2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <linux/async.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/byteorder.h>
65 #include <linux/cdrom.h>
70 /* debounce timing parameters in msecs { interval, duration, timeout } */
71 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
72 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
73 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
75 const struct ata_port_operations ata_base_port_ops
= {
76 .prereset
= ata_std_prereset
,
77 .postreset
= ata_std_postreset
,
78 .error_handler
= ata_std_error_handler
,
81 const struct ata_port_operations sata_port_ops
= {
82 .inherits
= &ata_base_port_ops
,
84 .qc_defer
= ata_std_qc_defer
,
85 .hardreset
= sata_std_hardreset
,
88 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
89 u16 heads
, u16 sectors
);
90 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
91 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
92 u8 enable
, u8 feature
);
93 static void ata_dev_xfermask(struct ata_device
*dev
);
94 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
96 unsigned int ata_print_id
= 1;
97 static struct workqueue_struct
*ata_wq
;
99 struct workqueue_struct
*ata_aux_wq
;
101 struct ata_force_param
{
105 unsigned long xfer_mask
;
106 unsigned int horkage_on
;
107 unsigned int horkage_off
;
111 struct ata_force_ent
{
114 struct ata_force_param param
;
117 static struct ata_force_ent
*ata_force_tbl
;
118 static int ata_force_tbl_size
;
120 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
121 /* param_buf is thrown away after initialization, disallow read */
122 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
123 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 static int atapi_enabled
= 1;
126 module_param(atapi_enabled
, int, 0444);
127 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
129 static int atapi_dmadir
= 0;
130 module_param(atapi_dmadir
, int, 0444);
131 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
133 int atapi_passthru16
= 1;
134 module_param(atapi_passthru16
, int, 0444);
135 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
138 module_param_named(fua
, libata_fua
, int, 0444);
139 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
141 static int ata_ignore_hpa
;
142 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
143 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
146 module_param_named(dma
, libata_dma_mask
, int, 0444);
147 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 static int ata_probe_timeout
;
150 module_param(ata_probe_timeout
, int, 0444);
151 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
153 int libata_noacpi
= 0;
154 module_param_named(noacpi
, libata_noacpi
, int, 0444);
155 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in probe/suspend/resume when set");
157 int libata_allow_tpm
= 0;
158 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
159 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands");
161 MODULE_AUTHOR("Jeff Garzik");
162 MODULE_DESCRIPTION("Library module for ATA devices");
163 MODULE_LICENSE("GPL");
164 MODULE_VERSION(DRV_VERSION
);
168 * ata_link_next - link iteration helper
169 * @link: the previous link, NULL to start
170 * @ap: ATA port containing links to iterate
171 * @mode: iteration mode, one of ATA_LITER_*
174 * Host lock or EH context.
177 * Pointer to the next link.
179 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
180 enum ata_link_iter_mode mode
)
182 BUG_ON(mode
!= ATA_LITER_EDGE
&&
183 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
185 /* NULL link indicates start of iteration */
189 case ATA_LITER_PMP_FIRST
:
190 if (sata_pmp_attached(ap
))
193 case ATA_LITER_HOST_FIRST
:
197 /* we just iterated over the host link, what's next? */
198 if (link
== &ap
->link
)
200 case ATA_LITER_HOST_FIRST
:
201 if (sata_pmp_attached(ap
))
204 case ATA_LITER_PMP_FIRST
:
205 if (unlikely(ap
->slave_link
))
206 return ap
->slave_link
;
212 /* slave_link excludes PMP */
213 if (unlikely(link
== ap
->slave_link
))
216 /* we were over a PMP link */
217 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
220 if (mode
== ATA_LITER_PMP_FIRST
)
227 * ata_dev_next - device iteration helper
228 * @dev: the previous device, NULL to start
229 * @link: ATA link containing devices to iterate
230 * @mode: iteration mode, one of ATA_DITER_*
233 * Host lock or EH context.
236 * Pointer to the next device.
238 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
239 enum ata_dev_iter_mode mode
)
241 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
242 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
244 /* NULL dev indicates start of iteration */
247 case ATA_DITER_ENABLED
:
251 case ATA_DITER_ENABLED_REVERSE
:
252 case ATA_DITER_ALL_REVERSE
:
253 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
258 /* move to the next one */
260 case ATA_DITER_ENABLED
:
262 if (++dev
< link
->device
+ ata_link_max_devices(link
))
265 case ATA_DITER_ENABLED_REVERSE
:
266 case ATA_DITER_ALL_REVERSE
:
267 if (--dev
>= link
->device
)
273 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
274 !ata_dev_enabled(dev
))
280 * ata_dev_phys_link - find physical link for a device
281 * @dev: ATA device to look up physical link for
283 * Look up physical link which @dev is attached to. Note that
284 * this is different from @dev->link only when @dev is on slave
285 * link. For all other cases, it's the same as @dev->link.
291 * Pointer to the found physical link.
293 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
295 struct ata_port
*ap
= dev
->link
->ap
;
301 return ap
->slave_link
;
305 * ata_force_cbl - force cable type according to libata.force
306 * @ap: ATA port of interest
308 * Force cable type according to libata.force and whine about it.
309 * The last entry which has matching port number is used, so it
310 * can be specified as part of device force parameters. For
311 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
317 void ata_force_cbl(struct ata_port
*ap
)
321 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
322 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
324 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
327 if (fe
->param
.cbl
== ATA_CBL_NONE
)
330 ap
->cbl
= fe
->param
.cbl
;
331 ata_port_printk(ap
, KERN_NOTICE
,
332 "FORCE: cable set to %s\n", fe
->param
.name
);
338 * ata_force_link_limits - force link limits according to libata.force
339 * @link: ATA link of interest
341 * Force link flags and SATA spd limit according to libata.force
342 * and whine about it. When only the port part is specified
343 * (e.g. 1:), the limit applies to all links connected to both
344 * the host link and all fan-out ports connected via PMP. If the
345 * device part is specified as 0 (e.g. 1.00:), it specifies the
346 * first fan-out link not the host link. Device number 15 always
347 * points to the host link whether PMP is attached or not. If the
348 * controller has slave link, device number 16 points to it.
353 static void ata_force_link_limits(struct ata_link
*link
)
355 bool did_spd
= false;
356 int linkno
= link
->pmp
;
359 if (ata_is_host_link(link
))
362 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
363 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
365 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
368 if (fe
->device
!= -1 && fe
->device
!= linkno
)
371 /* only honor the first spd limit */
372 if (!did_spd
&& fe
->param
.spd_limit
) {
373 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
374 ata_link_printk(link
, KERN_NOTICE
,
375 "FORCE: PHY spd limit set to %s\n",
380 /* let lflags stack */
381 if (fe
->param
.lflags
) {
382 link
->flags
|= fe
->param
.lflags
;
383 ata_link_printk(link
, KERN_NOTICE
,
384 "FORCE: link flag 0x%x forced -> 0x%x\n",
385 fe
->param
.lflags
, link
->flags
);
391 * ata_force_xfermask - force xfermask according to libata.force
392 * @dev: ATA device of interest
394 * Force xfer_mask according to libata.force and whine about it.
395 * For consistency with link selection, device number 15 selects
396 * the first device connected to the host link.
401 static void ata_force_xfermask(struct ata_device
*dev
)
403 int devno
= dev
->link
->pmp
+ dev
->devno
;
404 int alt_devno
= devno
;
407 /* allow n.15/16 for devices attached to host port */
408 if (ata_is_host_link(dev
->link
))
411 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
412 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
413 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
415 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
418 if (fe
->device
!= -1 && fe
->device
!= devno
&&
419 fe
->device
!= alt_devno
)
422 if (!fe
->param
.xfer_mask
)
425 ata_unpack_xfermask(fe
->param
.xfer_mask
,
426 &pio_mask
, &mwdma_mask
, &udma_mask
);
428 dev
->udma_mask
= udma_mask
;
429 else if (mwdma_mask
) {
431 dev
->mwdma_mask
= mwdma_mask
;
435 dev
->pio_mask
= pio_mask
;
438 ata_dev_printk(dev
, KERN_NOTICE
,
439 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
445 * ata_force_horkage - force horkage according to libata.force
446 * @dev: ATA device of interest
448 * Force horkage according to libata.force and whine about it.
449 * For consistency with link selection, device number 15 selects
450 * the first device connected to the host link.
455 static void ata_force_horkage(struct ata_device
*dev
)
457 int devno
= dev
->link
->pmp
+ dev
->devno
;
458 int alt_devno
= devno
;
461 /* allow n.15/16 for devices attached to host port */
462 if (ata_is_host_link(dev
->link
))
465 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
466 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
468 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
471 if (fe
->device
!= -1 && fe
->device
!= devno
&&
472 fe
->device
!= alt_devno
)
475 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
476 !(dev
->horkage
& fe
->param
.horkage_off
))
479 dev
->horkage
|= fe
->param
.horkage_on
;
480 dev
->horkage
&= ~fe
->param
.horkage_off
;
482 ata_dev_printk(dev
, KERN_NOTICE
,
483 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
488 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
489 * @opcode: SCSI opcode
491 * Determine ATAPI command type from @opcode.
497 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
499 int atapi_cmd_type(u8 opcode
)
508 case GPCMD_WRITE_AND_VERIFY_10
:
512 case GPCMD_READ_CD_MSF
:
513 return ATAPI_READ_CD
;
517 if (atapi_passthru16
)
518 return ATAPI_PASS_THRU
;
526 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
527 * @tf: Taskfile to convert
528 * @pmp: Port multiplier port
529 * @is_cmd: This FIS is for command
530 * @fis: Buffer into which data will output
532 * Converts a standard ATA taskfile to a Serial ATA
533 * FIS structure (Register - Host to Device).
536 * Inherited from caller.
538 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
540 fis
[0] = 0x27; /* Register - Host to Device FIS */
541 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
543 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
545 fis
[2] = tf
->command
;
546 fis
[3] = tf
->feature
;
553 fis
[8] = tf
->hob_lbal
;
554 fis
[9] = tf
->hob_lbam
;
555 fis
[10] = tf
->hob_lbah
;
556 fis
[11] = tf
->hob_feature
;
559 fis
[13] = tf
->hob_nsect
;
570 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
571 * @fis: Buffer from which data will be input
572 * @tf: Taskfile to output
574 * Converts a serial ATA FIS structure to a standard ATA taskfile.
577 * Inherited from caller.
580 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
582 tf
->command
= fis
[2]; /* status */
583 tf
->feature
= fis
[3]; /* error */
590 tf
->hob_lbal
= fis
[8];
591 tf
->hob_lbam
= fis
[9];
592 tf
->hob_lbah
= fis
[10];
595 tf
->hob_nsect
= fis
[13];
598 static const u8 ata_rw_cmds
[] = {
602 ATA_CMD_READ_MULTI_EXT
,
603 ATA_CMD_WRITE_MULTI_EXT
,
607 ATA_CMD_WRITE_MULTI_FUA_EXT
,
611 ATA_CMD_PIO_READ_EXT
,
612 ATA_CMD_PIO_WRITE_EXT
,
625 ATA_CMD_WRITE_FUA_EXT
629 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
630 * @tf: command to examine and configure
631 * @dev: device tf belongs to
633 * Examine the device configuration and tf->flags to calculate
634 * the proper read/write commands and protocol to use.
639 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
643 int index
, fua
, lba48
, write
;
645 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
646 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
647 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
649 if (dev
->flags
& ATA_DFLAG_PIO
) {
650 tf
->protocol
= ATA_PROT_PIO
;
651 index
= dev
->multi_count
? 0 : 8;
652 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
653 /* Unable to use DMA due to host limitation */
654 tf
->protocol
= ATA_PROT_PIO
;
655 index
= dev
->multi_count
? 0 : 8;
657 tf
->protocol
= ATA_PROT_DMA
;
661 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
670 * ata_tf_read_block - Read block address from ATA taskfile
671 * @tf: ATA taskfile of interest
672 * @dev: ATA device @tf belongs to
677 * Read block address from @tf. This function can handle all
678 * three address formats - LBA, LBA48 and CHS. tf->protocol and
679 * flags select the address format to use.
682 * Block address read from @tf.
684 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
688 if (tf
->flags
& ATA_TFLAG_LBA
) {
689 if (tf
->flags
& ATA_TFLAG_LBA48
) {
690 block
|= (u64
)tf
->hob_lbah
<< 40;
691 block
|= (u64
)tf
->hob_lbam
<< 32;
692 block
|= (u64
)tf
->hob_lbal
<< 24;
694 block
|= (tf
->device
& 0xf) << 24;
696 block
|= tf
->lbah
<< 16;
697 block
|= tf
->lbam
<< 8;
702 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
703 head
= tf
->device
& 0xf;
706 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
713 * ata_build_rw_tf - Build ATA taskfile for given read/write request
714 * @tf: Target ATA taskfile
715 * @dev: ATA device @tf belongs to
716 * @block: Block address
717 * @n_block: Number of blocks
718 * @tf_flags: RW/FUA etc...
724 * Build ATA taskfile @tf for read/write request described by
725 * @block, @n_block, @tf_flags and @tag on @dev.
729 * 0 on success, -ERANGE if the request is too large for @dev,
730 * -EINVAL if the request is invalid.
732 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
733 u64 block
, u32 n_block
, unsigned int tf_flags
,
736 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
737 tf
->flags
|= tf_flags
;
739 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
741 if (!lba_48_ok(block
, n_block
))
744 tf
->protocol
= ATA_PROT_NCQ
;
745 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
747 if (tf
->flags
& ATA_TFLAG_WRITE
)
748 tf
->command
= ATA_CMD_FPDMA_WRITE
;
750 tf
->command
= ATA_CMD_FPDMA_READ
;
752 tf
->nsect
= tag
<< 3;
753 tf
->hob_feature
= (n_block
>> 8) & 0xff;
754 tf
->feature
= n_block
& 0xff;
756 tf
->hob_lbah
= (block
>> 40) & 0xff;
757 tf
->hob_lbam
= (block
>> 32) & 0xff;
758 tf
->hob_lbal
= (block
>> 24) & 0xff;
759 tf
->lbah
= (block
>> 16) & 0xff;
760 tf
->lbam
= (block
>> 8) & 0xff;
761 tf
->lbal
= block
& 0xff;
764 if (tf
->flags
& ATA_TFLAG_FUA
)
765 tf
->device
|= 1 << 7;
766 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
767 tf
->flags
|= ATA_TFLAG_LBA
;
769 if (lba_28_ok(block
, n_block
)) {
771 tf
->device
|= (block
>> 24) & 0xf;
772 } else if (lba_48_ok(block
, n_block
)) {
773 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
777 tf
->flags
|= ATA_TFLAG_LBA48
;
779 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
781 tf
->hob_lbah
= (block
>> 40) & 0xff;
782 tf
->hob_lbam
= (block
>> 32) & 0xff;
783 tf
->hob_lbal
= (block
>> 24) & 0xff;
785 /* request too large even for LBA48 */
788 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
791 tf
->nsect
= n_block
& 0xff;
793 tf
->lbah
= (block
>> 16) & 0xff;
794 tf
->lbam
= (block
>> 8) & 0xff;
795 tf
->lbal
= block
& 0xff;
797 tf
->device
|= ATA_LBA
;
800 u32 sect
, head
, cyl
, track
;
802 /* The request -may- be too large for CHS addressing. */
803 if (!lba_28_ok(block
, n_block
))
806 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
809 /* Convert LBA to CHS */
810 track
= (u32
)block
/ dev
->sectors
;
811 cyl
= track
/ dev
->heads
;
812 head
= track
% dev
->heads
;
813 sect
= (u32
)block
% dev
->sectors
+ 1;
815 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
816 (u32
)block
, track
, cyl
, head
, sect
);
818 /* Check whether the converted CHS can fit.
822 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
825 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
836 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
837 * @pio_mask: pio_mask
838 * @mwdma_mask: mwdma_mask
839 * @udma_mask: udma_mask
841 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
842 * unsigned int xfer_mask.
850 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
851 unsigned long mwdma_mask
,
852 unsigned long udma_mask
)
854 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
855 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
856 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
860 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
861 * @xfer_mask: xfer_mask to unpack
862 * @pio_mask: resulting pio_mask
863 * @mwdma_mask: resulting mwdma_mask
864 * @udma_mask: resulting udma_mask
866 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
867 * Any NULL distination masks will be ignored.
