2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/async_tx.h>
49 #include <linux/seq_file.h>
59 #define NR_STRIPES 256
60 #define STRIPE_SIZE PAGE_SIZE
61 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD 1
64 #define BYPASS_THRESHOLD 1
65 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK (NR_HASH - 1)
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 * The following can be used to debug the driver
83 #define RAID5_PARANOIA 1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 # define CHECK_DEVLOCK()
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
103 * We maintain a biased count of active stripes in the bottom 16 bits of
104 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
106 static inline int raid5_bi_phys_segments(struct bio
*bio
)
108 return bio
->bi_phys_segments
& 0xffff;
111 static inline int raid5_bi_hw_segments(struct bio
*bio
)
113 return (bio
->bi_phys_segments
>> 16) & 0xffff;
116 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
118 --bio
->bi_phys_segments
;
119 return raid5_bi_phys_segments(bio
);
122 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
124 unsigned short val
= raid5_bi_hw_segments(bio
);
127 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
131 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
133 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) || (cnt
<< 16);
136 /* Find first data disk in a raid6 stripe */
137 static inline int raid6_d0(struct stripe_head
*sh
)
140 /* ddf always start from first device */
142 /* md starts just after Q block */
143 if (sh
->qd_idx
== sh
->disks
- 1)
146 return sh
->qd_idx
+ 1;
148 static inline int raid6_next_disk(int disk
, int raid_disks
)
151 return (disk
< raid_disks
) ? disk
: 0;
154 /* When walking through the disks in a raid5, starting at raid6_d0,
155 * We need to map each disk to a 'slot', where the data disks are slot
156 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
157 * is raid_disks-1. This help does that mapping.
159 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
160 int *count
, int syndrome_disks
)
164 if (idx
== sh
->pd_idx
)
165 return syndrome_disks
;
166 if (idx
== sh
->qd_idx
)
167 return syndrome_disks
+ 1;
172 static void return_io(struct bio
*return_bi
)
174 struct bio
*bi
= return_bi
;
177 return_bi
= bi
->bi_next
;
185 static void print_raid5_conf (raid5_conf_t
*conf
);
187 static int stripe_operations_active(struct stripe_head
*sh
)
189 return sh
->check_state
|| sh
->reconstruct_state
||
190 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
191 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
194 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
196 if (atomic_dec_and_test(&sh
->count
)) {
197 BUG_ON(!list_empty(&sh
->lru
));
198 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
199 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
200 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
201 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
202 blk_plug_device(conf
->mddev
->queue
);
203 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
204 sh
->bm_seq
- conf
->seq_write
> 0) {
205 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
206 blk_plug_device(conf
->mddev
->queue
);
208 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
209 list_add_tail(&sh
->lru
, &conf
->handle_list
);
211 md_wakeup_thread(conf
->mddev
->thread
);
213 BUG_ON(stripe_operations_active(sh
));
214 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
215 atomic_dec(&conf
->preread_active_stripes
);
216 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
217 md_wakeup_thread(conf
->mddev
->thread
);
219 atomic_dec(&conf
->active_stripes
);
220 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
221 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
222 wake_up(&conf
->wait_for_stripe
);
223 if (conf
->retry_read_aligned
)
224 md_wakeup_thread(conf
->mddev
->thread
);
230 static void release_stripe(struct stripe_head
*sh
)
232 raid5_conf_t
*conf
= sh
->raid_conf
;
235 spin_lock_irqsave(&conf
->device_lock
, flags
);
236 __release_stripe(conf
, sh
);
237 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
240 static inline void remove_hash(struct stripe_head
*sh
)
242 pr_debug("remove_hash(), stripe %llu\n",
243 (unsigned long long)sh
->sector
);
245 hlist_del_init(&sh
->hash
);
248 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
250 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
252 pr_debug("insert_hash(), stripe %llu\n",
253 (unsigned long long)sh
->sector
);
256 hlist_add_head(&sh
->hash
, hp
);
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
263 struct stripe_head
*sh
= NULL
;
264 struct list_head
*first
;
267 if (list_empty(&conf
->inactive_list
))
269 first
= conf
->inactive_list
.next
;
270 sh
= list_entry(first
, struct stripe_head
, lru
);
271 list_del_init(first
);
273 atomic_inc(&conf
->active_stripes
);
278 static void shrink_buffers(struct stripe_head
*sh
, int num
)
283 for (i
=0; i
<num
; i
++) {
287 sh
->dev
[i
].page
= NULL
;
292 static int grow_buffers(struct stripe_head
*sh
, int num
)
296 for (i
=0; i
<num
; i
++) {
299 if (!(page
= alloc_page(GFP_KERNEL
))) {
302 sh
->dev
[i
].page
= page
;
307 static void raid5_build_block(struct stripe_head
*sh
, int i
);
308 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
309 struct stripe_head
*sh
);
311 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
313 raid5_conf_t
*conf
= sh
->raid_conf
;
316 BUG_ON(atomic_read(&sh
->count
) != 0);
317 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
318 BUG_ON(stripe_operations_active(sh
));
321 pr_debug("init_stripe called, stripe %llu\n",
322 (unsigned long long)sh
->sector
);
326 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
328 stripe_set_idx(sector
, conf
, previous
, sh
);
332 for (i
= sh
->disks
; i
--; ) {
333 struct r5dev
*dev
= &sh
->dev
[i
];
335 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
336 test_bit(R5_LOCKED
, &dev
->flags
)) {
337 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
338 (unsigned long long)sh
->sector
, i
, dev
->toread
,
339 dev
->read
, dev
->towrite
, dev
->written
,
340 test_bit(R5_LOCKED
, &dev
->flags
));
344 raid5_build_block(sh
, i
);
346 insert_hash(conf
, sh
);
349 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
)
351 struct stripe_head
*sh
;
352 struct hlist_node
*hn
;
355 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
356 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
357 if (sh
->sector
== sector
&& sh
->disks
== disks
)
359 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
363 static void unplug_slaves(mddev_t
*mddev
);
364 static void raid5_unplug_device(struct request_queue
*q
);
366 static struct stripe_head
*
367 get_active_stripe(raid5_conf_t
*conf
, sector_t sector
,
368 int previous
, int noblock
)
370 struct stripe_head
*sh
;
371 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
373 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
375 spin_lock_irq(&conf
->device_lock
);
378 wait_event_lock_irq(conf
->wait_for_stripe
,
380 conf
->device_lock
, /* nothing */);
381 sh
= __find_stripe(conf
, sector
, disks
);
383 if (!conf
->inactive_blocked
)
384 sh
= get_free_stripe(conf
);
385 if (noblock
&& sh
== NULL
)
388 conf
->inactive_blocked
= 1;
389 wait_event_lock_irq(conf
->wait_for_stripe
,
390 !list_empty(&conf
->inactive_list
) &&
391 (atomic_read(&conf
->active_stripes
)
392 < (conf
->max_nr_stripes
*3/4)
393 || !conf
->inactive_blocked
),
395 raid5_unplug_device(conf
->mddev
->queue
)
397 conf
->inactive_blocked
= 0;
399 init_stripe(sh
, sector
, previous
);
401 if (atomic_read(&sh
->count
)) {
402 BUG_ON(!list_empty(&sh
->lru
));
404 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
405 atomic_inc(&conf
->active_stripes
);
406 if (list_empty(&sh
->lru
) &&
407 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
409 list_del_init(&sh
->lru
);
412 } while (sh
== NULL
);
415 atomic_inc(&sh
->count
);
417 spin_unlock_irq(&conf
->device_lock
);
422 raid5_end_read_request(struct bio
*bi
, int error
);
424 raid5_end_write_request(struct bio
*bi
, int error
);
426 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
428 raid5_conf_t
*conf
= sh
->raid_conf
;
429 int i
, disks
= sh
->disks
;
433 for (i
= disks
; i
--; ) {
437 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
439 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
444 bi
= &sh
->dev
[i
].req
;
448 bi
->bi_end_io
= raid5_end_write_request
;
450 bi
->bi_end_io
= raid5_end_read_request
;
453 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
454 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
457 atomic_inc(&rdev
->nr_pending
);
461 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
462 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
464 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
466 bi
->bi_bdev
= rdev
->bdev
;
467 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
468 __func__
, (unsigned long long)sh
->sector
,
470 atomic_inc(&sh
->count
);
471 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
472 bi
->bi_flags
= 1 << BIO_UPTODATE
;
476 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
477 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
478 bi
->bi_io_vec
[0].bv_offset
= 0;
479 bi
->bi_size
= STRIPE_SIZE
;
482 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
483 atomic_add(STRIPE_SECTORS
,
484 &rdev
->corrected_errors
);
485 generic_make_request(bi
);
488 set_bit(STRIPE_DEGRADED
, &sh
->state
);
489 pr_debug("skip op %ld on disc %d for sector %llu\n",
490 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
491 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
492 set_bit(STRIPE_HANDLE
, &sh
->state
);
497 static struct dma_async_tx_descriptor
*
498 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
499 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
502 struct page
*bio_page
;
506 if (bio
->bi_sector
>= sector
)
507 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
509 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
510 bio_for_each_segment(bvl
, bio
, i
) {
511 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
515 if (page_offset
< 0) {
516 b_offset
= -page_offset
;
517 page_offset
+= b_offset
;
521 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
522 clen
= STRIPE_SIZE
- page_offset
;
527 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
528 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
530 tx
= async_memcpy(page
, bio_page
, page_offset
,
535 tx
= async_memcpy(bio_page
, page
, b_offset
,
540 if (clen
< len
) /* hit end of page */
548 static void ops_complete_biofill(void *stripe_head_ref
)
550 struct stripe_head
*sh
= stripe_head_ref
;
551 struct bio
*return_bi
= NULL
;
552 raid5_conf_t
*conf
= sh
->raid_conf
;
555 pr_debug("%s: stripe %llu\n", __func__
,
556 (unsigned long long)sh
->sector
);
558 /* clear completed biofills */
559 spin_lock_irq(&conf
->device_lock
);
560 for (i
= sh
->disks
; i
--; ) {
561 struct r5dev
*dev
= &sh
->dev
[i
];
563 /* acknowledge completion of a biofill operation */
564 /* and check if we need to reply to a read request,
565 * new R5_Wantfill requests are held off until
566 * !STRIPE_BIOFILL_RUN
568 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
569 struct bio
*rbi
, *rbi2
;
574 while (rbi
&& rbi
->bi_sector
<
575 dev
->sector
+ STRIPE_SECTORS
) {
576 rbi2
= r5_next_bio(rbi
, dev
->sector
);
577 if (!raid5_dec_bi_phys_segments(rbi
)) {
578 rbi
->bi_next
= return_bi
;
585 spin_unlock_irq(&conf
->device_lock
);
586 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
588 return_io(return_bi
);
590 set_bit(STRIPE_HANDLE
, &sh
->state
);
594 static void ops_run_biofill(struct stripe_head
*sh
)
596 struct dma_async_tx_descriptor
*tx
= NULL
;
597 raid5_conf_t
*conf
= sh
->raid_conf
;
600 pr_debug("%s: stripe %llu\n", __func__
,
601 (unsigned long long)sh
->sector
);
603 for (i
= sh
->disks
; i
--; ) {
604 struct r5dev
*dev
= &sh
->dev
[i
];
605 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
607 spin_lock_irq(&conf
->device_lock
);
608 dev
->read
= rbi
= dev
->toread
;
610 spin_unlock_irq(&conf
->device_lock
);
611 while (rbi
&& rbi
->bi_sector
<
612 dev
->sector
+ STRIPE_SECTORS
) {
613 tx
= async_copy_data(0, rbi
, dev
->page
,
615 rbi
= r5_next_bio(rbi
, dev
->sector
);
620 atomic_inc(&sh
->count
);
621 async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
622 ops_complete_biofill
, sh
);
625 static void ops_complete_compute5(void *stripe_head_ref
)
627 struct stripe_head
*sh
= stripe_head_ref
;
628 int target
= sh
->ops
.target
;
629 struct r5dev
*tgt
= &sh
->dev
[target
];
631 pr_debug("%s: stripe %llu\n", __func__
,
632 (unsigned long long)sh
->sector
);
634 set_bit(R5_UPTODATE
, &tgt
->flags
);
635 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
636 clear_bit(R5_Wantcompute
, &tgt
->flags
);
637 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
638 if (sh
->check_state
== check_state_compute_run
)
639 sh
->check_state
= check_state_compute_result
;
640 set_bit(STRIPE_HANDLE
, &sh
->state
);
644 static struct dma_async_tx_descriptor
*ops_run_compute5(struct stripe_head
*sh
)
646 /* kernel stack size limits the total number of disks */
647 int disks
= sh
->disks
;
648 struct page
*xor_srcs
[disks
];
649 int target
= sh
->ops
.target
;
650 struct r5dev
*tgt
= &sh
->dev
[target
];
651 struct page
*xor_dest
= tgt
->page
;
653 struct dma_async_tx_descriptor
*tx
;
656 pr_debug("%s: stripe %llu block: %d\n",
657 __func__
, (unsigned long long)sh
->sector
, target
);
658 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
660 for (i
= disks
; i
--; )
662 xor_srcs
[count
++] = sh
->dev
[i
].page
;
664 atomic_inc(&sh
->count
);
666 if (unlikely(count
== 1))
667 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
668 0, NULL
, ops_complete_compute5
, sh
);
670 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
671 ASYNC_TX_XOR_ZERO_DST
, NULL
,
672 ops_complete_compute5
, sh
);
677 static void ops_complete_prexor(void *stripe_head_ref
)
679 struct stripe_head
*sh
= stripe_head_ref
;
681 pr_debug("%s: stripe %llu\n", __func__
,
682 (unsigned long long)sh
->sector
);
685 static struct dma_async_tx_descriptor
*
686 ops_run_prexor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
688 /* kernel stack size limits the total number of disks */
689 int disks
= sh
->disks
;
690 struct page
*xor_srcs
[disks
];
691 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
693 /* existing parity data subtracted */
694 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
696 pr_debug("%s: stripe %llu\n", __func__
,
697 (unsigned long long)sh
->sector
);
699 for (i
= disks
; i
--; ) {
700 struct r5dev
*dev
= &sh
->dev
[i
];
701 /* Only process blocks that are known to be uptodate */
702 if (test_bit(R5_Wantdrain
, &dev
->flags
))
703 xor_srcs
[count
++] = dev
->page
;
706 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
707 ASYNC_TX_DEP_ACK
| ASYNC_TX_XOR_DROP_DST
, tx
,
708 ops_complete_prexor
, sh
);
713 static struct dma_async_tx_descriptor
*
714 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
716 int disks
= sh
->disks
;
719 pr_debug("%s: stripe %llu\n", __func__
,
720 (unsigned long long)sh
->sector
);
722 for (i
= disks
; i
--; ) {
723 struct r5dev
*dev
= &sh
->dev
[i
];
726 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
729 spin_lock(&sh
->lock
);
730 chosen
= dev
->towrite
;
732 BUG_ON(dev
->written
);
733 wbi
= dev
->written
= chosen
;
734 spin_unlock(&sh
->lock
);
736 while (wbi
&& wbi
->bi_sector
<
737 dev
->sector
+ STRIPE_SECTORS
) {
738 tx
= async_copy_data(1, wbi
, dev
->page
,
740 wbi
= r5_next_bio(wbi
, dev
->sector
);
748 static void ops_complete_postxor(void *stripe_head_ref
)
750 struct stripe_head
*sh
= stripe_head_ref
;
751 int disks
= sh
->disks
, i
, pd_idx
= sh
->pd_idx
;
753 pr_debug("%s: stripe %llu\n", __func__
,
754 (unsigned long long)sh
->sector
);
756 for (i
= disks
; i
--; ) {
757 struct r5dev
*dev
= &sh
->dev
[i
];
758 if (dev
->written
|| i
== pd_idx
)
759 set_bit(R5_UPTODATE
, &dev
->flags
);
762 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
763 sh
->reconstruct_state
= reconstruct_state_drain_result
;
764 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
765 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
767 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
