2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
22 #include <linux/sunrpc/clnt.h>
23 #include <linux/sunrpc/xprt.h>
26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 static int rpc_task_id
;
32 * RPC slabs and memory pools
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static kmem_cache_t
*rpc_task_slabp
;
38 static kmem_cache_t
*rpc_buffer_slabp
;
39 static mempool_t
*rpc_task_mempool
;
40 static mempool_t
*rpc_buffer_mempool
;
42 static void __rpc_default_timer(struct rpc_task
*task
);
43 static void rpciod_killall(void);
44 static void rpc_free(struct rpc_task
*task
);
46 static void rpc_async_schedule(void *);
49 * RPC tasks that create another task (e.g. for contacting the portmapper)
50 * will wait on this queue for their child's completion
52 static RPC_WAITQ(childq
, "childq");
55 * RPC tasks sit here while waiting for conditions to improve.
57 static RPC_WAITQ(delay_queue
, "delayq");
60 * All RPC tasks are linked into this list
62 static LIST_HEAD(all_tasks
);
65 * rpciod-related stuff
67 static DECLARE_MUTEX(rpciod_sema
);
68 static unsigned int rpciod_users
;
69 static struct workqueue_struct
*rpciod_workqueue
;
72 * Spinlock for other critical sections of code.
74 static DEFINE_SPINLOCK(rpc_sched_lock
);
77 * Disable the timer for a given RPC task. Should be called with
78 * queue->lock and bh_disabled in order to avoid races within
82 __rpc_disable_timer(struct rpc_task
*task
)
84 dprintk("RPC: %4d disabling timer\n", task
->tk_pid
);
85 task
->tk_timeout_fn
= NULL
;
90 * Run a timeout function.
91 * We use the callback in order to allow __rpc_wake_up_task()
92 * and friends to disable the timer synchronously on SMP systems
93 * without calling del_timer_sync(). The latter could cause a
94 * deadlock if called while we're holding spinlocks...
96 static void rpc_run_timer(struct rpc_task
*task
)
98 void (*callback
)(struct rpc_task
*);
100 callback
= task
->tk_timeout_fn
;
101 task
->tk_timeout_fn
= NULL
;
102 if (callback
&& RPC_IS_QUEUED(task
)) {
103 dprintk("RPC: %4d running timer\n", task
->tk_pid
);
106 smp_mb__before_clear_bit();
107 clear_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
);
108 smp_mb__after_clear_bit();
112 * Set up a timer for the current task.
115 __rpc_add_timer(struct rpc_task
*task
, rpc_action timer
)
117 if (!task
->tk_timeout
)
120 dprintk("RPC: %4d setting alarm for %lu ms\n",
121 task
->tk_pid
, task
->tk_timeout
* 1000 / HZ
);
124 task
->tk_timeout_fn
= timer
;
126 task
->tk_timeout_fn
= __rpc_default_timer
;
127 set_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
);
128 mod_timer(&task
->tk_timer
, jiffies
+ task
->tk_timeout
);
132 * Delete any timer for the current task. Because we use del_timer_sync(),
133 * this function should never be called while holding queue->lock.
136 rpc_delete_timer(struct rpc_task
*task
)
138 if (RPC_IS_QUEUED(task
))
140 if (test_and_clear_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
)) {
141 del_singleshot_timer_sync(&task
->tk_timer
);
142 dprintk("RPC: %4d deleting timer\n", task
->tk_pid
);
147 * Add new request to a priority queue.
149 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
154 INIT_LIST_HEAD(&task
->u
.tk_wait
.links
);
155 q
= &queue
->tasks
[task
->tk_priority
];
156 if (unlikely(task
->tk_priority
> queue
->maxpriority
))
157 q
= &queue
->tasks
[queue
->maxpriority
];
158 list_for_each_entry(t
, q
, u
.tk_wait
.list
) {
159 if (t
->tk_cookie
== task
->tk_cookie
) {
160 list_add_tail(&task
->u
.tk_wait
.list
, &t
->u
.tk_wait
.links
);
164 list_add_tail(&task
->u
.tk_wait
.list
, q
);
168 * Add new request to wait queue.
170 * Swapper tasks always get inserted at the head of the queue.
171 * This should avoid many nasty memory deadlocks and hopefully
172 * improve overall performance.
