[MTD] [OneNAND] Check the initial bad block using ONENAND_CTRL_ERROR
[linux-2.6/mini2440.git] / include / asm-ia64 / bitops.h
bloba977affaebeca34b02b1e9bb991f4ad83cd35281
1 #ifndef _ASM_IA64_BITOPS_H
2 #define _ASM_IA64_BITOPS_H
4 /*
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
9 * O(1) scheduler patch
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
14 #endif
16 #include <linux/compiler.h>
17 #include <linux/types.h>
18 #include <asm/intrinsics.h>
20 /**
21 * set_bit - Atomically set a bit in memory
22 * @nr: the bit to set
23 * @addr: the address to start counting from
25 * This function is atomic and may not be reordered. See __set_bit()
26 * if you do not require the atomic guarantees.
27 * Note that @nr may be almost arbitrarily large; this function is not
28 * restricted to acting on a single-word quantity.
30 * The address must be (at least) "long" aligned.
31 * Note that there are driver (e.g., eepro100) which use these operations to
32 * operate on hw-defined data-structures, so we can't easily change these
33 * operations to force a bigger alignment.
35 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37 static __inline__ void
38 set_bit (int nr, volatile void *addr)
40 __u32 bit, old, new;
41 volatile __u32 *m;
42 CMPXCHG_BUGCHECK_DECL
44 m = (volatile __u32 *) addr + (nr >> 5);
45 bit = 1 << (nr & 31);
46 do {
47 CMPXCHG_BUGCHECK(m);
48 old = *m;
49 new = old | bit;
50 } while (cmpxchg_acq(m, old, new) != old);
53 /**
54 * __set_bit - Set a bit in memory
55 * @nr: the bit to set
56 * @addr: the address to start counting from
58 * Unlike set_bit(), this function is non-atomic and may be reordered.
59 * If it's called on the same region of memory simultaneously, the effect
60 * may be that only one operation succeeds.
62 static __inline__ void
63 __set_bit (int nr, volatile void *addr)
65 *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
69 * clear_bit() has "acquire" semantics.
71 #define smp_mb__before_clear_bit() smp_mb()
72 #define smp_mb__after_clear_bit() do { /* skip */; } while (0)
74 /**
75 * clear_bit - Clears a bit in memory
76 * @nr: Bit to clear
77 * @addr: Address to start counting from
79 * clear_bit() is atomic and may not be reordered. However, it does
80 * not contain a memory barrier, so if it is used for locking purposes,
81 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
82 * in order to ensure changes are visible on other processors.
84 static __inline__ void
85 clear_bit (int nr, volatile void *addr)
87 __u32 mask, old, new;
88 volatile __u32 *m;
89 CMPXCHG_BUGCHECK_DECL
91 m = (volatile __u32 *) addr + (nr >> 5);
92 mask = ~(1 << (nr & 31));
93 do {
94 CMPXCHG_BUGCHECK(m);
95 old = *m;
96 new = old & mask;
97 } while (cmpxchg_acq(m, old, new) != old);
101 * clear_bit_unlock - Clears a bit in memory with release
102 * @nr: Bit to clear
103 * @addr: Address to start counting from
105 * clear_bit_unlock() is atomic and may not be reordered. It does
106 * contain a memory barrier suitable for unlock type operations.
108 static __inline__ void
109 clear_bit_unlock (int nr, volatile void *addr)
111 __u32 mask, old, new;
112 volatile __u32 *m;
113 CMPXCHG_BUGCHECK_DECL
115 m = (volatile __u32 *) addr + (nr >> 5);
116 mask = ~(1 << (nr & 31));
117 do {
118 CMPXCHG_BUGCHECK(m);
119 old = *m;
120 new = old & mask;
121 } while (cmpxchg_rel(m, old, new) != old);
125 * __clear_bit_unlock - Non-atomically clear a bit with release
127 * This is like clear_bit_unlock, but the implementation may use a non-atomic
128 * store (this one uses an atomic, however).