768 sh
->reconstruct_state
= reconstruct_state_result
;
771 set_bit(STRIPE_HANDLE
, &sh
->state
);
776 ops_run_postxor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
778 /* kernel stack size limits the total number of disks */
779 int disks
= sh
->disks
;
780 struct page
*xor_srcs
[disks
];
782 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
783 struct page
*xor_dest
;
787 pr_debug("%s: stripe %llu\n", __func__
,
788 (unsigned long long)sh
->sector
);
790 /* check if prexor is active which means only process blocks
791 * that are part of a read-modify-write (written)
793 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
795 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
796 for (i
= disks
; i
--; ) {
797 struct r5dev
*dev
= &sh
->dev
[i
];
799 xor_srcs
[count
++] = dev
->page
;
802 xor_dest
= sh
->dev
[pd_idx
].page
;
803 for (i
= disks
; i
--; ) {
804 struct r5dev
*dev
= &sh
->dev
[i
];
806 xor_srcs
[count
++] = dev
->page
;
810 /* 1/ if we prexor'd then the dest is reused as a source
811 * 2/ if we did not prexor then we are redoing the parity
812 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
813 * for the synchronous xor case
815 flags
= ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
|
816 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
818 atomic_inc(&sh
->count
);
820 if (unlikely(count
== 1)) {
821 flags
&= ~(ASYNC_TX_XOR_DROP_DST
| ASYNC_TX_XOR_ZERO_DST
);
822 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
823 flags
, tx
, ops_complete_postxor
, sh
);
825 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
826 flags
, tx
, ops_complete_postxor
, sh
);
829 static void ops_complete_check(void *stripe_head_ref
)
831 struct stripe_head
*sh
= stripe_head_ref
;
833 pr_debug("%s: stripe %llu\n", __func__
,
834 (unsigned long long)sh
->sector
);
836 sh
->check_state
= check_state_check_result
;
837 set_bit(STRIPE_HANDLE
, &sh
->state
);
841 static void ops_run_check(struct stripe_head
*sh
)
843 /* kernel stack size limits the total number of disks */
844 int disks
= sh
->disks
;
845 struct page
*xor_srcs
[disks
];
846 struct dma_async_tx_descriptor
*tx
;
848 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
849 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
851 pr_debug("%s: stripe %llu\n", __func__
,
852 (unsigned long long)sh
->sector
);
854 for (i
= disks
; i
--; ) {
855 struct r5dev
*dev
= &sh
->dev
[i
];
857 xor_srcs
[count
++] = dev
->page
;
860 tx
= async_xor_zero_sum(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
861 &sh
->ops
.zero_sum_result
, 0, NULL
, NULL
, NULL
);
863 atomic_inc(&sh
->count
);
864 tx
= async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
865 ops_complete_check
, sh
);
868 static void raid5_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
870 int overlap_clear
= 0, i
, disks
= sh
->disks
;
871 struct dma_async_tx_descriptor
*tx
= NULL
;
873 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
878 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
879 tx
= ops_run_compute5(sh
);
880 /* terminate the chain if postxor is not set to be run */
881 if (tx
&& !test_bit(STRIPE_OP_POSTXOR
, &ops_request
))
885 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
886 tx
= ops_run_prexor(sh
, tx
);
888 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
889 tx
= ops_run_biodrain(sh
, tx
);
893 if (test_bit(STRIPE_OP_POSTXOR
, &ops_request
))
894 ops_run_postxor(sh
, tx
);
896 if (test_bit(STRIPE_OP_CHECK
, &ops_request
))
900 for (i
= disks
; i
--; ) {
901 struct r5dev
*dev
= &sh
->dev
[i
];
902 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
903 wake_up(&sh
->raid_conf
->wait_for_overlap
);
907 static int grow_one_stripe(raid5_conf_t
*conf
)
909 struct stripe_head
*sh
;
910 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
913 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
914 sh
->raid_conf
= conf
;
915 spin_lock_init(&sh
->lock
);
917 if (grow_buffers(sh
, conf
->raid_disks
)) {
918 shrink_buffers(sh
, conf
->raid_disks
);
919 kmem_cache_free(conf
->slab_cache
, sh
);
922 sh
->disks
= conf
->raid_disks
;
923 /* we just created an active stripe so... */
924 atomic_set(&sh
->count
, 1);
925 atomic_inc(&conf
->active_stripes
);
926 INIT_LIST_HEAD(&sh
->lru
);
931 static int grow_stripes(raid5_conf_t
*conf
, int num
)
933 struct kmem_cache
*sc
;
934 int devs
= conf
->raid_disks
;
936 sprintf(conf
->cache_name
[0],
937 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
938 sprintf(conf
->cache_name
[1],
939 "raid%d-%s-alt", conf
->level
, mdname(conf
->mddev
));
940 conf
->active_name
= 0;
941 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
942 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
946 conf
->slab_cache
= sc
;
947 conf
->pool_size
= devs
;
949 if (!grow_one_stripe(conf
))
954 #ifdef CONFIG_MD_RAID5_RESHAPE
955 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
957 /* Make all the stripes able to hold 'newsize' devices.
958 * New slots in each stripe get 'page' set to a new page.
960 * This happens in stages:
961 * 1/ create a new kmem_cache and allocate the required number of
963 * 2/ gather all the old stripe_heads and tranfer the pages across
964 * to the new stripe_heads. This will have the side effect of
965 * freezing the array as once all stripe_heads have been collected,
966 * no IO will be possible. Old stripe heads are freed once their
967 * pages have been transferred over, and the old kmem_cache is
968 * freed when all stripes are done.
969 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
970 * we simple return a failre status - no need to clean anything up.
971 * 4/ allocate new pages for the new slots in the new stripe_heads.
972 * If this fails, we don't bother trying the shrink the
973 * stripe_heads down again, we just leave them as they are.
974 * As each stripe_head is processed the new one is released into
977 * Once step2 is started, we cannot afford to wait for a write,
978 * so we use GFP_NOIO allocations.
980 struct stripe_head
*osh
, *nsh
;
981 LIST_HEAD(newstripes
);
982 struct disk_info
*ndisks
;
984 struct kmem_cache
*sc
;
987 if (newsize
<= conf
->pool_size
)
988 return 0; /* never bother to shrink */
990 err
= md_allow_write(conf
->mddev
);
995 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
996 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1001 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1002 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1006 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1008 nsh
->raid_conf
= conf
;
1009 spin_lock_init(&nsh
->lock
);
1011 list_add(&nsh
->lru
, &newstripes
);
1014 /* didn't get enough, give up */
1015 while (!list_empty(&newstripes
)) {
1016 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1017 list_del(&nsh
->lru
);
1018 kmem_cache_free(sc
, nsh
);
1020 kmem_cache_destroy(sc
);
1023 /* Step 2 - Must use GFP_NOIO now.
1024 * OK, we have enough stripes, start collecting inactive
1025 * stripes and copying them over
1027 list_for_each_entry(nsh
, &newstripes
, lru
) {
1028 spin_lock_irq(&conf
->device_lock
);
1029 wait_event_lock_irq(conf
->wait_for_stripe
,
1030 !list_empty(&conf
->inactive_list
),
1032 unplug_slaves(conf
->mddev
)
1034 osh
= get_free_stripe(conf
);
1035 spin_unlock_irq(&conf
->device_lock
);
1036 atomic_set(&nsh
->count
, 1);
1037 for(i
=0; i
<conf
->pool_size
; i
++)
1038 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1039 for( ; i
<newsize
; i
++)
1040 nsh
->dev
[i
].page
= NULL
;
1041 kmem_cache_free(conf
->slab_cache
, osh
);
1043 kmem_cache_destroy(conf
->slab_cache
);
1046 * At this point, we are holding all the stripes so the array
1047 * is completely stalled, so now is a good time to resize
1050 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1052 for (i
=0; i
<conf
->raid_disks
; i
++)
1053 ndisks
[i
] = conf
->disks
[i
];
1055 conf
->disks
= ndisks
;
1059 /* Step 4, return new stripes to service */
1060 while(!list_empty(&newstripes
)) {
1061 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1062 list_del_init(&nsh
->lru
);
1063 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1064 if (nsh
->dev
[i
].page
== NULL
) {
1065 struct page
*p
= alloc_page(GFP_NOIO
);
1066 nsh
->dev
[i
].page
= p
;
1070 release_stripe(nsh
);
1072 /* critical section pass, GFP_NOIO no longer needed */
1074 conf
->slab_cache
= sc
;
1075 conf
->active_name
= 1-conf
->active_name
;
1076 conf
->pool_size
= newsize
;
1081 static int drop_one_stripe(raid5_conf_t
*conf
)
1083 struct stripe_head
*sh
;
1085 spin_lock_irq(&conf
->device_lock
);
1086 sh
= get_free_stripe(conf
);
1087 spin_unlock_irq(&conf
->device_lock
);
1090 BUG_ON(atomic_read(&sh
->count
));
1091 shrink_buffers(sh
, conf
->pool_size
);
1092 kmem_cache_free(conf
->slab_cache
, sh
);
1093 atomic_dec(&conf
->active_stripes
);
1097 static void shrink_stripes(raid5_conf_t
*conf
)
1099 while (drop_one_stripe(conf
))
1102 if (conf
->slab_cache
)
1103 kmem_cache_destroy(conf
->slab_cache
);
1104 conf
->slab_cache
= NULL
;
1107 static void raid5_end_read_request(struct bio
* bi
, int error
)
1109 struct stripe_head
*sh
= bi
->bi_private
;
1110 raid5_conf_t
*conf
= sh
->raid_conf
;
1111 int disks
= sh
->disks
, i
;
1112 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1113 char b
[BDEVNAME_SIZE
];
1117 for (i
=0 ; i
<disks
; i
++)
1118 if (bi
== &sh
->dev
[i
].req
)
1121 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1122 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1130 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1131 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1132 rdev
= conf
->disks
[i
].rdev
;
1133 printk_rl(KERN_INFO
"raid5:%s: read error corrected"
1134 " (%lu sectors at %llu on %s)\n",
1135 mdname(conf
->mddev
), STRIPE_SECTORS
,
1136 (unsigned long long)(sh
->sector
1137 + rdev
->data_offset
),
1138 bdevname(rdev
->bdev
, b
));
1139 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1140 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1142 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1143 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1145 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1147 rdev
= conf
->disks
[i
].rdev
;
1149 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1150 atomic_inc(&rdev
->read_errors
);
1151 if (conf
->mddev
->degraded
)
1152 printk_rl(KERN_WARNING
1153 "raid5:%s: read error not correctable "
1154 "(sector %llu on %s).\n",
1155 mdname(conf
->mddev
),
1156 (unsigned long long)(sh
->sector
1157 + rdev
->data_offset
),
1159 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1161 printk_rl(KERN_WARNING
1162 "raid5:%s: read error NOT corrected!! "
1163 "(sector %llu on %s).\n",
1164 mdname(conf
->mddev
),
1165 (unsigned long long)(sh
->sector
1166 + rdev
->data_offset
),
1168 else if (atomic_read(&rdev
->read_errors
)
1169 > conf
->max_nr_stripes
)
1171 "raid5:%s: Too many read errors, failing device %s.\n",
1172 mdname(conf
->mddev
), bdn
);
1176 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1178 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1179 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1180 md_error(conf
->mddev
, rdev
);
1183 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1184 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1185 set_bit(STRIPE_HANDLE
, &sh
->state
);
1189 static void raid5_end_write_request(struct bio
*bi
, int error
)
1191 struct stripe_head
*sh
= bi
->bi_private
;
1192 raid5_conf_t
*conf
= sh
->raid_conf
;
1193 int disks
= sh
->disks
, i
;
1194 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1196 for (i
=0 ; i
<disks
; i
++)
1197 if (bi
== &sh
->dev
[i
].req
)
1200 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1201 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1209 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1211 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1213 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1214 set_bit(STRIPE_HANDLE
, &sh
->state
);
1219 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
1221 static void raid5_build_block(struct stripe_head
*sh
, int i
)
1223 struct r5dev
*dev
= &sh
->dev
[i
];
1225 bio_init(&dev
->req
);
1226 dev
->req
.bi_io_vec
= &dev
->vec
;
1228 dev
->req
.bi_max_vecs
++;
1229 dev
->vec
.bv_page
= dev
->page
;
1230 dev
->vec
.bv_len
= STRIPE_SIZE
;
1231 dev
->vec
.bv_offset
= 0;
1233 dev
->req
.bi_sector
= sh
->sector
;
1234 dev
->req
.bi_private
= sh
;
1237 dev
->sector
= compute_blocknr(sh
, i
);
1240 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1242 char b
[BDEVNAME_SIZE
];
1243 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1244 pr_debug("raid5: error called\n");
1246 if (!test_bit(Faulty
, &rdev
->flags
)) {
1247 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1248 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1249 unsigned long flags
;
1250 spin_lock_irqsave(&conf
->device_lock
, flags
);
1252 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1254 * if recovery was running, make sure it aborts.
1256 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1258 set_bit(Faulty
, &rdev
->flags
);
1260 "raid5: Disk failure on %s, disabling device.\n"
1261 "raid5: Operation continuing on %d devices.\n",
1262 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1267 * Input: a 'big' sector number,
1268 * Output: index of the data and parity disk, and the sector # in them.
1270 static sector_t
raid5_compute_sector(raid5_conf_t
*conf
, sector_t r_sector
,
1271 int previous
, int *dd_idx
,
1272 struct stripe_head
*sh
)
1275 unsigned long chunk_number
;
1276 unsigned int chunk_offset
;
1279 sector_t new_sector
;
1280 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1281 int raid_disks
= previous
? conf
->previous_raid_disks
1283 int data_disks
= raid_disks
- conf
->max_degraded
;
1285 /* First compute the information on this sector */
1288 * Compute the chunk number and the sector offset inside the chunk
1290 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1291 chunk_number
= r_sector
;
1292 BUG_ON(r_sector
!= chunk_number
);
1295 * Compute the stripe number
1297 stripe
= chunk_number
/ data_disks
;
1300 * Compute the data disk and parity disk indexes inside the stripe
1302 *dd_idx
= chunk_number
% data_disks
;
1305 * Select the parity disk based on the user selected algorithm.
1307 pd_idx
= qd_idx
= ~0;
1308 switch(conf
->level
) {
1310 pd_idx
= data_disks
;
1313 switch (conf
->algorithm
) {
1314 case ALGORITHM_LEFT_ASYMMETRIC
:
1315 pd_idx
= data_disks
- stripe
% raid_disks
;
1316 if (*dd_idx
>= pd_idx
)
1319 case ALGORITHM_RIGHT_ASYMMETRIC
:
1320 pd_idx
= stripe
% raid_disks
;
1321 if (*dd_idx
>= pd_idx
)
1324 case ALGORITHM_LEFT_SYMMETRIC
:
1325 pd_idx
= data_disks
- stripe
% raid_disks
;
1326 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1328 case ALGORITHM_RIGHT_SYMMETRIC
:
1329 pd_idx
= stripe
% raid_disks
;
1330 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1332 case ALGORITHM_PARITY_0
:
1336 case ALGORITHM_PARITY_N
:
1337 pd_idx
= data_disks
;
1340 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1347 switch (conf
->algorithm
) {
1348 case ALGORITHM_LEFT_ASYMMETRIC
:
1349 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1350 qd_idx
= pd_idx
+ 1;
1351 if (pd_idx
== raid_disks
-1) {
1352 (*dd_idx
)++; /* Q D D D P */
1354 } else if (*dd_idx
>= pd_idx
)
1355 (*dd_idx
) += 2; /* D D P Q D */
1357 case ALGORITHM_RIGHT_ASYMMETRIC
:
1358 pd_idx
= stripe
% raid_disks
;
1359 qd_idx
= pd_idx
+ 1;
1360 if (pd_idx
== raid_disks
-1) {
1361 (*dd_idx
)++; /* Q D D D P */
1363 } else if (*dd_idx
>= pd_idx
)
1364 (*dd_idx
) += 2; /* D D P Q D */
1366 case ALGORITHM_LEFT_SYMMETRIC
:
1367 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1368 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1369 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1371 case ALGORITHM_RIGHT_SYMMETRIC
:
1372 pd_idx
= stripe
% raid_disks
;
1373 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1374 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1377 case ALGORITHM_PARITY_0
:
1382 case ALGORITHM_PARITY_N
:
1383 pd_idx
= data_disks
;
1384 qd_idx
= data_disks
+ 1;
1387 case ALGORITHM_ROTATING_ZERO_RESTART
:
1388 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1389 * of blocks for computing Q is different.