869 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
870 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
873 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
875 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
877 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
880 static const struct ata_xfer_ent
{
884 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
885 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
886 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
891 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
892 * @xfer_mask: xfer_mask of interest
894 * Return matching XFER_* value for @xfer_mask. Only the highest
895 * bit of @xfer_mask is considered.
901 * Matching XFER_* value, 0xff if no match found.
903 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
905 int highbit
= fls(xfer_mask
) - 1;
906 const struct ata_xfer_ent
*ent
;
908 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
909 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
910 return ent
->base
+ highbit
- ent
->shift
;
915 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
916 * @xfer_mode: XFER_* of interest
918 * Return matching xfer_mask for @xfer_mode.
924 * Matching xfer_mask, 0 if no match found.
926 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
928 const struct ata_xfer_ent
*ent
;
930 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
931 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
932 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
933 & ~((1 << ent
->shift
) - 1);
938 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
939 * @xfer_mode: XFER_* of interest
941 * Return matching xfer_shift for @xfer_mode.
947 * Matching xfer_shift, -1 if no match found.
949 int ata_xfer_mode2shift(unsigned long xfer_mode
)
951 const struct ata_xfer_ent
*ent
;
953 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
954 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
960 * ata_mode_string - convert xfer_mask to string
961 * @xfer_mask: mask of bits supported; only highest bit counts.
963 * Determine string which represents the highest speed
964 * (highest bit in @modemask).
970 * Constant C string representing highest speed listed in
971 * @mode_mask, or the constant C string "<n/a>".
973 const char *ata_mode_string(unsigned long xfer_mask
)
975 static const char * const xfer_mode_str
[] = {
999 highbit
= fls(xfer_mask
) - 1;
1000 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1001 return xfer_mode_str
[highbit
];
1005 static const char *sata_spd_string(unsigned int spd
)
1007 static const char * const spd_str
[] = {
1013 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1015 return spd_str
[spd
- 1];
1018 void ata_dev_disable(struct ata_device
*dev
)
1020 if (ata_dev_enabled(dev
)) {
1021 if (ata_msg_drv(dev
->link
->ap
))
1022 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
1023 ata_acpi_on_disable(dev
);
1024 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
1030 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
1032 struct ata_link
*link
= dev
->link
;
1033 struct ata_port
*ap
= link
->ap
;
1035 unsigned int err_mask
;
1039 * disallow DIPM for drivers which haven't set
1040 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1041 * phy ready will be set in the interrupt status on
1042 * state changes, which will cause some drivers to
1043 * think there are errors - additionally drivers will
1044 * need to disable hot plug.
1046 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
1047 ap
->pm_policy
= NOT_AVAILABLE
;
1052 * For DIPM, we will only enable it for the
1053 * min_power setting.
1055 * Why? Because Disks are too stupid to know that
1056 * If the host rejects a request to go to SLUMBER
1057 * they should retry at PARTIAL, and instead it
1058 * just would give up. So, for medium_power to
1059 * work at all, we need to only allow HIPM.
1061 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
1067 /* no restrictions on IPM transitions */
1068 scontrol
&= ~(0x3 << 8);
1069 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1074 if (dev
->flags
& ATA_DFLAG_DIPM
)
1075 err_mask
= ata_dev_set_feature(dev
,
1076 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
1079 /* allow IPM to PARTIAL */
1080 scontrol
&= ~(0x1 << 8);
1081 scontrol
|= (0x2 << 8);
1082 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1087 * we don't have to disable DIPM since IPM flags
1088 * disallow transitions to SLUMBER, which effectively
1089 * disable DIPM if it does not support PARTIAL
1093 case MAX_PERFORMANCE
:
1094 /* disable all IPM transitions */
1095 scontrol
|= (0x3 << 8);
1096 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1101 * we don't have to disable DIPM since IPM flags
1102 * disallow all transitions which effectively
1103 * disable DIPM anyway.
1108 /* FIXME: handle SET FEATURES failure */
1115 * ata_dev_enable_pm - enable SATA interface power management
1116 * @dev: device to enable power management
1117 * @policy: the link power management policy
1119 * Enable SATA Interface power management. This will enable
1120 * Device Interface Power Management (DIPM) for min_power
1121 * policy, and then call driver specific callbacks for
1122 * enabling Host Initiated Power management.
1125 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1127 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
1130 struct ata_port
*ap
= dev
->link
->ap
;
1132 /* set HIPM first, then DIPM */
1133 if (ap
->ops
->enable_pm
)
1134 rc
= ap
->ops
->enable_pm(ap
, policy
);
1137 rc
= ata_dev_set_dipm(dev
, policy
);
1141 ap
->pm_policy
= MAX_PERFORMANCE
;
1143 ap
->pm_policy
= policy
;
1144 return /* rc */; /* hopefully we can use 'rc' eventually */
1149 * ata_dev_disable_pm - disable SATA interface power management
1150 * @dev: device to disable power management
1152 * Disable SATA Interface power management. This will disable
1153 * Device Interface Power Management (DIPM) without changing
1154 * policy, call driver specific callbacks for disabling Host
1155 * Initiated Power management.
1160 static void ata_dev_disable_pm(struct ata_device
*dev
)
1162 struct ata_port
*ap
= dev
->link
->ap
;
1164 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
1165 if (ap
->ops
->disable_pm
)
1166 ap
->ops
->disable_pm(ap
);
1168 #endif /* CONFIG_PM */
1170 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
1172 ap
->pm_policy
= policy
;
1173 ap
->link
.eh_info
.action
|= ATA_EH_LPM
;
1174 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
1175 ata_port_schedule_eh(ap
);
1179 static void ata_lpm_enable(struct ata_host
*host
)
1181 struct ata_link
*link
;
1182 struct ata_port
*ap
;
1183 struct ata_device
*dev
;
1186 for (i
= 0; i
< host
->n_ports
; i
++) {
1187 ap
= host
->ports
[i
];
1188 ata_for_each_link(link
, ap
, EDGE
) {
1189 ata_for_each_dev(dev
, link
, ALL
)
1190 ata_dev_disable_pm(dev
);
1195 static void ata_lpm_disable(struct ata_host
*host
)
1199 for (i
= 0; i
< host
->n_ports
; i
++) {
1200 struct ata_port
*ap
= host
->ports
[i
];
1201 ata_lpm_schedule(ap
, ap
->pm_policy
);
1204 #endif /* CONFIG_PM */
1207 * ata_dev_classify - determine device type based on ATA-spec signature
1208 * @tf: ATA taskfile register set for device to be identified
1210 * Determine from taskfile register contents whether a device is
1211 * ATA or ATAPI, as per "Signature and persistence" section
1212 * of ATA/PI spec (volume 1, sect 5.14).
1218 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1219 * %ATA_DEV_UNKNOWN the event of failure.
1221 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1223 /* Apple's open source Darwin code hints that some devices only
1224 * put a proper signature into the LBA mid/high registers,
1225 * So, we only check those. It's sufficient for uniqueness.
1227 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1228 * signatures for ATA and ATAPI devices attached on SerialATA,
1229 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1230 * spec has never mentioned about using different signatures
1231 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1232 * Multiplier specification began to use 0x69/0x96 to identify
1233 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1234 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1235 * 0x69/0x96 shortly and described them as reserved for
1238 * We follow the current spec and consider that 0x69/0x96
1239 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1241 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1242 DPRINTK("found ATA device by sig\n");
1246 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1247 DPRINTK("found ATAPI device by sig\n");
1248 return ATA_DEV_ATAPI
;
1251 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1252 DPRINTK("found PMP device by sig\n");
1256 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1257 printk(KERN_INFO
"ata: SEMB device ignored\n");
1258 return ATA_DEV_SEMB_UNSUP
; /* not yet */
1261 DPRINTK("unknown device\n");
1262 return ATA_DEV_UNKNOWN
;
1266 * ata_id_string - Convert IDENTIFY DEVICE page into string
1267 * @id: IDENTIFY DEVICE results we will examine
1268 * @s: string into which data is output
1269 * @ofs: offset into identify device page
1270 * @len: length of string to return. must be an even number.
1272 * The strings in the IDENTIFY DEVICE page are broken up into
1273 * 16-bit chunks. Run through the string, and output each
1274 * 8-bit chunk linearly, regardless of platform.
1280 void ata_id_string(const u16
*id
, unsigned char *s
,
1281 unsigned int ofs
, unsigned int len
)
1302 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1303 * @id: IDENTIFY DEVICE results we will examine
1304 * @s: string into which data is output
1305 * @ofs: offset into identify device page
1306 * @len: length of string to return. must be an odd number.
1308 * This function is identical to ata_id_string except that it
1309 * trims trailing spaces and terminates the resulting string with
1310 * null. @len must be actual maximum length (even number) + 1.
1315 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1316 unsigned int ofs
, unsigned int len
)
1320 ata_id_string(id
, s
, ofs
, len
- 1);
1322 p
= s
+ strnlen(s
, len
- 1);
1323 while (p
> s
&& p
[-1] == ' ')
1328 static u64
ata_id_n_sectors(const u16
*id
)
1330 if (ata_id_has_lba(id
)) {
1331 if (ata_id_has_lba48(id
))
1332 return ata_id_u64(id
, 100);
1334 return ata_id_u32(id
, 60);
1336 if (ata_id_current_chs_valid(id
))
1337 return ata_id_u32(id
, 57);
1339 return id
[1] * id
[3] * id
[6];
1343 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1347 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1348 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1349 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1350 sectors
|= (tf
->lbah
& 0xff) << 16;
1351 sectors
|= (tf
->lbam
& 0xff) << 8;
1352 sectors
|= (tf
->lbal
& 0xff);
1357 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1361 sectors
|= (tf
->device
& 0x0f) << 24;
1362 sectors
|= (tf
->lbah
& 0xff) << 16;
1363 sectors
|= (tf
->lbam
& 0xff) << 8;
1364 sectors
|= (tf
->lbal
& 0xff);
1370 * ata_read_native_max_address - Read native max address
1371 * @dev: target device
1372 * @max_sectors: out parameter for the result native max address
1374 * Perform an LBA48 or LBA28 native size query upon the device in
1378 * 0 on success, -EACCES if command is aborted by the drive.
1379 * -EIO on other errors.
1381 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1383 unsigned int err_mask
;
1384 struct ata_taskfile tf
;
1385 int lba48
= ata_id_has_lba48(dev
->id
);
1387 ata_tf_init(dev
, &tf
);
1389 /* always clear all address registers */
1390 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1393 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1394 tf
.flags
|= ATA_TFLAG_LBA48
;
1396 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1398 tf
.protocol
|= ATA_PROT_NODATA
;
1399 tf
.device
|= ATA_LBA
;
1401 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1403 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1404 "max address (err_mask=0x%x)\n", err_mask
);
1405 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1411 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1413 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1414 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1420 * ata_set_max_sectors - Set max sectors
1421 * @dev: target device
1422 * @new_sectors: new max sectors value to set for the device
1424 * Set max sectors of @dev to @new_sectors.
1427 * 0 on success, -EACCES if command is aborted or denied (due to
1428 * previous non-volatile SET_MAX) by the drive. -EIO on other
1431 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1433 unsigned int err_mask
;
1434 struct ata_taskfile tf
;
1435 int lba48
= ata_id_has_lba48(dev
->id
);
1439 ata_tf_init(dev
, &tf
);
1441 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1444 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1445 tf
.flags
|= ATA_TFLAG_LBA48
;
1447 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1448 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1449 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1451 tf
.command
= ATA_CMD_SET_MAX
;
1453 tf
.device
|= (new_sectors
>> 24) & 0xf;
1456 tf
.protocol
|= ATA_PROT_NODATA
;
1457 tf
.device
|= ATA_LBA
;
1459 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1460 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1461 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1463 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1465 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1466 "max address (err_mask=0x%x)\n", err_mask
);
1467 if (err_mask
== AC_ERR_DEV
&&
1468 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1477 * ata_hpa_resize - Resize a device with an HPA set
1478 * @dev: Device to resize
1480 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1481 * it if required to the full size of the media. The caller must check
1482 * the drive has the HPA feature set enabled.
1485 * 0 on success, -errno on failure.
1487 static int ata_hpa_resize(struct ata_device
*dev
)
1489 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1490 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1491 u64 sectors
= ata_id_n_sectors(dev
->id
);
1495 /* do we need to do it? */
1496 if (dev
->class != ATA_DEV_ATA
||
1497 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1498 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1501 /* read native max address */
1502 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1504 /* If device aborted the command or HPA isn't going to
1505 * be unlocked, skip HPA resizing.
1507 if (rc
== -EACCES
|| !ata_ignore_hpa
) {
1508 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1509 "broken, skipping HPA handling\n");
1510 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1512 /* we can continue if device aborted the command */
1520 /* nothing to do? */
1521 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1522 if (!print_info
|| native_sectors
== sectors
)
1525 if (native_sectors
> sectors
)
1526 ata_dev_printk(dev
, KERN_INFO
,
1527 "HPA detected: current %llu, native %llu\n",
1528 (unsigned long long)sectors
,
1529 (unsigned long long)native_sectors
);
1530 else if (native_sectors
< sectors
)
1531 ata_dev_printk(dev
, KERN_WARNING
,
1532 "native sectors (%llu) is smaller than "
1534 (unsigned long long)native_sectors
,
1535 (unsigned long long)sectors
);
1539 /* let's unlock HPA */
1540 rc
= ata_set_max_sectors(dev
, native_sectors
);
1541 if (rc
== -EACCES
) {
1542 /* if device aborted the command, skip HPA resizing */
1543 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1544 "(%llu -> %llu), skipping HPA handling\n",
1545 (unsigned long long)sectors
,
1546 (unsigned long long)native_sectors
);
1547 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1552 /* re-read IDENTIFY data */
1553 rc
= ata_dev_reread_id(dev
, 0);
1555 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1556 "data after HPA resizing\n");
1561 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1562 ata_dev_printk(dev
, KERN_INFO
,
1563 "HPA unlocked: %llu -> %llu, native %llu\n",
1564 (unsigned long long)sectors
,
1565 (unsigned long long)new_sectors
,
1566 (unsigned long long)native_sectors
);
1573 * ata_dump_id - IDENTIFY DEVICE info debugging output
1574 * @id: IDENTIFY DEVICE page to dump
1576 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1583 static inline void ata_dump_id(const u16
*id
)
1585 DPRINTK("49==0x%04x "
1595 DPRINTK("80==0x%04x "
1605 DPRINTK("88==0x%04x "
1612 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1613 * @id: IDENTIFY data to compute xfer mask from
1615 * Compute the xfermask for this device. This is not as trivial
1616 * as it seems if we must consider early devices correctly.
1618 * FIXME: pre IDE drive timing (do we care ?).
1626 unsigned long ata_id_xfermask(const u16
*id
)
1628 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1630 /* Usual case. Word 53 indicates word 64 is valid */
1631 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1632 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1636 /* If word 64 isn't valid then Word 51 high byte holds
1637 * the PIO timing number for the maximum. Turn it into
1640 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1641 if (mode
< 5) /* Valid PIO range */
1642 pio_mask
= (2 << mode
) - 1;
1646 /* But wait.. there's more. Design your standards by
1647 * committee and you too can get a free iordy field to
1648 * process. However its the speeds not the modes that
1649 * are supported... Note drivers using the timing API
1650 * will get this right anyway
1654 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1656 if (ata_id_is_cfa(id
)) {
1658 * Process compact flash extended modes
1660 int pio
= id
[163] & 0x7;
1661 int dma
= (id
[163] >> 3) & 7;
1664 pio_mask
|= (1 << 5);
1666 pio_mask
|= (1 << 6);
1668 mwdma_mask
|= (1 << 3);
1670 mwdma_mask
|= (1 << 4);
1674 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1675 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1677 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1681 * ata_pio_queue_task - Queue port_task
1682 * @ap: The ata_port to queue port_task for
1683 * @data: data for @fn to use
1684 * @delay: delay time in msecs for workqueue function
1686 * Schedule @fn(@data) for execution after @delay jiffies using
1687 * port_task. There is one port_task per port and it's the
1688 * user(low level driver)'s responsibility to make sure that only
1689 * one task is active at any given time.
1691 * libata core layer takes care of synchronization between
1692 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1696 * Inherited from caller.
1698 void ata_pio_queue_task(struct ata_port
*ap
, void *data
, unsigned long delay
)
1700 ap
->port_task_data
= data
;
1702 /* may fail if ata_port_flush_task() in progress */
1703 queue_delayed_work(ata_wq
, &ap
->port_task
, msecs_to_jiffies(delay
));
1707 * ata_port_flush_task - Flush port_task
1708 * @ap: The ata_port to flush port_task for
1710 * After this function completes, port_task is guranteed not to
1711 * be running or scheduled.