130 #define __clear_bit_unlock clear_bit_unlock
133 * __clear_bit - Clears a bit in memory (non-atomic version)
135 static __inline__ void
136 __clear_bit (int nr, volatile void *addr)
138 volatile __u32 *p = (__u32 *) addr + (nr >> 5);
139 __u32 m = 1 << (nr & 31);
140 *p &= ~m;
144 * change_bit - Toggle a bit in memory
145 * @nr: Bit to clear
146 * @addr: Address to start counting from
148 * change_bit() is atomic and may not be reordered.
149 * Note that @nr may be almost arbitrarily large; this function is not
150 * restricted to acting on a single-word quantity.
152 static __inline__ void
153 change_bit (int nr, volatile void *addr)
155 __u32 bit, old, new;
156 volatile __u32 *m;
157 CMPXCHG_BUGCHECK_DECL
159 m = (volatile __u32 *) addr + (nr >> 5);
160 bit = (1 << (nr & 31));
161 do {
162 CMPXCHG_BUGCHECK(m);
163 old = *m;
164 new = old ^ bit;
165 } while (cmpxchg_acq(m, old, new) != old);
169 * __change_bit - Toggle a bit in memory
170 * @nr: the bit to set
171 * @addr: the address to start counting from
173 * Unlike change_bit(), this function is non-atomic and may be reordered.
174 * If it's called on the same region of memory simultaneously, the effect
175 * may be that only one operation succeeds.
177 static __inline__ void
178 __change_bit (int nr, volatile void *addr)
180 *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
184 * test_and_set_bit - Set a bit and return its old value
185 * @nr: Bit to set
186 * @addr: Address to count from
188 * This operation is atomic and cannot be reordered.
189 * It also implies a memory barrier.
191 static __inline__ int
192 test_and_set_bit (int nr, volatile void *addr)
194 __u32 bit, old, new;
195 volatile __u32 *m;
196 CMPXCHG_BUGCHECK_DECL
198 m = (volatile __u32 *) addr + (nr >> 5);
199 bit = 1 << (nr & 31);
200 do {
201 CMPXCHG_BUGCHECK(m);
202 old = *m;
203 new = old | bit;
204 } while (cmpxchg_acq(m, old, new) != old);
205 return (old & bit) != 0;
209 * test_and_set_bit_lock - Set a bit and return its old value for lock
210 * @nr: Bit to set
211 * @addr: Address to count from
213 * This is the same as test_and_set_bit on ia64
215 #define test_and_set_bit_lock test_and_set_bit
218 * __test_and_set_bit - Set a bit and return its old value
219 * @nr: Bit to set
220 * @addr: Address to count from
222 * This operation is non-atomic and can be reordered.
223 * If two examples of this operation race, one can appear to succeed
224 * but actually fail. You must protect multiple accesses with a lock.
226 static __inline__ int
227 __test_and_set_bit (int nr, volatile void *addr)
229 __u32 *p = (__u32 *) addr + (nr >> 5);
230 __u32 m = 1 << (nr & 31);
231 int oldbitset = (*p & m) != 0;
233 *p |= m;
234 return oldbitset;
238 * test_and_clear_bit - Clear a bit and return its old value
239 * @nr: Bit to set
240 * @addr: Address to count from
242 * This operation is atomic and cannot be reordered.
243 * It also implies a memory barrier.
245 static __inline__ int
246 test_and_clear_bit (int nr, volatile void *addr)
248 __u32 mask, old, new;
249 volatile __u32 *m;
250 CMPXCHG_BUGCHECK_DECL
252 m = (volatile __u32 *) addr + (nr >> 5);
253 mask = ~(1 << (nr & 31));
254 do {
255 CMPXCHG_BUGCHECK(m);
256 old = *m;
257 new = old & mask;
258 } while (cmpxchg_acq(m, old, new) != old);
259 return (old & ~mask) != 0;
263 * __test_and_clear_bit - Clear a bit and return its old value
264 * @nr: Bit to set
265 * @addr: Address to count from
267 * This operation is non-atomic and can be reordered.
268 * If two examples of this operation race, one can appear to succeed
269 * but actually fail. You must protect multiple accesses with a lock.
