2 * Xilinx SystemACE device driver
4 * Copyright 2007 Secret Lab Technologies Ltd.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13 * bitstream from a file on a CF card and squirting it into FPGAs connected
14 * to the SystemACE JTAG chain. It also has the advantage of providing an
15 * MPU interface which can be used to control the FPGA configuration process
16 * and to use the attached CF card for general purpose storage.
18 * This driver is a block device driver for the SystemACE.
21 * The driver registers itself as a platform_device driver at module
22 * load time. The platform bus will take care of calling the
23 * ace_probe() method for all SystemACE instances in the system. Any
24 * number of SystemACE instances are supported. ace_probe() calls
25 * ace_setup() which initialized all data structures, reads the CF
26 * id structure and registers the device.
29 * Just about all of the heavy lifting in this driver is performed by
30 * a Finite State Machine (FSM). The driver needs to wait on a number
31 * of events; some raised by interrupts, some which need to be polled
32 * for. Describing all of the behaviour in a FSM seems to be the
33 * easiest way to keep the complexity low and make it easy to
34 * understand what the driver is doing. If the block ops or the
35 * request function need to interact with the hardware, then they
36 * simply need to flag the request and kick of FSM processing.
38 * The FSM itself is atomic-safe code which can be run from any
39 * context. The general process flow is:
40 * 1. obtain the ace->lock spinlock.
41 * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
43 * 3. release the lock.
45 * Individual states do not sleep in any way. If a condition needs to
46 * be waited for then the state much clear the fsm_continue flag and
47 * either schedule the FSM to be run again at a later time, or expect
48 * an interrupt to call the FSM when the desired condition is met.
50 * In normal operation, the FSM is processed at interrupt context
51 * either when the driver's tasklet is scheduled, or when an irq is
52 * raised by the hardware. The tasklet can be scheduled at any time.
53 * The request method in particular schedules the tasklet when a new
54 * request has been indicated by the block layer. Once started, the
55 * FSM proceeds as far as it can processing the request until it
56 * needs on a hardware event. At this point, it must yield execution.
58 * A state has two options when yielding execution:
60 * - Call if need to poll for event.
61 * - clears the fsm_continue flag to exit the processing loop
62 * - reschedules the tasklet to run again as soon as possible
63 * 2. ace_fsm_yieldirq()
64 * - Call if an irq is expected from the HW
65 * - clears the fsm_continue flag to exit the processing loop
66 * - does not reschedule the tasklet so the FSM will not be processed
67 * again until an irq is received.
68 * After calling a yield function, the state must return control back
69 * to the FSM main loop.
71 * Additionally, the driver maintains a kernel timer which can process
72 * the FSM. If the FSM gets stalled, typically due to a missed
73 * interrupt, then the kernel timer will expire and the driver can
74 * continue where it left off.
77 * - Add FPGA configuration control interface.
78 * - Request major number from lanana
83 #include <linux/module.h>
84 #include <linux/ctype.h>
85 #include <linux/init.h>
86 #include <linux/interrupt.h>
87 #include <linux/errno.h>
88 #include <linux/kernel.h>
89 #include <linux/delay.h>
90 #include <linux/slab.h>
91 #include <linux/blkdev.h>
92 #include <linux/ata.h>
93 #include <linux/hdreg.h>
94 #include <linux/platform_device.h>
95 #if defined(CONFIG_OF)
96 #include <linux/of_device.h>
97 #include <linux/of_platform.h>
100 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
101 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
102 MODULE_LICENSE("GPL");
104 /* SystemACE register definitions */
105 #define ACE_BUSMODE (0x00)
107 #define ACE_STATUS (0x04)
108 #define ACE_STATUS_CFGLOCK (0x00000001)
109 #define ACE_STATUS_MPULOCK (0x00000002)
110 #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