1714 * Kernel thread context (may sleep)
1716 void ata_port_flush_task(struct ata_port
*ap
)
1720 cancel_rearming_delayed_work(&ap
->port_task
);
1722 if (ata_msg_ctl(ap
))
1723 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1726 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1728 struct completion
*waiting
= qc
->private_data
;
1734 * ata_exec_internal_sg - execute libata internal command
1735 * @dev: Device to which the command is sent
1736 * @tf: Taskfile registers for the command and the result
1737 * @cdb: CDB for packet command
1738 * @dma_dir: Data tranfer direction of the command
1739 * @sgl: sg list for the data buffer of the command
1740 * @n_elem: Number of sg entries
1741 * @timeout: Timeout in msecs (0 for default)
1743 * Executes libata internal command with timeout. @tf contains
1744 * command on entry and result on return. Timeout and error
1745 * conditions are reported via return value. No recovery action
1746 * is taken after a command times out. It's caller's duty to
1747 * clean up after timeout.
1750 * None. Should be called with kernel context, might sleep.
1753 * Zero on success, AC_ERR_* mask on failure
1755 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1756 struct ata_taskfile
*tf
, const u8
*cdb
,
1757 int dma_dir
, struct scatterlist
*sgl
,
1758 unsigned int n_elem
, unsigned long timeout
)
1760 struct ata_link
*link
= dev
->link
;
1761 struct ata_port
*ap
= link
->ap
;
1762 u8 command
= tf
->command
;
1763 int auto_timeout
= 0;
1764 struct ata_queued_cmd
*qc
;
1765 unsigned int tag
, preempted_tag
;
1766 u32 preempted_sactive
, preempted_qc_active
;
1767 int preempted_nr_active_links
;
1768 DECLARE_COMPLETION_ONSTACK(wait
);
1769 unsigned long flags
;
1770 unsigned int err_mask
;
1773 spin_lock_irqsave(ap
->lock
, flags
);
1775 /* no internal command while frozen */
1776 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1777 spin_unlock_irqrestore(ap
->lock
, flags
);
1778 return AC_ERR_SYSTEM
;
1781 /* initialize internal qc */
1783 /* XXX: Tag 0 is used for drivers with legacy EH as some
1784 * drivers choke if any other tag is given. This breaks
1785 * ata_tag_internal() test for those drivers. Don't use new
1786 * EH stuff without converting to it.
1788 if (ap
->ops
->error_handler
)
1789 tag
= ATA_TAG_INTERNAL
;
1793 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1795 qc
= __ata_qc_from_tag(ap
, tag
);
1803 preempted_tag
= link
->active_tag
;
1804 preempted_sactive
= link
->sactive
;
1805 preempted_qc_active
= ap
->qc_active
;
1806 preempted_nr_active_links
= ap
->nr_active_links
;
1807 link
->active_tag
= ATA_TAG_POISON
;
1810 ap
->nr_active_links
= 0;
1812 /* prepare & issue qc */
1815 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1816 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1817 qc
->dma_dir
= dma_dir
;
1818 if (dma_dir
!= DMA_NONE
) {
1819 unsigned int i
, buflen
= 0;
1820 struct scatterlist
*sg
;
1822 for_each_sg(sgl
, sg
, n_elem
, i
)
1823 buflen
+= sg
->length
;
1825 ata_sg_init(qc
, sgl
, n_elem
);
1826 qc
->nbytes
= buflen
;
1829 qc
->private_data
= &wait
;
1830 qc
->complete_fn
= ata_qc_complete_internal
;
1834 spin_unlock_irqrestore(ap
->lock
, flags
);
1837 if (ata_probe_timeout
)
1838 timeout
= ata_probe_timeout
* 1000;
1840 timeout
= ata_internal_cmd_timeout(dev
, command
);
1845 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1847 ata_port_flush_task(ap
);
1850 spin_lock_irqsave(ap
->lock
, flags
);
1852 /* We're racing with irq here. If we lose, the
1853 * following test prevents us from completing the qc
1854 * twice. If we win, the port is frozen and will be
1855 * cleaned up by ->post_internal_cmd().
1857 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1858 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1860 if (ap
->ops
->error_handler
)
1861 ata_port_freeze(ap
);
1863 ata_qc_complete(qc
);
1865 if (ata_msg_warn(ap
))
1866 ata_dev_printk(dev
, KERN_WARNING
,
1867 "qc timeout (cmd 0x%x)\n", command
);
1870 spin_unlock_irqrestore(ap
->lock
, flags
);
1873 /* do post_internal_cmd */
1874 if (ap
->ops
->post_internal_cmd
)
1875 ap
->ops
->post_internal_cmd(qc
);
1877 /* perform minimal error analysis */
1878 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1879 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1880 qc
->err_mask
|= AC_ERR_DEV
;
1883 qc
->err_mask
|= AC_ERR_OTHER
;
1885 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1886 qc
->err_mask
&= ~AC_ERR_OTHER
;
1890 spin_lock_irqsave(ap
->lock
, flags
);
1892 *tf
= qc
->result_tf
;
1893 err_mask
= qc
->err_mask
;
1896 link
->active_tag
= preempted_tag
;
1897 link
->sactive
= preempted_sactive
;
1898 ap
->qc_active
= preempted_qc_active
;
1899 ap
->nr_active_links
= preempted_nr_active_links
;
1901 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1902 * Until those drivers are fixed, we detect the condition
1903 * here, fail the command with AC_ERR_SYSTEM and reenable the
1906 * Note that this doesn't change any behavior as internal
1907 * command failure results in disabling the device in the
1908 * higher layer for LLDDs without new reset/EH callbacks.
1910 * Kill the following code as soon as those drivers are fixed.
1912 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1913 err_mask
|= AC_ERR_SYSTEM
;
1917 spin_unlock_irqrestore(ap
->lock
, flags
);
1919 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1920 ata_internal_cmd_timed_out(dev
, command
);
1926 * ata_exec_internal - execute libata internal command
1927 * @dev: Device to which the command is sent
1928 * @tf: Taskfile registers for the command and the result
1929 * @cdb: CDB for packet command
1930 * @dma_dir: Data tranfer direction of the command
1931 * @buf: Data buffer of the command
1932 * @buflen: Length of data buffer
1933 * @timeout: Timeout in msecs (0 for default)
1935 * Wrapper around ata_exec_internal_sg() which takes simple
1936 * buffer instead of sg list.
1939 * None. Should be called with kernel context, might sleep.
1942 * Zero on success, AC_ERR_* mask on failure
1944 unsigned ata_exec_internal(struct ata_device
*dev
,
1945 struct ata_taskfile
*tf
, const u8
*cdb
,
1946 int dma_dir
, void *buf
, unsigned int buflen
,
1947 unsigned long timeout
)
1949 struct scatterlist
*psg
= NULL
, sg
;
1950 unsigned int n_elem
= 0;
1952 if (dma_dir
!= DMA_NONE
) {
1954 sg_init_one(&sg
, buf
, buflen
);
1959 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1964 * ata_do_simple_cmd - execute simple internal command
1965 * @dev: Device to which the command is sent
1966 * @cmd: Opcode to execute
1968 * Execute a 'simple' command, that only consists of the opcode
1969 * 'cmd' itself, without filling any other registers
1972 * Kernel thread context (may sleep).
1975 * Zero on success, AC_ERR_* mask on failure
1977 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1979 struct ata_taskfile tf
;
1981 ata_tf_init(dev
, &tf
);
1984 tf
.flags
|= ATA_TFLAG_DEVICE
;
1985 tf
.protocol
= ATA_PROT_NODATA
;
1987 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1991 * ata_pio_need_iordy - check if iordy needed
1994 * Check if the current speed of the device requires IORDY. Used
1995 * by various controllers for chip configuration.
1998 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
2000 /* Controller doesn't support IORDY. Probably a pointless check
2001 as the caller should know this */
2002 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
2004 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2005 if (ata_id_is_cfa(adev
->id
)
2006 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
2008 /* PIO3 and higher it is mandatory */
2009 if (adev
->pio_mode
> XFER_PIO_2
)
2011 /* We turn it on when possible */
2012 if (ata_id_has_iordy(adev
->id
))
2018 * ata_pio_mask_no_iordy - Return the non IORDY mask
2021 * Compute the highest mode possible if we are not using iordy. Return
2022 * -1 if no iordy mode is available.
2025 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
2027 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2028 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
2029 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
2030 /* Is the speed faster than the drive allows non IORDY ? */
2032 /* This is cycle times not frequency - watch the logic! */
2033 if (pio
> 240) /* PIO2 is 240nS per cycle */
2034 return 3 << ATA_SHIFT_PIO
;
2035 return 7 << ATA_SHIFT_PIO
;
2038 return 3 << ATA_SHIFT_PIO
;
2042 * ata_do_dev_read_id - default ID read method
2044 * @tf: proposed taskfile
2047 * Issue the identify taskfile and hand back the buffer containing
2048 * identify data. For some RAID controllers and for pre ATA devices
2049 * this function is wrapped or replaced by the driver
2051 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
2052 struct ata_taskfile
*tf
, u16
*id
)
2054 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
2055 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
2059 * ata_dev_read_id - Read ID data from the specified device
2060 * @dev: target device
2061 * @p_class: pointer to class of the target device (may be changed)
2062 * @flags: ATA_READID_* flags
2063 * @id: buffer to read IDENTIFY data into
2065 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2066 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2067 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2068 * for pre-ATA4 drives.
2070 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2071 * now we abort if we hit that case.
2074 * Kernel thread context (may sleep)
2077 * 0 on success, -errno otherwise.
2079 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
2080 unsigned int flags
, u16
*id
)
2082 struct ata_port
*ap
= dev
->link
->ap
;
2083 unsigned int class = *p_class
;
2084 struct ata_taskfile tf
;
2085 unsigned int err_mask
= 0;
2087 int may_fallback
= 1, tried_spinup
= 0;
2090 if (ata_msg_ctl(ap
))
2091 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2094 ata_tf_init(dev
, &tf
);
2098 tf
.command
= ATA_CMD_ID_ATA
;
2101 tf
.command
= ATA_CMD_ID_ATAPI
;
2105 reason
= "unsupported class";
2109 tf
.protocol
= ATA_PROT_PIO
;
2111 /* Some devices choke if TF registers contain garbage. Make
2112 * sure those are properly initialized.
2114 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2116 /* Device presence detection is unreliable on some
2117 * controllers. Always poll IDENTIFY if available.
2119 tf
.flags
|= ATA_TFLAG_POLLING
;
2121 if (ap
->ops
->read_id
)
2122 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
2124 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
2127 if (err_mask
& AC_ERR_NODEV_HINT
) {
2128 ata_dev_printk(dev
, KERN_DEBUG
,
2129 "NODEV after polling detection\n");
2133 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
2134 /* Device or controller might have reported
2135 * the wrong device class. Give a shot at the
2136 * other IDENTIFY if the current one is
2137 * aborted by the device.
2142 if (class == ATA_DEV_ATA
)
2143 class = ATA_DEV_ATAPI
;
2145 class = ATA_DEV_ATA
;
2149 /* Control reaches here iff the device aborted
2150 * both flavors of IDENTIFYs which happens
2151 * sometimes with phantom devices.
2153 ata_dev_printk(dev
, KERN_DEBUG
,
2154 "both IDENTIFYs aborted, assuming NODEV\n");
2159 reason
= "I/O error";
2163 /* Falling back doesn't make sense if ID data was read
2164 * successfully at least once.
2168 swap_buf_le16(id
, ATA_ID_WORDS
);
2172 reason
= "device reports invalid type";
2174 if (class == ATA_DEV_ATA
) {
2175 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
2178 if (ata_id_is_ata(id
))
2182 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2185 * Drive powered-up in standby mode, and requires a specific
2186 * SET_FEATURES spin-up subcommand before it will accept
2187 * anything other than the original IDENTIFY command.
2189 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2190 if (err_mask
&& id
[2] != 0x738c) {
2192 reason
= "SPINUP failed";
2196 * If the drive initially returned incomplete IDENTIFY info,
2197 * we now must reissue the IDENTIFY command.
2199 if (id
[2] == 0x37c8)
2203 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2205 * The exact sequence expected by certain pre-ATA4 drives is:
2207 * IDENTIFY (optional in early ATA)
2208 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2210 * Some drives were very specific about that exact sequence.
2212 * Note that ATA4 says lba is mandatory so the second check
2213 * shoud never trigger.
2215 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2216 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2219 reason
= "INIT_DEV_PARAMS failed";
2223 /* current CHS translation info (id[53-58]) might be
2224 * changed. reread the identify device info.
2226 flags
&= ~ATA_READID_POSTRESET
;
2236 if (ata_msg_warn(ap
))
2237 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2238 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2242 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2244 struct ata_port
*ap
= dev
->link
->ap
;
2246 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2249 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2252 static void ata_dev_config_ncq(struct ata_device
*dev
,
2253 char *desc
, size_t desc_sz
)
2255 struct ata_port
*ap
= dev
->link
->ap
;
2256 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2258 if (!ata_id_has_ncq(dev
->id
)) {
2262 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2263 snprintf(desc
, desc_sz
, "NCQ (not used)");
2266 if (ap
->flags
& ATA_FLAG_NCQ
) {
2267 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2268 dev
->flags
|= ATA_DFLAG_NCQ
;
2271 if (hdepth
>= ddepth
)
2272 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
2274 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
2278 * ata_dev_configure - Configure the specified ATA/ATAPI device
2279 * @dev: Target device to configure
2281 * Configure @dev according to @dev->id. Generic and low-level
2282 * driver specific fixups are also applied.
2285 * Kernel thread context (may sleep)
2288 * 0 on success, -errno otherwise
2290 int ata_dev_configure(struct ata_device
*dev
)
2292 struct ata_port
*ap
= dev
->link
->ap
;
2293 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2294 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2295 const u16
*id
= dev
->id
;
2296 unsigned long xfer_mask
;
2297 char revbuf
[7]; /* XYZ-99\0 */
2298 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2299 char modelbuf
[ATA_ID_PROD_LEN
+1];
2302 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2303 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2308 if (ata_msg_probe(ap
))
2309 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2312 dev
->horkage
|= ata_dev_blacklisted(dev
);
2313 ata_force_horkage(dev
);
2315 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2316 ata_dev_printk(dev
, KERN_INFO
,
2317 "unsupported device, disabling\n");
2318 ata_dev_disable(dev
);
2322 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2323 dev
->class == ATA_DEV_ATAPI
) {
2324 ata_dev_printk(dev
, KERN_WARNING
,
2325 "WARNING: ATAPI is %s, device ignored.\n",
2326 atapi_enabled
? "not supported with this driver"
2328 ata_dev_disable(dev
);
2332 /* let ACPI work its magic */
2333 rc
= ata_acpi_on_devcfg(dev
);
2337 /* massage HPA, do it early as it might change IDENTIFY data */
2338 rc
= ata_hpa_resize(dev
);
2342 /* print device capabilities */
2343 if (ata_msg_probe(ap
))
2344 ata_dev_printk(dev
, KERN_DEBUG
,
2345 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2346 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2348 id
[49], id
[82], id
[83], id
[84],
2349 id
[85], id
[86], id
[87], id
[88]);
2351 /* initialize to-be-configured parameters */
2352 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2353 dev
->max_sectors
= 0;
2361 * common ATA, ATAPI feature tests
2364 /* find max transfer mode; for printk only */
2365 xfer_mask
= ata_id_xfermask(id
);
2367 if (ata_msg_probe(ap
))
2370 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2371 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2374 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2377 /* ATA-specific feature tests */
2378 if (dev
->class == ATA_DEV_ATA
) {
2379 if (ata_id_is_cfa(id
)) {
2380 if (id
[162] & 1) /* CPRM may make this media unusable */
2381 ata_dev_printk(dev
, KERN_WARNING
,
2382 "supports DRM functions and may "
2383 "not be fully accessable.\n");
2384 snprintf(revbuf
, 7, "CFA");
2386 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2387 /* Warn the user if the device has TPM extensions */
2388 if (ata_id_has_tpm(id
))
2389 ata_dev_printk(dev
, KERN_WARNING
,
2390 "supports DRM functions and may "
2391 "not be fully accessable.\n");
2394 dev
->n_sectors
= ata_id_n_sectors(id
);
2396 if (dev
->id
[59] & 0x100)
2397 dev
->multi_count
= dev
->id
[59] & 0xff;
2399 if (ata_id_has_lba(id
)) {
2400 const char *lba_desc
;
2404 dev
->flags
|= ATA_DFLAG_LBA
;
2405 if (ata_id_has_lba48(id
)) {
2406 dev
->flags
|= ATA_DFLAG_LBA48
;
2409 if (dev
->n_sectors
>= (1UL << 28) &&
2410 ata_id_has_flush_ext(id
))
2411 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2415 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2417 /* print device info to dmesg */
2418 if (ata_msg_drv(ap
) && print_info
) {
2419 ata_dev_printk(dev
, KERN_INFO
,
2420 "%s: %s, %s, max %s\n",
2421 revbuf
, modelbuf
, fwrevbuf
,
2422 ata_mode_string(xfer_mask
));
2423 ata_dev_printk(dev
, KERN_INFO
,
2424 "%Lu sectors, multi %u: %s %s\n",
2425 (unsigned long long)dev
->n_sectors
,
2426 dev
->multi_count
, lba_desc
, ncq_desc
);
2431 /* Default translation */
2432 dev
->cylinders
= id
[1];
2434 dev
->sectors
= id
[6];
2436 if (ata_id_current_chs_valid(id
)) {
2437 /* Current CHS translation is valid. */
2438 dev
->cylinders
= id
[54];
2439 dev
->heads
= id
[55];
2440 dev
->sectors
= id
[56];
2443 /* print device info to dmesg */
2444 if (ata_msg_drv(ap
) && print_info
) {
2445 ata_dev_printk(dev
, KERN_INFO
,
2446 "%s: %s, %s, max %s\n",
2447 revbuf
, modelbuf
, fwrevbuf
,
2448 ata_mode_string(xfer_mask
));
2449 ata_dev_printk(dev
, KERN_INFO
,
2450 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2451 (unsigned long long)dev
->n_sectors
,
2452 dev
->multi_count
, dev
->cylinders
,
2453 dev
->heads
, dev
->sectors
);
2460 /* ATAPI-specific feature tests */
2461 else if (dev
->class == ATA_DEV_ATAPI
) {
2462 const char *cdb_intr_string
= "";
2463 const char *atapi_an_string
= "";
2464 const char *dma_dir_string
= "";
2467 rc
= atapi_cdb_len(id
);
2468 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2469 if (ata_msg_warn(ap
))
2470 ata_dev_printk(dev
, KERN_WARNING
,
2471 "unsupported CDB len\n");
2475 dev
->cdb_len
= (unsigned int) rc
;
2477 /* Enable ATAPI AN if both the host and device have
2478 * the support. If PMP is attached, SNTF is required
2479 * to enable ATAPI AN to discern between PHY status
2480 * changed notifications and ATAPI ANs.