271 static __inline__ int
272 __test_and_clear_bit(int nr, volatile void * addr)
274 __u32 *p = (__u32 *) addr + (nr >> 5);
275 __u32 m = 1 << (nr & 31);
276 int oldbitset = *p & m;
278 *p &= ~m;
279 return oldbitset;
283 * test_and_change_bit - Change a bit and return its old value
284 * @nr: Bit to set
285 * @addr: Address to count from
287 * This operation is atomic and cannot be reordered.
288 * It also implies a memory barrier.
290 static __inline__ int
291 test_and_change_bit (int nr, volatile void *addr)
293 __u32 bit, old, new;
294 volatile __u32 *m;
295 CMPXCHG_BUGCHECK_DECL
297 m = (volatile __u32 *) addr + (nr >> 5);
298 bit = (1 << (nr & 31));
299 do {
300 CMPXCHG_BUGCHECK(m);
301 old = *m;
302 new = old ^ bit;
303 } while (cmpxchg_acq(m, old, new) != old);
304 return (old & bit) != 0;
308 * WARNING: non atomic version.
310 static __inline__ int
311 __test_and_change_bit (int nr, void *addr)
313 __u32 old, bit = (1 << (nr & 31));
314 __u32 *m = (__u32 *) addr + (nr >> 5);
316 old = *m;
317 *m = old ^ bit;
318 return (old & bit) != 0;
321 static __inline__ int
322 test_bit (int nr, const volatile void *addr)
324 return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
328 * ffz - find the first zero bit in a long word
329 * @x: The long word to find the bit in
331 * Returns the bit-number (0..63) of the first (least significant) zero bit.
332 * Undefined if no zero exists, so code should check against ~0UL first...
334 static inline unsigned long
335 ffz (unsigned long x)
337 unsigned long result;
339 result = ia64_popcnt(x & (~x - 1));
340 return result;
344 * __ffs - find first bit in word.
345 * @x: The word to search
347 * Undefined if no bit exists, so code should check against 0 first.
349 static __inline__ unsigned long
350 __ffs (unsigned long x)
352 unsigned long result;
354 result = ia64_popcnt((x-1) & ~x);
355 return result;
358 #ifdef __KERNEL__
361 * Return bit number of last (most-significant) bit set. Undefined
362 * for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
364 static inline unsigned long
365 ia64_fls (unsigned long x)
367 long double d = x;
368 long exp;
370 exp = ia64_getf_exp(d);
371 return exp - 0xffff;
375 * Find the last (most significant) bit set. Returns 0 for x==0 and
376 * bits are numbered from 1..32 (e.g., fls(9) == 4).
378 static inline int
379 fls (int t)
381 unsigned long x = t & 0xffffffffu;
383 if (!x)
384 return 0;
385 x |= x >> 1;
386 x |= x >> 2;
387 x |= x >> 4;
388 x |= x >> 8;
389 x |= x >> 16;
390 return ia64_popcnt(x);
393 #include <asm-generic/bitops/fls64.h>
396 * ffs: find first bit set. This is defined the same way as the libc and
397 * compiler builtin ffs routines, therefore differs in spirit from the above
398 * ffz (man ffs): it operates on "int" values only and the result value is the
399 * bit number + 1. ffs(0) is defined to return zero.
401 #define ffs(x) __builtin_ffs(x)
404 * hweightN: returns the hamming weight (i.e. the number
405 * of bits set) of a N-bit word
407 static __inline__ unsigned long
408 hweight64 (unsigned long x)
410 unsigned long result;
411 result = ia64_popcnt(x);
412 return result;
415 #define hweight32(x) (unsigned int) hweight64((x) & 0xfffffffful)
416 #define hweight16(x) (unsigned int) hweight64((x) & 0xfffful)
417 #define hweight8(x) (unsigned int) hweight64((x) & 0xfful)
419 #endif /* __KERNEL__ */
421 #include <asm-generic/bitops/find.h>
423 #ifdef __KERNEL__
425 #include <asm-generic/bitops/ext2-non-atomic.h>
427 #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a)
428 #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a)
430 #include <asm-generic/bitops/minix.h>
431 #include <asm-generic/bitops/sched.h>
433 #endif /* __KERNEL__ */
435 #endif /* _ASM_IA64_BITOPS_H */