111 #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
112 #define ACE_STATUS_CFDETECT (0x00000010)
113 #define ACE_STATUS_DATABUFRDY (0x00000020)
114 #define ACE_STATUS_DATABUFMODE (0x00000040)
115 #define ACE_STATUS_CFGDONE (0x00000080)
116 #define ACE_STATUS_RDYFORCFCMD (0x00000100)
117 #define ACE_STATUS_CFGMODEPIN (0x00000200)
118 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
119 #define ACE_STATUS_CFBSY (0x00020000)
120 #define ACE_STATUS_CFRDY (0x00040000)
121 #define ACE_STATUS_CFDWF (0x00080000)
122 #define ACE_STATUS_CFDSC (0x00100000)
123 #define ACE_STATUS_CFDRQ (0x00200000)
124 #define ACE_STATUS_CFCORR (0x00400000)
125 #define ACE_STATUS_CFERR (0x00800000)
127 #define ACE_ERROR (0x08)
128 #define ACE_CFGLBA (0x0c)
129 #define ACE_MPULBA (0x10)
131 #define ACE_SECCNTCMD (0x14)
132 #define ACE_SECCNTCMD_RESET (0x0100)
133 #define ACE_SECCNTCMD_IDENTIFY (0x0200)
134 #define ACE_SECCNTCMD_READ_DATA (0x0300)
135 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
136 #define ACE_SECCNTCMD_ABORT (0x0600)
138 #define ACE_VERSION (0x16)
139 #define ACE_VERSION_REVISION_MASK (0x00FF)
140 #define ACE_VERSION_MINOR_MASK (0x0F00)
141 #define ACE_VERSION_MAJOR_MASK (0xF000)
143 #define ACE_CTRL (0x18)
144 #define ACE_CTRL_FORCELOCKREQ (0x0001)
145 #define ACE_CTRL_LOCKREQ (0x0002)
146 #define ACE_CTRL_FORCECFGADDR (0x0004)
147 #define ACE_CTRL_FORCECFGMODE (0x0008)
148 #define ACE_CTRL_CFGMODE (0x0010)
149 #define ACE_CTRL_CFGSTART (0x0020)
150 #define ACE_CTRL_CFGSEL (0x0040)
151 #define ACE_CTRL_CFGRESET (0x0080)
152 #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
153 #define ACE_CTRL_ERRORIRQ (0x0200)
154 #define ACE_CTRL_CFGDONEIRQ (0x0400)
155 #define ACE_CTRL_RESETIRQ (0x0800)
156 #define ACE_CTRL_CFGPROG (0x1000)
157 #define ACE_CTRL_CFGADDR_MASK (0xe000)
159 #define ACE_FATSTAT (0x1c)
161 #define ACE_NUM_MINORS 16
162 #define ACE_SECTOR_SIZE (512)
163 #define ACE_FIFO_SIZE (32)
164 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
166 #define ACE_BUS_WIDTH_8 0
167 #define ACE_BUS_WIDTH_16 1
172 /* driver state data */
176 struct list_head list
;
178 /* finite state machine data */
179 struct tasklet_struct fsm_tasklet
;
180 uint fsm_task
; /* Current activity (ACE_TASK_*) */
181 uint fsm_state
; /* Current state (ACE_FSM_STATE_*) */
182 uint fsm_continue_flag
; /* cleared to exit FSM mainloop */
184 struct timer_list stall_timer
;
186 /* Transfer state/result, use for both id and block request */
187 struct request
*req
; /* request being processed */
188 void *data_ptr
; /* pointer to I/O buffer */
189 int data_count
; /* number of buffers remaining */
190 int data_result
; /* Result of transfer; 0 := success */
192 int id_req_count
; /* count of id requests */
194 struct completion id_completion
; /* used when id req finishes */
197 /* Details of hardware device */
198 resource_size_t physaddr
;
199 void __iomem
*baseaddr
;
201 int bus_width
; /* 0 := 8 bit; 1 := 16 bit */
202 struct ace_reg_ops
*reg_ops
;
205 /* Block device data structures */
208 struct request_queue
*queue
;
211 /* Inserted CF card parameters */
212 u16 cf_id
[ATA_ID_WORDS
];
215 static int ace_major
;
217 /* ---------------------------------------------------------------------
218 * Low level register access
222 u16(*in
) (struct ace_device
* ace
, int reg
);
223 void (*out
) (struct ace_device
* ace
, int reg
, u16 val
);
224 void (*datain
) (struct ace_device
* ace
);
225 void (*dataout
) (struct ace_device
* ace
);
228 /* 8 Bit bus width */
229 static u16
ace_in_8(struct ace_device
*ace
, int reg
)
231 void __iomem
*r
= ace
->baseaddr
+ reg
;
232 return in_8(r
) | (in_8(r
+ 1) << 8);
235 static void ace_out_8(struct ace_device
*ace
, int reg
, u16 val
)
237 void __iomem
*r
= ace
->baseaddr
+ reg
;
239 out_8(r
+ 1, val
>> 8);
242 static void ace_datain_8(struct ace_device
*ace
)
244 void __iomem
*r
= ace
->baseaddr
+ 0x40;
245 u8
*dst
= ace
->data_ptr
;
246 int i
= ACE_FIFO_SIZE
;
252 static void ace_dataout_8(struct ace_device
*ace
)
254 void __iomem
*r
= ace
->baseaddr
+ 0x40;
255 u8
*src
= ace
->data_ptr
;
256 int i
= ACE_FIFO_SIZE
;