2482 if ((ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2483 (!sata_pmp_attached(ap
) ||
2484 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2485 unsigned int err_mask
;
2487 /* issue SET feature command to turn this on */
2488 err_mask
= ata_dev_set_feature(dev
,
2489 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2491 ata_dev_printk(dev
, KERN_ERR
,
2492 "failed to enable ATAPI AN "
2493 "(err_mask=0x%x)\n", err_mask
);
2495 dev
->flags
|= ATA_DFLAG_AN
;
2496 atapi_an_string
= ", ATAPI AN";
2500 if (ata_id_cdb_intr(dev
->id
)) {
2501 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2502 cdb_intr_string
= ", CDB intr";
2505 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2506 dev
->flags
|= ATA_DFLAG_DMADIR
;
2507 dma_dir_string
= ", DMADIR";
2510 /* print device info to dmesg */
2511 if (ata_msg_drv(ap
) && print_info
)
2512 ata_dev_printk(dev
, KERN_INFO
,
2513 "ATAPI: %s, %s, max %s%s%s%s\n",
2515 ata_mode_string(xfer_mask
),
2516 cdb_intr_string
, atapi_an_string
,
2520 /* determine max_sectors */
2521 dev
->max_sectors
= ATA_MAX_SECTORS
;
2522 if (dev
->flags
& ATA_DFLAG_LBA48
)
2523 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2525 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2526 if (ata_id_has_hipm(dev
->id
))
2527 dev
->flags
|= ATA_DFLAG_HIPM
;
2528 if (ata_id_has_dipm(dev
->id
))
2529 dev
->flags
|= ATA_DFLAG_DIPM
;
2532 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2534 if (ata_dev_knobble(dev
)) {
2535 if (ata_msg_drv(ap
) && print_info
)
2536 ata_dev_printk(dev
, KERN_INFO
,
2537 "applying bridge limits\n");
2538 dev
->udma_mask
&= ATA_UDMA5
;
2539 dev
->max_sectors
= ATA_MAX_SECTORS
;
2542 if ((dev
->class == ATA_DEV_ATAPI
) &&
2543 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2544 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2545 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2548 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2549 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2552 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2553 dev
->horkage
|= ATA_HORKAGE_IPM
;
2555 /* reset link pm_policy for this port to no pm */
2556 ap
->pm_policy
= MAX_PERFORMANCE
;
2559 if (ap
->ops
->dev_config
)
2560 ap
->ops
->dev_config(dev
);
2562 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2563 /* Let the user know. We don't want to disallow opens for
2564 rescue purposes, or in case the vendor is just a blithering
2565 idiot. Do this after the dev_config call as some controllers
2566 with buggy firmware may want to avoid reporting false device
2570 ata_dev_printk(dev
, KERN_WARNING
,
2571 "Drive reports diagnostics failure. This may indicate a drive\n");
2572 ata_dev_printk(dev
, KERN_WARNING
,
2573 "fault or invalid emulation. Contact drive vendor for information.\n");
2577 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2578 ata_dev_printk(dev
, KERN_WARNING
, "WARNING: device requires "
2579 "firmware update to be fully functional.\n");
2580 ata_dev_printk(dev
, KERN_WARNING
, " contact the vendor "
2581 "or visit http://ata.wiki.kernel.org.\n");
2587 if (ata_msg_probe(ap
))
2588 ata_dev_printk(dev
, KERN_DEBUG
,
2589 "%s: EXIT, err\n", __func__
);
2594 * ata_cable_40wire - return 40 wire cable type
2597 * Helper method for drivers which want to hardwire 40 wire cable
2601 int ata_cable_40wire(struct ata_port
*ap
)
2603 return ATA_CBL_PATA40
;
2607 * ata_cable_80wire - return 80 wire cable type
2610 * Helper method for drivers which want to hardwire 80 wire cable
2614 int ata_cable_80wire(struct ata_port
*ap
)
2616 return ATA_CBL_PATA80
;
2620 * ata_cable_unknown - return unknown PATA cable.
2623 * Helper method for drivers which have no PATA cable detection.
2626 int ata_cable_unknown(struct ata_port
*ap
)
2628 return ATA_CBL_PATA_UNK
;
2632 * ata_cable_ignore - return ignored PATA cable.
2635 * Helper method for drivers which don't use cable type to limit
2638 int ata_cable_ignore(struct ata_port
*ap
)
2640 return ATA_CBL_PATA_IGN
;
2644 * ata_cable_sata - return SATA cable type
2647 * Helper method for drivers which have SATA cables
2650 int ata_cable_sata(struct ata_port
*ap
)
2652 return ATA_CBL_SATA
;
2656 * ata_bus_probe - Reset and probe ATA bus
2659 * Master ATA bus probing function. Initiates a hardware-dependent
2660 * bus reset, then attempts to identify any devices found on
2664 * PCI/etc. bus probe sem.
2667 * Zero on success, negative errno otherwise.
2670 int ata_bus_probe(struct ata_port
*ap
)
2672 unsigned int classes
[ATA_MAX_DEVICES
];
2673 int tries
[ATA_MAX_DEVICES
];
2675 struct ata_device
*dev
;
2679 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2680 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2683 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2684 /* If we issue an SRST then an ATA drive (not ATAPI)
2685 * may change configuration and be in PIO0 timing. If
2686 * we do a hard reset (or are coming from power on)
2687 * this is true for ATA or ATAPI. Until we've set a
2688 * suitable controller mode we should not touch the
2689 * bus as we may be talking too fast.
2691 dev
->pio_mode
= XFER_PIO_0
;
2693 /* If the controller has a pio mode setup function
2694 * then use it to set the chipset to rights. Don't
2695 * touch the DMA setup as that will be dealt with when
2696 * configuring devices.
2698 if (ap
->ops
->set_piomode
)
2699 ap
->ops
->set_piomode(ap
, dev
);
2702 /* reset and determine device classes */
2703 ap
->ops
->phy_reset(ap
);
2705 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2706 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2707 dev
->class != ATA_DEV_UNKNOWN
)
2708 classes
[dev
->devno
] = dev
->class;
2710 classes
[dev
->devno
] = ATA_DEV_NONE
;
2712 dev
->class = ATA_DEV_UNKNOWN
;
2717 /* read IDENTIFY page and configure devices. We have to do the identify
2718 specific sequence bass-ackwards so that PDIAG- is released by
2721 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2722 if (tries
[dev
->devno
])
2723 dev
->class = classes
[dev
->devno
];
2725 if (!ata_dev_enabled(dev
))
2728 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2734 /* Now ask for the cable type as PDIAG- should have been released */
2735 if (ap
->ops
->cable_detect
)
2736 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2738 /* We may have SATA bridge glue hiding here irrespective of
2739 * the reported cable types and sensed types. When SATA
2740 * drives indicate we have a bridge, we don't know which end
2741 * of the link the bridge is which is a problem.
2743 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2744 if (ata_id_is_sata(dev
->id
))
2745 ap
->cbl
= ATA_CBL_SATA
;
2747 /* After the identify sequence we can now set up the devices. We do
2748 this in the normal order so that the user doesn't get confused */
2750 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2751 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2752 rc
= ata_dev_configure(dev
);
2753 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2758 /* configure transfer mode */
2759 rc
= ata_set_mode(&ap
->link
, &dev
);
2763 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2766 /* no device present, disable port */
2767 ata_port_disable(ap
);
2771 tries
[dev
->devno
]--;
2775 /* eeek, something went very wrong, give up */
2776 tries
[dev
->devno
] = 0;
2780 /* give it just one more chance */
2781 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2783 if (tries
[dev
->devno
] == 1) {
2784 /* This is the last chance, better to slow
2785 * down than lose it.
2787 sata_down_spd_limit(&ap
->link
);
2788 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2792 if (!tries
[dev
->devno
])
2793 ata_dev_disable(dev
);
2799 * ata_port_probe - Mark port as enabled
2800 * @ap: Port for which we indicate enablement
2802 * Modify @ap data structure such that the system
2803 * thinks that the entire port is enabled.
2805 * LOCKING: host lock, or some other form of
2809 void ata_port_probe(struct ata_port
*ap
)
2811 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2815 * sata_print_link_status - Print SATA link status
2816 * @link: SATA link to printk link status about
2818 * This function prints link speed and status of a SATA link.
2823 static void sata_print_link_status(struct ata_link
*link
)
2825 u32 sstatus
, scontrol
, tmp
;
2827 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2829 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2831 if (ata_phys_link_online(link
)) {
2832 tmp
= (sstatus
>> 4) & 0xf;
2833 ata_link_printk(link
, KERN_INFO
,
2834 "SATA link up %s (SStatus %X SControl %X)\n",
2835 sata_spd_string(tmp
), sstatus
, scontrol
);
2837 ata_link_printk(link
, KERN_INFO
,
2838 "SATA link down (SStatus %X SControl %X)\n",
2844 * ata_dev_pair - return other device on cable
2847 * Obtain the other device on the same cable, or if none is
2848 * present NULL is returned
2851 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2853 struct ata_link
*link
= adev
->link
;
2854 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2855 if (!ata_dev_enabled(pair
))
2861 * ata_port_disable - Disable port.
2862 * @ap: Port to be disabled.
2864 * Modify @ap data structure such that the system
2865 * thinks that the entire port is disabled, and should
2866 * never attempt to probe or communicate with devices
2869 * LOCKING: host lock, or some other form of
2873 void ata_port_disable(struct ata_port
*ap
)
2875 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2876 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2877 ap
->flags
|= ATA_FLAG_DISABLED
;
2881 * sata_down_spd_limit - adjust SATA spd limit downward
2882 * @link: Link to adjust SATA spd limit for
2884 * Adjust SATA spd limit of @link downward. Note that this
2885 * function only adjusts the limit. The change must be applied
2886 * using sata_set_spd().
2889 * Inherited from caller.
2892 * 0 on success, negative errno on failure
2894 int sata_down_spd_limit(struct ata_link
*link
)
2896 u32 sstatus
, spd
, mask
;
2899 if (!sata_scr_valid(link
))
2902 /* If SCR can be read, use it to determine the current SPD.
2903 * If not, use cached value in link->sata_spd.
2905 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2907 spd
= (sstatus
>> 4) & 0xf;
2909 spd
= link
->sata_spd
;
2911 mask
= link
->sata_spd_limit
;
2915 /* unconditionally mask off the highest bit */
2916 highbit
= fls(mask
) - 1;
2917 mask
&= ~(1 << highbit
);
2919 /* Mask off all speeds higher than or equal to the current
2920 * one. Force 1.5Gbps if current SPD is not available.
2923 mask
&= (1 << (spd
- 1)) - 1;
2927 /* were we already at the bottom? */
2931 link
->sata_spd_limit
= mask
;
2933 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2934 sata_spd_string(fls(mask
)));
2939 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2941 struct ata_link
*host_link
= &link
->ap
->link
;
2942 u32 limit
, target
, spd
;
2944 limit
= link
->sata_spd_limit
;
2946 /* Don't configure downstream link faster than upstream link.
2947 * It doesn't speed up anything and some PMPs choke on such
2950 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2951 limit
&= (1 << host_link
->sata_spd
) - 1;
2953 if (limit
== UINT_MAX
)
2956 target
= fls(limit
);
2958 spd
= (*scontrol
>> 4) & 0xf;
2959 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2961 return spd
!= target
;
2965 * sata_set_spd_needed - is SATA spd configuration needed
2966 * @link: Link in question
2968 * Test whether the spd limit in SControl matches
2969 * @link->sata_spd_limit. This function is used to determine
2970 * whether hardreset is necessary to apply SATA spd
2974 * Inherited from caller.
2977 * 1 if SATA spd configuration is needed, 0 otherwise.
2979 static int sata_set_spd_needed(struct ata_link
*link
)
2983 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2986 return __sata_set_spd_needed(link
, &scontrol
);
2990 * sata_set_spd - set SATA spd according to spd limit
2991 * @link: Link to set SATA spd for
2993 * Set SATA spd of @link according to sata_spd_limit.
2996 * Inherited from caller.
2999 * 0 if spd doesn't need to be changed, 1 if spd has been
3000 * changed. Negative errno if SCR registers are inaccessible.
3002 int sata_set_spd(struct ata_link
*link
)
3007 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3010 if (!__sata_set_spd_needed(link
, &scontrol
))
3013 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3020 * This mode timing computation functionality is ported over from
3021 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3024 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3025 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3026 * for UDMA6, which is currently supported only by Maxtor drives.
3028 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3031 static const struct ata_timing ata_timing
[] = {
3032 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
3033 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
3034 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
3035 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
3036 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
3037 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
3038 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
3039 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
3041 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
3042 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
3043 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
3045 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
3046 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
3047 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
3048 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
3049 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
3051 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3052 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
3053 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
3054 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
3055 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
3056 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
3057 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
3058 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
3063 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3064 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3066 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3068 q
->setup
= EZ(t
->setup
* 1000, T
);
3069 q
->act8b
= EZ(t
->act8b
* 1000, T
);
3070 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
3071 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
3072 q
->active
= EZ(t
->active
* 1000, T
);
3073 q
->recover
= EZ(t
->recover
* 1000, T
);
3074 q
->cycle
= EZ(t
->cycle
* 1000, T
);
3075 q
->udma
= EZ(t
->udma
* 1000, UT
);
3078 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3079 struct ata_timing
*m
, unsigned int what
)
3081 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3082 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3083 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3084 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3085 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3086 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3087 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3088 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3091 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3093 const struct ata_timing
*t
= ata_timing
;
3095 while (xfer_mode
> t
->mode
)
3098 if (xfer_mode
== t
->mode
)
3103 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3104 struct ata_timing
*t
, int T
, int UT
)
3106 const struct ata_timing
*s
;
3107 struct ata_timing p
;
3113 if (!(s
= ata_timing_find_mode(speed
)))
3116 memcpy(t
, s
, sizeof(*s
));
3119 * If the drive is an EIDE drive, it can tell us it needs extended
3120 * PIO/MW_DMA cycle timing.