1391 pd_idx
= stripe
% raid_disks
;
1392 qd_idx
= pd_idx
+ 1;
1393 if (pd_idx
== raid_disks
-1) {
1394 (*dd_idx
)++; /* Q D D D P */
1396 } else if (*dd_idx
>= pd_idx
)
1397 (*dd_idx
) += 2; /* D D P Q D */
1401 case ALGORITHM_ROTATING_N_RESTART
:
1402 /* Same a left_asymmetric, by first stripe is
1403 * D D D P Q rather than
1406 pd_idx
= raid_disks
- 1 - ((stripe
+ 1) % raid_disks
);
1407 qd_idx
= pd_idx
+ 1;
1408 if (pd_idx
== raid_disks
-1) {
1409 (*dd_idx
)++; /* Q D D D P */
1411 } else if (*dd_idx
>= pd_idx
)
1412 (*dd_idx
) += 2; /* D D P Q D */
1416 case ALGORITHM_ROTATING_N_CONTINUE
:
1417 /* Same as left_symmetric but Q is before P */
1418 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1419 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
1420 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1424 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1425 /* RAID5 left_asymmetric, with Q on last device */
1426 pd_idx
= data_disks
- stripe
% (raid_disks
-1);
1427 if (*dd_idx
>= pd_idx
)
1429 qd_idx
= raid_disks
- 1;
1432 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1433 pd_idx
= stripe
% (raid_disks
-1);
1434 if (*dd_idx
>= pd_idx
)
1436 qd_idx
= raid_disks
- 1;
1439 case ALGORITHM_LEFT_SYMMETRIC_6
:
1440 pd_idx
= data_disks
- stripe
% (raid_disks
-1);
1441 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1442 qd_idx
= raid_disks
- 1;
1445 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1446 pd_idx
= stripe
% (raid_disks
-1);
1447 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1448 qd_idx
= raid_disks
- 1;
1451 case ALGORITHM_PARITY_0_6
:
1454 qd_idx
= raid_disks
- 1;
1459 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1467 sh
->pd_idx
= pd_idx
;
1468 sh
->qd_idx
= qd_idx
;
1469 sh
->ddf_layout
= ddf_layout
;
1472 * Finally, compute the new sector number
1474 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1479 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
1481 raid5_conf_t
*conf
= sh
->raid_conf
;
1482 int raid_disks
= sh
->disks
;
1483 int data_disks
= raid_disks
- conf
->max_degraded
;
1484 sector_t new_sector
= sh
->sector
, check
;
1485 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1488 int chunk_number
, dummy1
, dd_idx
= i
;
1490 struct stripe_head sh2
;
1493 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1494 stripe
= new_sector
;
1495 BUG_ON(new_sector
!= stripe
);
1497 if (i
== sh
->pd_idx
)
1499 switch(conf
->level
) {
1502 switch (conf
->algorithm
) {
1503 case ALGORITHM_LEFT_ASYMMETRIC
:
1504 case ALGORITHM_RIGHT_ASYMMETRIC
:
1508 case ALGORITHM_LEFT_SYMMETRIC
:
1509 case ALGORITHM_RIGHT_SYMMETRIC
:
1512 i
-= (sh
->pd_idx
+ 1);
1514 case ALGORITHM_PARITY_0
:
1517 case ALGORITHM_PARITY_N
:
1520 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1526 if (i
== sh
->qd_idx
)
1527 return 0; /* It is the Q disk */
1528 switch (conf
->algorithm
) {
1529 case ALGORITHM_LEFT_ASYMMETRIC
:
1530 case ALGORITHM_RIGHT_ASYMMETRIC
:
1531 case ALGORITHM_ROTATING_ZERO_RESTART
:
1532 case ALGORITHM_ROTATING_N_RESTART
:
1533 if (sh
->pd_idx
== raid_disks
-1)
1534 i
--; /* Q D D D P */
1535 else if (i
> sh
->pd_idx
)
1536 i
-= 2; /* D D P Q D */
1538 case ALGORITHM_LEFT_SYMMETRIC
:
1539 case ALGORITHM_RIGHT_SYMMETRIC
:
1540 if (sh
->pd_idx
== raid_disks
-1)
1541 i
--; /* Q D D D P */
1546 i
-= (sh
->pd_idx
+ 2);
1549 case ALGORITHM_PARITY_0
:
1552 case ALGORITHM_PARITY_N
:
1554 case ALGORITHM_ROTATING_N_CONTINUE
:
1555 if (sh
->pd_idx
== 0)
1556 i
--; /* P D D D Q */
1557 else if (i
> sh
->pd_idx
)
1558 i
-= 2; /* D D Q P D */
1560 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1561 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1565 case ALGORITHM_LEFT_SYMMETRIC_6
:
1566 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1568 i
+= data_disks
+ 1;
1569 i
-= (sh
->pd_idx
+ 1);
1571 case ALGORITHM_PARITY_0_6
:
1575 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1582 chunk_number
= stripe
* data_disks
+ i
;
1583 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
1585 check
= raid5_compute_sector(conf
, r_sector
,
1586 (raid_disks
!= conf
->raid_disks
),
1588 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
1589 || sh2
.qd_idx
!= sh
->qd_idx
) {
1590 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1599 * Copy data between a page in the stripe cache, and one or more bion
1600 * The page could align with the middle of the bio, or there could be
1601 * several bion, each with several bio_vecs, which cover part of the page
1602 * Multiple bion are linked together on bi_next. There may be extras
1603 * at the end of this list. We ignore them.
1605 static void copy_data(int frombio
, struct bio
*bio
,
1609 char *pa
= page_address(page
);
1610 struct bio_vec
*bvl
;
1614 if (bio
->bi_sector
>= sector
)
1615 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
1617 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
1618 bio_for_each_segment(bvl
, bio
, i
) {
1619 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
1623 if (page_offset
< 0) {
1624 b_offset
= -page_offset
;
1625 page_offset
+= b_offset
;
1629 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1630 clen
= STRIPE_SIZE
- page_offset
;
1634 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
1636 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
1638 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
1639 __bio_kunmap_atomic(ba
, KM_USER0
);
1641 if (clen
< len
) /* hit end of page */
1647 #define check_xor() do { \
1648 if (count == MAX_XOR_BLOCKS) { \
1649 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1654 static void compute_parity6(struct stripe_head
*sh
, int method
)
1656 raid5_conf_t
*conf
= sh
->raid_conf
;
1657 int i
, pd_idx
, qd_idx
, d0_idx
, disks
= sh
->disks
, count
;
1658 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1660 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1661 void *ptrs
[syndrome_disks
+2];
1663 pd_idx
= sh
->pd_idx
;
1664 qd_idx
= sh
->qd_idx
;
1665 d0_idx
= raid6_d0(sh
);
1667 pr_debug("compute_parity, stripe %llu, method %d\n",
1668 (unsigned long long)sh
->sector
, method
);
1671 case READ_MODIFY_WRITE
:
1672 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1673 case RECONSTRUCT_WRITE
:
1674 for (i
= disks
; i
-- ;)
1675 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1676 chosen
= sh
->dev
[i
].towrite
;
1677 sh
->dev
[i
].towrite
= NULL
;
1679 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1680 wake_up(&conf
->wait_for_overlap
);
1682 BUG_ON(sh
->dev
[i
].written
);
1683 sh
->dev
[i
].written
= chosen
;
1687 BUG(); /* Not implemented yet */
1690 for (i
= disks
; i
--;)
1691 if (sh
->dev
[i
].written
) {
1692 sector_t sector
= sh
->dev
[i
].sector
;
1693 struct bio
*wbi
= sh
->dev
[i
].written
;
1694 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1695 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1696 wbi
= r5_next_bio(wbi
, sector
);
1699 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1700 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1703 /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1705 for (i
= 0; i
< disks
; i
++)
1706 ptrs
[i
] = (void *)raid6_empty_zero_page
;
1711 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1713 ptrs
[slot
] = page_address(sh
->dev
[i
].page
);
1714 if (slot
< syndrome_disks
&&
1715 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
)) {
1716 printk(KERN_ERR
"block %d/%d not uptodate "
1717 "on parity calc\n", i
, count
);
1721 i
= raid6_next_disk(i
, disks
);
1722 } while (i
!= d0_idx
);
1723 BUG_ON(count
!= syndrome_disks
);
1725 raid6_call
.gen_syndrome(syndrome_disks
+2, STRIPE_SIZE
, ptrs
);
1728 case RECONSTRUCT_WRITE
:
1729 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1730 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1731 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1732 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1735 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1736 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1742 /* Compute one missing block */
1743 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1745 int i
, count
, disks
= sh
->disks
;
1746 void *ptr
[MAX_XOR_BLOCKS
], *dest
, *p
;
1747 int qd_idx
= sh
->qd_idx
;
1749 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1750 (unsigned long long)sh
->sector
, dd_idx
);
1752 if ( dd_idx
== qd_idx
) {
1753 /* We're actually computing the Q drive */
1754 compute_parity6(sh
, UPDATE_PARITY
);
1756 dest
= page_address(sh
->dev
[dd_idx
].page
);
1757 if (!nozero
) memset(dest
, 0, STRIPE_SIZE
);
1759 for (i
= disks
; i
--; ) {
1760 if (i
== dd_idx
|| i
== qd_idx
)
1762 p
= page_address(sh
->dev
[i
].page
);
1763 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1766 printk("compute_block() %d, stripe %llu, %d"
1767 " not present\n", dd_idx
,
1768 (unsigned long long)sh
->sector
, i
);
1773 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1774 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1775 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1779 /* Compute two missing blocks */
1780 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1782 int i
, count
, disks
= sh
->disks
;
1783 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1784 int d0_idx
= raid6_d0(sh
);
1785 int faila
= -1, failb
= -1;
1786 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1787 void *ptrs
[syndrome_disks
+2];
1789 for (i
= 0; i
< disks
; i
++)
1790 ptrs
[i
] = (void *)raid6_empty_zero_page
;
1794 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1796 ptrs
[slot
] = page_address(sh
->dev
[i
].page
);
1802 i
= raid6_next_disk(i
, disks
);
1803 } while (i
!= d0_idx
);
1804 BUG_ON(count
!= syndrome_disks
);
1806 BUG_ON(faila
== failb
);
1807 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1809 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1810 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
,
1813 if (failb
== syndrome_disks
+1) {
1814 /* Q disk is one of the missing disks */
1815 if (faila
== syndrome_disks
) {
1816 /* Missing P+Q, just recompute */
1817 compute_parity6(sh
, UPDATE_PARITY
);
1820 /* We're missing D+Q; recompute D from P */
1821 compute_block_1(sh
, ((dd_idx1
== sh
->qd_idx
) ?
1824 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1829 /* We're missing D+P or D+D; */
1830 if (failb
== syndrome_disks
) {
1831 /* We're missing D+P. */
1832 raid6_datap_recov(syndrome_disks
+2, STRIPE_SIZE
, faila
, ptrs
);
1834 /* We're missing D+D. */
1835 raid6_2data_recov(syndrome_disks
+2, STRIPE_SIZE
, faila
, failb
,
1839 /* Both the above update both missing blocks */
1840 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1841 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1845 schedule_reconstruction5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
1846 int rcw
, int expand
)
1848 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1851 /* if we are not expanding this is a proper write request, and
1852 * there will be bios with new data to be drained into the
1856 sh
->reconstruct_state
= reconstruct_state_drain_run
;
1857 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1859 sh
->reconstruct_state
= reconstruct_state_run
;
1861 set_bit(STRIPE_OP_POSTXOR
, &s
->ops_request
);
1863 for (i
= disks
; i
--; ) {
1864 struct r5dev
*dev
= &sh
->dev
[i
];
1867 set_bit(R5_LOCKED
, &dev
->flags
);
1868 set_bit(R5_Wantdrain
, &dev
->flags
);
1870 clear_bit(R5_UPTODATE
, &dev
->flags
);
1874 if (s
->locked
+ 1 == disks
)
1875 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
1876 atomic_inc(&sh
->raid_conf
->pending_full_writes
);
1878 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
1879 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
1881 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
1882 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
1883 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1884 set_bit(STRIPE_OP_POSTXOR
, &s
->ops_request
);
1886 for (i
= disks
; i
--; ) {
1887 struct r5dev
*dev
= &sh
->dev
[i
];
1892 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
1893 test_bit(R5_Wantcompute
, &dev
->flags
))) {
1894 set_bit(R5_Wantdrain
, &dev
->flags
);
1895 set_bit(R5_LOCKED
, &dev
->flags
);
1896 clear_bit(R5_UPTODATE
, &dev
->flags
);
1902 /* keep the parity disk locked while asynchronous operations
1905 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1906 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1909 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1910 __func__
, (unsigned long long)sh
->sector
,
1911 s
->locked
, s
->ops_request
);
1915 * Each stripe/dev can have one or more bion attached.
1916 * toread/towrite point to the first in a chain.
1917 * The bi_next chain must be in order.
1919 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1922 raid5_conf_t
*conf
= sh
->raid_conf
;
1925 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1926 (unsigned long long)bi
->bi_sector
,
1927 (unsigned long long)sh
->sector
);
1930 spin_lock(&sh
->lock
);
1931 spin_lock_irq(&conf
->device_lock
);
1933 bip
= &sh
->dev
[dd_idx
].towrite
;
1934 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1937 bip
= &sh
->dev
[dd_idx
].toread
;
1938 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1939 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1941 bip
= & (*bip
)->bi_next
;
1943 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1946 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1950 bi
->bi_phys_segments
++;
1951 spin_unlock_irq(&conf
->device_lock
);
1952 spin_unlock(&sh
->lock
);
1954 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1955 (unsigned long long)bi
->bi_sector
,
1956 (unsigned long long)sh
->sector
, dd_idx
);
1958 if (conf
->mddev
->bitmap
&& firstwrite
) {
1959 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1961 sh
->bm_seq
= conf
->seq_flush
+1;
1962 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1966 /* check if page is covered */
1967 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1968 for (bi
=sh
->dev
[dd_idx
].towrite
;
1969 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1970 bi
&& bi
->bi_sector
<= sector
;
1971 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1972 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1973 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1975 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1976 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1981 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1982 spin_unlock_irq(&conf
->device_lock
);
1983 spin_unlock(&sh
->lock
);
1987 static void end_reshape(raid5_conf_t
*conf
);
1989 static int page_is_zero(struct page
*p
)
1991 char *a
= page_address(p
);
1992 return ((*(u32
*)a
) == 0 &&
1993 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1996 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
1997 struct stripe_head
*sh
)
1999 int sectors_per_chunk
= conf
->chunk_size
>> 9;
2001 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2002 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2004 raid5_compute_sector(conf
,
2005 stripe
* (disks
- conf
->max_degraded
)
2006 *sectors_per_chunk
+ chunk_offset
,
2012 handle_failed_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2013 struct stripe_head_state
*s
, int disks
,
2014 struct bio
**return_bi
)
2017 for (i
= disks
; i
--; ) {
2021 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2024 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2025 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2026 /* multiple read failures in one stripe */
2027 md_error(conf
->mddev
, rdev
);
2030 spin_lock_irq(&conf
->device_lock
);
2031 /* fail all writes first */
2032 bi
= sh
->dev
[i
].towrite
;
2033 sh
->dev
[i
].towrite
= NULL
;
2039 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2040 wake_up(&conf
->wait_for_overlap
);
2042 while (bi
&& bi
->bi_sector
<
2043 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2044 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2045 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2046 if (!raid5_dec_bi_phys_segments(bi
)) {
2047 md_write_end(conf
->mddev
);
2048 bi
->bi_next
= *return_bi
;
2053 /* and fail all 'written' */
2054 bi
= sh
->dev
[i
].written
;
2055 sh
->dev
[i
].written
= NULL
;
2056 if (bi
) bitmap_end
= 1;
2057 while (bi
&& bi
->bi_sector
<
2058 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2059 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2060 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2061 if (!raid5_dec_bi_phys_segments(bi
)) {
2062 md_write_end(conf
->mddev
);
2063 bi
->bi_next
= *return_bi
;
2069 /* fail any reads if this device is non-operational and
2070 * the data has not reached the cache yet.