262 static struct ace_reg_ops ace_reg_8_ops
= {
265 .datain
= ace_datain_8
,
266 .dataout
= ace_dataout_8
,
269 /* 16 bit big endian bus attachment */
270 static u16
ace_in_be16(struct ace_device
*ace
, int reg
)
272 return in_be16(ace
->baseaddr
+ reg
);
275 static void ace_out_be16(struct ace_device
*ace
, int reg
, u16 val
)
277 out_be16(ace
->baseaddr
+ reg
, val
);
280 static void ace_datain_be16(struct ace_device
*ace
)
282 int i
= ACE_FIFO_SIZE
/ 2;
283 u16
*dst
= ace
->data_ptr
;
285 *dst
++ = in_le16(ace
->baseaddr
+ 0x40);
289 static void ace_dataout_be16(struct ace_device
*ace
)
291 int i
= ACE_FIFO_SIZE
/ 2;
292 u16
*src
= ace
->data_ptr
;
294 out_le16(ace
->baseaddr
+ 0x40, *src
++);
298 /* 16 bit little endian bus attachment */
299 static u16
ace_in_le16(struct ace_device
*ace
, int reg
)
301 return in_le16(ace
->baseaddr
+ reg
);
304 static void ace_out_le16(struct ace_device
*ace
, int reg
, u16 val
)
306 out_le16(ace
->baseaddr
+ reg
, val
);
309 static void ace_datain_le16(struct ace_device
*ace
)
311 int i
= ACE_FIFO_SIZE
/ 2;
312 u16
*dst
= ace
->data_ptr
;
314 *dst
++ = in_be16(ace
->baseaddr
+ 0x40);
318 static void ace_dataout_le16(struct ace_device
*ace
)
320 int i
= ACE_FIFO_SIZE
/ 2;
321 u16
*src
= ace
->data_ptr
;
323 out_be16(ace
->baseaddr
+ 0x40, *src
++);
327 static struct ace_reg_ops ace_reg_be16_ops
= {
330 .datain
= ace_datain_be16
,
331 .dataout
= ace_dataout_be16
,
334 static struct ace_reg_ops ace_reg_le16_ops
= {
337 .datain
= ace_datain_le16
,
338 .dataout
= ace_dataout_le16
,
341 static inline u16
ace_in(struct ace_device
*ace
, int reg
)
343 return ace
->reg_ops
->in(ace
, reg
);
346 static inline u32
ace_in32(struct ace_device
*ace
, int reg
)
348 return ace_in(ace
, reg
) | (ace_in(ace
, reg
+ 2) << 16);
351 static inline void ace_out(struct ace_device
*ace
, int reg
, u16 val
)
353 ace
->reg_ops
->out(ace
, reg
, val
);
356 static inline void ace_out32(struct ace_device
*ace
, int reg
, u32 val
)
358 ace_out(ace
, reg
, val
);
359 ace_out(ace
, reg
+ 2, val
>> 16);
362 /* ---------------------------------------------------------------------
363 * Debug support functions
367 static void ace_dump_mem(void *base
, int len
)
369 const char *ptr
= base
;
372 for (i
= 0; i
< len
; i
+= 16) {
373 printk(KERN_INFO
"%.8x:", i
);
374 for (j
= 0; j
< 16; j
++) {
377 printk("%.2x", ptr
[i
+ j
]);
380 for (j
= 0; j
< 16; j
++)
381 printk("%c", isprint(ptr
[i
+ j
]) ? ptr
[i
+ j
] : '.');
386 static inline void ace_dump_mem(void *base
, int len
)
391 static void ace_dump_regs(struct ace_device
*ace
)
394 " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
395 " status:%.8x mpu_lba:%.8x busmode:%4x\n"
396 " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
397 ace_in32(ace
, ACE_CTRL
),
398 ace_in(ace
, ACE_SECCNTCMD
),
399 ace_in(ace
, ACE_VERSION
),
400 ace_in32(ace
, ACE_STATUS
),
401 ace_in32(ace
, ACE_MPULBA
),
402 ace_in(ace
, ACE_BUSMODE
),
403 ace_in32(ace
, ACE_ERROR
),
404 ace_in32(ace
, ACE_CFGLBA
), ace_in(ace
, ACE_FATSTAT
));
407 void ace_fix_driveid(u16
*id
)
409 #if defined(__BIG_ENDIAN)
412 /* All half words have wrong byte order; swap the bytes */
413 for (i
= 0; i
< ATA_ID_WORDS
; i
++, id
++)
414 *id
= le16_to_cpu(*id
);
418 /* ---------------------------------------------------------------------
419 * Finite State Machine (FSM) implementation
422 /* FSM tasks; used to direct state transitions */
423 #define ACE_TASK_IDLE 0
424 #define ACE_TASK_IDENTIFY 1
425 #define ACE_TASK_READ 2
426 #define ACE_TASK_WRITE 3
427 #define ACE_FSM_NUM_TASKS 4
429 /* FSM state definitions */
430 #define ACE_FSM_STATE_IDLE 0
431 #define ACE_FSM_STATE_REQ_LOCK 1
432 #define ACE_FSM_STATE_WAIT_LOCK 2
433 #define ACE_FSM_STATE_WAIT_CFREADY 3
434 #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
435 #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
436 #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
437 #define ACE_FSM_STATE_REQ_PREPARE 7
438 #define ACE_FSM_STATE_REQ_TRANSFER 8
439 #define ACE_FSM_STATE_REQ_COMPLETE 9
440 #define ACE_FSM_STATE_ERROR 10
441 #define ACE_FSM_NUM_STATES 11
443 /* Set flag to exit FSM loop and reschedule tasklet */
