop containing splice_from_pipe_next() and
738 * splice_from_pipe_feed().
740 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
742 if (sd->need_wakeup)
743 wakeup_pipe_writers(pipe);
745 EXPORT_SYMBOL(splice_from_pipe_end);
748 * __splice_from_pipe - splice data from a pipe to given actor
749 * @pipe: pipe to splice from
750 * @sd: information to @actor
751 * @actor: handler that splices the data
753 * Description:
754 * This function does little more than loop over the pipe and call
755 * @actor to do the actual moving of a single struct pipe_buffer to
756 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
757 * pipe_to_user.
760 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
761 splice_actor *actor)
763 int ret;
765 splice_from_pipe_begin(sd);
766 do {
767 ret = splice_from_pipe_next(pipe, sd);
768 if (ret > 0)
769 ret = splice_from_pipe_feed(pipe, sd, actor);
770 } while (ret > 0);
771 splice_from_pipe_end(pipe, sd);
773 return sd->num_spliced ? sd->num_spliced : ret;
775 EXPORT_SYMBOL(__splice_from_pipe);
778 * splice_from_pipe - splice data from a pipe to a file
779 * @pipe: pipe to splice from
780 * @out: file to splice to
781 * @ppos: position in @out
782 * @len: how many bytes to splice
783 * @flags: splice modifier flags
784 * @actor: handler that splices the data
786 * Description:
787 * See __splice_from_pipe. This function locks the input and output inodes,
788 * otherwise it's identical to __splice_from_pipe().
791 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
792 loff_t *ppos, size_t len, unsigned int flags,
793 splice_actor *actor)
795 ssize_t ret;
796 struct inode *inode = out->f_mapping->host;
797 struct splice_desc sd = {
798 .total_len = len,
799 .flags = flags,
800 .pos = *ppos,
801 .u.file = out,
805 * The actor worker might be calling ->write_begin and
806 * ->write_end. Most of the time, these expect i_mutex to
807 * be held. Since this may result in an ABBA deadlock with
808 * pipe->inode, we have to order lock acquiry here.
810 * Outer lock must be inode->i_mutex, as pipe_wait() will
811 * release and reacquire pipe->inode->i_mutex, AND inode must
812 * never be a pipe.
814 WARN_ON(S_ISFIFO(inode->i_mode));
815 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
816 if (pipe->inode)
817 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_CHILD);
818 ret = __splice_from_pipe(pipe, &sd, actor);
819 if (pipe->inode)
820 mutex_unlock(&pipe->inode->i_mutex);
821 mutex_unlock(&inode->i_mutex);
823 return ret;
827 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
828 * @pipe: pipe info
829 * @out: file to write to
830 * @ppos: position in @out
831 * @len: number of bytes to splice
832 * @flags: splice modifier flags
834 * Description:
835 * Will either move or copy pages (determined by @flags options) from
836 * the given pipe inode to the given file. The caller is responsible
837 * for acquiring i_mutex on both inodes.
840 ssize_t
841 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
842 loff_t *ppos, size_t len, unsigned int flags)
844 struct address_space *mapping = out->f_mapping;
845 struct inode *inode = mapping->host;
846 struct splice_desc sd = {
847 .total_len = len,
848 .flags = flags,
849 .pos = *ppos,
850 .u.file = out,
852 ssize_t ret;
853 int err;
855 err = file_remove_suid(out);
856 if (unlikely(err))
857 return err;
859 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
860 if (ret > 0) {
861 unsigned long nr_pages;
863 *ppos += ret;
864 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
867 * If file or inode is SYNC and we actually wrote some data,
868 * sync it.
870 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
871 err = generic_osync_inode(inode, mapping,
872 OSYNC_METADATA|OSYNC_DATA);
874 if (err)
875 ret = err;
877 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
880 return ret;
883 EXPORT_SYMBOL(generic_file_splice_write_nolock);
886 * generic_file_splice_write - splice data from a pipe to a file
887 * @pipe: pipe info
888 * @out: file to write to
889 * @ppos: position in @out
890 * @len: number of bytes to splice
891 * @flags: splice modifier flags
893 * Description:
894 * Will either move or copy pages (determined by @flags options) from
895 * the given pipe inode to the given file.