173 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
175 static void __rpc_add_wait_queue(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
177 BUG_ON (RPC_IS_QUEUED(task
));
179 if (RPC_IS_PRIORITY(queue
))
180 __rpc_add_wait_queue_priority(queue
, task
);
181 else if (RPC_IS_SWAPPER(task
))
182 list_add(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
184 list_add_tail(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
185 task
->u
.tk_wait
.rpc_waitq
= queue
;
186 rpc_set_queued(task
);
188 dprintk("RPC: %4d added to queue %p \"%s\"\n",
189 task
->tk_pid
, queue
, rpc_qname(queue
));
193 * Remove request from a priority queue.
195 static void __rpc_remove_wait_queue_priority(struct rpc_task
*task
)
199 if (!list_empty(&task
->u
.tk_wait
.links
)) {
200 t
= list_entry(task
->u
.tk_wait
.links
.next
, struct rpc_task
, u
.tk_wait
.list
);
201 list_move(&t
->u
.tk_wait
.list
, &task
->u
.tk_wait
.list
);
202 list_splice_init(&task
->u
.tk_wait
.links
, &t
->u
.tk_wait
.links
);
204 list_del(&task
->u
.tk_wait
.list
);
208 * Remove request from queue.
209 * Note: must be called with spin lock held.
211 static void __rpc_remove_wait_queue(struct rpc_task
*task
)
213 struct rpc_wait_queue
*queue
;
214 queue
= task
->u
.tk_wait
.rpc_waitq
;
216 if (RPC_IS_PRIORITY(queue
))
217 __rpc_remove_wait_queue_priority(task
);
219 list_del(&task
->u
.tk_wait
.list
);
220 dprintk("RPC: %4d removed from queue %p \"%s\"\n",
221 task
->tk_pid
, queue
, rpc_qname(queue
));
224 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue
*queue
, int priority
)
226 queue
->priority
= priority
;
227 queue
->count
= 1 << (priority
* 2);
230 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue
*queue
, unsigned long cookie
)
232 queue
->cookie
= cookie
;
233 queue
->nr
= RPC_BATCH_COUNT
;
236 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue
*queue
)
238 rpc_set_waitqueue_priority(queue
, queue
->maxpriority
);
239 rpc_set_waitqueue_cookie(queue
, 0);
242 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
, int maxprio
)
246 spin_lock_init(&queue
->lock
);
247 for (i
= 0; i
< ARRAY_SIZE(queue
->tasks
); i
++)
248 INIT_LIST_HEAD(&queue
->tasks
[i
]);
249 queue
->maxpriority
= maxprio
;
250 rpc_reset_waitqueue_priority(queue
);
256 void rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
258 __rpc_init_priority_wait_queue(queue
, qname
, RPC_PRIORITY_HIGH
);
261 void rpc_init_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
263 __rpc_init_priority_wait_queue(queue
, qname
, 0);
265 EXPORT_SYMBOL(rpc_init_wait_queue
);
268 * Make an RPC task runnable.
270 * Note: If the task is ASYNC, this must be called with
271 * the spinlock held to protect the wait queue operation.
273 static void rpc_make_runnable(struct rpc_task
*task
)
277 BUG_ON(task
->tk_timeout_fn
);
278 do_ret
= rpc_test_and_set_running(task
);
279 rpc_clear_queued(task
);
282 if (RPC_IS_ASYNC(task
)) {
285 INIT_WORK(&task
->u
.tk_work
, rpc_async_schedule
, (void *)task
);
286 status
= queue_work(task
->tk_workqueue
, &task
->u
.tk_work
);
288 printk(KERN_WARNING
"RPC: failed to add task to queue: error: %d!\n", status
);
289 task
->tk_status
= status
;
293 wake_up(&task
->u
.tk_wait
.waitq
);
297 * Place a newly initialized task on the workqueue.
300 rpc_schedule_run(struct rpc_task
*task
)
302 /* Don't run a child twice! */
303 if (RPC_IS_ACTIVATED(task
))
306 rpc_make_runnable(task
);
310 * Prepare for sleeping on a wait queue.
311 * By always appending tasks to the list we ensure FIFO behavior.
312 * NB: An RPC task will only receive interrupt-driven events as long
313 * as it's on a wait queue.