2072 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2073 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2074 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2075 bi
= sh
->dev
[i
].toread
;
2076 sh
->dev
[i
].toread
= NULL
;
2077 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2078 wake_up(&conf
->wait_for_overlap
);
2079 if (bi
) s
->to_read
--;
2080 while (bi
&& bi
->bi_sector
<
2081 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2082 struct bio
*nextbi
=
2083 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2084 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2085 if (!raid5_dec_bi_phys_segments(bi
)) {
2086 bi
->bi_next
= *return_bi
;
2092 spin_unlock_irq(&conf
->device_lock
);
2094 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2095 STRIPE_SECTORS
, 0, 0);
2098 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2099 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2100 md_wakeup_thread(conf
->mddev
->thread
);
2103 /* fetch_block5 - checks the given member device to see if its data needs
2104 * to be read or computed to satisfy a request.
2106 * Returns 1 when no more member devices need to be checked, otherwise returns
2107 * 0 to tell the loop in handle_stripe_fill5 to continue
2109 static int fetch_block5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2110 int disk_idx
, int disks
)
2112 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2113 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
2115 /* is the data in this block needed, and can we get it? */
2116 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2117 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2119 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2120 s
->syncing
|| s
->expanding
||
2122 (failed_dev
->toread
||
2123 (failed_dev
->towrite
&&
2124 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)))))) {
2125 /* We would like to get this block, possibly by computing it,
2126 * otherwise read it if the backing disk is insync
2128 if ((s
->uptodate
== disks
- 1) &&
2129 (s
->failed
&& disk_idx
== s
->failed_num
)) {
2130 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2131 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2132 set_bit(R5_Wantcompute
, &dev
->flags
);
2133 sh
->ops
.target
= disk_idx
;
2135 /* Careful: from this point on 'uptodate' is in the eye
2136 * of raid5_run_ops which services 'compute' operations
2137 * before writes. R5_Wantcompute flags a block that will
2138 * be R5_UPTODATE by the time it is needed for a
2139 * subsequent operation.
2142 return 1; /* uptodate + compute == disks */
2143 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2144 set_bit(R5_LOCKED
, &dev
->flags
);
2145 set_bit(R5_Wantread
, &dev
->flags
);
2147 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2156 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2158 static void handle_stripe_fill5(struct stripe_head
*sh
,
2159 struct stripe_head_state
*s
, int disks
)
2163 /* look for blocks to read/compute, skip this if a compute
2164 * is already in flight, or if the stripe contents are in the
2165 * midst of changing due to a write
2167 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2168 !sh
->reconstruct_state
)
2169 for (i
= disks
; i
--; )
2170 if (fetch_block5(sh
, s
, i
, disks
))
2172 set_bit(STRIPE_HANDLE
, &sh
->state
);
2175 static void handle_stripe_fill6(struct stripe_head
*sh
,
2176 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2180 for (i
= disks
; i
--; ) {
2181 struct r5dev
*dev
= &sh
->dev
[i
];
2182 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2183 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2184 (dev
->toread
|| (dev
->towrite
&&
2185 !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2186 s
->syncing
|| s
->expanding
||
2188 (sh
->dev
[r6s
->failed_num
[0]].toread
||
2191 (sh
->dev
[r6s
->failed_num
[1]].toread
||
2193 /* we would like to get this block, possibly
2194 * by computing it, but we might not be able to
2196 if ((s
->uptodate
== disks
- 1) &&
2197 (s
->failed
&& (i
== r6s
->failed_num
[0] ||
2198 i
== r6s
->failed_num
[1]))) {
2199 pr_debug("Computing stripe %llu block %d\n",
2200 (unsigned long long)sh
->sector
, i
);
2201 compute_block_1(sh
, i
, 0);
2203 } else if ( s
->uptodate
== disks
-2 && s
->failed
>= 2 ) {
2204 /* Computing 2-failure is *very* expensive; only
2205 * do it if failed >= 2
2208 for (other
= disks
; other
--; ) {
2211 if (!test_bit(R5_UPTODATE
,
2212 &sh
->dev
[other
].flags
))
2216 pr_debug("Computing stripe %llu blocks %d,%d\n",
2217 (unsigned long long)sh
->sector
,
2219 compute_block_2(sh
, i
, other
);
2221 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2222 set_bit(R5_LOCKED
, &dev
->flags
);
2223 set_bit(R5_Wantread
, &dev
->flags
);
2225 pr_debug("Reading block %d (sync=%d)\n",
2230 set_bit(STRIPE_HANDLE
, &sh
->state
);
2234 /* handle_stripe_clean_event
2235 * any written block on an uptodate or failed drive can be returned.
2236 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2237 * never LOCKED, so we don't need to test 'failed' directly.
2239 static void handle_stripe_clean_event(raid5_conf_t
*conf
,
2240 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2245 for (i
= disks
; i
--; )
2246 if (sh
->dev
[i
].written
) {
2248 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2249 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2250 /* We can return any write requests */
2251 struct bio
*wbi
, *wbi2
;
2253 pr_debug("Return write for disc %d\n", i
);
2254 spin_lock_irq(&conf
->device_lock
);
2256 dev
->written
= NULL
;
2257 while (wbi
&& wbi
->bi_sector
<
2258 dev
->sector
+ STRIPE_SECTORS
) {
2259 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2260 if (!raid5_dec_bi_phys_segments(wbi
)) {
2261 md_write_end(conf
->mddev
);
2262 wbi
->bi_next
= *return_bi
;
2267 if (dev
->towrite
== NULL
)
2269 spin_unlock_irq(&conf
->device_lock
);
2271 bitmap_endwrite(conf
->mddev
->bitmap
,
2274 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2279 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2280 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2281 md_wakeup_thread(conf
->mddev
->thread
);
2284 static void handle_stripe_dirtying5(raid5_conf_t
*conf
,
2285 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2287 int rmw
= 0, rcw
= 0, i
;
2288 for (i
= disks
; i
--; ) {
2289 /* would I have to read this buffer for read_modify_write */
2290 struct r5dev
*dev
= &sh
->dev
[i
];
2291 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2292 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2293 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2294 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2295 if (test_bit(R5_Insync
, &dev
->flags
))
2298 rmw
+= 2*disks
; /* cannot read it */
2300 /* Would I have to read this buffer for reconstruct_write */
2301 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2302 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2303 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2304 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2305 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2310 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2311 (unsigned long long)sh
->sector
, rmw
, rcw
);
2312 set_bit(STRIPE_HANDLE
, &sh
->state
);
2313 if (rmw
< rcw
&& rmw
> 0)
2314 /* prefer read-modify-write, but need to get some data */
2315 for (i
= disks
; i
--; ) {
2316 struct r5dev
*dev
= &sh
->dev
[i
];
2317 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2318 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2319 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2320 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2321 test_bit(R5_Insync
, &dev
->flags
)) {
2323 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2324 pr_debug("Read_old block "
2325 "%d for r-m-w\n", i
);
2326 set_bit(R5_LOCKED
, &dev
->flags
);
2327 set_bit(R5_Wantread
, &dev
->flags
);
2330 set_bit(STRIPE_DELAYED
, &sh
->state
);
2331 set_bit(STRIPE_HANDLE
, &sh
->state
);
2335 if (rcw
<= rmw
&& rcw
> 0)
2336 /* want reconstruct write, but need to get some data */
2337 for (i
= disks
; i
--; ) {
2338 struct r5dev
*dev
= &sh
->dev
[i
];
2339 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2341 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2342 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2343 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2344 test_bit(R5_Insync
, &dev
->flags
)) {
2346 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2347 pr_debug("Read_old block "
2348 "%d for Reconstruct\n", i
);
2349 set_bit(R5_LOCKED
, &dev
->flags
);
2350 set_bit(R5_Wantread
, &dev
->flags
);
2353 set_bit(STRIPE_DELAYED
, &sh
->state
);
2354 set_bit(STRIPE_HANDLE
, &sh
->state
);
2358 /* now if nothing is locked, and if we have enough data,
2359 * we can start a write request
2361 /* since handle_stripe can be called at any time we need to handle the
2362 * case where a compute block operation has been submitted and then a
2363 * subsequent call wants to start a write request. raid5_run_ops only
2364 * handles the case where compute block and postxor are requested
2365 * simultaneously. If this is not the case then new writes need to be
2366 * held off until the compute completes.
2368 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2369 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2370 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2371 schedule_reconstruction5(sh
, s
, rcw
== 0, 0);
2374 static void handle_stripe_dirtying6(raid5_conf_t
*conf
,
2375 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2376 struct r6_state
*r6s
, int disks
)
2378 int rcw
= 0, must_compute
= 0, pd_idx
= sh
->pd_idx
, i
;
2379 int qd_idx
= r6s
->qd_idx
;
2380 for (i
= disks
; i
--; ) {
2381 struct r5dev
*dev
= &sh
->dev
[i
];
2382 /* Would I have to read this buffer for reconstruct_write */
2383 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2384 && i
!= pd_idx
&& i
!= qd_idx
2385 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2387 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2388 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2390 pr_debug("raid6: must_compute: "
2391 "disk %d flags=%#lx\n", i
, dev
->flags
);
2396 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2397 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2398 set_bit(STRIPE_HANDLE
, &sh
->state
);
2401 /* want reconstruct write, but need to get some data */
2402 for (i
= disks
; i
--; ) {
2403 struct r5dev
*dev
= &sh
->dev
[i
];
2404 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2405 && !(s
->failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2406 && !test_bit(R5_LOCKED
, &dev
->flags
) &&
2407 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2408 test_bit(R5_Insync
, &dev
->flags
)) {
2410 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2411 pr_debug("Read_old stripe %llu "
2412 "block %d for Reconstruct\n",
2413 (unsigned long long)sh
->sector
, i
);
2414 set_bit(R5_LOCKED
, &dev
->flags
);
2415 set_bit(R5_Wantread
, &dev
->flags
);
2418 pr_debug("Request delayed stripe %llu "
2419 "block %d for Reconstruct\n",
2420 (unsigned long long)sh
->sector
, i
);
2421 set_bit(STRIPE_DELAYED
, &sh
->state
);
2422 set_bit(STRIPE_HANDLE
, &sh
->state
);
2426 /* now if nothing is locked, and if we have enough data, we can start a
2429 if (s
->locked
== 0 && rcw
== 0 &&
2430 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2431 if (must_compute
> 0) {
2432 /* We have failed blocks and need to compute them */
2433 switch (s
->failed
) {
2437 compute_block_1(sh
, r6s
->failed_num
[0], 0);
2440 compute_block_2(sh
, r6s
->failed_num
[0],
2441 r6s
->failed_num
[1]);
2443 default: /* This request should have been failed? */
2448 pr_debug("Computing parity for stripe %llu\n",
2449 (unsigned long long)sh
->sector
);
2450 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2451 /* now every locked buffer is ready to be written */
2452 for (i
= disks
; i
--; )
2453 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2454 pr_debug("Writing stripe %llu block %d\n",
2455 (unsigned long long)sh
->sector
, i
);
2457 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2459 if (s
->locked
== disks
)
2460 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2461 atomic_inc(&conf
->pending_full_writes
);
2462 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2463 set_bit(STRIPE_INSYNC
, &sh
->state
);
2465 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2466 atomic_dec(&conf
->preread_active_stripes
);
2467 if (atomic_read(&conf
->preread_active_stripes
) <
2469 md_wakeup_thread(conf
->mddev
->thread
);
2474 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2475 struct stripe_head_state
*s
, int disks
)
2477 struct r5dev
*dev
= NULL
;
2479 set_bit(STRIPE_HANDLE
, &sh
->state
);
2481 switch (sh
->check_state
) {
2482 case check_state_idle
:
2483 /* start a new check operation if there are no failures */
2484 if (s
->failed
== 0) {
2485 BUG_ON(s
->uptodate
!= disks
);
2486 sh
->check_state
= check_state_run
;
2487 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2488 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2492 dev
= &sh
->dev
[s
->failed_num
];
2494 case check_state_compute_result
:
2495 sh
->check_state
= check_state_idle
;
2497 dev
= &sh
->dev
[sh
->pd_idx
];
2499 /* check that a write has not made the stripe insync */
2500 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2503 /* either failed parity check, or recovery is happening */
2504 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2505 BUG_ON(s
->uptodate
!= disks
);
2507 set_bit(R5_LOCKED
, &dev
->flags
);
2509 set_bit(R5_Wantwrite
, &dev
->flags
);
2511 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2512 set_bit(STRIPE_INSYNC
, &sh
->state
);
2514 case check_state_run
:
2515 break; /* we will be called again upon completion */
2516 case check_state_check_result
:
2517 sh
->check_state
= check_state_idle
;
2519 /* if a failure occurred during the check operation, leave
2520 * STRIPE_INSYNC not set and let the stripe be handled again
2525 /* handle a successful check operation, if parity is correct
2526 * we are done. Otherwise update the mismatch count and repair
2527 * parity if !MD_RECOVERY_CHECK
2529 if (sh
->ops
.zero_sum_result
== 0)
2530 /* parity is correct (on disc,
2531 * not in buffer any more)
2533 set_bit(STRIPE_INSYNC
, &sh
->state
);
2535 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2536 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2537 /* don't try to repair!! */
2538 set_bit(STRIPE_INSYNC
, &sh
->state
);
2540 sh
->check_state
= check_state_compute_run
;
2541 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2542 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2543 set_bit(R5_Wantcompute
,
2544 &sh
->dev
[sh
->pd_idx
].flags
);
2545 sh
->ops
.target
= sh
->pd_idx
;
2550 case check_state_compute_run
:
2553 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2554 __func__
, sh
->check_state
,
2555 (unsigned long long) sh
->sector
);
2561 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2562 struct stripe_head_state
*s
,
2563 struct r6_state
*r6s
, struct page
*tmp_page
,
2566 int update_p
= 0, update_q
= 0;
2568 int pd_idx
= sh
->pd_idx
;
2569 int qd_idx
= r6s
->qd_idx
;
2571 set_bit(STRIPE_HANDLE
, &sh
->state
);
2573 BUG_ON(s
->failed
> 2);
2574 BUG_ON(s
->uptodate
< disks
);
2575 /* Want to check and possibly repair P and Q.
2576 * However there could be one 'failed' device, in which
2577 * case we can only check one of them, possibly using the
2578 * other to generate missing data
2581 /* If !tmp_page, we cannot do the calculations,
2582 * but as we have set STRIPE_HANDLE, we will soon be called
2583 * by stripe_handle with a tmp_page - just wait until then.
2586 if (s
->failed
== r6s
->q_failed
) {
2587 /* The only possible failed device holds 'Q', so it
2588 * makes sense to check P (If anything else were failed,
2589 * we would have used P to recreate it).
2591 compute_block_1(sh
, pd_idx
, 1);
2592 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2593 compute_block_1(sh
, pd_idx
, 0);
2597 if (!r6s
->q_failed
&& s
->failed
< 2) {
2598 /* q is not failed, and we didn't use it to generate
2599 * anything, so it makes sense to check it
2601 memcpy(page_address(tmp_page
),
2602 page_address(sh
->dev
[qd_idx
].page
),
2604 compute_parity6(sh
, UPDATE_PARITY
);
2605 if (memcmp(page_address(tmp_page
),
2606 page_address(sh
->dev
[qd_idx
].page
),
2607 STRIPE_SIZE
) != 0) {
2608 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2612 if (update_p
|| update_q
) {
2613 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2614 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2615 /* don't try to repair!! */
2616 update_p
= update_q
= 0;
2619 /* now write out any block on a failed drive,
2620 * or P or Q if they need it
2623 if (s
->failed
== 2) {
2624 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2626 set_bit(R5_LOCKED
, &dev
->flags
);
2627 set_bit(R5_Wantwrite
, &dev
->flags
);
2629 if (s
->failed
>= 1) {
2630 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2632 set_bit(R5_LOCKED
, &dev
->flags
);
2633 set_bit(R5_Wantwrite
, &dev
->flags
);
2637 dev
= &sh
->dev
[pd_idx
];
2639 set_bit(R5_LOCKED
, &dev
->flags
);
2640 set_bit(R5_Wantwrite
, &dev
->flags
);
2643 dev
= &sh
->dev
[qd_idx
];
2645 set_bit(R5_LOCKED
, &dev
->flags
);
2646 set_bit(R5_Wantwrite
, &dev
->flags
);
2648 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2650 set_bit(STRIPE_INSYNC
, &sh
->state
);
2654 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2655 struct r6_state
*r6s
)
2659 /* We have read all the blocks in this stripe and now we need to
2660 * copy some of them into a target stripe for expand.