444 static inline void ace_fsm_yield(struct ace_device
*ace
)
446 dev_dbg(ace
->dev
, "ace_fsm_yield()\n");
447 tasklet_schedule(&ace
->fsm_tasklet
);
448 ace
->fsm_continue_flag
= 0;
451 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
452 static inline void ace_fsm_yieldirq(struct ace_device
*ace
)
454 dev_dbg(ace
->dev
, "ace_fsm_yieldirq()\n");
456 if (ace
->irq
== NO_IRQ
)
457 /* No IRQ assigned, so need to poll */
458 tasklet_schedule(&ace
->fsm_tasklet
);
459 ace
->fsm_continue_flag
= 0;
462 /* Get the next read/write request; ending requests that we don't handle */
463 struct request
*ace_get_next_request(struct request_queue
* q
)
467 while ((req
= blk_peek_request(q
)) != NULL
) {
468 if (blk_fs_request(req
))
470 blk_start_request(req
);
471 __blk_end_request_all(req
, -EIO
);
476 static void ace_fsm_dostate(struct ace_device
*ace
)
484 dev_dbg(ace
->dev
, "fsm_state=%i, id_req_count=%i\n",
485 ace
->fsm_state
, ace
->id_req_count
);
488 /* Verify that there is actually a CF in the slot. If not, then
489 * bail out back to the idle state and wake up all the waiters */
490 status
= ace_in32(ace
, ACE_STATUS
);
491 if ((status
& ACE_STATUS_CFDETECT
) == 0) {
492 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
493 ace
->media_change
= 1;
494 set_capacity(ace
->gd
, 0);
495 dev_info(ace
->dev
, "No CF in slot\n");
497 /* Drop all in-flight and pending requests */
499 __blk_end_request_all(ace
->req
, -EIO
);
502 while ((req
= blk_fetch_request(ace
->queue
)) != NULL
)
503 __blk_end_request_all(req
, -EIO
);
505 /* Drop back to IDLE state and notify waiters */
506 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
507 ace
->id_result
= -EIO
;
508 while (ace
->id_req_count
) {
509 complete(&ace
->id_completion
);
514 switch (ace
->fsm_state
) {
515 case ACE_FSM_STATE_IDLE
:
516 /* See if there is anything to do */
517 if (ace
->id_req_count
|| ace_get_next_request(ace
->queue
)) {
519 ace
->fsm_state
= ACE_FSM_STATE_REQ_LOCK
;
520 mod_timer(&ace
->stall_timer
, jiffies
+ HZ
);
521 if (!timer_pending(&ace
->stall_timer
))
522 add_timer(&ace
->stall_timer
);
525 del_timer(&ace
->stall_timer
);
526 ace
->fsm_continue_flag
= 0;
529 case ACE_FSM_STATE_REQ_LOCK
:
530 if (ace_in(ace
, ACE_STATUS
) & ACE_STATUS_MPULOCK
) {
531 /* Already have the lock, jump to next state */
532 ace
->fsm_state
= ACE_FSM_STATE_WAIT_CFREADY
;
536 /* Request the lock */
537 val
= ace_in(ace
, ACE_CTRL
);
538 ace_out(ace
, ACE_CTRL
, val
| ACE_CTRL_LOCKREQ
);
539 ace
->fsm_state
= ACE_FSM_STATE_WAIT_LOCK
;
542 case ACE_FSM_STATE_WAIT_LOCK
:
543 if (ace_in(ace
, ACE_STATUS
) & ACE_STATUS_MPULOCK
) {
544 /* got the lock; move to next state */
545 ace
->fsm_state
= ACE_FSM_STATE_WAIT_CFREADY
;
549 /* wait a bit for the lock */
553 case ACE_FSM_STATE_WAIT_CFREADY
:
554 status
= ace_in32(ace
, ACE_STATUS
);
555 if (!(status
& ACE_STATUS_RDYFORCFCMD
) ||
556 (status
& ACE_STATUS_CFBSY
)) {
557 /* CF card isn't ready; it needs to be polled */
562 /* Device is ready for command; determine what to do next */
563 if (ace
->id_req_count
)
564 ace
->fsm_state
= ACE_FSM_STATE_IDENTIFY_PREPARE
;
566 ace
->fsm_state
= ACE_FSM_STATE_REQ_PREPARE
;
569 case ACE_FSM_STATE_IDENTIFY_PREPARE
:
570 /* Send identify command */
571 ace
->fsm_task
= ACE_TASK_IDENTIFY
;
572 ace
->data_ptr
= ace
->cf_id
;
573 ace
->data_count
= ACE_BUF_PER_SECTOR
;
574 ace_out(ace
, ACE_SECCNTCMD
, ACE_SECCNTCMD_IDENTIFY
);
576 /* As per datasheet, put config controller in reset */
577 val
= ace_in(ace
, ACE_CTRL
);
578 ace_out(ace
, ACE_CTRL
, val
| ACE_CTRL_CFGRESET
);
580 /* irq handler takes over from this point; wait for the
581 * transfer to complete */
582 ace
->fsm_state
= ACE_FSM_STATE_IDENTIFY_TRANSFER
;
583 ace_fsm_yieldirq(ace
);
586 case ACE_FSM_STATE_IDENTIFY_TRANSFER
:
587 /* Check that the sysace is ready to receive data */
588 status
= ace_in32(ace
, ACE_STATUS
);
589 if (status
& ACE_STATUS_CFBSY
) {
590 dev_dbg(ace
->dev
, "CFBSY set; t=%i iter=%i dc=%i\n",
591 ace
->fsm_task
, ace
->fsm_iter_num
,
596 if (!(status
& ACE_STATUS_DATABUFRDY
)) {
601 /* Transfer the next buffer */
602 ace
->reg_ops