898 ssize_t
899 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
900 loff_t *ppos, size_t len, unsigned int flags)
902 struct address_space *mapping = out->f_mapping;
903 struct inode *inode = mapping->host;
904 struct splice_desc sd = {
905 .total_len = len,
906 .flags = flags,
907 .pos = *ppos,
908 .u.file = out,
910 ssize_t ret;
912 WARN_ON(S_ISFIFO(inode->i_mode));
913 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
914 ret = file_remove_suid(out);
915 if (likely(!ret)) {
916 if (pipe->inode)
917 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_CHILD);
918 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
919 if (pipe->inode)
920 mutex_unlock(&pipe->inode->i_mutex);
922 mutex_unlock(&inode->i_mutex);
923 if (ret > 0) {
924 unsigned long nr_pages;
926 *ppos += ret;
927 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
930 * If file or inode is SYNC and we actually wrote some data,
931 * sync it.
933 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
934 int err;
936 mutex_lock(&inode->i_mutex);
937 err = generic_osync_inode(inode, mapping,
938 OSYNC_METADATA|OSYNC_DATA);
939 mutex_unlock(&inode->i_mutex);
941 if (err)
942 ret = err;
944 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
947 return ret;
950 EXPORT_SYMBOL(generic_file_splice_write);
953 * generic_splice_sendpage - splice data from a pipe to a socket
954 * @pipe: pipe to splice from
955 * @out: socket to write to
956 * @ppos: position in @out
957 * @len: number of bytes to splice
958 * @flags: splice modifier flags
960 * Description:
961 * Will send @len bytes from the pipe to a network socket. No data copying
962 * is involved.
965 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
966 loff_t *ppos, size_t len, unsigned int flags)
968 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
971 EXPORT_SYMBOL(generic_splice_sendpage);
974 * Attempt to initiate a splice from pipe to file.
976 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
977 loff_t *ppos, size_t len, unsigned int flags)
979 int ret;
981 if (unlikely(!out->f_op || !out->f_op->splice_write))
982 return -EINVAL;
984 if (unlikely(!(out->f_mode & FMODE_WRITE)))
985 return -EBADF;
987 if (unlikely(out->f_flags & O_APPEND))
988 return -EINVAL;
990 ret = rw_verify_area(WRITE, out, ppos, len);
991 if (unlikely(ret < 0))
992 return ret;
994 return out->f_op->splice_write(pipe, out, ppos, len, flags);
998 * Attempt to initiate a splice from a file to a pipe.
1000 static long do_splice_to(struct file *in, loff_t *ppos,
1001 struct pipe_inode_info *pipe, size_t len,
1002 unsigned int flags)
1004 int ret;
1006 if (unlikely(!in->f_op || !in->f_op->splice_read))
1007 return -EINVAL;
1009 if (unlikely(!(in->f_mode & FMODE_READ)))
1010 return -EBADF;
1012 ret = rw_verify_area(READ, in, ppos, len);
1013 if (unlikely(ret < 0))
1014 return ret;
1016 return in->f_op->splice_read(in, ppos, pipe, len, flags);
1020 * splice_direct_to_actor - splices data directly between two non-pipes
1021 * @in: file to splice from
1022 * @sd: actor information on where to splice to
1023 * @actor: handles the data splicing
1025 * Description:
1026 * This is a special case helper to splice directly between two
1027 * points, without requiring an explicit pipe. Internally an allocated
1028 * pipe is cached in the process, and reused during the lifetime of
1029 * that process.
1032 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1033 splice_direct_actor *actor)
1035 struct pipe_inode_info *pipe;
1036 long ret, bytes;
1037 umode_t i_mode;
1038 size_t len;
1039 int i, flags;
1042 * We require the input being a regular file, as we don't want to
1043 * randomly drop data for eg socket -> socket splicing. Use the
1044 * piped splicing for that!
1046 i_mode = in->f_path.dentry->d_inode->i_mode;
1047 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1048 return -EINVAL;
1051 * neither in nor out is a pipe, setup an internal pipe attached to
1052 * 'out' and transfer the wanted data from 'in' to 'out' through that
1054 pipe = current->splice_pipe;
1055 if (unlikely(!pipe)) {
1056 pipe = alloc_pipe_info(NULL);
1057 if (!pipe)
1058 return -ENOMEM;
1061 * We don't have an immediate reader, but we'll read the stuff
1062 * out of the pipe right after the splice_to_pipe(). So set
1063 * PIPE_READERS appropriately.
1065 pipe->readers = 1;
1067 current->splice_pipe = pipe;
1071 * Do the splice.
1073 ret = 0;
1074 bytes = 0;
1075 len = sd->total_len;
1076 flags = sd->flags;
1079 * Don't block on output, we have to drain the direct pipe.