2662 struct dma_async_tx_descriptor
*tx
= NULL
;
2663 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2664 for (i
= 0; i
< sh
->disks
; i
++)
2665 if (i
!= sh
->pd_idx
&& (!r6s
|| i
!= r6s
->qd_idx
)) {
2667 struct stripe_head
*sh2
;
2669 sector_t bn
= compute_blocknr(sh
, i
);
2670 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
2672 sh2
= get_active_stripe(conf
, s
, 0, 1);
2674 /* so far only the early blocks of this stripe
2675 * have been requested. When later blocks
2676 * get requested, we will try again
2679 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2680 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2681 /* must have already done this block */
2682 release_stripe(sh2
);
2686 /* place all the copies on one channel */
2687 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2688 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2689 ASYNC_TX_DEP_ACK
, tx
, NULL
, NULL
);
2691 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2692 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2693 for (j
= 0; j
< conf
->raid_disks
; j
++)
2694 if (j
!= sh2
->pd_idx
&&
2695 (!r6s
|| j
!= sh2
->qd_idx
) &&
2696 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2698 if (j
== conf
->raid_disks
) {
2699 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2700 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2702 release_stripe(sh2
);
2705 /* done submitting copies, wait for them to complete */
2708 dma_wait_for_async_tx(tx
);
2714 * handle_stripe - do things to a stripe.
2716 * We lock the stripe and then examine the state of various bits
2717 * to see what needs to be done.
2719 * return some read request which now have data
2720 * return some write requests which are safely on disc
2721 * schedule a read on some buffers
2722 * schedule a write of some buffers
2723 * return confirmation of parity correctness
2725 * buffers are taken off read_list or write_list, and bh_cache buffers
2726 * get BH_Lock set before the stripe lock is released.
2730 static bool handle_stripe5(struct stripe_head
*sh
)
2732 raid5_conf_t
*conf
= sh
->raid_conf
;
2733 int disks
= sh
->disks
, i
;
2734 struct bio
*return_bi
= NULL
;
2735 struct stripe_head_state s
;
2737 mdk_rdev_t
*blocked_rdev
= NULL
;
2740 memset(&s
, 0, sizeof(s
));
2741 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2742 "reconstruct:%d\n", (unsigned long long)sh
->sector
, sh
->state
,
2743 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->check_state
,
2744 sh
->reconstruct_state
);
2746 spin_lock(&sh
->lock
);
2747 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2748 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2750 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2751 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2752 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2754 /* Now to look around and see what can be done */
2756 for (i
=disks
; i
--; ) {
2758 struct r5dev
*dev
= &sh
->dev
[i
];
2759 clear_bit(R5_Insync
, &dev
->flags
);
2761 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2762 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2763 dev
->towrite
, dev
->written
);
2765 /* maybe we can request a biofill operation
2767 * new wantfill requests are only permitted while
2768 * ops_complete_biofill is guaranteed to be inactive
2770 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2771 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
2772 set_bit(R5_Wantfill
, &dev
->flags
);
2774 /* now count some things */
2775 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2776 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2777 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2779 if (test_bit(R5_Wantfill
, &dev
->flags
))
2781 else if (dev
->toread
)
2785 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2790 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2791 if (blocked_rdev
== NULL
&&
2792 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
2793 blocked_rdev
= rdev
;
2794 atomic_inc(&rdev
->nr_pending
);
2796 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2797 /* The ReadError flag will just be confusing now */
2798 clear_bit(R5_ReadError
, &dev
->flags
);
2799 clear_bit(R5_ReWrite
, &dev
->flags
);
2801 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2802 || test_bit(R5_ReadError
, &dev
->flags
)) {
2806 set_bit(R5_Insync
, &dev
->flags
);
2810 if (unlikely(blocked_rdev
)) {
2811 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
2812 s
.to_write
|| s
.written
) {
2813 set_bit(STRIPE_HANDLE
, &sh
->state
);
2816 /* There is nothing for the blocked_rdev to block */
2817 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
2818 blocked_rdev
= NULL
;
2821 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
2822 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
2823 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
2826 pr_debug("locked=%d uptodate=%d to_read=%d"
2827 " to_write=%d failed=%d failed_num=%d\n",
2828 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
2829 s
.failed
, s
.failed_num
);
2830 /* check if the array has lost two devices and, if so, some requests might
2833 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
2834 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
2835 if (s
.failed
> 1 && s
.syncing
) {
2836 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2837 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2841 /* might be able to return some write requests if the parity block
2842 * is safe, or on a failed drive
2844 dev
= &sh
->dev
[sh
->pd_idx
];
2846 ((test_bit(R5_Insync
, &dev
->flags
) &&
2847 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2848 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
2849 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
2850 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
2852 /* Now we might consider reading some blocks, either to check/generate
2853 * parity, or to satisfy requests
2854 * or to load a block that is being partially written.
2856 if (s
.to_read
|| s
.non_overwrite
||
2857 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
2858 handle_stripe_fill5(sh
, &s
, disks
);
2860 /* Now we check to see if any write operations have recently
2864 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
2866 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
2867 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
2868 sh
->reconstruct_state
= reconstruct_state_idle
;
2870 /* All the 'written' buffers and the parity block are ready to
2871 * be written back to disk
2873 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
2874 for (i
= disks
; i
--; ) {
2876 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
2877 (i
== sh
->pd_idx
|| dev
->written
)) {
2878 pr_debug("Writing block %d\n", i
);
2879 set_bit(R5_Wantwrite
, &dev
->flags
);
2882 if (!test_bit(R5_Insync
, &dev
->flags
) ||
2883 (i
== sh
->pd_idx
&& s
.failed
== 0))
2884 set_bit(STRIPE_INSYNC
, &sh
->state
);
2887 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2888 atomic_dec(&conf
->preread_active_stripes
);
2889 if (atomic_read(&conf
->preread_active_stripes
) <
2891 md_wakeup_thread(conf
->mddev
->thread
);
2895 /* Now to consider new write requests and what else, if anything
2896 * should be read. We do not handle new writes when:
2897 * 1/ A 'write' operation (copy+xor) is already in flight.
2898 * 2/ A 'check' operation is in flight, as it may clobber the parity
2901 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
2902 handle_stripe_dirtying5(conf
, sh
, &s
, disks
);
2904 /* maybe we need to check and possibly fix the parity for this stripe
2905 * Any reads will already have been scheduled, so we just see if enough
2906 * data is available. The parity check is held off while parity
2907 * dependent operations are in flight.
2909 if (sh
->check_state
||
2910 (s
.syncing
&& s
.locked
== 0 &&
2911 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
2912 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
2913 handle_parity_checks5(conf
, sh
, &s
, disks
);
2915 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2916 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2917 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2920 /* If the failed drive is just a ReadError, then we might need to progress
2921 * the repair/check process
2923 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
2924 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
2925 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
2926 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
2928 dev
= &sh
->dev
[s
.failed_num
];
2929 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2930 set_bit(R5_Wantwrite
, &dev
->flags
);
2931 set_bit(R5_ReWrite
, &dev
->flags
);
2932 set_bit(R5_LOCKED
, &dev
->flags
);
2935 /* let's read it back */
2936 set_bit(R5_Wantread
, &dev
->flags
);
2937 set_bit(R5_LOCKED
, &dev
->flags
);
2942 /* Finish reconstruct operations initiated by the expansion process */
2943 if (sh
->reconstruct_state
== reconstruct_state_result
) {
2944 sh
->reconstruct_state
= reconstruct_state_idle
;
2945 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
2946 for (i
= conf
->raid_disks
; i
--; ) {
2947 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2948 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2953 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
2954 !sh
->reconstruct_state
) {
2955 /* Need to write out all blocks after computing parity */
2956 sh
->disks
= conf
->raid_disks
;
2957 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
2958 schedule_reconstruction5(sh
, &s
, 1, 1);
2959 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
2960 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2961 atomic_dec(&conf
->reshape_stripes
);
2962 wake_up(&conf
->wait_for_overlap
);
2963 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
2966 if (s
.expanding
&& s
.locked
== 0 &&
2967 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
2968 handle_stripe_expansion(conf
, sh
, NULL
);
2971 spin_unlock(&sh
->lock
);
2973 /* wait for this device to become unblocked */
2974 if (unlikely(blocked_rdev
))
2975 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
2978 raid5_run_ops(sh
, s
.ops_request
);
2982 return_io(return_bi
);
2984 return blocked_rdev
== NULL
;
2987 static bool handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
2989 raid5_conf_t
*conf
= sh
->raid_conf
;
2990 int disks
= sh
->disks
;
2991 struct bio
*return_bi
= NULL
;
2992 int i
, pd_idx
= sh
->pd_idx
;
2993 struct stripe_head_state s
;
2994 struct r6_state r6s
;
2995 struct r5dev
*dev
, *pdev
, *qdev
;
2996 mdk_rdev_t
*blocked_rdev
= NULL
;
2998 r6s
.qd_idx
= sh
->qd_idx
;
2999 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3000 "pd_idx=%d, qd_idx=%d\n",
3001 (unsigned long long)sh
->sector
, sh
->state
,
3002 atomic_read(&sh
->count
), pd_idx
, r6s
.qd_idx
);
3003 memset(&s
, 0, sizeof(s
));
3005 spin_lock(&sh
->lock
);
3006 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3007 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3009 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
3010 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3011 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3012 /* Now to look around and see what can be done */
3015 for (i
=disks
; i
--; ) {
3018 clear_bit(R5_Insync
, &dev
->flags
);
3020 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3021 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3022 /* maybe we can reply to a read */
3023 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
3024 struct bio
*rbi
, *rbi2
;
3025 pr_debug("Return read for disc %d\n", i
);
3026 spin_lock_irq(&conf
->device_lock
);
3029 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
3030 wake_up(&conf
->wait_for_overlap
);
3031 spin_unlock_irq(&conf
->device_lock
);
3032 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
3033 copy_data(0, rbi
, dev
->page
, dev
->sector
);
3034 rbi2
= r5_next_bio(rbi
, dev
->sector
);
3035 spin_lock_irq(&conf
->device_lock
);
3036 if (!raid5_dec_bi_phys_segments(rbi
)) {
3037 rbi
->bi_next
= return_bi
;
3040 spin_unlock_irq(&conf
->device_lock
);
3045 /* now count some things */
3046 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
3047 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
3054 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3059 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3060 if (blocked_rdev
== NULL
&&
3061 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3062 blocked_rdev
= rdev
;
3063 atomic_inc(&rdev
->nr_pending
);
3065 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
3066 /* The ReadError flag will just be confusing now */
3067 clear_bit(R5_ReadError
, &dev
->flags
);
3068 clear_bit(R5_ReWrite
, &dev
->flags
);
3070 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
3071 || test_bit(R5_ReadError
, &dev
->flags
)) {
3073 r6s
.failed_num
[s
.failed
] = i
;
3076 set_bit(R5_Insync
, &dev
->flags
);
3080 if (unlikely(blocked_rdev
)) {
3081 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3082 s
.to_write
|| s
.written
) {
3083 set_bit(STRIPE_HANDLE
, &sh
->state
);
3086 /* There is nothing for the blocked_rdev to block */
3087 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3088 blocked_rdev
= NULL
;
3091 pr_debug("locked=%d uptodate=%d to_read=%d"
3092 " to_write=%d failed=%d failed_num=%d,%d\n",
3093 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3094 r6s
.failed_num
[0], r6s
.failed_num
[1]);
3095 /* check if the array has lost >2 devices and, if so, some requests
3096 * might need to be failed
3098 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
3099 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3100 if (s
.failed
> 2 && s
.syncing
) {
3101 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3102 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3107 * might be able to return some write requests if the parity blocks
3108 * are safe, or on a failed drive
3110 pdev
= &sh
->dev
[pd_idx
];
3111 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
3112 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
3113 qdev
= &sh
->dev
[r6s
.qd_idx
];
3114 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == r6s
.qd_idx
)
3115 || (s
.failed
>= 2 && r6s
.failed_num
[1] == r6s
.qd_idx
);
3118 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3119 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3120 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3121 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3122 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3123 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3124 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3126 /* Now we might consider reading some blocks, either to check/generate
3127 * parity, or to satisfy requests
3128 * or to load a block that is being partially written.
3130 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3131 (s
.syncing
&& (s
.uptodate
< disks
)) || s
.expanding
)
3132 handle_stripe_fill6(sh
, &s
, &r6s
, disks
);
3134 /* now to consider writing and what else, if anything should be read */
3136 handle_stripe_dirtying6(conf
, sh
, &s
, &r6s
, disks
);
3138 /* maybe we need to check and possibly fix the parity for this stripe
3139 * Any reads will already have been scheduled, so we just see if enough
3142 if (s
.syncing
&& s
.locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
))
3143 handle_parity_checks6(conf
, sh
, &s
, &r6s
, tmp_page
, disks
);
3145 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3146 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3147 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3150 /* If the failed drives are just a ReadError, then we might need
3151 * to progress the repair/check process
3153 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3154 for (i
= 0; i
< s
.failed
; i
++) {
3155 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3156 if (test_bit(R5_ReadError
, &dev
->flags
)
3157 && !test_bit(R5_LOCKED
, &dev
->flags
)
3158 && test_bit(R5_UPTODATE
, &dev
->flags
)
3160 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3161 set_bit(R5_Wantwrite
, &dev
->flags
);
3162 set_bit(R5_ReWrite
, &dev
->flags
);
3163 set_bit(R5_LOCKED
, &dev
->flags
);
3165 /* let's read it back */
3166 set_bit(R5_Wantread
, &dev
->flags
);
3167 set_bit(R5_LOCKED
, &dev
->flags
);
3172 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
3173 /* Need to write out all blocks after computing P&Q */
3174 sh
->disks
= conf
->raid_disks
;
3175 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3176 compute_parity6(sh
, RECONSTRUCT_WRITE
);
3177 for (i
= conf
->raid_disks
; i
-- ; ) {
3178 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3180 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3182 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3183 } else if (s
.expanded
) {
3184 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3185 atomic_dec(&conf
->reshape_stripes
);
3186 wake_up(&conf
->wait_for_overlap
);
3187 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3190 if (s
.expanding
&& s
.locked
== 0 &&
3191 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3192 handle_stripe_expansion(conf
, sh
, &r6s
);
3195 spin_unlock(&sh
->lock
);
3197 /* wait for this device to become unblocked */
3198 if (unlikely(blocked_rdev
))
3199 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3203 return_io(return_bi
);
3205 return blocked_rdev
== NULL
;
3208 /* returns true if the stripe was handled */
3209 static bool handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
3211 if (sh
->raid_conf
->level
== 6)
3212 return handle_stripe6(sh
, tmp_page
);
3214 return handle_stripe5(sh
);
3219 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3221 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3222 while (!list_empty(&conf
->delayed_list
)) {
3223 struct list_head
*l
= conf
->delayed_list
.next
;
3224 struct stripe_head
*sh
;
3225 sh
= list_entry(l
, struct stripe_head
, lru
);
3227 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3228 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3229 atomic_inc(&conf
->preread_active_stripes
);
3230 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3233 blk_plug_device(conf
->mddev
->queue
);
3236 static void activate_bit_delay(raid5_conf_t
*conf
)
3238 /* device_lock is held */
3239 struct list_head head
;
3240 list_add(&head
, &conf
->bitmap_list
);
3241 list_del_init(&conf
->bitmap_list
);
3242 while (!list_empty(&head
)) {
3243 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3244 list_del_init(&sh
->lru
);
3245 atomic_inc(&sh
->count
);
3246 __release_stripe(conf
, sh
);
3250 static void unplug_slaves(mddev_t
*mddev
)
3252 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3256 for (i
=0; i
<mddev
->raid_disks
; i
++) {
3257 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3258 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3259 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3261 atomic_inc(&rdev
->nr_pending
);
3264 blk_unplug(r_queue
);
3266 rdev_dec_pending(rdev
, mddev
);
3273 static void raid5_unplug_device(struct request_queue
*q
)
3275 mddev_t
*mddev
= q
->queuedata
;
3276 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3277 unsigned long flags
;
3279 spin_lock_irqsave(&conf
->device_lock
, flags
);
3281 if (blk_remove_plug(q
)) {
3283 raid5_activate_delayed(conf
);
3285 md_wakeup_thread(mddev
->thread
);
3287 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3289 unplug_slaves(mddev
);
3292 static int raid5_congested(void *data
, int bits
)
3294 mddev_t
*mddev
= data
;
3295 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3297 /* No difference between reads and writes. Just check
3298 * how busy the stripe_cache is
3300 if (conf
->inactive_blocked
)
3304 if (list_empty_careful(&conf
->inactive_list
))
3310 /* We want read requests to align with chunks where possible,
3311 * but write requests don't need to.