->datain(ace
);
605 /* If there are still buffers to be transfers; jump out here */
606 if (ace
->data_count
!= 0) {
607 ace_fsm_yieldirq(ace
);
611 /* transfer finished; kick state machine */
612 dev_dbg(ace
->dev
, "identify finished\n");
613 ace
->fsm_state
= ACE_FSM_STATE_IDENTIFY_COMPLETE
;
616 case ACE_FSM_STATE_IDENTIFY_COMPLETE
:
617 ace_fix_driveid(ace
->cf_id
);
618 ace_dump_mem(ace
->cf_id
, 512); /* Debug: Dump out disk ID */
620 if (ace
->data_result
) {
621 /* Error occured, disable the disk */
622 ace
->media_change
= 1;
623 set_capacity(ace
->gd
, 0);
624 dev_err(ace
->dev
, "error fetching CF id (%i)\n",
627 ace
->media_change
= 0;
629 /* Record disk parameters */
630 set_capacity(ace
->gd
,
631 ata_id_u32(ace
->cf_id
, ATA_ID_LBA_CAPACITY
));
632 dev_info(ace
->dev
, "capacity: %i sectors\n",
633 ata_id_u32(ace
->cf_id
, ATA_ID_LBA_CAPACITY
));
636 /* We're done, drop to IDLE state and notify waiters */
637 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
638 ace
->id_result
= ace
->data_result
;
639 while (ace
->id_req_count
) {
640 complete(&ace
->id_completion
);
645 case ACE_FSM_STATE_REQ_PREPARE
:
646 req
= ace_get_next_request(ace
->queue
);
648 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
651 blk_start_request(req
);
653 /* Okay, it's a data request, set it up for transfer */
655 "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
656 (unsigned long long)blk_rq_pos(req
),
657 blk_rq_sectors(req
), blk_rq_cur_sectors(req
),
661 ace
->data_ptr
= req
->buffer
;
662 ace
->data_count
= blk_rq_cur_sectors(req
) * ACE_BUF_PER_SECTOR
;
663 ace_out32(ace
, ACE_MPULBA
, blk_rq_pos(req
) & 0x0FFFFFFF);
665 count
= blk_rq_sectors(req
);
666 if (rq_data_dir(req
)) {
667 /* Kick off write request */
668 dev_dbg(ace
->dev
, "write data\n");
669 ace
->fsm_task
= ACE_TASK_WRITE
;
670 ace_out(ace
, ACE_SECCNTCMD
,
671 count
| ACE_SECCNTCMD_WRITE_DATA
);
673 /* Kick off read request */
674 dev_dbg(ace
->dev
, "read data\n");
675 ace
->fsm_task
= ACE_TASK_READ
;
676 ace_out(ace
, ACE_SECCNTCMD
,
677 count
| ACE_SECCNTCMD_READ_DATA
);
680 /* As per datasheet, put config controller in reset */
681 val
= ace_in(ace
, ACE_CTRL
);
682 ace_out(ace
, ACE_CTRL
, val
| ACE_CTRL_CFGRESET
);
684 /* Move to the transfer state. The systemace will raise
685 * an interrupt once there is something to do
687 ace
->fsm_state
= ACE_FSM_STATE_REQ_TRANSFER
;
688 if (ace
->fsm_task
== ACE_TASK_READ
)
689 ace_fsm_yieldirq(ace
); /* wait for data ready */
692 case ACE_FSM_STATE_REQ_TRANSFER
:
693 /* Check that the sysace is ready to receive data */
694 status
= ace_in32(ace
, ACE_STATUS
);
695 if (status
& ACE_STATUS_CFBSY
) {
697 "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
698 ace
->fsm_task
, ace
->fsm_iter_num
,
699 blk_rq_cur_sectors(ace
->req
) * 16,
700 ace
->data_count
, ace
->in_irq
);
701 ace_fsm_yield(ace
); /* need to poll CFBSY bit */
704 if (!(status
& ACE_STATUS_DATABUFRDY
)) {
706 "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
707 ace
->fsm_task
, ace
->fsm_iter_num
,
708 blk_rq_cur_sectors(ace
->req
) * 16,
709 ace
->data_count
, ace
->in_irq
);
710 ace_fsm_yieldirq(ace
);
714 /* Transfer the next buffer */
715 if (ace
->fsm_task
== ACE_TASK_WRITE
)
716 ace
->reg_ops
->dataout(ace
);
718 ace
->reg_ops
->datain(ace
);
721 /* If there are still buffers to be transfers; jump out here */
722 if (ace
->data_count
!= 0) {
723 ace_fsm_yieldirq(ace
);
727 /* bio finished; is there another one? */
728 if (__blk_end_request_cur(ace
->req
, 0)) {
729 /* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
730 * blk_rq_sectors(ace->req),
731 * blk_rq_cur_sectors(ace->req));
733 ace
->data_ptr
= ace
->req
->buffer
;
734 ace
->data_count
= blk_rq_cur_sectors(ace
->req
) * 16;
735 ace_fsm_yieldirq(ace
);
739 ace
->fsm_state
= ACE_FSM_STATE_REQ_COMPLETE
;
742 case ACE_FSM_STATE_REQ_COMPLETE
:
745 /* Finished request; go to idle state */
746 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
750 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
755 static void ace_fsm_tasklet(unsigned long data
)
757 struct ace_device
*ace
= (void *)data
;