1081 sd->flags &= ~SPLICE_F_NONBLOCK;
1083 while (len) {
1084 size_t read_len;
1085 loff_t pos = sd->pos, prev_pos = pos;
1087 ret = do_splice_to(in, &pos, pipe, len, flags);
1088 if (unlikely(ret <= 0))
1089 goto out_release;
1091 read_len = ret;
1092 sd->total_len = read_len;
1095 * NOTE: nonblocking mode only applies to the input. We
1096 * must not do the output in nonblocking mode as then we
1097 * could get stuck data in the internal pipe:
1099 ret = actor(pipe, sd);
1100 if (unlikely(ret <= 0)) {
1101 sd->pos = prev_pos;
1102 goto out_release;
1105 bytes += ret;
1106 len -= ret;
1107 sd->pos = pos;
1109 if (ret < read_len) {
1110 sd->pos = prev_pos + ret;
1111 goto out_release;
1115 done:
1116 pipe->nrbufs = pipe->curbuf = 0;
1117 file_accessed(in);
1118 return bytes;
1120 out_release:
1122 * If we did an incomplete transfer we must release
1123 * the pipe buffers in question:
1125 for (i = 0; i < PIPE_BUFFERS; i++) {
1126 struct pipe_buffer *buf = pipe->bufs + i;
1128 if (buf->ops) {
1129 buf->ops->release(pipe, buf);
1130 buf->ops = NULL;
1134 if (!bytes)
1135 bytes = ret;
1137 goto done;
1139 EXPORT_SYMBOL(splice_direct_to_actor);
1141 static int direct_splice_actor(struct pipe_inode_info *pipe,
1142 struct splice_desc *sd)
1144 struct file *file = sd->u.file;
1146 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1150 * do_splice_direct - splices data directly between two files
1151 * @in: file to splice from
1152 * @ppos: input file offset
1153 * @out: file to splice to
1154 * @len: number of bytes to splice
1155 * @flags: splice modifier flags
1157 * Description:
1158 * For use by do_sendfile(). splice can easily emulate sendfile, but
1159 * doing it in the application would incur an extra system call
1160 * (splice in + splice out, as compared to just sendfile()). So this helper
1161 * can splice directly through a process-private pipe.
1164 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1165 size_t len, unsigned int flags)
1167 struct splice_desc sd = {
1168 .len = len,
1169 .total_len = len,
1170 .flags = flags,
1171 .pos = *ppos,
1172 .u.file = out,
1174 long ret;
1176 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1177 if (ret > 0)
1178 *ppos = sd.pos;
1180 return ret;
1184 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1185 * location, so checking ->i_pipe is not enough to verify that this is a
1186 * pipe.
1188 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1190 if (S_ISFIFO(inode->i_mode))
1191 return inode->i_pipe;
1193 return NULL;
1197 * Determine where to splice to/from.
1199 static long do_splice(struct file *in, loff_t __user *off_in,
1200 struct file *out, loff_t __user *off_out,
1201 size_t len, unsigned int flags)
1203 struct pipe_inode_info *pipe;
1204 loff_t offset, *off;
1205 long ret;
1207 pipe = pipe_info(in->f_path.dentry->d_inode);
1208 if (pipe) {
1209 if (off_in)
1210 return -ESPIPE;
1211 if (off_out) {
1212 if (out->f_op->llseek == no_llseek)
1213 return -EINVAL;
1214 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1215 return -EFAULT;
1216 off = &offset;
1217 } else
1218 off = &out->f_pos;
1220 ret = do_splice_from(pipe, out, off, len, flags);
1222 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1223 ret = -EFAULT;
1225 return ret;
1228 pipe = pipe_info(out->f_path.dentry->d_inode);
1229 if (pipe) {
1230 if (off_out)
1231 return -ESPIPE;
1232 if (off_in) {
1233 if (in->f_op->llseek == no_llseek)
1234 return -EINVAL;
1235 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1236 return -EFAULT;
1237 off = &offset;
1238 } else
1239 off = &in->f_pos;
1241 ret = do_splice_to(in, off, pipe, len, flags);
1243 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1244 ret = -EFAULT;
1246 return ret;
1249 return -EINVAL;
1253 * Map an iov into an array of pages and offset/length tupples. With the
1254 * partial_page structure, we can map several non-contiguous ranges into
1255 * our ones pages[] map instead of splitting that operation into pieces.