3123 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3124 memset(&p
, 0, sizeof(p
));
3125 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
3126 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
3127 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
3128 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
3129 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
3131 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3135 * Convert the timing to bus clock counts.
3138 ata_timing_quantize(t
, t
, T
, UT
);
3141 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3142 * S.M.A.R.T * and some other commands. We have to ensure that the
3143 * DMA cycle timing is slower/equal than the fastest PIO timing.
3146 if (speed
> XFER_PIO_6
) {
3147 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3148 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3152 * Lengthen active & recovery time so that cycle time is correct.
3155 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3156 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3157 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3160 if (t
->active
+ t
->recover
< t
->cycle
) {
3161 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3162 t
->recover
= t
->cycle
- t
->active
;
3165 /* In a few cases quantisation may produce enough errors to
3166 leave t->cycle too low for the sum of active and recovery
3167 if so we must correct this */
3168 if (t
->active
+ t
->recover
> t
->cycle
)
3169 t
->cycle
= t
->active
+ t
->recover
;
3175 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3176 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3177 * @cycle: cycle duration in ns
3179 * Return matching xfer mode for @cycle. The returned mode is of
3180 * the transfer type specified by @xfer_shift. If @cycle is too
3181 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3182 * than the fastest known mode, the fasted mode is returned.
3188 * Matching xfer_mode, 0xff if no match found.
3190 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3192 u8 base_mode
= 0xff, last_mode
= 0xff;
3193 const struct ata_xfer_ent
*ent
;
3194 const struct ata_timing
*t
;
3196 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3197 if (ent
->shift
== xfer_shift
)
3198 base_mode
= ent
->base
;
3200 for (t
= ata_timing_find_mode(base_mode
);
3201 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3202 unsigned short this_cycle
;
3204 switch (xfer_shift
) {
3206 case ATA_SHIFT_MWDMA
:
3207 this_cycle
= t
->cycle
;
3209 case ATA_SHIFT_UDMA
:
3210 this_cycle
= t
->udma
;
3216 if (cycle
> this_cycle
)
3219 last_mode
= t
->mode
;
3226 * ata_down_xfermask_limit - adjust dev xfer masks downward
3227 * @dev: Device to adjust xfer masks
3228 * @sel: ATA_DNXFER_* selector
3230 * Adjust xfer masks of @dev downward. Note that this function
3231 * does not apply the change. Invoking ata_set_mode() afterwards
3232 * will apply the limit.
3235 * Inherited from caller.
3238 * 0 on success, negative errno on failure
3240 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3243 unsigned long orig_mask
, xfer_mask
;
3244 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3247 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3248 sel
&= ~ATA_DNXFER_QUIET
;
3250 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3253 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3256 case ATA_DNXFER_PIO
:
3257 highbit
= fls(pio_mask
) - 1;
3258 pio_mask
&= ~(1 << highbit
);
3261 case ATA_DNXFER_DMA
:
3263 highbit
= fls(udma_mask
) - 1;
3264 udma_mask
&= ~(1 << highbit
);
3267 } else if (mwdma_mask
) {
3268 highbit
= fls(mwdma_mask
) - 1;
3269 mwdma_mask
&= ~(1 << highbit
);
3275 case ATA_DNXFER_40C
:
3276 udma_mask
&= ATA_UDMA_MASK_40C
;
3279 case ATA_DNXFER_FORCE_PIO0
:
3281 case ATA_DNXFER_FORCE_PIO
:
3290 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3292 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3296 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3297 snprintf(buf
, sizeof(buf
), "%s:%s",
3298 ata_mode_string(xfer_mask
),
3299 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3301 snprintf(buf
, sizeof(buf
), "%s",
3302 ata_mode_string(xfer_mask
));
3304 ata_dev_printk(dev
, KERN_WARNING
,
3305 "limiting speed to %s\n", buf
);
3308 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3314 static int ata_dev_set_mode(struct ata_device
*dev
)
3316 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3317 const char *dev_err_whine
= "";
3318 int ign_dev_err
= 0;
3319 unsigned int err_mask
;
3322 dev
->flags
&= ~ATA_DFLAG_PIO
;
3323 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3324 dev
->flags
|= ATA_DFLAG_PIO
;
3326 err_mask
= ata_dev_set_xfermode(dev
);
3328 if (err_mask
& ~AC_ERR_DEV
)
3332 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3333 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3334 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3338 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3339 /* Old CFA may refuse this command, which is just fine */
3340 if (ata_id_is_cfa(dev
->id
))
3342 /* Catch several broken garbage emulations plus some pre
3344 if (ata_id_major_version(dev
->id
) == 0 &&
3345 dev
->pio_mode
<= XFER_PIO_2
)
3347 /* Some very old devices and some bad newer ones fail
3348 any kind of SET_XFERMODE request but support PIO0-2
3349 timings and no IORDY */
3350 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3353 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3354 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3355 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3356 dev
->dma_mode
== XFER_MW_DMA_0
&&
3357 (dev
->id
[63] >> 8) & 1)
3360 /* if the device is actually configured correctly, ignore dev err */
3361 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3364 if (err_mask
& AC_ERR_DEV
) {
3368 dev_err_whine
= " (device error ignored)";
3371 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3372 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3374 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3375 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3381 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3382 "(err_mask=0x%x)\n", err_mask
);
3387 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3388 * @link: link on which timings will be programmed
3389 * @r_failed_dev: out parameter for failed device
3391 * Standard implementation of the function used to tune and set
3392 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3393 * ata_dev_set_mode() fails, pointer to the failing device is
3394 * returned in @r_failed_dev.
3397 * PCI/etc. bus probe sem.
3400 * 0 on success, negative errno otherwise
3403 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3405 struct ata_port
*ap
= link
->ap
;
3406 struct ata_device
*dev
;
3407 int rc
= 0, used_dma
= 0, found
= 0;
3409 /* step 1: calculate xfer_mask */
3410 ata_for_each_dev(dev
, link
, ENABLED
) {
3411 unsigned long pio_mask
, dma_mask
;
3412 unsigned int mode_mask
;
3414 mode_mask
= ATA_DMA_MASK_ATA
;
3415 if (dev
->class == ATA_DEV_ATAPI
)
3416 mode_mask
= ATA_DMA_MASK_ATAPI
;
3417 else if (ata_id_is_cfa(dev
->id
))
3418 mode_mask
= ATA_DMA_MASK_CFA
;
3420 ata_dev_xfermask(dev
);
3421 ata_force_xfermask(dev
);
3423 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3424 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3426 if (libata_dma_mask
& mode_mask
)
3427 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3431 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3432 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3435 if (ata_dma_enabled(dev
))
3441 /* step 2: always set host PIO timings */
3442 ata_for_each_dev(dev
, link
, ENABLED
) {
3443 if (dev
->pio_mode
== 0xff) {
3444 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3449 dev
->xfer_mode
= dev
->pio_mode
;
3450 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3451 if (ap
->ops
->set_piomode
)
3452 ap
->ops
->set_piomode(ap
, dev
);
3455 /* step 3: set host DMA timings */
3456 ata_for_each_dev(dev
, link
, ENABLED
) {
3457 if (!ata_dma_enabled(dev
))
3460 dev
->xfer_mode
= dev
->dma_mode
;
3461 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3462 if (ap
->ops
->set_dmamode
)
3463 ap
->ops
->set_dmamode(ap
, dev
);
3466 /* step 4: update devices' xfer mode */
3467 ata_for_each_dev(dev
, link
, ENABLED
) {
3468 rc
= ata_dev_set_mode(dev
);
3473 /* Record simplex status. If we selected DMA then the other
3474 * host channels are not permitted to do so.
3476 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3477 ap
->host
->simplex_claimed
= ap
;
3481 *r_failed_dev
= dev
;
3486 * ata_wait_ready - wait for link to become ready
3487 * @link: link to be waited on
3488 * @deadline: deadline jiffies for the operation
3489 * @check_ready: callback to check link readiness
3491 * Wait for @link to become ready. @check_ready should return
3492 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3493 * link doesn't seem to be occupied, other errno for other error
3496 * Transient -ENODEV conditions are allowed for
3497 * ATA_TMOUT_FF_WAIT.
3503 * 0 if @linke is ready before @deadline; otherwise, -errno.
3505 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3506 int (*check_ready
)(struct ata_link
*link
))
3508 unsigned long start
= jiffies
;
3509 unsigned long nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3512 /* Slave readiness can't be tested separately from master. On
3513 * M/S emulation configuration, this function should be called
3514 * only on the master and it will handle both master and slave.
3516 WARN_ON(link
== link
->ap
->slave_link
);
3518 if (time_after(nodev_deadline
, deadline
))
3519 nodev_deadline
= deadline
;
3522 unsigned long now
= jiffies
;
3525 ready
= tmp
= check_ready(link
);
3529 /* -ENODEV could be transient. Ignore -ENODEV if link
3530 * is online. Also, some SATA devices take a long
3531 * time to clear 0xff after reset. For example,
3532 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3533 * GoVault needs even more than that. Wait for
3534 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3536 * Note that some PATA controllers (pata_ali) explode
3537 * if status register is read more than once when
3538 * there's no device attached.
3540 if (ready
== -ENODEV
) {
3541 if (ata_link_online(link
))
3543 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3544 !ata_link_offline(link
) &&
3545 time_before(now
, nodev_deadline
))
3551 if (time_after(now
, deadline
))
3554 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3555 (deadline
- now
> 3 * HZ
)) {
3556 ata_link_printk(link
, KERN_WARNING
,
3557 "link is slow to respond, please be patient "
3558 "(ready=%d)\n", tmp
);
3567 * ata_wait_after_reset - wait for link to become ready after reset
3568 * @link: link to be waited on
3569 * @deadline: deadline jiffies for the operation
3570 * @check_ready: callback to check link readiness
3572 * Wait for @link to become ready after reset.
3578 * 0 if @linke is ready before @deadline; otherwise, -errno.
3580 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3581 int (*check_ready
)(struct ata_link
*link
))
3583 msleep(ATA_WAIT_AFTER_RESET
);
3585 return ata_wait_ready(link
, deadline
, check_ready
);
3589 * sata_link_debounce - debounce SATA phy status
3590 * @link: ATA link to debounce SATA phy status for
3591 * @params: timing parameters { interval, duratinon, timeout } in msec
3592 * @deadline: deadline jiffies for the operation
3594 * Make sure SStatus of @link reaches stable state, determined by
3595 * holding the same value where DET is not 1 for @duration polled
3596 * every @interval, before @timeout. Timeout constraints the
3597 * beginning of the stable state. Because DET gets stuck at 1 on
3598 * some controllers after hot unplugging, this functions waits
3599 * until timeout then returns 0 if DET is stable at 1.
3601 * @timeout is further limited by @deadline. The sooner of the
3605 * Kernel thread context (may sleep)
3608 * 0 on success, -errno on failure.
3610 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3611 unsigned long deadline
)
3613 unsigned long interval
= params
[0];
3614 unsigned long duration
= params
[1];
3615 unsigned long last_jiffies
, t
;
3619 t
= ata_deadline(jiffies
, params
[2]);
3620 if (time_before(t
, deadline
))
3623 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3628 last_jiffies
= jiffies
;
3632 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3638 if (cur
== 1 && time_before(jiffies
, deadline
))
3640 if (time_after(jiffies
,
3641 ata_deadline(last_jiffies
, duration
)))
3646 /* unstable, start over */
3648 last_jiffies
= jiffies
;
3650 /* Check deadline. If debouncing failed, return
3651 * -EPIPE to tell upper layer to lower link speed.
3653 if (time_after(jiffies
, deadline
))
3659 * sata_link_resume - resume SATA link
3660 * @link: ATA link to resume SATA
3661 * @params: timing parameters { interval, duratinon, timeout } in msec
3662 * @deadline: deadline jiffies for the operation
3664 * Resume SATA phy @link and debounce it.
3667 * Kernel thread context (may sleep)
3670 * 0 on success, -errno on failure.
3672 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3673 unsigned long deadline
)
3675 u32 scontrol
, serror
;
3678 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3681 scontrol
= (scontrol
& 0x0f0) | 0x300;
3683 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3686 /* Some PHYs react badly if SStatus is pounded immediately
3687 * after resuming. Delay 200ms before debouncing.
3691 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3694 /* clear SError, some PHYs require this even for SRST to work */
3695 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3696 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3698 return rc
!= -EINVAL
? rc
: 0;
3702 * ata_std_prereset - prepare for reset
3703 * @link: ATA link to be reset
3704 * @deadline: deadline jiffies for the operation
3706 * @link is about to be reset. Initialize it. Failure from
3707 * prereset makes libata abort whole reset sequence and give up
3708 * that port, so prereset should be best-effort. It does its
3709 * best to prepare for reset sequence but if things go wrong, it
3710 * should just whine, not fail.
3713 * Kernel thread context (may sleep)
3716 * 0 on success, -errno otherwise.
3718 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3720 struct ata_port
*ap
= link
->ap
;
3721 struct ata_eh_context
*ehc
= &link
->eh_context
;
3722 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3725 /* if we're about to do hardreset, nothing more to do */
3726 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3729 /* if SATA, resume link */
3730 if (ap
->flags
& ATA_FLAG_SATA
) {
3731 rc
= sata_link_resume(link
, timing
, deadline
);
3732 /* whine about phy resume failure but proceed */
3733 if (rc
&& rc
!= -EOPNOTSUPP
)
3734 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3735 "link for reset (errno=%d)\n", rc
);
3738 /* no point in trying softreset on offline link */
3739 if (ata_phys_link_offline(link
))
3740 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3746 * sata_link_hardreset - reset link via SATA phy reset
3747 * @link: link to reset
3748 * @timing: timing parameters { interval, duratinon, timeout } in msec
3749 * @deadline: deadline jiffies for the operation
3750 * @online: optional out parameter indicating link onlineness
3751 * @check_ready: optional callback to check link readiness
3753 * SATA phy-reset @link using DET bits of SControl register.
3754 * After hardreset, link readiness is waited upon using
3755 * ata_wait_ready() if @check_ready is specified. LLDs are
3756 * allowed to not specify @check_ready and wait itself after this
3757 * function returns. Device classification is LLD's
3760 * *@online is set to one iff reset succeeded and @link is online
3764 * Kernel thread context (may sleep)
3767 * 0 on success, -errno otherwise.
3769 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3770 unsigned long deadline
,
3771 bool *online
, int (*check_ready
)(struct ata_link
*))
3781 if (sata_set_spd_needed(link
)) {
3782 /* SATA spec says nothing about how to reconfigure
3783 * spd. To be on the safe side, turn off phy during
3784 * reconfiguration. This works for at least ICH7 AHCI
3787 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3790 scontrol
= (scontrol
& 0x0f0) | 0x304;
3792 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3798 /* issue phy wake/reset */
3799 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3802 scontrol
= (scontrol
& 0x0f0) | 0x301;
3804 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3807 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3808 * 10.4.2 says at least 1 ms.
3812 /* bring link back */
3813 rc
= sata_link_resume(link
, timing
, deadline
);
3816 /* if link is offline nothing more to do */
3817 if (ata_phys_link_offline(link
))
3820 /* Link is online. From this point, -ENODEV too is an error. */
3824 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3825 /* If PMP is supported, we have to do follow-up SRST.
3826 * Some PMPs don't send D2H Reg FIS after hardreset if
3827 * the first port is empty. Wait only for
3828 * ATA_TMOUT_PMP_SRST_WAIT.
3831 unsigned long pmp_deadline
;
3833 pmp_deadline
= ata_deadline(jiffies
,
3834 ATA_TMOUT_PMP_SRST_WAIT
);
3835 if (time_after(pmp_deadline
, deadline
))
3836 pmp_deadline
= deadline
;
3837 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3845 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3847 if (rc
&& rc
!= -EAGAIN
) {
3848 /* online is set iff link is online && reset succeeded */
3851 ata_link_printk(link
, KERN_ERR
,
3852 "COMRESET failed (errno=%d)\n", rc
);
3854 DPRINTK("EXIT, rc=%d\n", rc
);
3859 * sata_std_hardreset - COMRESET w/o waiting or classification
3860 * @link: link to reset
3861 * @class: resulting class of attached device
3862 * @deadline: deadline jiffies for the operation
3864 * Standard SATA COMRESET w/o waiting or classification.