760 spin_lock_irqsave(&ace
->lock
, flags
);
762 /* Loop over state machine until told to stop */
763 ace
->fsm_continue_flag
= 1;
764 while (ace
->fsm_continue_flag
)
765 ace_fsm_dostate(ace
);
767 spin_unlock_irqrestore(&ace
->lock
, flags
);
770 static void ace_stall_timer(unsigned long data
)
772 struct ace_device
*ace
= (void *)data
;
776 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
777 ace
->fsm_state
, ace
->fsm_task
, ace
->fsm_iter_num
,
779 spin_lock_irqsave(&ace
->lock
, flags
);
781 /* Rearm the stall timer *before* entering FSM (which may then
782 * delete the timer) */
783 mod_timer(&ace
->stall_timer
, jiffies
+ HZ
);
785 /* Loop over state machine until told to stop */
786 ace
->fsm_continue_flag
= 1;
787 while (ace
->fsm_continue_flag
)
788 ace_fsm_dostate(ace
);
790 spin_unlock_irqrestore(&ace
->lock
, flags
);
793 /* ---------------------------------------------------------------------
794 * Interrupt handling routines
796 static int ace_interrupt_checkstate(struct ace_device
*ace
)
798 u32 sreg
= ace_in32(ace
, ACE_STATUS
);
799 u16 creg
= ace_in(ace
, ACE_CTRL
);
801 /* Check for error occurance */
802 if ((sreg
& (ACE_STATUS_CFGERROR
| ACE_STATUS_CFCERROR
)) &&
803 (creg
& ACE_CTRL_ERRORIRQ
)) {
804 dev_err(ace
->dev
, "transfer failure\n");
812 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
)
815 struct ace_device
*ace
= dev_id
;
817 /* be safe and get the lock */
818 spin_lock(&ace
->lock
);
821 /* clear the interrupt */
822 creg
= ace_in(ace
, ACE_CTRL
);
823 ace_out(ace
, ACE_CTRL
, creg
| ACE_CTRL_RESETIRQ
);
824 ace_out(ace
, ACE_CTRL
, creg
);
826 /* check for IO failures */
827 if (ace_interrupt_checkstate(ace
))
828 ace
->data_result
= -EIO
;
830 if (ace
->fsm_task
== 0) {
832 "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
833 ace_in32(ace
, ACE_STATUS
), ace_in32(ace
, ACE_CTRL
),
834 ace_in(ace
, ACE_SECCNTCMD
));
835 dev_err(ace
->dev
, "fsm_task=%i fsm_state=%i data_count=%i\n",
836 ace
->fsm_task
, ace
->fsm_state
, ace
->data_count
);
839 /* Loop over state machine until told to stop */
840 ace
->fsm_continue_flag
= 1;
841 while (ace
->fsm_continue_flag
)
842 ace_fsm_dostate(ace
);
844 /* done with interrupt; drop the lock */
846 spin_unlock(&ace
->lock
);
851 /* ---------------------------------------------------------------------
854 static void ace_request(struct request_queue
* q
)
857 struct ace_device
*ace
;
859 req
= ace_get_next_request(q
);
862 ace
= req
->rq_disk
->private_data
;
863 tasklet_schedule(&ace
->fsm_tasklet
);
867 static int ace_media_changed(struct gendisk
*gd
)
869 struct ace_device
*ace
= gd
->private_data
;
870 dev_dbg(ace
->dev
, "ace_media_changed(): %i\n", ace
->media_change
);
872 return ace
->media_change
;
875 static int ace_revalidate_disk(struct gendisk
*gd
)
877 struct ace_device
*ace
= gd
->private_data
;
880 dev_dbg(ace
->dev
, "ace_revalidate_disk()\n");
882 if (ace
->media_change
) {
883 dev_dbg(ace
->dev
, "requesting cf id and scheduling tasklet\n");
885 spin_lock_irqsave(&ace
->lock
, flags
);
887 spin_unlock_irqrestore(&ace
->lock
, flags
);
889 tasklet_schedule(&ace
->fsm_tasklet
);
890 wait_for_completion(&ace
->id_completion
);
893 dev_dbg(ace
->dev
, "revalidate complete\n");
894 return ace
->id_result
;
897 static int ace_open(struct block_device
*bdev
, fmode_t mode
)
899 struct ace_device
*ace
= bdev
->bd_disk
->private_data
;
902 dev_dbg(ace
->dev
, "ace_open() users=%i\n", ace
->users
+ 1);
904 spin_lock_irqsave(&ace
->lock
, flags
);
906 spin_unlock_irqrestore(&ace
->lock
, flags
);
908 check_disk_change(bdev
);
912 static int ace_release(struct gendisk
*disk
, fmode_t mode
)
914 struct ace_device
*ace
= disk
->private_data
;
918 dev_dbg(ace
->dev
, "ace_release() users=%i\n", ace
->users
- 1);
920 spin_lock_irqsave(&ace
->lock
, flags
);
922 if (ace
->users
== 0) {
923 val
= ace_in(ace
, ACE_CTRL
);
924 ace_out(ace
, ACE_CTRL
, val
& ~ACE_CTRL_LOCKREQ
);
926 spin_unlock_irqrestore(&ace
->lock
, flags
);
930 static int ace_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
932 struct ace_device
*ace
= bdev
->bd_disk
->private_data
;
933 u16
*cf_id
= ace
->cf_id
;