1256 * Could easily be exported as a generic helper for other users, in which
1257 * case one would probably want to add a 'max_nr_pages' parameter as well.
1259 static int get_iovec_page_array(const struct iovec __user *iov,
1260 unsigned int nr_vecs, struct page **pages,
1261 struct partial_page *partial, int aligned)
1263 int buffers = 0, error = 0;
1265 while (nr_vecs) {
1266 unsigned long off, npages;
1267 struct iovec entry;
1268 void __user *base;
1269 size_t len;
1270 int i;
1272 error = -EFAULT;
1273 if (copy_from_user(&entry, iov, sizeof(entry)))
1274 break;
1276 base = entry.iov_base;
1277 len = entry.iov_len;
1280 * Sanity check this iovec. 0 read succeeds.
1282 error = 0;
1283 if (unlikely(!len))
1284 break;
1285 error = -EFAULT;
1286 if (!access_ok(VERIFY_READ, base, len))
1287 break;
1290 * Get this base offset and number of pages, then map
1291 * in the user pages.
1293 off = (unsigned long) base & ~PAGE_MASK;
1296 * If asked for alignment, the offset must be zero and the
1297 * length a multiple of the PAGE_SIZE.
1299 error = -EINVAL;
1300 if (aligned && (off || len & ~PAGE_MASK))
1301 break;
1303 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1304 if (npages > PIPE_BUFFERS - buffers)
1305 npages = PIPE_BUFFERS - buffers;
1307 error = get_user_pages_fast((unsigned long)base, npages,
1308 0, &pages[buffers]);
1310 if (unlikely(error <= 0))
1311 break;
1314 * Fill this contiguous range into the partial page map.
1316 for (i = 0; i < error; i++) {
1317 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1319 partial[buffers].offset = off;
1320 partial[buffers].len = plen;
1322 off = 0;
1323 len -= plen;
1324 buffers++;
1328 * We didn't complete this iov, stop here since it probably
1329 * means we have to move some of this into a pipe to
1330 * be able to continue.
1332 if (len)
1333 break;
1336 * Don't continue if we mapped fewer pages than we asked for,
1337 * or if we mapped the max number of pages that we have
1338 * room for.
1340 if (error < npages || buffers == PIPE_BUFFERS)
1341 break;
1343 nr_vecs--;
1344 iov++;
1347 if (buffers)
1348 return buffers;
1350 return error;
1353 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1354 struct splice_desc *sd)
1356 char *src;
1357 int ret;
1359 ret = buf->ops->confirm(pipe, buf);
1360 if (unlikely(ret))
1361 return ret;
1364 * See if we can use the atomic maps, by prefaulting in the
1365 * pages and doing an atomic copy
1367 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1368 src = buf->ops->map(pipe, buf, 1);
1369 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1370 sd->len);
1371 buf->ops->unmap(pipe, buf, src);
1372 if (!ret) {
1373 ret = sd->len;
1374 goto out;
1379 * No dice, use slow non-atomic map and copy
1381 src = buf->ops->map(pipe, buf, 0);
1383 ret = sd->len;
1384 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1385 ret = -EFAULT;
1387 buf->ops->unmap(pipe, buf, src);
1388 out:
1389 if (ret > 0)
1390 sd->u.userptr += ret;
1391 return ret;
1395 * For lack of a better implementation, implement vmsplice() to userspace
1396 * as a simple copy of the pipes pages to the user iov.
1398 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1399 unsigned long nr_segs, unsigned int flags)
1401 struct pipe_inode_info *pipe;
1402 struct splice_desc sd;
1403 ssize_t size;
1404 int error;
1405 long ret;
1407 pipe = pipe_info(file->f_path.dentry->d_inode);
1408 if (!pipe)
1409 return -EBADF;
1411 if (pipe->inode)
1412 mutex_lock(&pipe->inode->i_mutex);
1414 error = ret = 0;
1415 while (nr_segs) {
1416 void __user *base;
1417 size_t len;
1420 * Get user address base and length for this iovec.
1422 error = get_user(base, &iov->iov_base);
1423 if (unlikely(error))
1424 break;
1425 error = get_user(len, &iov->iov_len);
1426 if (unlikely(error))
1427 break;
1430 * Sanity check this iovec. 0 read succeeds.