3313 static int raid5_mergeable_bvec(struct request_queue
*q
,
3314 struct bvec_merge_data
*bvm
,
3315 struct bio_vec
*biovec
)
3317 mddev_t
*mddev
= q
->queuedata
;
3318 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3320 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3321 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3323 if ((bvm
->bi_rw
& 1) == WRITE
)
3324 return biovec
->bv_len
; /* always allow writes to be mergeable */
3326 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3327 if (max
< 0) max
= 0;
3328 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3329 return biovec
->bv_len
;
3335 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3337 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3338 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3339 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3341 return chunk_sectors
>=
3342 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3346 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3347 * later sampled by raid5d.
3349 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3351 unsigned long flags
;
3353 spin_lock_irqsave(&conf
->device_lock
, flags
);
3355 bi
->bi_next
= conf
->retry_read_aligned_list
;
3356 conf
->retry_read_aligned_list
= bi
;
3358 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3359 md_wakeup_thread(conf
->mddev
->thread
);
3363 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3367 bi
= conf
->retry_read_aligned
;
3369 conf
->retry_read_aligned
= NULL
;
3372 bi
= conf
->retry_read_aligned_list
;
3374 conf
->retry_read_aligned_list
= bi
->bi_next
;
3377 * this sets the active strip count to 1 and the processed
3378 * strip count to zero (upper 8 bits)
3380 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3388 * The "raid5_align_endio" should check if the read succeeded and if it
3389 * did, call bio_endio on the original bio (having bio_put the new bio
3391 * If the read failed..
3393 static void raid5_align_endio(struct bio
*bi
, int error
)
3395 struct bio
* raid_bi
= bi
->bi_private
;
3398 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3403 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3404 conf
= mddev_to_conf(mddev
);
3405 rdev
= (void*)raid_bi
->bi_next
;
3406 raid_bi
->bi_next
= NULL
;
3408 rdev_dec_pending(rdev
, conf
->mddev
);
3410 if (!error
&& uptodate
) {
3411 bio_endio(raid_bi
, 0);
3412 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3413 wake_up(&conf
->wait_for_stripe
);
3418 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3420 add_bio_to_retry(raid_bi
, conf
);
3423 static int bio_fits_rdev(struct bio
*bi
)
3425 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3427 if ((bi
->bi_size
>>9) > q
->max_sectors
)
3429 blk_recount_segments(q
, bi
);
3430 if (bi
->bi_phys_segments
> q
->max_phys_segments
)
3433 if (q
->merge_bvec_fn
)
3434 /* it's too hard to apply the merge_bvec_fn at this stage,
3443 static int chunk_aligned_read(struct request_queue
*q
, struct bio
* raid_bio
)
3445 mddev_t
*mddev
= q
->queuedata
;
3446 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3447 unsigned int dd_idx
;
3448 struct bio
* align_bi
;
3451 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3452 pr_debug("chunk_aligned_read : non aligned\n");
3456 * use bio_clone to make a copy of the bio
3458 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3462 * set bi_end_io to a new function, and set bi_private to the
3465 align_bi
->bi_end_io
= raid5_align_endio
;
3466 align_bi
->bi_private
= raid_bio
;
3470 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3475 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3476 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3477 atomic_inc(&rdev
->nr_pending
);
3479 raid_bio
->bi_next
= (void*)rdev
;
3480 align_bi
->bi_bdev
= rdev
->bdev
;
3481 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3482 align_bi
->bi_sector
+= rdev
->data_offset
;
3484 if (!bio_fits_rdev(align_bi
)) {
3485 /* too big in some way */
3487 rdev_dec_pending(rdev
, mddev
);
3491 spin_lock_irq(&conf
->device_lock
);
3492 wait_event_lock_irq(conf
->wait_for_stripe
,
3494 conf
->device_lock
, /* nothing */);
3495 atomic_inc(&conf
->active_aligned_reads
);
3496 spin_unlock_irq(&conf
->device_lock
);
3498 generic_make_request(align_bi
);
3507 /* __get_priority_stripe - get the next stripe to process
3509 * Full stripe writes are allowed to pass preread active stripes up until
3510 * the bypass_threshold is exceeded. In general the bypass_count
3511 * increments when the handle_list is handled before the hold_list; however, it
3512 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3513 * stripe with in flight i/o. The bypass_count will be reset when the
3514 * head of the hold_list has changed, i.e. the head was promoted to the
3517 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3519 struct stripe_head
*sh
;
3521 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3523 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3524 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3525 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3527 if (!list_empty(&conf
->handle_list
)) {
3528 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3530 if (list_empty(&conf
->hold_list
))
3531 conf
->bypass_count
= 0;
3532 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3533 if (conf
->hold_list
.next
== conf
->last_hold
)
3534 conf
->bypass_count
++;
3536 conf
->last_hold
= conf
->hold_list
.next
;
3537 conf
->bypass_count
-= conf
->bypass_threshold
;
3538 if (conf
->bypass_count
< 0)
3539 conf
->bypass_count
= 0;
3542 } else if (!list_empty(&conf
->hold_list
) &&
3543 ((conf
->bypass_threshold
&&
3544 conf
->bypass_count
> conf
->bypass_threshold
) ||
3545 atomic_read(&conf
->pending_full_writes
) == 0)) {
3546 sh
= list_entry(conf
->hold_list
.next
,
3548 conf
->bypass_count
-= conf
->bypass_threshold
;
3549 if (conf
->bypass_count
< 0)
3550 conf
->bypass_count
= 0;
3554 list_del_init(&sh
->lru
);
3555 atomic_inc(&sh
->count
);
3556 BUG_ON(atomic_read(&sh
->count
) != 1);
3560 static int make_request(struct request_queue
*q
, struct bio
* bi
)
3562 mddev_t
*mddev
= q
->queuedata
;
3563 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3565 sector_t new_sector
;
3566 sector_t logical_sector
, last_sector
;
3567 struct stripe_head
*sh
;
3568 const int rw
= bio_data_dir(bi
);
3571 if (unlikely(bio_barrier(bi
))) {
3572 bio_endio(bi
, -EOPNOTSUPP
);
3576 md_write_start(mddev
, bi
);
3578 cpu
= part_stat_lock();
3579 part_stat_inc(cpu
, &mddev
->gendisk
->part0
, ios
[rw
]);
3580 part_stat_add(cpu
, &mddev
->gendisk
->part0
, sectors
[rw
],
3585 mddev
->reshape_position
== MaxSector
&&
3586 chunk_aligned_read(q
,bi
))
3589 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3590 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3592 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3594 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3596 int disks
, data_disks
;
3601 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3602 if (likely(conf
->expand_progress
== MaxSector
))
3603 disks
= conf
->raid_disks
;
3605 /* spinlock is needed as expand_progress may be
3606 * 64bit on a 32bit platform, and so it might be
3607 * possible to see a half-updated value
3608 * Ofcourse expand_progress could change after
3609 * the lock is dropped, so once we get a reference
3610 * to the stripe that we think it is, we will have
3613 spin_lock_irq(&conf
->device_lock
);
3614 disks
= conf
->raid_disks
;
3615 if (logical_sector
>= conf
->expand_progress
) {
3616 disks
= conf
->previous_raid_disks
;
3619 if (logical_sector
>= conf
->expand_lo
) {
3620 spin_unlock_irq(&conf
->device_lock
);
3625 spin_unlock_irq(&conf
->device_lock
);
3627 data_disks
= disks
- conf
->max_degraded
;
3629 new_sector
= raid5_compute_sector(conf
, logical_sector
,
3632 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3633 (unsigned long long)new_sector
,
3634 (unsigned long long)logical_sector
);
3636 sh
= get_active_stripe(conf
, new_sector
, previous
,
3637 (bi
->bi_rw
&RWA_MASK
));
3639 if (unlikely(conf
->expand_progress
!= MaxSector
)) {
3640 /* expansion might have moved on while waiting for a
3641 * stripe, so we must do the range check again.
3642 * Expansion could still move past after this
3643 * test, but as we are holding a reference to
3644 * 'sh', we know that if that happens,
3645 * STRIPE_EXPANDING will get set and the expansion
3646 * won't proceed until we finish with the stripe.
3649 spin_lock_irq(&conf
->device_lock
);
3650 if (logical_sector
< conf
->expand_progress
&&
3651 disks
== conf
->previous_raid_disks
)
3652 /* mismatch, need to try again */
3654 spin_unlock_irq(&conf
->device_lock
);
3660 /* FIXME what if we get a false positive because these
3661 * are being updated.
3663 if (logical_sector
>= mddev
->suspend_lo
&&
3664 logical_sector
< mddev
->suspend_hi
) {
3670 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3671 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3672 /* Stripe is busy expanding or
3673 * add failed due to overlap. Flush everything
3676 raid5_unplug_device(mddev
->queue
);
3681 finish_wait(&conf
->wait_for_overlap
, &w
);
3682 set_bit(STRIPE_HANDLE
, &sh
->state
);
3683 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3686 /* cannot get stripe for read-ahead, just give-up */
3687 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3688 finish_wait(&conf
->wait_for_overlap
, &w
);
3693 spin_lock_irq(&conf
->device_lock
);
3694 remaining
= raid5_dec_bi_phys_segments(bi
);
3695 spin_unlock_irq(&conf
->device_lock
);
3696 if (remaining
== 0) {
3699 md_write_end(mddev
);
3706 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
3708 /* reshaping is quite different to recovery/resync so it is
3709 * handled quite separately ... here.
3711 * On each call to sync_request, we gather one chunk worth of
3712 * destination stripes and flag them as expanding.
3713 * Then we find all the source stripes and request reads.
3714 * As the reads complete, handle_stripe will copy the data
3715 * into the destination stripe and release that stripe.
3717 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3718 struct stripe_head
*sh
;
3719 sector_t first_sector
, last_sector
;
3720 int raid_disks
= conf
->previous_raid_disks
;
3721 int data_disks
= raid_disks
- conf
->max_degraded
;
3722 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3725 sector_t writepos
, safepos
, gap
;
3727 if (sector_nr
== 0 &&
3728 conf
->expand_progress
!= 0) {
3729 /* restarting in the middle, skip the initial sectors */
3730 sector_nr
= conf
->expand_progress
;
3731 sector_div(sector_nr
, new_data_disks
);
3736 /* we update the metadata when there is more than 3Meg
3737 * in the block range (that is rather arbitrary, should
3738 * probably be time based) or when the data about to be
3739 * copied would over-write the source of the data at
3740 * the front of the range.
3741 * i.e. one new_stripe forward from expand_progress new_maps
3742 * to after where expand_lo old_maps to
3744 writepos
= conf
->expand_progress
+
3745 conf
->chunk_size
/512*(new_data_disks
);
3746 sector_div(writepos
, new_data_disks
);
3747 safepos
= conf
->expand_lo
;
3748 sector_div(safepos
, data_disks
);
3749 gap
= conf
->expand_progress
- conf
->expand_lo
;
3751 if (writepos
>= safepos
||
3752 gap
> (new_data_disks
)*3000*2 /*3Meg*/) {
3753 /* Cannot proceed until we've updated the superblock... */
3754 wait_event(conf
->wait_for_overlap
,
3755 atomic_read(&conf
->reshape_stripes
)==0);
3756 mddev
->reshape_position
= conf
->expand_progress
;
3757 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3758 md_wakeup_thread(mddev
->thread
);
3759 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3760 kthread_should_stop());
3761 spin_lock_irq(&conf
->device_lock
);
3762 conf
->expand_lo
= mddev
->reshape_position
;
3763 spin_unlock_irq(&conf
->device_lock
);
3764 wake_up(&conf
->wait_for_overlap
);
3767 for (i
=0; i
< conf
->chunk_size
/512; i
+= STRIPE_SECTORS
) {
3770 sh
= get_active_stripe(conf
, sector_nr
+i
, 0, 0);
3771 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3772 atomic_inc(&conf
->reshape_stripes
);
3773 /* If any of this stripe is beyond the end of the old
3774 * array, then we need to zero those blocks
3776 for (j
=sh
->disks
; j
--;) {
3778 if (j
== sh
->pd_idx
)
3780 if (conf
->level
== 6 &&
3783 s
= compute_blocknr(sh
, j
);
3784 if (s
< mddev
->array_sectors
) {
3788 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
3789 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
3790 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
3793 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3794 set_bit(STRIPE_HANDLE
, &sh
->state
);
3798 spin_lock_irq(&conf
->device_lock
);
3799 conf
->expand_progress
= (sector_nr
+ i
) * new_data_disks
;
3800 spin_unlock_irq(&conf
->device_lock
);
3801 /* Ok, those stripe are ready. We can start scheduling
3802 * reads on the source stripes.
3803 * The source stripes are determined by mapping the first and last
3804 * block on the destination stripes.
3807 raid5_compute_sector(conf
, sector_nr
*(new_data_disks
),
3810 raid5_compute_sector(conf
, ((sector_nr
+conf
->chunk_size
/512)
3811 *(new_data_disks
) - 1),
3813 if (last_sector
>= mddev
->dev_sectors
)
3814 last_sector
= mddev
->dev_sectors
- 1;
3815 while (first_sector
<= last_sector
) {
3816 sh
= get_active_stripe(conf
, first_sector
, 1, 0);
3817 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3818 set_bit(STRIPE_HANDLE
, &sh
->state
);
3820 first_sector
+= STRIPE_SECTORS
;
3822 /* If this takes us to the resync_max point where we have to pause,
3823 * then we need to write out the superblock.
3825 sector_nr
+= conf
->chunk_size
>>9;
3826 if (sector_nr
>= mddev
->resync_max
) {
3827 /* Cannot proceed until we've updated the superblock... */
3828 wait_event(conf
->wait_for_overlap
,
3829 atomic_read(&conf
->reshape_stripes
) == 0);
3830 mddev
->reshape_position
= conf
->expand_progress
;
3831 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3832 md_wakeup_thread(mddev
->thread
);
3833 wait_event(mddev
->sb_wait
,
3834 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
3835 || kthread_should_stop());
3836 spin_lock_irq(&conf
->device_lock
);
3837 conf
->expand_lo
= mddev
->reshape_position
;
3838 spin_unlock_irq(&conf
->device_lock
);
3839 wake_up(&conf
->wait_for_overlap
);
3841 return conf
->chunk_size
>>9;
3844 /* FIXME go_faster isn't used */
3845 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
3847 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3848 struct stripe_head
*sh
;
3849 sector_t max_sector
= mddev
->dev_sectors
;
3851 int still_degraded
= 0;
3854 if (sector_nr
>= max_sector
) {
3855 /* just being told to finish up .. nothing much to do */
3856 unplug_slaves(mddev
);
3857 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
3862 if (mddev
->curr_resync
< max_sector
) /* aborted */
3863 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3865 else /* completed sync */
3867 bitmap_close_sync(mddev
->bitmap
);
3872 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3873 return reshape_request(mddev
, sector_nr
, skipped
);
3875 /* No need to check resync_max as we never do more than one
3876 * stripe, and as resync_max will always be on a chunk boundary,
3877 * if the check in md_do_sync didn't fire, there is no chance
3878 * of overstepping resync_max here
3881 /* if there is too many failed drives and we are trying
3882 * to resync, then assert that we are finished, because there is
3883 * nothing we can do.