935 dev_dbg(ace
->dev
, "ace_getgeo()\n");
937 geo
->heads
= cf_id
[ATA_ID_HEADS
];
938 geo
->sectors
= cf_id
[ATA_ID_SECTORS
];
939 geo
->cylinders
= cf_id
[ATA_ID_CYLS
];
944 static struct block_device_operations ace_fops
= {
945 .owner
= THIS_MODULE
,
947 .release
= ace_release
,
948 .media_changed
= ace_media_changed
,
949 .revalidate_disk
= ace_revalidate_disk
,
950 .getgeo
= ace_getgeo
,
953 /* --------------------------------------------------------------------
954 * SystemACE device setup/teardown code
956 static int __devinit
ace_setup(struct ace_device
*ace
)
962 dev_dbg(ace
->dev
, "ace_setup(ace=0x%p)\n", ace
);
963 dev_dbg(ace
->dev
, "physaddr=0x%llx irq=%i\n",
964 (unsigned long long)ace
->physaddr
, ace
->irq
);
966 spin_lock_init(&ace
->lock
);
967 init_completion(&ace
->id_completion
);
972 ace
->baseaddr
= ioremap(ace
->physaddr
, 0x80);
977 * Initialize the state machine tasklet and stall timer
979 tasklet_init(&ace
->fsm_tasklet
, ace_fsm_tasklet
, (unsigned long)ace
);
980 setup_timer(&ace
->stall_timer
, ace_stall_timer
, (unsigned long)ace
);
983 * Initialize the request queue
985 ace
->queue
= blk_init_queue(ace_request
, &ace
->lock
);
986 if (ace
->queue
== NULL
)
988 blk_queue_logical_block_size(ace
->queue
, 512);
991 * Allocate and initialize GD structure
993 ace
->gd
= alloc_disk(ACE_NUM_MINORS
);
997 ace
->gd
->major
= ace_major
;
998 ace
->gd
->first_minor
= ace
->id
* ACE_NUM_MINORS
;
999 ace
->gd
->fops
= &ace_fops
;
1000 ace
->gd
->queue
= ace
->queue
;
1001 ace
->gd
->private_data
= ace
;
1002 snprintf(ace
->gd
->disk_name
, 32, "xs%c", ace
->id
+ 'a');
1005 if (ace
->bus_width
== ACE_BUS_WIDTH_16
) {
1006 /* 0x0101 should work regardless of endianess */
1007 ace_out_le16(ace
, ACE_BUSMODE
, 0x0101);
1009 /* read it back to determine endianess */
1010 if (ace_in_le16(ace
, ACE_BUSMODE
) == 0x0001)
1011 ace
->reg_ops
= &ace_reg_le16_ops
;
1013 ace
->reg_ops
= &ace_reg_be16_ops
;
1015 ace_out_8(ace
, ACE_BUSMODE
, 0x00);
1016 ace
->reg_ops
= &ace_reg_8_ops
;
1019 /* Make sure version register is sane */
1020 version
= ace_in(ace
, ACE_VERSION
);
1021 if ((version
== 0) || (version
== 0xFFFF))
1024 /* Put sysace in a sane state by clearing most control reg bits */
1025 ace_out(ace
, ACE_CTRL
, ACE_CTRL_FORCECFGMODE
|
1026 ACE_CTRL_DATABUFRDYIRQ
| ACE_CTRL_ERRORIRQ
);
1028 /* Now we can hook up the irq handler */
1029 if (ace
->irq
!= NO_IRQ
) {
1030 rc
= request_irq(ace
->irq
, ace_interrupt
, 0, "systemace", ace
);
1032 /* Failure - fall back to polled mode */
1033 dev_err(ace
->dev
, "request_irq failed\n");
1038 /* Enable interrupts */
1039 val
= ace_in(ace
, ACE_CTRL
);
1040 val
|= ACE_CTRL_DATABUFRDYIRQ
| ACE_CTRL_ERRORIRQ
;
1041 ace_out(ace
, ACE_CTRL
, val
);
1043 /* Print the identification */
1044 dev_info(ace
->dev
, "Xilinx SystemACE revision %i.%i.%i\n",
1045 (version
>> 12) & 0xf, (version
>> 8) & 0x0f, version
& 0xff);
1046 dev_dbg(ace
->dev
, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1047 (unsigned long long) ace
->physaddr
, ace
->baseaddr
, ace
->irq
);
1049 ace
->media_change
= 1;
1050 ace_revalidate_disk(ace
->gd
);
1052 /* Make the sysace device 'live' */
1060 blk_cleanup_queue(ace
->queue
);
1062 iounmap(ace
->baseaddr
);
1064 dev_info(ace
->dev
, "xsysace: error initializing device at 0x%llx\n",
1065 (unsigned long long) ace
->physaddr
);
1069 static void __devexit
ace_teardown(struct ace_device
*ace
)
1072 del_gendisk(ace
->gd
);
1077 blk_cleanup_queue(ace
->queue
);
1079 tasklet_kill(&ace
->fsm_tasklet
);
1081 if (ace
->irq
!= NO_IRQ
)
1082 free_irq(ace
->irq
, ace
);
1084 iounmap(ace
->baseaddr
);
1087 static int __devinit
1088 ace_alloc(struct device
*dev
, int id
, resource_size_t physaddr
,
1089 int irq
, int bus_width
)
1091 struct ace_device
*ace
;
1093 dev_dbg(dev
, "ace_alloc(%p)\n", dev
);
1100 /* Allocate and initialize the ace device structure */
1101 ace
= kzalloc(sizeof(struct ace_device
), GFP_KERNEL
);
1109 ace
->physaddr
= physaddr
;
1111 ace
->bus_width
= bus_width
;
1113 /* Call the setup code */
1114 rc
= ace_setup(ace
);
1118 dev_set_drvdata(dev
, ace
);
1122 dev_set_drvdata(dev
, NULL
);