315 static void __rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
316 rpc_action action
, rpc_action timer
)
318 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task
->tk_pid
,
319 rpc_qname(q
), jiffies
);
321 if (!RPC_IS_ASYNC(task
) && !RPC_IS_ACTIVATED(task
)) {
322 printk(KERN_ERR
"RPC: Inactive synchronous task put to sleep!\n");
326 /* Mark the task as being activated if so needed */
327 if (!RPC_IS_ACTIVATED(task
))
330 __rpc_add_wait_queue(q
, task
);
332 BUG_ON(task
->tk_callback
!= NULL
);
333 task
->tk_callback
= action
;
334 __rpc_add_timer(task
, timer
);
337 void rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
338 rpc_action action
, rpc_action timer
)
341 * Protect the queue operations.
343 spin_lock_bh(&q
->lock
);
344 __rpc_sleep_on(q
, task
, action
, timer
);
345 spin_unlock_bh(&q
->lock
);
349 * __rpc_do_wake_up_task - wake up a single rpc_task
350 * @task: task to be woken up
352 * Caller must hold queue->lock, and have cleared the task queued flag.
354 static void __rpc_do_wake_up_task(struct rpc_task
*task
)
356 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task
->tk_pid
, jiffies
);
359 BUG_ON(task
->tk_magic
!= RPC_TASK_MAGIC_ID
);
361 /* Has the task been executed yet? If not, we cannot wake it up! */
362 if (!RPC_IS_ACTIVATED(task
)) {
363 printk(KERN_ERR
"RPC: Inactive task (%p) being woken up!\n", task
);
367 __rpc_disable_timer(task
);
368 __rpc_remove_wait_queue(task
);
370 rpc_make_runnable(task
);
372 dprintk("RPC: __rpc_wake_up_task done\n");
376 * Wake up the specified task
378 static void __rpc_wake_up_task(struct rpc_task
*task
)
380 if (rpc_start_wakeup(task
)) {
381 if (RPC_IS_QUEUED(task
))
382 __rpc_do_wake_up_task(task
);
383 rpc_finish_wakeup(task
);
388 * Default timeout handler if none specified by user
391 __rpc_default_timer(struct rpc_task
*task
)
393 dprintk("RPC: %d timeout (default timer)\n", task
->tk_pid
);
394 task
->tk_status
= -ETIMEDOUT
;
395 rpc_wake_up_task(task
);
399 * Wake up the specified task
401 void rpc_wake_up_task(struct rpc_task
*task
)
403 if (rpc_start_wakeup(task
)) {
404 if (RPC_IS_QUEUED(task
)) {
405 struct rpc_wait_queue
*queue
= task
->u
.tk_wait
.rpc_waitq
;
407 spin_lock_bh(&queue
->lock
);
408 __rpc_do_wake_up_task(task
);
409 spin_unlock_bh(&queue
->lock
);
411 rpc_finish_wakeup(task
);
416 * Wake up the next task on a priority queue.
418 static struct rpc_task
* __rpc_wake_up_next_priority(struct rpc_wait_queue
*queue
)
421 struct rpc_task
*task
;
424 * Service a batch of tasks from a single cookie.
426 q
= &queue
->tasks
[queue
->priority
];
427 if (!list_empty(q
)) {
428 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
429 if (queue
->cookie
== task
->tk_cookie
) {
432 list_move_tail(&task
->u
.tk_wait
.list
, q
);
435 * Check if we need to switch queues.
442 * Service the next queue.
445 if (q
== &queue
->tasks
[0])
446 q
= &queue
->tasks
[queue
->maxpriority
];
449 if (!list_empty(q
)) {
450 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
453 } while (q
!= &queue
->tasks
[queue
->priority
]);
455 rpc_reset_waitqueue_priority(queue
);
459 rpc_set_waitqueue_priority(queue
, (unsigned int)(q
- &queue
->tasks
[0]));
461 rpc_set_waitqueue_cookie(queue
, task
->tk_cookie
);
463 __rpc_wake_up_task(task
);
468 * Wake up the next task on the wait queue.