3867 * Kernel thread context (may sleep)
3870 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3872 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3873 unsigned long deadline
)
3875 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3880 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3881 return online
? -EAGAIN
: rc
;
3885 * ata_std_postreset - standard postreset callback
3886 * @link: the target ata_link
3887 * @classes: classes of attached devices
3889 * This function is invoked after a successful reset. Note that
3890 * the device might have been reset more than once using
3891 * different reset methods before postreset is invoked.
3894 * Kernel thread context (may sleep)
3896 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3902 /* reset complete, clear SError */
3903 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
3904 sata_scr_write(link
, SCR_ERROR
, serror
);
3906 /* print link status */
3907 sata_print_link_status(link
);
3913 * ata_dev_same_device - Determine whether new ID matches configured device
3914 * @dev: device to compare against
3915 * @new_class: class of the new device
3916 * @new_id: IDENTIFY page of the new device
3918 * Compare @new_class and @new_id against @dev and determine
3919 * whether @dev is the device indicated by @new_class and
3926 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3928 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3931 const u16
*old_id
= dev
->id
;
3932 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3933 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3935 if (dev
->class != new_class
) {
3936 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3937 dev
->class, new_class
);
3941 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3942 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3943 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3944 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3946 if (strcmp(model
[0], model
[1])) {
3947 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3948 "'%s' != '%s'\n", model
[0], model
[1]);
3952 if (strcmp(serial
[0], serial
[1])) {
3953 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3954 "'%s' != '%s'\n", serial
[0], serial
[1]);
3962 * ata_dev_reread_id - Re-read IDENTIFY data
3963 * @dev: target ATA device
3964 * @readid_flags: read ID flags
3966 * Re-read IDENTIFY page and make sure @dev is still attached to
3970 * Kernel thread context (may sleep)
3973 * 0 on success, negative errno otherwise
3975 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
3977 unsigned int class = dev
->class;
3978 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
3982 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3986 /* is the device still there? */
3987 if (!ata_dev_same_device(dev
, class, id
))
3990 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3995 * ata_dev_revalidate - Revalidate ATA device
3996 * @dev: device to revalidate
3997 * @new_class: new class code
3998 * @readid_flags: read ID flags
4000 * Re-read IDENTIFY page, make sure @dev is still attached to the
4001 * port and reconfigure it according to the new IDENTIFY page.
4004 * Kernel thread context (may sleep)
4007 * 0 on success, negative errno otherwise
4009 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4010 unsigned int readid_flags
)
4012 u64 n_sectors
= dev
->n_sectors
;
4015 if (!ata_dev_enabled(dev
))
4018 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4019 if (ata_class_enabled(new_class
) &&
4020 new_class
!= ATA_DEV_ATA
&& new_class
!= ATA_DEV_ATAPI
) {
4021 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
4022 dev
->class, new_class
);
4028 rc
= ata_dev_reread_id(dev
, readid_flags
);
4032 /* configure device according to the new ID */
4033 rc
= ata_dev_configure(dev
);
4037 /* verify n_sectors hasn't changed */
4038 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
4039 dev
->n_sectors
!= n_sectors
) {
4040 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
4042 (unsigned long long)n_sectors
,
4043 (unsigned long long)dev
->n_sectors
);
4045 /* restore original n_sectors */
4046 dev
->n_sectors
= n_sectors
;
4055 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4059 struct ata_blacklist_entry
{
4060 const char *model_num
;
4061 const char *model_rev
;
4062 unsigned long horkage
;
4065 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4066 /* Devices with DMA related problems under Linux */
4067 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4068 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4069 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4070 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4071 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4072 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4073 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4074 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4075 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4076 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
4077 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
4078 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4079 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4080 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4081 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4082 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4083 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
4084 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
4085 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4086 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4087 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4088 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4089 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4090 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4091 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4092 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4093 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4094 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4095 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4096 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4097 /* Odd clown on sil3726/4726 PMPs */
4098 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4100 /* Weird ATAPI devices */
4101 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4102 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4104 /* Devices we expect to fail diagnostics */
4106 /* Devices where NCQ should be avoided */
4108 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4109 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4110 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4111 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4113 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4114 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4115 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4116 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4117 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4119 /* Seagate NCQ + FLUSH CACHE firmware bug */
4120 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ
|
4121 ATA_HORKAGE_FIRMWARE_WARN
},
4122 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ
|
4123 ATA_HORKAGE_FIRMWARE_WARN
},
4124 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ
|
4125 ATA_HORKAGE_FIRMWARE_WARN
},
4126 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ
|
4127 ATA_HORKAGE_FIRMWARE_WARN
},
4128 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ
|
4129 ATA_HORKAGE_FIRMWARE_WARN
},
4131 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ
|
4132 ATA_HORKAGE_FIRMWARE_WARN
},
4133 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ
|
4134 ATA_HORKAGE_FIRMWARE_WARN
},
4135 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ
|
4136 ATA_HORKAGE_FIRMWARE_WARN
},
4137 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ
|
4138 ATA_HORKAGE_FIRMWARE_WARN
},
4139 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ
|
4140 ATA_HORKAGE_FIRMWARE_WARN
},
4142 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ
|
4143 ATA_HORKAGE_FIRMWARE_WARN
},
4144 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ
|
4145 ATA_HORKAGE_FIRMWARE_WARN
},
4146 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ
|
4147 ATA_HORKAGE_FIRMWARE_WARN
},
4148 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ
|
4149 ATA_HORKAGE_FIRMWARE_WARN
},
4150 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ
|
4151 ATA_HORKAGE_FIRMWARE_WARN
},
4153 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ
|
4154 ATA_HORKAGE_FIRMWARE_WARN
},
4155 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ
|
4156 ATA_HORKAGE_FIRMWARE_WARN
},
4157 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ
|
4158 ATA_HORKAGE_FIRMWARE_WARN
},
4159 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ
|
4160 ATA_HORKAGE_FIRMWARE_WARN
},
4161 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ
|
4162 ATA_HORKAGE_FIRMWARE_WARN
},
4164 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ
|
4165 ATA_HORKAGE_FIRMWARE_WARN
},
4166 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ
|
4167 ATA_HORKAGE_FIRMWARE_WARN
},
4168 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ
|
4169 ATA_HORKAGE_FIRMWARE_WARN
},
4170 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ
|
4171 ATA_HORKAGE_FIRMWARE_WARN
},
4172 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ
|
4173 ATA_HORKAGE_FIRMWARE_WARN
},
4175 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ
|
4176 ATA_HORKAGE_FIRMWARE_WARN
},
4177 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ
|
4178 ATA_HORKAGE_FIRMWARE_WARN
},
4179 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ
|
4180 ATA_HORKAGE_FIRMWARE_WARN
},
4181 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ
|
4182 ATA_HORKAGE_FIRMWARE_WARN
},
4183 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ
|
4184 ATA_HORKAGE_FIRMWARE_WARN
},
4186 /* Blacklist entries taken from Silicon Image 3124/3132
4187 Windows driver .inf file - also several Linux problem reports */
4188 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4189 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4190 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4192 /* devices which puke on READ_NATIVE_MAX */
4193 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4194 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4195 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4196 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4198 /* Devices which report 1 sector over size HPA */
4199 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4200 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4201 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4203 /* Devices which get the IVB wrong */
4204 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4205 /* Maybe we should just blacklist TSSTcorp... */
4206 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB
, },
4207 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB
, },
4208 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4209 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4210 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4211 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4213 /* Devices that do not need bridging limits applied */
4214 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4220 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4226 * check for trailing wildcard: *\0
4228 p
= strchr(patt
, wildchar
);
4229 if (p
&& ((*(p
+ 1)) == 0))
4240 return strncmp(patt
, name
, len
);
4243 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4245 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4246 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4247 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4249 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4250 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4252 while (ad
->model_num
) {
4253 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4254 if (ad
->model_rev
== NULL
)
4256 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4264 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4266 /* We don't support polling DMA.
4267 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4268 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4270 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4271 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4273 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4277 * ata_is_40wire - check drive side detection
4280 * Perform drive side detection decoding, allowing for device vendors
4281 * who can't follow the documentation.
4284 static int ata_is_40wire(struct ata_device
*dev
)
4286 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4287 return ata_drive_40wire_relaxed(dev
->id
);
4288 return ata_drive_40wire(dev
->id
);
4292 * cable_is_40wire - 40/80/SATA decider
4293 * @ap: port to consider
4295 * This function encapsulates the policy for speed management
4296 * in one place. At the moment we don't cache the result but
4297 * there is a good case for setting ap->cbl to the result when
4298 * we are called with unknown cables (and figuring out if it
4299 * impacts hotplug at all).
4301 * Return 1 if the cable appears to be 40 wire.
4304 static int cable_is_40wire(struct ata_port
*ap
)
4306 struct ata_link
*link
;
4307 struct ata_device
*dev
;
4309 /* If the controller thinks we are 40 wire, we are. */
4310 if (ap
->cbl
== ATA_CBL_PATA40
)
4313 /* If the controller thinks we are 80 wire, we are. */
4314 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4317 /* If the system is known to be 40 wire short cable (eg
4318 * laptop), then we allow 80 wire modes even if the drive
4321 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4324 /* If the controller doesn't know, we scan.
4326 * Note: We look for all 40 wire detects at this point. Any
4327 * 80 wire detect is taken to be 80 wire cable because
4328 * - in many setups only the one drive (slave if present) will
4329 * give a valid detect
4330 * - if you have a non detect capable drive you don't want it
4331 * to colour the choice
4333 ata_for_each_link(link
, ap
, EDGE
) {
4334 ata_for_each_dev(dev
, link
, ENABLED
) {
4335 if (!ata_is_40wire(dev
))
4343 * ata_dev_xfermask - Compute supported xfermask of the given device
4344 * @dev: Device to compute xfermask for
4346 * Compute supported xfermask of @dev and store it in
4347 * dev->*_mask. This function is responsible for applying all
4348 * known limits including host controller limits, device
4354 static void ata_dev_xfermask(struct ata_device
*dev
)
4356 struct ata_link
*link
= dev
->link
;
4357 struct ata_port
*ap
= link
->ap
;
4358 struct ata_host
*host
= ap
->host
;
4359 unsigned long xfer_mask
;
4361 /* controller modes available */
4362 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4363 ap
->mwdma_mask
, ap
->udma_mask
);
4365 /* drive modes available */
4366 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4367 dev
->mwdma_mask
, dev
->udma_mask
);
4368 xfer_mask
&= ata_id_xfermask(dev
->id
);
4371 * CFA Advanced TrueIDE timings are not allowed on a shared
4374 if (ata_dev_pair(dev
)) {
4375 /* No PIO5 or PIO6 */
4376 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4377 /* No MWDMA3 or MWDMA 4 */
4378 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4381 if (ata_dma_blacklisted(dev
)) {
4382 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4383 ata_dev_printk(dev
, KERN_WARNING
,
4384 "device is on DMA blacklist, disabling DMA\n");
4387 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4388 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4389 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4390 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4391 "other device, disabling DMA\n");
4394 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4395 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4397 if (ap
->ops
->mode_filter
)
4398 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4400 /* Apply cable rule here. Don't apply it early because when
4401 * we handle hot plug the cable type can itself change.
4402 * Check this last so that we know if the transfer rate was
4403 * solely limited by the cable.
4404 * Unknown or 80 wire cables reported host side are checked
4405 * drive side as well. Cases where we know a 40wire cable
4406 * is used safely for 80 are not checked here.
4408 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4409 /* UDMA/44 or higher would be available */
4410 if (cable_is_40wire(ap
)) {
4411 ata_dev_printk(dev
, KERN_WARNING
,
4412 "limited to UDMA/33 due to 40-wire cable\n");
4413 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4416 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4417 &dev
->mwdma_mask
, &dev
->udma_mask
);
4421 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4422 * @dev: Device to which command will be sent
4424 * Issue SET FEATURES - XFER MODE command to device @dev
4428 * PCI/etc. bus probe sem.
4431 * 0 on success, AC_ERR_* mask otherwise.
4434 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4436 struct ata_taskfile tf
;
4437 unsigned int err_mask
;
4439 /* set up set-features taskfile */
4440 DPRINTK("set features - xfer mode\n");
4442 /* Some controllers and ATAPI devices show flaky interrupt
4443 * behavior after setting xfer mode. Use polling instead.
4445 ata_tf_init(dev
, &tf
);
4446 tf
.command
= ATA_CMD_SET_FEATURES
;
4447 tf
.feature
= SETFEATURES_XFER
;
4448 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4449 tf
.protocol
= ATA_PROT_NODATA
;
4450 /* If we are using IORDY we must send the mode setting command */
4451 if (ata_pio_need_iordy(dev
))
4452 tf
.nsect
= dev
->xfer_mode
;
4453 /* If the device has IORDY and the controller does not - turn it off */
4454 else if (ata_id_has_iordy(dev
->id
))
4456 else /* In the ancient relic department - skip all of this */
4459 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4461 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4465 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4466 * @dev: Device to which command will be sent
4467 * @enable: Whether to enable or disable the feature
4468 * @feature: The sector count represents the feature to set
4470 * Issue SET FEATURES - SATA FEATURES command to device @dev
4471 * on port @ap with sector count
4474 * PCI/etc. bus probe sem.
4477 * 0 on success, AC_ERR_* mask otherwise.
4479 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4482 struct ata_taskfile tf
;
4483 unsigned int err_mask
;
4485 /* set up set-features taskfile */
4486 DPRINTK("set features - SATA features\n");
4488 ata_tf_init(dev
, &tf
);
4489 tf
.command
= ATA_CMD_SET_FEATURES
;
4490 tf
.feature
= enable
;
4491 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4492 tf
.protocol
= ATA_PROT_NODATA
;
4495 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4497 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4502 * ata_dev_init_params - Issue INIT DEV PARAMS command
4503 * @dev: Device to which command will be sent
4504 * @heads: Number of heads (taskfile parameter)
4505 * @sectors: Number of sectors (taskfile parameter)
4508 * Kernel thread context (may sleep)
4511 * 0 on success, AC_ERR_* mask otherwise.
4513 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4514 u16 heads
, u16 sectors
)
4516 struct ata_taskfile tf
;
4517 unsigned int err_mask
;
4519 /* Number of sectors per track 1-255. Number of heads 1-16 */
4520 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4521 return AC_ERR_INVALID
;
4523 /* set up init dev params taskfile */
4524 DPRINTK("init dev params \n");
4526 ata_tf_init(dev
, &tf
);
4527 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4528 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4529 tf
.protocol
= ATA_PROT_NODATA
;
4531 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4533 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4534 /* A clean abort indicates an original or just out of spec drive
4535 and we should continue as we issue the setup based on the
4536 drive reported working geometry */
4537 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4540 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4545 * ata_sg_clean - Unmap DMA memory associated with command
4546 * @qc: Command containing DMA memory to be released
4548 * Unmap all mapped DMA memory associated with this command.
4551 * spin_lock_irqsave(host lock)
4553 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4555 struct ata_port
*ap
= qc
->ap
;
4556 struct scatterlist
*sg
= qc
->sg
;
4557 int dir
= qc
->dma_dir
;
4559 WARN_ON(sg
== NULL
);
4561 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4564 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
4566 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4571 * atapi_check_dma - Check whether ATAPI DMA can be supported
4572 * @qc: Metadata associated with taskfile to check
4574 * Allow low-level driver to filter ATA PACKET commands, returning
4575 * a status indicating whether or not it is OK to use DMA for the
4576 * supplied PACKET command.
4579 * spin_lock_irqsave(host lock)
4581 * RETURNS: 0 when ATAPI DMA can be used
4584 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4586 struct ata_port
*ap
= qc
->ap
;
4588 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4589 * few ATAPI devices choke on such DMA requests.
4591 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4592 unlikely(qc
->nbytes
& 15))
4595 if (ap
->ops
->check_atapi_dma
)
4596 return ap
->ops
->check_atapi_dma(qc
);
4602 * ata_std_qc_defer - Check whether a qc needs to be deferred
4603 * @qc: ATA command in question
4605 * Non-NCQ commands cannot run with any other command, NCQ or
4606 * not. As upper layer only knows the queue depth, we are
4607 * responsible for maintaining exclusion. This function checks
4608 * whether a new command @qc can be issued.
4611 * spin_lock_irqsave(host lock)
4614 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4616 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4618 struct ata_link
*link
= qc
->dev
->link
;
4620 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4621 if (!ata_tag_valid(link
->active_tag
))
4624 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4628 return ATA_DEFER_LINK
;
4631 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4634 * ata_sg_init - Associate command with scatter-gather table.
4635 * @qc: Command to be associated
4636 * @sg: Scatter-gather table.
4637 * @n_elem: Number of elements in s/g table.