1126 dev_err(dev
, "could not initialize device, err=%i\n", rc
);
1130 static void __devexit
ace_free(struct device
*dev
)
1132 struct ace_device
*ace
= dev_get_drvdata(dev
);
1133 dev_dbg(dev
, "ace_free(%p)\n", dev
);
1137 dev_set_drvdata(dev
, NULL
);
1142 /* ---------------------------------------------------------------------
1143 * Platform Bus Support
1146 static int __devinit
ace_probe(struct platform_device
*dev
)
1148 resource_size_t physaddr
= 0;
1149 int bus_width
= ACE_BUS_WIDTH_16
; /* FIXME: should not be hard coded */
1154 dev_dbg(&dev
->dev
, "ace_probe(%p)\n", dev
);
1156 for (i
= 0; i
< dev
->num_resources
; i
++) {
1157 if (dev
->resource
[i
].flags
& IORESOURCE_MEM
)
1158 physaddr
= dev
->resource
[i
].start
;
1159 if (dev
->resource
[i
].flags
& IORESOURCE_IRQ
)
1160 irq
= dev
->resource
[i
].start
;
1163 /* Call the bus-independant setup code */
1164 return ace_alloc(&dev
->dev
, id
, physaddr
, irq
, bus_width
);
1168 * Platform bus remove() method
1170 static int __devexit
ace_remove(struct platform_device
*dev
)
1172 ace_free(&dev
->dev
);
1176 static struct platform_driver ace_platform_driver
= {
1178 .remove
= __devexit_p(ace_remove
),
1180 .owner
= THIS_MODULE
,
1185 /* ---------------------------------------------------------------------
1186 * OF_Platform Bus Support
1189 #if defined(CONFIG_OF)
1190 static int __devinit
1191 ace_of_probe(struct of_device
*op
, const struct of_device_id
*match
)
1193 struct resource res
;
1194 resource_size_t physaddr
;
1196 int irq
, bus_width
, rc
;
1198 dev_dbg(&op
->dev
, "ace_of_probe(%p, %p)\n", op
, match
);
1201 id
= of_get_property(op
->node
, "port-number", NULL
);
1204 rc
= of_address_to_resource(op
->node
, 0, &res
);
1206 dev_err(&op
->dev
, "invalid address\n");
1209 physaddr
= res
.start
;
1212 irq
= irq_of_parse_and_map(op
->node
, 0);
1215 bus_width
= ACE_BUS_WIDTH_16
;
1216 if (of_find_property(op
->node
, "8-bit", NULL
))
1217 bus_width
= ACE_BUS_WIDTH_8
;
1219 /* Call the bus-independant setup code */
1220 return ace_alloc(&op
->dev
, id
? *id
: 0, physaddr
, irq
, bus_width
);
1223 static int __devexit
ace_of_remove(struct of_device
*op
)
1229 /* Match table for of_platform binding */
1230 static struct of_device_id ace_of_match
[] __devinitdata
= {
1231 { .compatible
= "xlnx,opb-sysace-1.00.b", },
1232 { .compatible
= "xlnx,opb-sysace-1.00.c", },
1233 { .compatible
= "xlnx,xps-sysace-1.00.a", },
1234 { .compatible
= "xlnx,sysace", },
1237 MODULE_DEVICE_TABLE(of
, ace_of_match
);
1239 static struct of_platform_driver ace_of_driver
= {
1240 .owner
= THIS_MODULE
,
1242 .match_table
= ace_of_match
,
1243 .probe
= ace_of_probe
,
1244 .remove
= __devexit_p(ace_of_remove
),
1250 /* Registration helpers to keep the number of #ifdefs to a minimum */
1251 static inline int __init
ace_of_register(void)
1253 pr_debug("xsysace: registering OF binding\n");
1254 return of_register_platform_driver(&ace_of_driver
);
1257 static inline void __exit
ace_of_unregister(void)
1259 of_unregister_platform_driver(&ace_of_driver
);
1261 #else /* CONFIG_OF */
1262 /* CONFIG_OF not enabled; do nothing helpers */
1263 static inline int __init
ace_of_register(void) { return 0; }
1264 static inline void __exit
ace_of_unregister(void) { }
1265 #endif /* CONFIG_OF */
1267 /* ---------------------------------------------------------------------
1268 * Module init/exit routines
1270 static int __init
ace_init(void)
1274 ace_major
= register_blkdev(ace_major
, "xsysace");
1275 if (ace_major
<= 0) {
1280 rc
= ace_of_register();
1284 pr_debug("xsysace: registering platform binding\n");
1285 rc
= platform_driver_register(&ace_platform_driver
);
1289 pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major
);
1293 ace_of_unregister();
1295 unregister_blkdev(ace_major
, "xsysace");
1297 printk(KERN_ERR
"xsysace: registration failed; err=%i\n", rc
);
1301 static void __exit
ace_exit(void)
1303 pr_debug("Unregistering Xilinx SystemACE driver\n");
1304 platform_driver_unregister(&ace_platform_driver
);
1305 ace_of_unregister();
1306 unregister_blkdev(ace_major
, "xsysace");
1309 module_init(ace_init
);
1310 module_exit(ace_exit
);