3885 if (mddev
->degraded
>= conf
->max_degraded
&&
3886 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3887 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
3891 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
3892 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
3893 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
3894 /* we can skip this block, and probably more */
3895 sync_blocks
/= STRIPE_SECTORS
;
3897 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
3901 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
3903 sh
= get_active_stripe(conf
, sector_nr
, 0, 1);
3905 sh
= get_active_stripe(conf
, sector_nr
, 0, 0);
3906 /* make sure we don't swamp the stripe cache if someone else
3907 * is trying to get access
3909 schedule_timeout_uninterruptible(1);
3911 /* Need to check if array will still be degraded after recovery/resync
3912 * We don't need to check the 'failed' flag as when that gets set,
3915 for (i
=0; i
<mddev
->raid_disks
; i
++)
3916 if (conf
->disks
[i
].rdev
== NULL
)
3919 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
3921 spin_lock(&sh
->lock
);
3922 set_bit(STRIPE_SYNCING
, &sh
->state
);
3923 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3924 spin_unlock(&sh
->lock
);
3926 /* wait for any blocked device to be handled */
3927 while(unlikely(!handle_stripe(sh
, NULL
)))
3931 return STRIPE_SECTORS
;
3934 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
3936 /* We may not be able to submit a whole bio at once as there
3937 * may not be enough stripe_heads available.
3938 * We cannot pre-allocate enough stripe_heads as we may need
3939 * more than exist in the cache (if we allow ever large chunks).
3940 * So we do one stripe head at a time and record in
3941 * ->bi_hw_segments how many have been done.
3943 * We *know* that this entire raid_bio is in one chunk, so
3944 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3946 struct stripe_head
*sh
;
3948 sector_t sector
, logical_sector
, last_sector
;
3953 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3954 sector
= raid5_compute_sector(conf
, logical_sector
,
3956 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
3958 for (; logical_sector
< last_sector
;
3959 logical_sector
+= STRIPE_SECTORS
,
3960 sector
+= STRIPE_SECTORS
,
3963 if (scnt
< raid5_bi_hw_segments(raid_bio
))
3964 /* already done this stripe */
3967 sh
= get_active_stripe(conf
, sector
, 0, 1);
3970 /* failed to get a stripe - must wait */
3971 raid5_set_bi_hw_segments(raid_bio
, scnt
);
3972 conf
->retry_read_aligned
= raid_bio
;
3976 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
3977 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
3979 raid5_set_bi_hw_segments(raid_bio
, scnt
);
3980 conf
->retry_read_aligned
= raid_bio
;
3984 handle_stripe(sh
, NULL
);
3988 spin_lock_irq(&conf
->device_lock
);
3989 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
3990 spin_unlock_irq(&conf
->device_lock
);
3992 bio_endio(raid_bio
, 0);
3993 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3994 wake_up(&conf
->wait_for_stripe
);
4001 * This is our raid5 kernel thread.
4003 * We scan the hash table for stripes which can be handled now.
4004 * During the scan, completed stripes are saved for us by the interrupt
4005 * handler, so that they will not have to wait for our next wakeup.
4007 static void raid5d(mddev_t
*mddev
)
4009 struct stripe_head
*sh
;
4010 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4013 pr_debug("+++ raid5d active\n");
4015 md_check_recovery(mddev
);
4018 spin_lock_irq(&conf
->device_lock
);
4022 if (conf
->seq_flush
!= conf
->seq_write
) {
4023 int seq
= conf
->seq_flush
;
4024 spin_unlock_irq(&conf
->device_lock
);
4025 bitmap_unplug(mddev
->bitmap
);
4026 spin_lock_irq(&conf
->device_lock
);
4027 conf
->seq_write
= seq
;
4028 activate_bit_delay(conf
);
4031 while ((bio
= remove_bio_from_retry(conf
))) {
4033 spin_unlock_irq(&conf
->device_lock
);
4034 ok
= retry_aligned_read(conf
, bio
);
4035 spin_lock_irq(&conf
->device_lock
);
4041 sh
= __get_priority_stripe(conf
);
4045 spin_unlock_irq(&conf
->device_lock
);
4048 handle_stripe(sh
, conf
->spare_page
);
4051 spin_lock_irq(&conf
->device_lock
);
4053 pr_debug("%d stripes handled\n", handled
);
4055 spin_unlock_irq(&conf
->device_lock
);
4057 async_tx_issue_pending_all();
4058 unplug_slaves(mddev
);
4060 pr_debug("--- raid5d inactive\n");
4064 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
4066 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4068 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4074 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
4076 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4080 if (len
>= PAGE_SIZE
)
4085 if (strict_strtoul(page
, 10, &new))
4087 if (new <= 16 || new > 32768)
4089 while (new < conf
->max_nr_stripes
) {
4090 if (drop_one_stripe(conf
))
4091 conf
->max_nr_stripes
--;
4095 err
= md_allow_write(mddev
);
4098 while (new > conf
->max_nr_stripes
) {
4099 if (grow_one_stripe(conf
))
4100 conf
->max_nr_stripes
++;
4106 static struct md_sysfs_entry
4107 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4108 raid5_show_stripe_cache_size
,
4109 raid5_store_stripe_cache_size
);
4112 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
4114 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4116 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4122 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
4124 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4126 if (len
>= PAGE_SIZE
)
4131 if (strict_strtoul(page
, 10, &new))
4133 if (new > conf
->max_nr_stripes
)
4135 conf
->bypass_threshold
= new;
4139 static struct md_sysfs_entry
4140 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4142 raid5_show_preread_threshold
,
4143 raid5_store_preread_threshold
);
4146 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4148 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4150 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4155 static struct md_sysfs_entry
4156 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4158 static struct attribute
*raid5_attrs
[] = {
4159 &raid5_stripecache_size
.attr
,
4160 &raid5_stripecache_active
.attr
,
4161 &raid5_preread_bypass_threshold
.attr
,
4164 static struct attribute_group raid5_attrs_group
= {
4166 .attrs
= raid5_attrs
,
4169 static raid5_conf_t
*setup_conf(mddev_t
*mddev
)
4172 int raid_disk
, memory
;
4174 struct disk_info
*disk
;
4176 if (mddev
->new_level
!= 5
4177 && mddev
->new_level
!= 4
4178 && mddev
->new_level
!= 6) {
4179 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
4180 mdname(mddev
), mddev
->new_level
);
4181 return ERR_PTR(-EIO
);
4183 if ((mddev
->new_level
== 5
4184 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4185 (mddev
->new_level
== 6
4186 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4187 printk(KERN_ERR
"raid5: %s: layout %d not supported\n",
4188 mdname(mddev
), mddev
->new_layout
);
4189 return ERR_PTR(-EIO
);
4191 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4192 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4193 mdname(mddev
), mddev
->raid_disks
);
4194 return ERR_PTR(-EINVAL
);
4197 if (!mddev
->new_chunk
|| mddev
->new_chunk
% PAGE_SIZE
) {
4198 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4199 mddev
->new_chunk
, mdname(mddev
));
4200 return ERR_PTR(-EINVAL
);
4203 conf
= kzalloc(sizeof(raid5_conf_t
), GFP_KERNEL
);
4207 conf
->raid_disks
= mddev
->raid_disks
;
4208 if (mddev
->reshape_position
== MaxSector
)
4209 conf
->previous_raid_disks
= mddev
->raid_disks
;
4211 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4213 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
4218 conf
->mddev
= mddev
;
4220 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4223 if (mddev
->new_level
== 6) {
4224 conf
->spare_page
= alloc_page(GFP_KERNEL
);
4225 if (!conf
->spare_page
)
4228 spin_lock_init(&conf
->device_lock
);
4229 init_waitqueue_head(&conf
->wait_for_stripe
);
4230 init_waitqueue_head(&conf
->wait_for_overlap
);
4231 INIT_LIST_HEAD(&conf
->handle_list
);
4232 INIT_LIST_HEAD(&conf
->hold_list
);
4233 INIT_LIST_HEAD(&conf
->delayed_list
);
4234 INIT_LIST_HEAD(&conf
->bitmap_list
);
4235 INIT_LIST_HEAD(&conf
->inactive_list
);
4236 atomic_set(&conf
->active_stripes
, 0);
4237 atomic_set(&conf
->preread_active_stripes
, 0);
4238 atomic_set(&conf
->active_aligned_reads
, 0);
4239 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4241 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4243 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4244 raid_disk
= rdev
->raid_disk
;
4245 if (raid_disk
>= conf
->raid_disks
4248 disk
= conf
->disks
+ raid_disk
;
4252 if (test_bit(In_sync
, &rdev
->flags
)) {
4253 char b
[BDEVNAME_SIZE
];
4254 printk(KERN_INFO
"raid5: device %s operational as raid"
4255 " disk %d\n", bdevname(rdev
->bdev
,b
),
4258 /* Cannot rely on bitmap to complete recovery */
4262 conf
->chunk_size
= mddev
->new_chunk
;
4263 conf
->level
= mddev
->new_level
;
4264 if (conf
->level
== 6)
4265 conf
->max_degraded
= 2;
4267 conf
->max_degraded
= 1;
4268 conf
->algorithm
= mddev
->new_layout
;
4269 conf
->max_nr_stripes
= NR_STRIPES
;
4270 conf
->expand_progress
= mddev
->reshape_position
;
4272 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4273 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4274 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4276 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4279 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4280 memory
, mdname(mddev
));
4282 conf
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
4283 if (!conf
->thread
) {
4285 "raid5: couldn't allocate thread for %s\n",
4294 shrink_stripes(conf
);
4295 safe_put_page(conf
->spare_page
);
4297 kfree(conf
->stripe_hashtbl
);
4299 return ERR_PTR(-EIO
);
4301 return ERR_PTR(-ENOMEM
);
4304 static int run(mddev_t
*mddev
)
4307 int working_disks
= 0;
4310 if (mddev
->reshape_position
!= MaxSector
) {
4311 /* Check that we can continue the reshape.
4312 * Currently only disks can change, it must
4313 * increase, and we must be past the point where
4314 * a stripe over-writes itself
4316 sector_t here_new
, here_old
;
4318 int max_degraded
= (mddev
->level
== 5 ? 1 : 2);
4320 if (mddev
->new_level
!= mddev
->level
||
4321 mddev
->new_layout
!= mddev
->layout
||
4322 mddev
->new_chunk
!= mddev
->chunk_size
) {
4323 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4324 "required - aborting.\n",
4328 if (mddev
->delta_disks
<= 0) {
4329 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4330 "(reduce disks) required - aborting.\n",
4334 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4335 /* reshape_position must be on a new-stripe boundary, and one
4336 * further up in new geometry must map after here in old
4339 here_new
= mddev
->reshape_position
;
4340 if (sector_div(here_new
, (mddev
->chunk_size
>>9)*
4341 (mddev
->raid_disks
- max_degraded
))) {
4342 printk(KERN_ERR
"raid5: reshape_position not "
4343 "on a stripe boundary\n");
4346 /* here_new is the stripe we will write to */
4347 here_old
= mddev
->reshape_position
;
4348 sector_div(here_old
, (mddev
->chunk_size
>>9)*
4349 (old_disks
-max_degraded
));
4350 /* here_old is the first stripe that we might need to read
4352 if (here_new
>= here_old
) {
4353 /* Reading from the same stripe as writing to - bad */
4354 printk(KERN_ERR
"raid5: reshape_position too early for "
4355 "auto-recovery - aborting.\n");
4358 printk(KERN_INFO
"raid5: reshape will continue\n");
4359 /* OK, we should be able to continue; */
4361 BUG_ON(mddev
->level
!= mddev
->new_level
);
4362 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
4363 BUG_ON(mddev
->chunk_size
!= mddev
->new_chunk
);
4364 BUG_ON(mddev
->delta_disks
!= 0);
4367 if (mddev
->private == NULL
)
4368 conf
= setup_conf(mddev
);
4370 conf
= mddev
->private;
4373 return PTR_ERR(conf
);
4375 mddev
->thread
= conf
->thread
;
4376 conf
->thread
= NULL
;
4377 mddev
->private = conf
;
4380 * 0 for a fully functional array, 1 or 2 for a degraded array.
4382 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4383 if (rdev
->raid_disk
>= 0 &&
4384 test_bit(In_sync
, &rdev
->flags
))
4387 mddev
->degraded
= conf
->raid_disks
- working_disks
;
4389 if (mddev
->degraded
> conf
->max_degraded
) {
4390 printk(KERN_ERR
"raid5: not enough operational devices for %s"
4391 " (%d/%d failed)\n",
4392 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4396 /* device size must be a multiple of chunk size */
4397 mddev
->dev_sectors
&= ~(mddev
->chunk_size
/ 512 - 1);
4398 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
4400 if (mddev
->degraded
> 0 &&
4401 mddev
->recovery_cp
!= MaxSector
) {
4402 if (mddev
->ok_start_degraded
)
4404 "raid5: starting dirty degraded array: %s"
4405 "- data corruption possible.\n",
4409 "raid5: cannot start dirty degraded array for %s\n",
4415 if (mddev
->degraded
== 0)
4416 printk("raid5: raid level %d set %s active with %d out of %d"
4417 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
4418 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4421 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
4422 " out of %d devices, algorithm %d\n", conf
->level
,
4423 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
4424 mddev
->raid_disks
, conf
->algorithm
);
4426 print_raid5_conf(conf
);
4428 if (conf
->expand_progress
!= MaxSector
) {
4429 printk("...ok start reshape thread\n");
4430 conf
->expand_lo
= conf
->expand_progress
;
4431 atomic_set(&conf
->reshape_stripes
, 0);
4432 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4433 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4434 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4435 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4436 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4440 /* read-ahead size must cover two whole stripes, which is
4441 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4444 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4445 int stripe
= data_disks
*
4446 (mddev
->chunk_size
/ PAGE_SIZE
);
4447 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4448 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4451 /* Ok, everything is just fine now */
4452 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4454 "raid5: failed to create sysfs attributes for %s\n",
4457 mddev
->queue
->queue_lock
= &conf
->device_lock
;
4459 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
4460 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4461 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4463 mddev
->array_sectors
= mddev
->dev_sectors
*
4464 (conf
->previous_raid_disks
- conf
->max_degraded
);
4466 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4470 md_unregister_thread(mddev
->thread
);
4471 mddev
->thread
= NULL
;
4473 shrink_stripes(conf
);
4474 print_raid5_conf(conf
);
4475 safe_put_page(conf
->spare_page
);
4477 kfree(conf
->stripe_hashtbl
);
4480 mddev
->private = NULL
;
4481 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
4487 static int stop(mddev_t
*mddev
)
4489 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4491 md_unregister_thread(mddev
->thread
);
4492 mddev
->thread
= NULL
;
4493 shrink_stripes(conf
);
4494 kfree(conf
->stripe_hashtbl
);
4495 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4496 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
4497 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
4500 mddev
->private = NULL
;
4505 static void print_sh(struct seq_file
*seq
, struct stripe_head
*sh
)
4509 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
4510 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
4511 seq_printf(seq
, "sh %llu, count %d.\n",
4512 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
4513 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
4514 for (i
= 0; i
< sh
->disks
; i
++) {
4515 seq_printf(seq
, "(cache%d: %p %ld) ",
4516 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
4518 seq_printf(seq
, "\n");
4521 static void printall(struct seq_file
*seq
, raid5_conf_t
*conf
)
4523 struct stripe_head
*sh
;
4524 struct hlist_node
*hn
;
4527 spin_lock_irq(&conf
->device_lock
);
4528 for (i
= 0; i
< NR_HASH
; i
++) {
4529 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
4530 if (sh
->raid_conf
!= conf
)
4535 spin_unlock_irq(&conf
->device_lock
);
4539 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
4541 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4544 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
4545 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
4546 for (i
= 0; i
< conf
->raid_disks
; i
++)
4547 seq_printf (seq
, "%s",
4548 conf
->disks
[i
].rdev
&&
4549 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
4550 seq_printf (seq
, "]");
4552 seq_printf (seq
, "\n");
4553 printall(seq
, conf
);
4557 static void print_raid5_conf (raid5_conf_t
*conf
)
4560 struct disk_info
*tmp
;
4562 printk("RAID5 conf printout:\n");
4564 printk("(conf==NULL)\n");
4567 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
4568 conf
->raid_disks
- conf
->mddev
->degraded
);
4570 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4571 char b
[BDEVNAME_SIZE
];
4572 tmp
= conf
->disks
+ i
;
4574 printk(" disk %d, o:%d, dev:%s\n",
4575 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
4576 bdevname(tmp
->rdev
->bdev
,b
));
4580 static int raid5_spare_active(mddev_t
*mddev
)
4583 raid5_conf_t
*conf
= mddev
->private;
4584 struct disk_info
*tmp
;
4586 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4587 tmp
= conf
->disks
+ i
;
4589 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
4590 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
4591 unsigned long flags
;
4592 spin_lock_irqsave(&conf
->device_lock
, flags
);
4594 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4597 print_raid5_conf(conf
);
4601 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
4603 raid5_conf_t
*conf
= mddev
->private;
4606 struct disk_info
*p
= conf
->disks
+ number
;
4608 print_raid5_conf(conf
);
4611 if (test_bit(In_sync
, &rdev
->flags
) ||
4612 atomic_read(&rdev
->nr_pending
)) {
4616 /* Only remove non-faulty devices if recovery
4619 if (!test_bit(Faulty
, &rdev
->flags
) &&
4620 mddev
->degraded
<= conf
->max_degraded
) {
4626 if (atomic_read(&rdev
->nr_pending
)) {
4627 /* lost the race, try later */
4634 print_raid5_conf(conf
);
4638 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
4640 raid5_conf_t
*conf
= mddev
->private;
4643 struct disk_info
*p
;
4645 int last
= conf
->raid_disks
- 1;
4647 if (mddev
->degraded
> conf
->max_degraded
)
4648 /* no point adding a device */
4651 if (rdev
->raid_disk
>= 0)
4652 first
= last
= rdev
->raid_disk
;
4655 * find the disk ... but prefer rdev->saved_raid_disk
4658 if (rdev
->saved_raid_disk
>= 0 &&
4659 rdev
->saved_raid_disk
>= first
&&
4660 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
4661 disk
= rdev
->saved_raid_disk
;
4664 for ( ; disk
<= last
; disk
++)
4665 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
4666 clear_bit(In_sync
, &rdev
->flags
);
4667 rdev
->raid_disk
= disk
;
4669 if (rdev
->saved_raid_disk
!= disk
)
4671 rcu_assign_pointer(p
->rdev
, rdev
);
4674 print_raid5_conf(conf
);
4678 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
4680 /* no resync is happening, and there is enough space
4681 * on all devices, so we can resize.