1432 if (unlikely(!len))
1433 break;
1434 if (unlikely(!base)) {
1435 error = -EFAULT;
1436 break;
1439 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1440 error = -EFAULT;
1441 break;
1444 sd.len = 0;
1445 sd.total_len = len;
1446 sd.flags = flags;
1447 sd.u.userptr = base;
1448 sd.pos = 0;
1450 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1451 if (size < 0) {
1452 if (!ret)
1453 ret = size;
1455 break;
1458 ret += size;
1460 if (size < len)
1461 break;
1463 nr_segs--;
1464 iov++;
1467 if (pipe->inode)
1468 mutex_unlock(&pipe->inode->i_mutex);
1470 if (!ret)
1471 ret = error;
1473 return ret;
1477 * vmsplice splices a user address range into a pipe. It can be thought of
1478 * as splice-from-memory, where the regular splice is splice-from-file (or
1479 * to file). In both cases the output is a pipe, naturally.
1481 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1482 unsigned long nr_segs, unsigned int flags)
1484 struct pipe_inode_info *pipe;
1485 struct page *pages[PIPE_BUFFERS];
1486 struct partial_page partial[PIPE_BUFFERS];
1487 struct splice_pipe_desc spd = {
1488 .pages = pages,
1489 .partial = partial,
1490 .flags = flags,
1491 .ops = &user_page_pipe_buf_ops,
1492 .spd_release = spd_release_page,
1495 pipe = pipe_info(file->f_path.dentry->d_inode);
1496 if (!pipe)
1497 return -EBADF;
1499 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1500 flags & SPLICE_F_GIFT);
1501 if (spd.nr_pages <= 0)
1502 return spd.nr_pages;
1504 return splice_to_pipe(pipe, &spd);
1508 * Note that vmsplice only really supports true splicing _from_ user memory
1509 * to a pipe, not the other way around. Splicing from user memory is a simple
1510 * operation that can be supported without any funky alignment restrictions
1511 * or nasty vm tricks. We simply map in the user memory and fill them into
1512 * a pipe. The reverse isn't quite as easy, though. There are two possible
1513 * solutions for that:
1515 * - memcpy() the data internally, at which point we might as well just
1516 * do a regular read() on the buffer anyway.
1517 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1518 * has restriction limitations on both ends of the pipe).
1520 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1523 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1524 unsigned long, nr_segs, unsigned int, flags)
1526 struct file *file;
1527 long error;
1528 int fput;
1530 if (unlikely(nr_segs > UIO_MAXIOV))
1531 return -EINVAL;
1532 else if (unlikely(!nr_segs))
1533 return 0;
1535 error = -EBADF;
1536 file = fget_light(fd, &fput);
1537 if (file) {
1538 if (file->f_mode & FMODE_WRITE)
1539 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1540 else if (file->f_mode & FMODE_READ)
1541 error = vmsplice_to_user(file, iov, nr_segs, flags);
1543 fput_light(file, fput);
1546 return error;
1549 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1550 int, fd_out, loff_t __user *, off_out,
1551 size_t, len, unsigned int, flags)
1553 long error;
1554 struct file *in, *out;
1555 int fput_in, fput_out;
1557 if (unlikely(!len))
1558 return 0;
1560 error = -EBADF;
1561 in = fget_light(fd_in, &fput_in);
1562 if (in) {
1563 if (in->f_mode & FMODE_READ) {
1564 out = fget_light(fd_out, &fput_out);
1565 if (out) {
1566 if (out->f_mode & FMODE_WRITE)
1567 error = do_splice(in, off_in,
1568 out, off_out,
1569 len, flags);
1570 fput_light(out, fput_out);
1574 fput_light(in, fput_in);
1577 return error;
1581 * Make sure there's data to read. Wait for input if we can, otherwise
1582 * return an appropriate error.
1584 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1586 int ret;
1589 * Check ->nrbufs without the inode lock first. This function
1590 * is speculative anyways, so missing one is ok.
1592 if (pipe->nrbufs)
1593 return 0;
1595 ret = 0;
1596 mutex_lock(&pipe->inode->i_mutex);
1598 while (!pipe->nrbufs) {
1599 if (signal_pending(current)) {
1600 ret = -ERESTARTSYS;
1601 break;
1603 if (!pipe->writers)
1604 break;
1605 if (!pipe->waiting_writers) {
1606 if (flags & SPLICE_F_NONBLOCK) {
1607 ret = -EAGAIN;
1608 break;
1611 pipe_wait(pipe);
1614 mutex_unlock(&pipe->inode->i_mutex);
1615 return ret;
1619 * Make sure there's writeable room. Wait for room if we can, otherwise
1620 * return an appropriate error.