470 struct rpc_task
* rpc_wake_up_next(struct rpc_wait_queue
*queue
)
472 struct rpc_task
*task
= NULL
;
474 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue
, rpc_qname(queue
));
475 spin_lock_bh(&queue
->lock
);
476 if (RPC_IS_PRIORITY(queue
))
477 task
= __rpc_wake_up_next_priority(queue
);
479 task_for_first(task
, &queue
->tasks
[0])
480 __rpc_wake_up_task(task
);
482 spin_unlock_bh(&queue
->lock
);
488 * rpc_wake_up - wake up all rpc_tasks
489 * @queue: rpc_wait_queue on which the tasks are sleeping
493 void rpc_wake_up(struct rpc_wait_queue
*queue
)
495 struct rpc_task
*task
;
497 struct list_head
*head
;
498 spin_lock_bh(&queue
->lock
);
499 head
= &queue
->tasks
[queue
->maxpriority
];
501 while (!list_empty(head
)) {
502 task
= list_entry(head
->next
, struct rpc_task
, u
.tk_wait
.list
);
503 __rpc_wake_up_task(task
);
505 if (head
== &queue
->tasks
[0])
509 spin_unlock_bh(&queue
->lock
);
513 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
514 * @queue: rpc_wait_queue on which the tasks are sleeping
515 * @status: status value to set
519 void rpc_wake_up_status(struct rpc_wait_queue
*queue
, int status
)
521 struct list_head
*head
;
522 struct rpc_task
*task
;
524 spin_lock_bh(&queue
->lock
);
525 head
= &queue
->tasks
[queue
->maxpriority
];
527 while (!list_empty(head
)) {
528 task
= list_entry(head
->next
, struct rpc_task
, u
.tk_wait
.list
);
529 task
->tk_status
= status
;
530 __rpc_wake_up_task(task
);
532 if (head
== &queue
->tasks
[0])
536 spin_unlock_bh(&queue
->lock
);
540 * Run a task at a later time
542 static void __rpc_atrun(struct rpc_task
*);
544 rpc_delay(struct rpc_task
*task
, unsigned long delay
)
546 task
->tk_timeout
= delay
;
547 rpc_sleep_on(&delay_queue
, task
, NULL
, __rpc_atrun
);
551 __rpc_atrun(struct rpc_task
*task
)
554 rpc_wake_up_task(task
);
558 * This is the RPC `scheduler' (or rather, the finite state machine).
560 static int __rpc_execute(struct rpc_task
*task
)
564 dprintk("RPC: %4d rpc_execute flgs %x\n",
565 task
->tk_pid
, task
->tk_flags
);
567 BUG_ON(RPC_IS_QUEUED(task
));
572 * Garbage collection of pending timers...
574 rpc_delete_timer(task
);
577 * Execute any pending callback.
579 if (RPC_DO_CALLBACK(task
)) {
580 /* Define a callback save pointer */
581 void (*save_callback
)(struct rpc_task
*);
584 * If a callback exists, save it, reset it,
586 * The save is needed to stop from resetting
587 * another callback set within the callback handler
590 save_callback
=task
->tk_callback
;
591 task
->tk_callback
=NULL
;
598 * Perform the next FSM step.
599 * tk_action may be NULL when the task has been killed
602 if (!RPC_IS_QUEUED(task
)) {
603 if (!task
->tk_action
)
606 task
->tk_action(task
);
611 * Lockless check for whether task is sleeping or not.
613 if (!RPC_IS_QUEUED(task
))
615 rpc_clear_running(task
);
616 if (RPC_IS_ASYNC(task
)) {
617 /* Careful! we may have raced... */
618 if (RPC_IS_QUEUED(task
))
620 if (rpc_test_and_set_running(task
))
625 /* sync task: sleep here */
626 dprintk("RPC: %4d sync task going to sleep\n", task
->tk_pid
);
627 if (RPC_TASK_UNINTERRUPTIBLE(task
)) {
628 __wait_event(task
->u
.tk_wait
.waitq
, !RPC_IS_QUEUED(task
));
630 __wait_event_interruptible(task
->u
.tk_wait
.waitq
, !RPC_IS_QUEUED(task
), status
);
632 * When a sync task receives a signal, it exits with
633 * -ERESTARTSYS. In order to catch any callbacks that
634 * clean up after sleeping on some queue, we don't
635 * break the loop here, but go around once more.