4639 * Initialize the data-related elements of queued_cmd @qc
4640 * to point to a scatter-gather table @sg, containing @n_elem
4644 * spin_lock_irqsave(host lock)
4646 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4647 unsigned int n_elem
)
4650 qc
->n_elem
= n_elem
;
4655 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4656 * @qc: Command with scatter-gather table to be mapped.
4658 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4661 * spin_lock_irqsave(host lock)
4664 * Zero on success, negative on error.
4667 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4669 struct ata_port
*ap
= qc
->ap
;
4670 unsigned int n_elem
;
4672 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4674 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4678 DPRINTK("%d sg elements mapped\n", n_elem
);
4680 qc
->n_elem
= n_elem
;
4681 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4687 * swap_buf_le16 - swap halves of 16-bit words in place
4688 * @buf: Buffer to swap
4689 * @buf_words: Number of 16-bit words in buffer.
4691 * Swap halves of 16-bit words if needed to convert from
4692 * little-endian byte order to native cpu byte order, or
4696 * Inherited from caller.
4698 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4703 for (i
= 0; i
< buf_words
; i
++)
4704 buf
[i
] = le16_to_cpu(buf
[i
]);
4705 #endif /* __BIG_ENDIAN */
4709 * ata_qc_new - Request an available ATA command, for queueing
4710 * @ap: Port associated with device @dev
4711 * @dev: Device from whom we request an available command structure
4717 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4719 struct ata_queued_cmd
*qc
= NULL
;
4722 /* no command while frozen */
4723 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4726 /* the last tag is reserved for internal command. */
4727 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4728 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4729 qc
= __ata_qc_from_tag(ap
, i
);
4740 * ata_qc_new_init - Request an available ATA command, and initialize it
4741 * @dev: Device from whom we request an available command structure
4747 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4749 struct ata_port
*ap
= dev
->link
->ap
;
4750 struct ata_queued_cmd
*qc
;
4752 qc
= ata_qc_new(ap
);
4765 * ata_qc_free - free unused ata_queued_cmd
4766 * @qc: Command to complete
4768 * Designed to free unused ata_queued_cmd object
4769 * in case something prevents using it.
4772 * spin_lock_irqsave(host lock)
4774 void ata_qc_free(struct ata_queued_cmd
*qc
)
4776 struct ata_port
*ap
= qc
->ap
;
4779 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4783 if (likely(ata_tag_valid(tag
))) {
4784 qc
->tag
= ATA_TAG_POISON
;
4785 clear_bit(tag
, &ap
->qc_allocated
);
4789 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4791 struct ata_port
*ap
= qc
->ap
;
4792 struct ata_link
*link
= qc
->dev
->link
;
4794 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4795 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4797 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4800 /* command should be marked inactive atomically with qc completion */
4801 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4802 link
->sactive
&= ~(1 << qc
->tag
);
4804 ap
->nr_active_links
--;
4806 link
->active_tag
= ATA_TAG_POISON
;
4807 ap
->nr_active_links
--;
4810 /* clear exclusive status */
4811 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4812 ap
->excl_link
== link
))
4813 ap
->excl_link
= NULL
;
4815 /* atapi: mark qc as inactive to prevent the interrupt handler
4816 * from completing the command twice later, before the error handler
4817 * is called. (when rc != 0 and atapi request sense is needed)
4819 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4820 ap
->qc_active
&= ~(1 << qc
->tag
);
4822 /* call completion callback */
4823 qc
->complete_fn(qc
);
4826 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4828 struct ata_port
*ap
= qc
->ap
;
4830 qc
->result_tf
.flags
= qc
->tf
.flags
;
4831 ap
->ops
->qc_fill_rtf(qc
);
4834 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4836 struct ata_device
*dev
= qc
->dev
;
4838 if (ata_tag_internal(qc
->tag
))
4841 if (ata_is_nodata(qc
->tf
.protocol
))
4844 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4847 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4851 * ata_qc_complete - Complete an active ATA command
4852 * @qc: Command to complete
4854 * Indicate to the mid and upper layers that an ATA
4855 * command has completed, with either an ok or not-ok status.
4858 * spin_lock_irqsave(host lock)
4860 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4862 struct ata_port
*ap
= qc
->ap
;
4864 /* XXX: New EH and old EH use different mechanisms to
4865 * synchronize EH with regular execution path.
4867 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4868 * Normal execution path is responsible for not accessing a
4869 * failed qc. libata core enforces the rule by returning NULL
4870 * from ata_qc_from_tag() for failed qcs.
4872 * Old EH depends on ata_qc_complete() nullifying completion
4873 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4874 * not synchronize with interrupt handler. Only PIO task is
4877 if (ap
->ops
->error_handler
) {
4878 struct ata_device
*dev
= qc
->dev
;
4879 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
4881 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
4883 if (unlikely(qc
->err_mask
))
4884 qc
->flags
|= ATA_QCFLAG_FAILED
;
4886 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4887 if (!ata_tag_internal(qc
->tag
)) {
4888 /* always fill result TF for failed qc */
4890 ata_qc_schedule_eh(qc
);
4895 /* read result TF if requested */
4896 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4899 /* Some commands need post-processing after successful
4902 switch (qc
->tf
.command
) {
4903 case ATA_CMD_SET_FEATURES
:
4904 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
4905 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
4908 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
4909 case ATA_CMD_SET_MULTI
: /* multi_count changed */
4910 /* revalidate device */
4911 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
4912 ata_port_schedule_eh(ap
);
4916 dev
->flags
|= ATA_DFLAG_SLEEPING
;
4920 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
4921 ata_verify_xfer(qc
);
4923 __ata_qc_complete(qc
);
4925 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4928 /* read result TF if failed or requested */
4929 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4932 __ata_qc_complete(qc
);
4937 * ata_qc_complete_multiple - Complete multiple qcs successfully
4938 * @ap: port in question
4939 * @qc_active: new qc_active mask
4941 * Complete in-flight commands. This functions is meant to be
4942 * called from low-level driver's interrupt routine to complete
4943 * requests normally. ap->qc_active and @qc_active is compared
4944 * and commands are completed accordingly.
4947 * spin_lock_irqsave(host lock)
4950 * Number of completed commands on success, -errno otherwise.
4952 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
4958 done_mask
= ap
->qc_active
^ qc_active
;
4960 if (unlikely(done_mask
& qc_active
)) {
4961 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
4962 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
4966 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
4967 struct ata_queued_cmd
*qc
;
4969 if (!(done_mask
& (1 << i
)))
4972 if ((qc
= ata_qc_from_tag(ap
, i
))) {
4973 ata_qc_complete(qc
);
4982 * ata_qc_issue - issue taskfile to device
4983 * @qc: command to issue to device
4985 * Prepare an ATA command to submission to device.
4986 * This includes mapping the data into a DMA-able
4987 * area, filling in the S/G table, and finally
4988 * writing the taskfile to hardware, starting the command.
4991 * spin_lock_irqsave(host lock)
4993 void ata_qc_issue(struct ata_queued_cmd
*qc
)
4995 struct ata_port
*ap
= qc
->ap
;
4996 struct ata_link
*link
= qc
->dev
->link
;
4997 u8 prot
= qc
->tf
.protocol
;
4999 /* Make sure only one non-NCQ command is outstanding. The
5000 * check is skipped for old EH because it reuses active qc to
5001 * request ATAPI sense.
5003 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5005 if (ata_is_ncq(prot
)) {
5006 WARN_ON(link
->sactive
& (1 << qc
->tag
));
5009 ap
->nr_active_links
++;
5010 link
->sactive
|= 1 << qc
->tag
;
5012 WARN_ON(link
->sactive
);
5014 ap
->nr_active_links
++;
5015 link
->active_tag
= qc
->tag
;
5018 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5019 ap
->qc_active
|= 1 << qc
->tag
;
5021 /* We guarantee to LLDs that they will have at least one
5022 * non-zero sg if the command is a data command.
5024 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
5026 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5027 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5028 if (ata_sg_setup(qc
))
5031 /* if device is sleeping, schedule reset and abort the link */
5032 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5033 link
->eh_info
.action
|= ATA_EH_RESET
;
5034 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5035 ata_link_abort(link
);
5039 ap
->ops
->qc_prep(qc
);
5041 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5042 if (unlikely(qc
->err_mask
))
5047 qc
->err_mask
|= AC_ERR_SYSTEM
;
5049 ata_qc_complete(qc
);
5053 * sata_scr_valid - test whether SCRs are accessible
5054 * @link: ATA link to test SCR accessibility for
5056 * Test whether SCRs are accessible for @link.
5062 * 1 if SCRs are accessible, 0 otherwise.
5064 int sata_scr_valid(struct ata_link
*link
)
5066 struct ata_port
*ap
= link
->ap
;
5068 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5072 * sata_scr_read - read SCR register of the specified port
5073 * @link: ATA link to read SCR for
5075 * @val: Place to store read value
5077 * Read SCR register @reg of @link into *@val. This function is
5078 * guaranteed to succeed if @link is ap->link, the cable type of
5079 * the port is SATA and the port implements ->scr_read.
5082 * None if @link is ap->link. Kernel thread context otherwise.
5085 * 0 on success, negative errno on failure.
5087 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5089 if (ata_is_host_link(link
)) {
5090 if (sata_scr_valid(link
))
5091 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5095 return sata_pmp_scr_read(link
, reg
, val
);
5099 * sata_scr_write - write SCR register of the specified port
5100 * @link: ATA link to write SCR for
5101 * @reg: SCR to write
5102 * @val: value to write
5104 * Write @val to SCR register @reg of @link. This function is
5105 * guaranteed to succeed if @link is ap->link, the cable type of
5106 * the port is SATA and the port implements ->scr_read.
5109 * None if @link is ap->link. Kernel thread context otherwise.
5112 * 0 on success, negative errno on failure.
5114 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5116 if (ata_is_host_link(link
)) {
5117 if (sata_scr_valid(link
))
5118 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5122 return sata_pmp_scr_write(link
, reg
, val
);
5126 * sata_scr_write_flush - write SCR register of the specified port and flush
5127 * @link: ATA link to write SCR for
5128 * @reg: SCR to write
5129 * @val: value to write
5131 * This function is identical to sata_scr_write() except that this
5132 * function performs flush after writing to the register.
5135 * None if @link is ap->link. Kernel thread context otherwise.
5138 * 0 on success, negative errno on failure.
5140 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5142 if (ata_is_host_link(link
)) {
5145 if (sata_scr_valid(link
)) {
5146 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5148 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5154 return sata_pmp_scr_write(link
, reg
, val
);
5158 * ata_phys_link_online - test whether the given link is online
5159 * @link: ATA link to test
5161 * Test whether @link is online. Note that this function returns
5162 * 0 if online status of @link cannot be obtained, so
5163 * ata_link_online(link) != !ata_link_offline(link).
5169 * True if the port online status is available and online.
5171 bool ata_phys_link_online(struct ata_link
*link
)
5175 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5176 (sstatus
& 0xf) == 0x3)
5182 * ata_phys_link_offline - test whether the given link is offline
5183 * @link: ATA link to test
5185 * Test whether @link is offline. Note that this function
5186 * returns 0 if offline status of @link cannot be obtained, so
5187 * ata_link_online(link) != !ata_link_offline(link).
5193 * True if the port offline status is available and offline.
5195 bool ata_phys_link_offline(struct ata_link
*link
)
5199 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5200 (sstatus
& 0xf) != 0x3)
5206 * ata_link_online - test whether the given link is online
5207 * @link: ATA link to test
5209 * Test whether @link is online. This is identical to
5210 * ata_phys_link_online() when there's no slave link. When
5211 * there's a slave link, this function should only be called on
5212 * the master link and will return true if any of M/S links is
5219 * True if the port online status is available and online.
5221 bool ata_link_online(struct ata_link
*link
)
5223 struct ata_link
*slave
= link
->ap
->slave_link
;
5225 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5227 return ata_phys_link_online(link
) ||
5228 (slave
&& ata_phys_link_online(slave
));
5232 * ata_link_offline - test whether the given link is offline
5233 * @link: ATA link to test
5235 * Test whether @link is offline. This is identical to
5236 * ata_phys_link_offline() when there's no slave link. When
5237 * there's a slave link, this function should only be called on
5238 * the master link and will return true if both M/S links are
5245 * True if the port offline status is available and offline.
5247 bool ata_link_offline(struct ata_link
*link
)
5249 struct ata_link
*slave
= link
->ap
->slave_link
;
5251 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5253 return ata_phys_link_offline(link
) &&
5254 (!slave
|| ata_phys_link_offline(slave
));
5258 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5259 unsigned int action
, unsigned int ehi_flags
,
5262 unsigned long flags
;
5265 for (i
= 0; i
< host
->n_ports
; i
++) {
5266 struct ata_port
*ap
= host
->ports
[i
];
5267 struct ata_link
*link
;
5269 /* Previous resume operation might still be in
5270 * progress. Wait for PM_PENDING to clear.
5272 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5273 ata_port_wait_eh(ap
);
5274 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5277 /* request PM ops to EH */
5278 spin_lock_irqsave(ap
->lock
, flags
);
5283 ap
->pm_result
= &rc
;
5286 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5287 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5288 link
->eh_info
.action
|= action
;
5289 link
->eh_info
.flags
|= ehi_flags
;
5292 ata_port_schedule_eh(ap
);
5294 spin_unlock_irqrestore(ap
->lock
, flags
);
5296 /* wait and check result */
5298 ata_port_wait_eh(ap
);
5299 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5309 * ata_host_suspend - suspend host
5310 * @host: host to suspend
5313 * Suspend @host. Actual operation is performed by EH. This
5314 * function requests EH to perform PM operations and waits for EH
5318 * Kernel thread context (may sleep).
5321 * 0 on success, -errno on failure.
5323 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5328 * disable link pm on all ports before requesting
5331 ata_lpm_enable(host
);
5333 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5335 host
->dev
->power
.power_state
= mesg
;
5340 * ata_host_resume - resume host
5341 * @host: host to resume
5343 * Resume @host. Actual operation is performed by EH. This
5344 * function requests EH to perform PM operations and returns.
5345 * Note that all resume operations are performed parallely.
5348 * Kernel thread context (may sleep).
5350 void ata_host_resume(struct ata_host
*host
)
5352 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_RESET
,
5353 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5354 host
->dev
->power
.power_state
= PMSG_ON
;
5356 /* reenable link pm */
5357 ata_lpm_disable(host
);
5362 * ata_port_start - Set port up for dma.
5363 * @ap: Port to initialize
5365 * Called just after data structures for each port are
5366 * initialized. Allocates space for PRD table.
5368 * May be used as the port_start() entry in ata_port_operations.
5371 * Inherited from caller.
5373 int ata_port_start(struct ata_port
*ap
)
5375 struct device
*dev
= ap
->dev
;
5377 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5386 * ata_dev_init - Initialize an ata_device structure
5387 * @dev: Device structure to initialize
5389 * Initialize @dev in preparation for probing.
5392 * Inherited from caller.
5394 void ata_dev_init(struct ata_device
*dev
)
5396 struct ata_link
*link
= ata_dev_phys_link(dev
);
5397 struct ata_port
*ap
= link
->ap
;
5398 unsigned long flags
;
5400 /* SATA spd limit is bound to the attached device, reset together */
5401 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5404 /* High bits of dev->flags are used to record warm plug
5405 * requests which occur asynchronously. Synchronize using
5408 spin_lock_irqsave(ap
->lock
, flags
);
5409 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5411 spin_unlock_irqrestore(ap
->lock
, flags
);
5413 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5414 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5415 dev
->pio_mask
= UINT_MAX
;
5416 dev
->mwdma_mask
= UINT_MAX
;
5417 dev
->udma_mask
= UINT_MAX
;
5421 * ata_link_init - Initialize an ata_link structure
5422 * @ap: ATA port link is attached to
5423 * @link: Link structure to initialize
5424 * @pmp: Port multiplier port number
5429 * Kernel thread context (may sleep)
5431 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5435 /* clear everything except for devices */
5436 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
5440 link
->active_tag
= ATA_TAG_POISON
;
5441 link
->hw_sata_spd_limit
= UINT_MAX
;
5443 /* can't use iterator, ap isn't initialized yet */
5444 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5445 struct ata_device
*dev
= &link
->device
[i
];
5448 dev
->devno
= dev
- link
->device
;
5454 * sata_link_init_spd - Initialize link->sata_spd_limit
5455 * @link: Link to configure sata_spd_limit for
5457 * Initialize @link->[hw_]sata_spd_limit to the currently
5461 * Kernel thread context (may sleep).