1622 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1624 int ret;
1627 * Check ->nrbufs without the inode lock first. This function
1628 * is speculative anyways, so missing one is ok.
1630 if (pipe->nrbufs < PIPE_BUFFERS)
1631 return 0;
1633 ret = 0;
1634 mutex_lock(&pipe->inode->i_mutex);
1636 while (pipe->nrbufs >= PIPE_BUFFERS) {
1637 if (!pipe->readers) {
1638 send_sig(SIGPIPE, current, 0);
1639 ret = -EPIPE;
1640 break;
1642 if (flags & SPLICE_F_NONBLOCK) {
1643 ret = -EAGAIN;
1644 break;
1646 if (signal_pending(current)) {
1647 ret = -ERESTARTSYS;
1648 break;
1650 pipe->waiting_writers++;
1651 pipe_wait(pipe);
1652 pipe->waiting_writers--;
1655 mutex_unlock(&pipe->inode->i_mutex);
1656 return ret;
1660 * Link contents of ipipe to opipe.
1662 static int link_pipe(struct pipe_inode_info *ipipe,
1663 struct pipe_inode_info *opipe,
1664 size_t len, unsigned int flags)
1666 struct pipe_buffer *ibuf, *obuf;
1667 int ret = 0, i = 0, nbuf;
1670 * Potential ABBA deadlock, work around it by ordering lock
1671 * grabbing by inode address. Otherwise two different processes
1672 * could deadlock (one doing tee from A -> B, the other from B -> A).
1674 inode_double_lock(ipipe->inode, opipe->inode);
1676 do {
1677 if (!opipe->readers) {
1678 send_sig(SIGPIPE, current, 0);
1679 if (!ret)
1680 ret = -EPIPE;
1681 break;
1685 * If we have iterated all input buffers or ran out of
1686 * output room, break.
1688 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1689 break;
1691 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1692 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1695 * Get a reference to this pipe buffer,
1696 * so we can copy the contents over.
1698 ibuf->ops->get(ipipe, ibuf);
1700 obuf = opipe->bufs + nbuf;
1701 *obuf = *ibuf;
1704 * Don't inherit the gift flag, we need to
1705 * prevent multiple steals of this page.
1707 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1709 if (obuf->len > len)
1710 obuf->len = len;
1712 opipe->nrbufs++;
1713 ret += obuf->len;
1714 len -= obuf->len;
1715 i++;
1716 } while (len);
1719 * return EAGAIN if we have the potential of some data in the
1720 * future, otherwise just return 0
1722 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1723 ret = -EAGAIN;
1725 inode_double_unlock(ipipe->inode, opipe->inode);
1728 * If we put data in the output pipe, wakeup any potential readers.
1730 if (ret > 0) {
1731 smp_mb();
1732 if (waitqueue_active(&opipe->wait))
1733 wake_up_interruptible(&opipe->wait);
1734 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1737 return ret;
1741 * This is a tee(1) implementation that works on pipes. It doesn't copy
1742 * any data, it simply references the 'in' pages on the 'out' pipe.
1743 * The 'flags' used are the SPLICE_F_* variants, currently the only
1744 * applicable one is SPLICE_F_NONBLOCK.
1746 static long do_tee(struct file *in, struct file *out, size_t len,
1747 unsigned int flags)
1749 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1750 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1751 int ret = -EINVAL;
1754 * Duplicate the contents of ipipe to opipe without actually
1755 * copying the data.
1757 if (ipipe && opipe && ipipe != opipe) {
1759 * Keep going, unless we encounter an error. The ipipe/opipe
1760 * ordering doesn't really matter.
1762 ret = link_ipipe_prep(ipipe, flags);
1763 if (!ret) {
1764 ret = link_opipe_prep(opipe, flags);
1765 if (!ret)
1766 ret = link_pipe(ipipe, opipe, len, flags);
1770 return ret;
1773 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1775 struct file *in;
1776 int error, fput_in;
1778 if (unlikely(!len))
1779 return 0;
1781 error = -EBADF;
1782 in = fget_light(fdin, &fput_in);
1783 if (in) {
1784 if (in->f_mode & FMODE_READ) {
1785 int fput_out;
1786 struct file *out = fget_light(fdout, &fput_out);
1788 if (out) {
1789 if (out->f_mode & FMODE_WRITE)
1790 error = do_tee(in, out, len, flags);
1791 fput_light(out, fput_out);
1794 fput_light(in, fput_in);
1797 return error;