637 if (status
== -ERESTARTSYS
) {
638 dprintk("RPC: %4d got signal\n", task
->tk_pid
);
639 task
->tk_flags
|= RPC_TASK_KILLED
;
640 rpc_exit(task
, -ERESTARTSYS
);
641 rpc_wake_up_task(task
);
644 rpc_set_running(task
);
645 dprintk("RPC: %4d sync task resuming\n", task
->tk_pid
);
652 /* If tk_action is non-null, the user wants us to restart */
653 if (task
->tk_action
) {
654 if (!RPC_ASSASSINATED(task
)) {
655 /* Release RPC slot and buffer memory */
661 printk(KERN_ERR
"RPC: dead task tries to walk away.\n");
665 dprintk("RPC: %4d exit() = %d\n", task
->tk_pid
, task
->tk_status
);
666 status
= task
->tk_status
;
668 /* Release all resources associated with the task */
669 rpc_release_task(task
);
674 * User-visible entry point to the scheduler.
676 * This may be called recursively if e.g. an async NFS task updates
677 * the attributes and finds that dirty pages must be flushed.
678 * NOTE: Upon exit of this function the task is guaranteed to be
679 * released. In particular note that tk_release() will have
680 * been called, so your task memory may have been freed.
683 rpc_execute(struct rpc_task
*task
)
685 BUG_ON(task
->tk_active
);
688 rpc_set_running(task
);
689 return __rpc_execute(task
);
692 static void rpc_async_schedule(void *arg
)
694 __rpc_execute((struct rpc_task
*)arg
);
698 * Allocate memory for RPC purposes.
700 * We try to ensure that some NFS reads and writes can always proceed
701 * by using a mempool when allocating 'small' buffers.
702 * In order to avoid memory starvation triggering more writebacks of
703 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
706 rpc_malloc(struct rpc_task
*task
, size_t size
)
710 if (task
->tk_flags
& RPC_TASK_SWAPPER
)
715 if (size
> RPC_BUFFER_MAXSIZE
) {
716 task
->tk_buffer
= kmalloc(size
, gfp
);
718 task
->tk_bufsize
= size
;
720 task
->tk_buffer
= mempool_alloc(rpc_buffer_mempool
, gfp
);
722 task
->tk_bufsize
= RPC_BUFFER_MAXSIZE
;
724 return task
->tk_buffer
;
728 rpc_free(struct rpc_task
*task
)
730 if (task
->tk_buffer
) {
731 if (task
->tk_bufsize
== RPC_BUFFER_MAXSIZE
)
732 mempool_free(task
->tk_buffer
, rpc_buffer_mempool
);
734 kfree(task
->tk_buffer
);
735 task
->tk_buffer
= NULL
;
736 task
->tk_bufsize
= 0;
741 * Creation and deletion of RPC task structures
743 void rpc_init_task(struct rpc_task
*task
, struct rpc_clnt
*clnt
, rpc_action callback
, int flags
)
745 memset(task
, 0, sizeof(*task
));
746 init_timer(&task
->tk_timer
);
747 task
->tk_timer
.data
= (unsigned long) task
;
748 task
->tk_timer
.function
= (void (*)(unsigned long)) rpc_run_timer
;
749 task
->tk_client
= clnt
;
750 task
->tk_flags
= flags
;
751 task
->tk_exit
= callback
;
753 /* Initialize retry counters */
754 task
->tk_garb_retry
= 2;
755 task
->tk_cred_retry
= 2;
757 task
->tk_priority
= RPC_PRIORITY_NORMAL
;
758 task
->tk_cookie
= (unsigned long)current
;
760 /* Initialize workqueue for async tasks */
761 task
->tk_workqueue
= rpciod_workqueue
;
762 if (!RPC_IS_ASYNC(task
))
763 init_waitqueue_head(&task
->u
.tk_wait
.waitq
);
766 atomic_inc(&clnt
->cl_users
);
767 if (clnt
->cl_softrtry
)
768 task
->tk_flags
|= RPC_TASK_SOFT
;
770 task
->tk_flags
|= RPC_TASK_NOINTR
;
774 task
->tk_magic
= RPC_TASK_MAGIC_ID
;
775 task
->tk_pid
= rpc_task_id
++;
777 /* Add to global list of all tasks */
778 spin_lock(&rpc_sched_lock
);
779 list_add_tail(&task
->tk_task
, &all_tasks
);
780 spin_unlock(&rpc_sched_lock
);
782 dprintk("RPC: %4d new task procpid %d\n", task
->tk_pid
,
786 static struct rpc_task
*
789 return (struct rpc_task
*)mempool_alloc(rpc_task_mempool
, GFP_NOFS
);
793 rpc_default_free_task(struct rpc_task
*task
)
795 dprintk("RPC: %4d freeing task\n", task
->tk_pid
);
796 mempool_free(task
, rpc_task_mempool
);
800 * Create a new task for the specified client. We have to
801 * clean up after an allocation failure, as the client may
802 * have specified "oneshot".