4682 * We need to make sure resync covers any new space.
4683 * If the array is shrinking we should possibly wait until
4684 * any io in the removed space completes, but it hardly seems
4687 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4689 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
4690 mddev
->array_sectors
= sectors
* (mddev
->raid_disks
4691 - conf
->max_degraded
);
4692 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4694 if (sectors
> mddev
->dev_sectors
&& mddev
->recovery_cp
== MaxSector
) {
4695 mddev
->recovery_cp
= mddev
->dev_sectors
;
4696 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4698 mddev
->dev_sectors
= sectors
;
4699 mddev
->resync_max_sectors
= sectors
;
4703 #ifdef CONFIG_MD_RAID5_RESHAPE
4704 static int raid5_check_reshape(mddev_t
*mddev
)
4706 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4709 if (mddev
->delta_disks
< 0 ||
4710 mddev
->new_level
!= mddev
->level
)
4711 return -EINVAL
; /* Cannot shrink array or change level yet */
4712 if (mddev
->delta_disks
== 0)
4713 return 0; /* nothing to do */
4715 /* Cannot grow a bitmap yet */
4718 /* Can only proceed if there are plenty of stripe_heads.
4719 * We need a minimum of one full stripe,, and for sensible progress
4720 * it is best to have about 4 times that.
4721 * If we require 4 times, then the default 256 4K stripe_heads will
4722 * allow for chunk sizes up to 256K, which is probably OK.
4723 * If the chunk size is greater, user-space should request more
4724 * stripe_heads first.
4726 if ((mddev
->chunk_size
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
||
4727 (mddev
->new_chunk
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
) {
4728 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
4729 (mddev
->chunk_size
/ STRIPE_SIZE
)*4);
4733 err
= resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
4737 if (mddev
->degraded
> conf
->max_degraded
)
4739 /* looks like we might be able to manage this */
4743 static int raid5_start_reshape(mddev_t
*mddev
)
4745 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4748 int added_devices
= 0;
4749 unsigned long flags
;
4751 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4754 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4755 if (rdev
->raid_disk
< 0 &&
4756 !test_bit(Faulty
, &rdev
->flags
))
4759 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
4760 /* Not enough devices even to make a degraded array
4765 atomic_set(&conf
->reshape_stripes
, 0);
4766 spin_lock_irq(&conf
->device_lock
);
4767 conf
->previous_raid_disks
= conf
->raid_disks
;
4768 conf
->raid_disks
+= mddev
->delta_disks
;
4769 conf
->expand_progress
= 0;
4770 conf
->expand_lo
= 0;
4771 spin_unlock_irq(&conf
->device_lock
);
4773 /* Add some new drives, as many as will fit.
4774 * We know there are enough to make the newly sized array work.
4776 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4777 if (rdev
->raid_disk
< 0 &&
4778 !test_bit(Faulty
, &rdev
->flags
)) {
4779 if (raid5_add_disk(mddev
, rdev
) == 0) {
4781 set_bit(In_sync
, &rdev
->flags
);
4783 rdev
->recovery_offset
= 0;
4784 sprintf(nm
, "rd%d", rdev
->raid_disk
);
4785 if (sysfs_create_link(&mddev
->kobj
,
4788 "raid5: failed to create "
4789 " link %s for %s\n",
4795 spin_lock_irqsave(&conf
->device_lock
, flags
);
4796 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
) - added_devices
;
4797 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4798 mddev
->raid_disks
= conf
->raid_disks
;
4799 mddev
->reshape_position
= 0;
4800 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4802 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4803 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4804 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4805 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4806 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4808 if (!mddev
->sync_thread
) {
4809 mddev
->recovery
= 0;
4810 spin_lock_irq(&conf
->device_lock
);
4811 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
4812 conf
->expand_progress
= MaxSector
;
4813 spin_unlock_irq(&conf
->device_lock
);
4816 md_wakeup_thread(mddev
->sync_thread
);
4817 md_new_event(mddev
);
4822 static void end_reshape(raid5_conf_t
*conf
)
4824 struct block_device
*bdev
;
4826 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
4827 conf
->mddev
->array_sectors
= conf
->mddev
->dev_sectors
*
4828 (conf
->raid_disks
- conf
->max_degraded
);
4829 set_capacity(conf
->mddev
->gendisk
, conf
->mddev
->array_sectors
);
4830 conf
->mddev
->changed
= 1;
4832 bdev
= bdget_disk(conf
->mddev
->gendisk
, 0);
4834 mutex_lock(&bdev
->bd_inode
->i_mutex
);
4835 i_size_write(bdev
->bd_inode
,
4836 (loff_t
)conf
->mddev
->array_sectors
<< 9);
4837 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
4840 spin_lock_irq(&conf
->device_lock
);
4841 conf
->expand_progress
= MaxSector
;
4842 spin_unlock_irq(&conf
->device_lock
);
4843 conf
->mddev
->reshape_position
= MaxSector
;
4845 /* read-ahead size must cover two whole stripes, which is
4846 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4849 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4850 int stripe
= data_disks
*
4851 (conf
->mddev
->chunk_size
/ PAGE_SIZE
);
4852 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4853 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4858 static void raid5_quiesce(mddev_t
*mddev
, int state
)
4860 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4863 case 2: /* resume for a suspend */
4864 wake_up(&conf
->wait_for_overlap
);
4867 case 1: /* stop all writes */
4868 spin_lock_irq(&conf
->device_lock
);
4870 wait_event_lock_irq(conf
->wait_for_stripe
,
4871 atomic_read(&conf
->active_stripes
) == 0 &&
4872 atomic_read(&conf
->active_aligned_reads
) == 0,
4873 conf
->device_lock
, /* nothing */);
4874 spin_unlock_irq(&conf
->device_lock
);
4877 case 0: /* re-enable writes */
4878 spin_lock_irq(&conf
->device_lock
);
4880 wake_up(&conf
->wait_for_stripe
);
4881 wake_up(&conf
->wait_for_overlap
);
4882 spin_unlock_irq(&conf
->device_lock
);
4888 static void *raid5_takeover_raid1(mddev_t
*mddev
)
4892 if (mddev
->raid_disks
!= 2 ||
4893 mddev
->degraded
> 1)
4894 return ERR_PTR(-EINVAL
);
4896 /* Should check if there are write-behind devices? */
4898 chunksect
= 64*2; /* 64K by default */
4900 /* The array must be an exact multiple of chunksize */
4901 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
4904 if ((chunksect
<<9) < STRIPE_SIZE
)
4905 /* array size does not allow a suitable chunk size */
4906 return ERR_PTR(-EINVAL
);
4908 mddev
->new_level
= 5;
4909 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
4910 mddev
->new_chunk
= chunksect
<< 9;
4912 return setup_conf(mddev
);
4916 static int raid5_reconfig(mddev_t
*mddev
, int new_layout
, int new_chunk
)
4918 /* Currently the layout and chunk size can only be changed
4919 * for a 2-drive raid array, as in that case no data shuffling
4921 * Later we might validate these and set new_* so a reshape
4922 * can complete the change.
4924 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4926 if (new_layout
>= 0 && !algorithm_valid_raid5(new_layout
))
4928 if (new_chunk
> 0) {
4929 if (new_chunk
& (new_chunk
-1))
4930 /* not a power of 2 */
4932 if (new_chunk
< PAGE_SIZE
)
4934 if (mddev
->array_sectors
& ((new_chunk
>>9)-1))
4935 /* not factor of array size */
4939 /* They look valid */
4941 if (mddev
->raid_disks
!= 2)
4944 if (new_layout
>= 0) {
4945 conf
->algorithm
= new_layout
;
4946 mddev
->layout
= mddev
->new_layout
= new_layout
;
4948 if (new_chunk
> 0) {
4949 conf
->chunk_size
= new_chunk
;
4950 mddev
->chunk_size
= mddev
->new_chunk
= new_chunk
;
4952 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4953 md_wakeup_thread(mddev
->thread
);
4957 static void *raid5_takeover(mddev_t
*mddev
)
4959 /* raid5 can take over:
4960 * raid0 - if all devices are the same - make it a raid4 layout
4961 * raid1 - if there are two drives. We need to know the chunk size
4962 * raid4 - trivial - just use a raid4 layout.
4963 * raid6 - Providing it is a *_6 layout
4965 * For now, just do raid1
4968 if (mddev
->level
== 1)
4969 return raid5_takeover_raid1(mddev
);
4971 return ERR_PTR(-EINVAL
);
4975 static struct mdk_personality raid5_personality
;
4977 static void *raid6_takeover(mddev_t
*mddev
)
4979 /* Currently can only take over a raid5. We map the
4980 * personality to an equivalent raid6 personality
4981 * with the Q block at the end.
4985 if (mddev
->pers
!= &raid5_personality
)
4986 return ERR_PTR(-EINVAL
);
4987 if (mddev
->degraded
> 1)
4988 return ERR_PTR(-EINVAL
);
4989 if (mddev
->raid_disks
> 253)
4990 return ERR_PTR(-EINVAL
);
4991 if (mddev
->raid_disks
< 3)
4992 return ERR_PTR(-EINVAL
);
4994 switch (mddev
->layout
) {
4995 case ALGORITHM_LEFT_ASYMMETRIC
:
4996 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
4998 case ALGORITHM_RIGHT_ASYMMETRIC
:
4999 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
5001 case ALGORITHM_LEFT_SYMMETRIC
:
5002 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
5004 case ALGORITHM_RIGHT_SYMMETRIC
:
5005 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
5007 case ALGORITHM_PARITY_0
:
5008 new_layout
= ALGORITHM_PARITY_0_6
;
5010 case ALGORITHM_PARITY_N
:
5011 new_layout
= ALGORITHM_PARITY_N
;
5014 return ERR_PTR(-EINVAL
);
5016 mddev
->new_level
= 6;
5017 mddev
->new_layout
= new_layout
;
5018 mddev
->delta_disks
= 1;
5019 mddev
->raid_disks
+= 1;
5020 return setup_conf(mddev
);
5024 static struct mdk_personality raid6_personality
=
5028 .owner
= THIS_MODULE
,
5029 .make_request
= make_request
,
5033 .error_handler
= error
,
5034 .hot_add_disk
= raid5_add_disk
,
5035 .hot_remove_disk
= raid5_remove_disk
,
5036 .spare_active
= raid5_spare_active
,
5037 .sync_request
= sync_request
,
5038 .resize
= raid5_resize
,
5039 #ifdef CONFIG_MD_RAID5_RESHAPE
5040 .check_reshape
= raid5_check_reshape
,
5041 .start_reshape
= raid5_start_reshape
,
5043 .quiesce
= raid5_quiesce
,
5044 .takeover
= raid6_takeover
,
5046 static struct mdk_personality raid5_personality
=
5050 .owner
= THIS_MODULE
,
5051 .make_request
= make_request
,
5055 .error_handler
= error
,
5056 .hot_add_disk
= raid5_add_disk
,
5057 .hot_remove_disk
= raid5_remove_disk
,
5058 .spare_active
= raid5_spare_active
,
5059 .sync_request
= sync_request
,
5060 .resize
= raid5_resize
,
5061 #ifdef CONFIG_MD_RAID5_RESHAPE
5062 .check_reshape
= raid5_check_reshape
,
5063 .start_reshape
= raid5_start_reshape
,
5065 .quiesce
= raid5_quiesce
,
5066 .takeover
= raid5_takeover
,
5067 .reconfig
= raid5_reconfig
,
5070 static struct mdk_personality raid4_personality
=
5074 .owner
= THIS_MODULE
,
5075 .make_request
= make_request
,
5079 .error_handler
= error
,
5080 .hot_add_disk
= raid5_add_disk
,
5081 .hot_remove_disk
= raid5_remove_disk
,
5082 .spare_active
= raid5_spare_active
,
5083 .sync_request
= sync_request
,
5084 .resize
= raid5_resize
,
5085 #ifdef CONFIG_MD_RAID5_RESHAPE
5086 .check_reshape
= raid5_check_reshape
,
5087 .start_reshape
= raid5_start_reshape
,
5089 .quiesce
= raid5_quiesce
,
5092 static int __init
raid5_init(void)
5096 e
= raid6_select_algo();
5099 register_md_personality(&raid6_personality
);
5100 register_md_personality(&raid5_personality
);
5101 register_md_personality(&raid4_personality
);
5105 static void raid5_exit(void)
5107 unregister_md_personality(&raid6_personality
);
5108 unregister_md_personality(&raid5_personality
);
5109 unregister_md_personality(&raid4_personality
);
5112 module_init(raid5_init
);
5113 module_exit(raid5_exit
);
5114 MODULE_LICENSE("GPL");
5115 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5116 MODULE_ALIAS("md-raid5");
5117 MODULE_ALIAS("md-raid4");
5118 MODULE_ALIAS("md-level-5");
5119 MODULE_ALIAS("md-level-4");
5120 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5121 MODULE_ALIAS("md-raid6");
5122 MODULE_ALIAS("md-level-6");
5124 /* This used to be two separate modules, they were: */
5125 MODULE_ALIAS("raid5");
5126 MODULE_ALIAS("raid6");