805 rpc_new_task(struct rpc_clnt
*clnt
, rpc_action callback
, int flags
)
807 struct rpc_task
*task
;
809 task
= rpc_alloc_task();
813 rpc_init_task(task
, clnt
, callback
, flags
);
815 /* Replace tk_release */
816 task
->tk_release
= rpc_default_free_task
;
818 dprintk("RPC: %4d allocated task\n", task
->tk_pid
);
819 task
->tk_flags
|= RPC_TASK_DYNAMIC
;
824 /* Check whether to release the client */
826 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
827 atomic_read(&clnt
->cl_users
), clnt
->cl_oneshot
);
828 atomic_inc(&clnt
->cl_users
); /* pretend we were used ... */
829 rpc_release_client(clnt
);
834 void rpc_release_task(struct rpc_task
*task
)
836 dprintk("RPC: %4d release task\n", task
->tk_pid
);
839 BUG_ON(task
->tk_magic
!= RPC_TASK_MAGIC_ID
);
842 /* Remove from global task list */
843 spin_lock(&rpc_sched_lock
);
844 list_del(&task
->tk_task
);
845 spin_unlock(&rpc_sched_lock
);
847 BUG_ON (RPC_IS_QUEUED(task
));
850 /* Synchronously delete any running timer */
851 rpc_delete_timer(task
);
853 /* Release resources */
856 if (task
->tk_msg
.rpc_cred
)
857 rpcauth_unbindcred(task
);
859 if (task
->tk_client
) {
860 rpc_release_client(task
->tk_client
);
861 task
->tk_client
= NULL
;
867 if (task
->tk_release
)
868 task
->tk_release(task
);
872 * rpc_find_parent - find the parent of a child task.
875 * Checks that the parent task is still sleeping on the
876 * queue 'childq'. If so returns a pointer to the parent.
877 * Upon failure returns NULL.
879 * Caller must hold childq.lock
881 static inline struct rpc_task
*rpc_find_parent(struct rpc_task
*child
)
883 struct rpc_task
*task
, *parent
;
884 struct list_head
*le
;
886 parent
= (struct rpc_task
*) child
->tk_calldata
;
887 task_for_each(task
, le
, &childq
.tasks
[0])
894 static void rpc_child_exit(struct rpc_task
*child
)
896 struct rpc_task
*parent
;
898 spin_lock_bh(&childq
.lock
);
899 if ((parent
= rpc_find_parent(child
)) != NULL
) {
900 parent
->tk_status
= child
->tk_status
;
901 __rpc_wake_up_task(parent
);
903 spin_unlock_bh(&childq
.lock
);
907 * Note: rpc_new_task releases the client after a failure.
910 rpc_new_child(struct rpc_clnt
*clnt
, struct rpc_task
*parent
)
912 struct rpc_task
*task
;
914 task
= rpc_new_task(clnt
, NULL
, RPC_TASK_ASYNC
| RPC_TASK_CHILD
);
917 task
->tk_exit
= rpc_child_exit
;
918 task
->tk_calldata
= parent
;
922 parent
->tk_status
= -ENOMEM
;
926 void rpc_run_child(struct rpc_task
*task
, struct rpc_task
*child
, rpc_action func
)
928 spin_lock_bh(&childq
.lock
);
929 /* N.B. Is it possible for the child to have already finished? */
930 __rpc_sleep_on(&childq
, task
, func
, NULL
);
931 rpc_schedule_run(child
);
932 spin_unlock_bh(&childq
.lock
);
936 * Kill all tasks for the given client.
937 * XXX: kill their descendants as well?
939 void rpc_killall_tasks(struct rpc_clnt
*clnt
)
941 struct rpc_task
*rovr
;
942 struct list_head
*le
;
944 dprintk("RPC: killing all tasks for client %p\n", clnt
);
947 * Spin lock all_tasks to prevent changes...
949 spin_lock(&rpc_sched_lock
);
950 alltask_for_each(rovr
, le
, &all_tasks
) {
951 if (! RPC_IS_ACTIVATED(rovr
))
953 if (!clnt
|| rovr
->tk_client
== clnt
) {
954 rovr
->tk_flags
|= RPC_TASK_KILLED
;
955 rpc_exit(rovr
, -EIO
);
956 rpc_wake_up_task(rovr
);
959 spin_unlock(&rpc_sched_lock
);
962 static DECLARE_MUTEX_LOCKED(rpciod_running
);
964 static void rpciod_killall(void)
968 while (!list_empty(&all_tasks
)) {
969 clear_thread_flag(TIF_SIGPENDING
);
970 rpc_killall_tasks(NULL
);
971 flush_workqueue(rpciod_workqueue
);
972 if (!list_empty(&all_tasks
)) {
973 dprintk("rpciod_killall: waiting for tasks to exit\n");
978 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
980 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
984 * Start up the rpciod process if it's not already running.
989 struct workqueue_struct
*wq
;
993 dprintk("rpciod_up: users %d\n", rpciod_users
);
995 if (rpciod_workqueue
)
998 * If there's no pid, we should be the first user.
1000 if (rpciod_users
> 1)
1001 printk(KERN_WARNING
"rpciod_up: no workqueue, %d users??\n", rpciod_users
);
1003 * Create the rpciod thread and wait for it to start.
1006 wq
= create_workqueue("rpciod");
1008 printk(KERN_WARNING
"rpciod_up: create workqueue failed, error=%d\n", error
);
1012 rpciod_workqueue
= wq
;
1023 dprintk("rpciod_down sema %d\n", rpciod_users
);
1028 printk(KERN_WARNING
"rpciod_down: no users??\n");
1030 if (!rpciod_workqueue
) {
1031 dprintk("rpciod_down: Nothing to do!\n");
1036 destroy_workqueue(rpciod_workqueue
);
1037 rpciod_workqueue
= NULL
;
1043 void rpc_show_tasks(void)
1045 struct list_head
*le
;
1048 spin_lock(&rpc_sched_lock
);
1049 if (list_empty(&all_tasks
)) {
1050 spin_unlock(&rpc_sched_lock
);
1053 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1054 "-rpcwait -action- --exit--\n");
1055 alltask_for_each(t
, le
, &all_tasks
) {
1056 const char *rpc_waitq
= "none";
1058 if (RPC_IS_QUEUED(t
))
1059 rpc_waitq
= rpc_qname(t
->u
.tk_wait
.rpc_waitq
);
1061 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1063 (t
->tk_msg
.rpc_proc
? t
->tk_msg
.rpc_proc
->p_proc
: -1),
1064 t
->tk_flags
, t
->tk_status
,
1066 (t
->tk_client
? t
->tk_client
->cl_prog
: 0),
1067 t
->tk_rqstp
, t
->tk_timeout
,
1069 t
->tk_action
, t
->tk_exit
);
1071 spin_unlock(&rpc_sched_lock
);
1076 rpc_destroy_mempool(void)
1078 if (rpc_buffer_mempool
)
1079 mempool_destroy(rpc_buffer_mempool
);
1080 if (rpc_task_mempool
)
1081 mempool_destroy(rpc_task_mempool
);
1082 if (rpc_task_slabp
&& kmem_cache_destroy(rpc_task_slabp
))
1083 printk(KERN_INFO
"rpc_task: not all structures were freed\n");
1084 if (rpc_buffer_slabp
&& kmem_cache_destroy(rpc_buffer_slabp
))
1085 printk(KERN_INFO
"rpc_buffers: not all structures were freed\n");
1089 rpc_init_mempool(void)
1091 rpc_task_slabp
= kmem_cache_create("rpc_tasks",
1092 sizeof(struct rpc_task
),
1093 0, SLAB_HWCACHE_ALIGN
,
1095 if (!rpc_task_slabp
)
1097 rpc_buffer_slabp
= kmem_cache_create("rpc_buffers",
1099 0, SLAB_HWCACHE_ALIGN
,
1101 if (!rpc_buffer_slabp
)
1103 rpc_task_mempool
= mempool_create(RPC_TASK_POOLSIZE
,
1107 if (!rpc_task_mempool
)
1109 rpc_buffer_mempool
= mempool_create(RPC_BUFFER_POOLSIZE
,
1113 if (!rpc_buffer_mempool
)
1117 rpc_destroy_mempool();