5464 * 0 on success, -errno on failure.
5466 int sata_link_init_spd(struct ata_link
*link
)
5471 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5475 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5477 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5479 ata_force_link_limits(link
);
5481 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5487 * ata_port_alloc - allocate and initialize basic ATA port resources
5488 * @host: ATA host this allocated port belongs to
5490 * Allocate and initialize basic ATA port resources.
5493 * Allocate ATA port on success, NULL on failure.
5496 * Inherited from calling layer (may sleep).
5498 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5500 struct ata_port
*ap
;
5504 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5508 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
5509 ap
->lock
= &host
->lock
;
5510 ap
->flags
= ATA_FLAG_DISABLED
;
5512 ap
->ctl
= ATA_DEVCTL_OBS
;
5514 ap
->dev
= host
->dev
;
5515 ap
->last_ctl
= 0xFF;
5517 #if defined(ATA_VERBOSE_DEBUG)
5518 /* turn on all debugging levels */
5519 ap
->msg_enable
= 0x00FF;
5520 #elif defined(ATA_DEBUG)
5521 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5523 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5526 #ifdef CONFIG_ATA_SFF
5527 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
5529 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
5531 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5532 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5533 INIT_LIST_HEAD(&ap
->eh_done_q
);
5534 init_waitqueue_head(&ap
->eh_wait_q
);
5535 init_completion(&ap
->park_req_pending
);
5536 init_timer_deferrable(&ap
->fastdrain_timer
);
5537 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5538 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5540 ap
->cbl
= ATA_CBL_NONE
;
5542 ata_link_init(ap
, &ap
->link
, 0);
5545 ap
->stats
.unhandled_irq
= 1;
5546 ap
->stats
.idle_irq
= 1;
5551 static void ata_host_release(struct device
*gendev
, void *res
)
5553 struct ata_host
*host
= dev_get_drvdata(gendev
);
5556 for (i
= 0; i
< host
->n_ports
; i
++) {
5557 struct ata_port
*ap
= host
->ports
[i
];
5563 scsi_host_put(ap
->scsi_host
);
5565 kfree(ap
->pmp_link
);
5566 kfree(ap
->slave_link
);
5568 host
->ports
[i
] = NULL
;
5571 dev_set_drvdata(gendev
, NULL
);
5575 * ata_host_alloc - allocate and init basic ATA host resources
5576 * @dev: generic device this host is associated with
5577 * @max_ports: maximum number of ATA ports associated with this host
5579 * Allocate and initialize basic ATA host resources. LLD calls
5580 * this function to allocate a host, initializes it fully and
5581 * attaches it using ata_host_register().
5583 * @max_ports ports are allocated and host->n_ports is
5584 * initialized to @max_ports. The caller is allowed to decrease
5585 * host->n_ports before calling ata_host_register(). The unused
5586 * ports will be automatically freed on registration.
5589 * Allocate ATA host on success, NULL on failure.
5592 * Inherited from calling layer (may sleep).
5594 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5596 struct ata_host
*host
;
5602 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5605 /* alloc a container for our list of ATA ports (buses) */
5606 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5607 /* alloc a container for our list of ATA ports (buses) */
5608 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5612 devres_add(dev
, host
);
5613 dev_set_drvdata(dev
, host
);
5615 spin_lock_init(&host
->lock
);
5617 host
->n_ports
= max_ports
;
5619 /* allocate ports bound to this host */
5620 for (i
= 0; i
< max_ports
; i
++) {
5621 struct ata_port
*ap
;
5623 ap
= ata_port_alloc(host
);
5628 host
->ports
[i
] = ap
;
5631 devres_remove_group(dev
, NULL
);
5635 devres_release_group(dev
, NULL
);
5640 * ata_host_alloc_pinfo - alloc host and init with port_info array
5641 * @dev: generic device this host is associated with
5642 * @ppi: array of ATA port_info to initialize host with
5643 * @n_ports: number of ATA ports attached to this host
5645 * Allocate ATA host and initialize with info from @ppi. If NULL
5646 * terminated, @ppi may contain fewer entries than @n_ports. The
5647 * last entry will be used for the remaining ports.
5650 * Allocate ATA host on success, NULL on failure.
5653 * Inherited from calling layer (may sleep).
5655 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5656 const struct ata_port_info
* const * ppi
,
5659 const struct ata_port_info
*pi
;
5660 struct ata_host
*host
;
5663 host
= ata_host_alloc(dev
, n_ports
);
5667 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5668 struct ata_port
*ap
= host
->ports
[i
];
5673 ap
->pio_mask
= pi
->pio_mask
;
5674 ap
->mwdma_mask
= pi
->mwdma_mask
;
5675 ap
->udma_mask
= pi
->udma_mask
;
5676 ap
->flags
|= pi
->flags
;
5677 ap
->link
.flags
|= pi
->link_flags
;
5678 ap
->ops
= pi
->port_ops
;
5680 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5681 host
->ops
= pi
->port_ops
;
5688 * ata_slave_link_init - initialize slave link
5689 * @ap: port to initialize slave link for
5691 * Create and initialize slave link for @ap. This enables slave
5692 * link handling on the port.
5694 * In libata, a port contains links and a link contains devices.
5695 * There is single host link but if a PMP is attached to it,
5696 * there can be multiple fan-out links. On SATA, there's usually
5697 * a single device connected to a link but PATA and SATA
5698 * controllers emulating TF based interface can have two - master
5701 * However, there are a few controllers which don't fit into this
5702 * abstraction too well - SATA controllers which emulate TF
5703 * interface with both master and slave devices but also have
5704 * separate SCR register sets for each device. These controllers
5705 * need separate links for physical link handling
5706 * (e.g. onlineness, link speed) but should be treated like a
5707 * traditional M/S controller for everything else (e.g. command
5708 * issue, softreset).
5710 * slave_link is libata's way of handling this class of
5711 * controllers without impacting core layer too much. For
5712 * anything other than physical link handling, the default host
5713 * link is used for both master and slave. For physical link
5714 * handling, separate @ap->slave_link is used. All dirty details
5715 * are implemented inside libata core layer. From LLD's POV, the
5716 * only difference is that prereset, hardreset and postreset are
5717 * called once more for the slave link, so the reset sequence
5718 * looks like the following.
5720 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5721 * softreset(M) -> postreset(M) -> postreset(S)
5723 * Note that softreset is called only for the master. Softreset
5724 * resets both M/S by definition, so SRST on master should handle
5725 * both (the standard method will work just fine).
5728 * Should be called before host is registered.
5731 * 0 on success, -errno on failure.
5733 int ata_slave_link_init(struct ata_port
*ap
)
5735 struct ata_link
*link
;
5737 WARN_ON(ap
->slave_link
);
5738 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
5740 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
5744 ata_link_init(ap
, link
, 1);
5745 ap
->slave_link
= link
;
5749 static void ata_host_stop(struct device
*gendev
, void *res
)
5751 struct ata_host
*host
= dev_get_drvdata(gendev
);
5754 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5756 for (i
= 0; i
< host
->n_ports
; i
++) {
5757 struct ata_port
*ap
= host
->ports
[i
];
5759 if (ap
->ops
->port_stop
)
5760 ap
->ops
->port_stop(ap
);
5763 if (host
->ops
->host_stop
)
5764 host
->ops
->host_stop(host
);
5768 * ata_finalize_port_ops - finalize ata_port_operations
5769 * @ops: ata_port_operations to finalize
5771 * An ata_port_operations can inherit from another ops and that
5772 * ops can again inherit from another. This can go on as many
5773 * times as necessary as long as there is no loop in the
5774 * inheritance chain.
5776 * Ops tables are finalized when the host is started. NULL or
5777 * unspecified entries are inherited from the closet ancestor
5778 * which has the method and the entry is populated with it.
5779 * After finalization, the ops table directly points to all the
5780 * methods and ->inherits is no longer necessary and cleared.
5782 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5787 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5789 static DEFINE_SPINLOCK(lock
);
5790 const struct ata_port_operations
*cur
;
5791 void **begin
= (void **)ops
;
5792 void **end
= (void **)&ops
->inherits
;
5795 if (!ops
|| !ops
->inherits
)
5800 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5801 void **inherit
= (void **)cur
;
5803 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5808 for (pp
= begin
; pp
< end
; pp
++)
5812 ops
->inherits
= NULL
;
5818 * ata_host_start - start and freeze ports of an ATA host
5819 * @host: ATA host to start ports for
5821 * Start and then freeze ports of @host. Started status is
5822 * recorded in host->flags, so this function can be called
5823 * multiple times. Ports are guaranteed to get started only
5824 * once. If host->ops isn't initialized yet, its set to the
5825 * first non-dummy port ops.
5828 * Inherited from calling layer (may sleep).
5831 * 0 if all ports are started successfully, -errno otherwise.
5833 int ata_host_start(struct ata_host
*host
)
5836 void *start_dr
= NULL
;
5839 if (host
->flags
& ATA_HOST_STARTED
)
5842 ata_finalize_port_ops(host
->ops
);
5844 for (i
= 0; i
< host
->n_ports
; i
++) {
5845 struct ata_port
*ap
= host
->ports
[i
];
5847 ata_finalize_port_ops(ap
->ops
);
5849 if (!host
->ops
&& !ata_port_is_dummy(ap
))
5850 host
->ops
= ap
->ops
;
5852 if (ap
->ops
->port_stop
)
5856 if (host
->ops
->host_stop
)
5860 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
5865 for (i
= 0; i
< host
->n_ports
; i
++) {
5866 struct ata_port
*ap
= host
->ports
[i
];
5868 if (ap
->ops
->port_start
) {
5869 rc
= ap
->ops
->port_start(ap
);
5872 dev_printk(KERN_ERR
, host
->dev
,
5873 "failed to start port %d "
5874 "(errno=%d)\n", i
, rc
);
5878 ata_eh_freeze_port(ap
);
5882 devres_add(host
->dev
, start_dr
);
5883 host
->flags
|= ATA_HOST_STARTED
;
5888 struct ata_port
*ap
= host
->ports
[i
];
5890 if (ap
->ops
->port_stop
)
5891 ap
->ops
->port_stop(ap
);
5893 devres_free(start_dr
);
5898 * ata_sas_host_init - Initialize a host struct
5899 * @host: host to initialize
5900 * @dev: device host is attached to
5901 * @flags: host flags
5905 * PCI/etc. bus probe sem.
5908 /* KILLME - the only user left is ipr */
5909 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
5910 unsigned long flags
, struct ata_port_operations
*ops
)
5912 spin_lock_init(&host
->lock
);
5914 host
->flags
= flags
;
5919 static void async_port_probe(void *data
, async_cookie_t cookie
)
5922 struct ata_port
*ap
= data
;
5924 if (ap
->ops
->error_handler
) {
5925 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
5926 unsigned long flags
;
5930 /* kick EH for boot probing */
5931 spin_lock_irqsave(ap
->lock
, flags
);
5933 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
5934 ehi
->action
|= ATA_EH_RESET
| ATA_EH_LPM
;
5935 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
5937 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
5938 ap
->pflags
|= ATA_PFLAG_LOADING
;
5939 ata_port_schedule_eh(ap
);
5941 spin_unlock_irqrestore(ap
->lock
, flags
);
5943 /* wait for EH to finish */
5944 ata_port_wait_eh(ap
);
5946 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
5947 rc
= ata_bus_probe(ap
);
5948 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
5951 /* FIXME: do something useful here?
5952 * Current libata behavior will
5953 * tear down everything when
5954 * the module is removed
5955 * or the h/w is unplugged.
5960 /* in order to keep device order, we need to synchronize at this point */
5961 async_synchronize_cookie(cookie
);
5963 ata_scsi_scan_host(ap
, 1);
5967 * ata_host_register - register initialized ATA host
5968 * @host: ATA host to register
5969 * @sht: template for SCSI host
5971 * Register initialized ATA host. @host is allocated using
5972 * ata_host_alloc() and fully initialized by LLD. This function
5973 * starts ports, registers @host with ATA and SCSI layers and
5974 * probe registered devices.
5977 * Inherited from calling layer (may sleep).
5980 * 0 on success, -errno otherwise.
5982 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
5986 /* host must have been started */
5987 if (!(host
->flags
& ATA_HOST_STARTED
)) {
5988 dev_printk(KERN_ERR
, host
->dev
,
5989 "BUG: trying to register unstarted host\n");
5994 /* Blow away unused ports. This happens when LLD can't
5995 * determine the exact number of ports to allocate at
5998 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
5999 kfree(host
->ports
[i
]);
6001 /* give ports names and add SCSI hosts */
6002 for (i
= 0; i
< host
->n_ports
; i
++)
6003 host
->ports
[i
]->print_id
= ata_print_id
++;
6005 rc
= ata_scsi_add_hosts(host
, sht
);
6009 /* associate with ACPI nodes */
6010 ata_acpi_associate(host
);
6012 /* set cable, sata_spd_limit and report */
6013 for (i
= 0; i
< host
->n_ports
; i
++) {
6014 struct ata_port
*ap
= host
->ports
[i
];
6015 unsigned long xfer_mask
;
6017 /* set SATA cable type if still unset */
6018 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6019 ap
->cbl
= ATA_CBL_SATA
;
6021 /* init sata_spd_limit to the current value */
6022 sata_link_init_spd(&ap
->link
);
6024 sata_link_init_spd(ap
->slave_link
);
6026 /* print per-port info to dmesg */
6027 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6030 if (!ata_port_is_dummy(ap
)) {
6031 ata_port_printk(ap
, KERN_INFO
,
6032 "%cATA max %s %s\n",
6033 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6034 ata_mode_string(xfer_mask
),
6035 ap
->link
.eh_info
.desc
);
6036 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6038 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6041 /* perform each probe synchronously */
6042 DPRINTK("probe begin\n");
6043 for (i
= 0; i
< host
->n_ports
; i
++) {
6044 struct ata_port
*ap
= host
->ports
[i
];
6045 async_schedule(async_port_probe
, ap
);
6047 DPRINTK("probe end\n");
6053 * ata_host_activate - start host, request IRQ and register it
6054 * @host: target ATA host
6055 * @irq: IRQ to request
6056 * @irq_handler: irq_handler used when requesting IRQ
6057 * @irq_flags: irq_flags used when requesting IRQ
6058 * @sht: scsi_host_template to use when registering the host
6060 * After allocating an ATA host and initializing it, most libata
6061 * LLDs perform three steps to activate the host - start host,
6062 * request IRQ and register it. This helper takes necessasry
6063 * arguments and performs the three steps in one go.
6065 * An invalid IRQ skips the IRQ registration and expects the host to
6066 * have set polling mode on the port. In this case, @irq_handler
6070 * Inherited from calling layer (may sleep).
6073 * 0 on success, -errno otherwise.
6075 int ata_host_activate(struct ata_host
*host
, int irq
,
6076 irq_handler_t irq_handler
, unsigned long irq_flags
,
6077 struct scsi_host_template
*sht
)
6081 rc
= ata_host_start(host
);
6085 /* Special case for polling mode */
6087 WARN_ON(irq_handler
);
6088 return ata_host_register(host
, sht
);
6091 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6092 dev_driver_string(host
->dev
), host
);
6096 for (i
= 0; i
< host
->n_ports
; i
++)
6097 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6099 rc
= ata_host_register(host
, sht
);
6100 /* if failed, just free the IRQ and leave ports alone */
6102 devm_free_irq(host
->dev
, irq
, host
);
6108 * ata_port_detach - Detach ATA port in prepration of device removal
6109 * @ap: ATA port to be detached
6111 * Detach all ATA devices and the associated SCSI devices of @ap;
6112 * then, remove the associated SCSI host. @ap is guaranteed to
6113 * be quiescent on return from this function.
6116 * Kernel thread context (may sleep).
6118 static void ata_port_detach(struct ata_port
*ap
)
6120 unsigned long flags
;
6122 if (!ap
->ops
->error_handler
)
6125 /* tell EH we're leaving & flush EH */
6126 spin_lock_irqsave(ap
->lock
, flags
);
6127 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6128 ata_port_schedule_eh(ap
);
6129 spin_unlock_irqrestore(ap
->lock
, flags
);
6131 /* wait till EH commits suicide */
6132 ata_port_wait_eh(ap
);
6134 /* it better be dead now */
6135 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6137 cancel_rearming_delayed_work(&ap
->hotplug_task
);
6140 /* remove the associated SCSI host */
6141 scsi_remove_host(ap
->scsi_host
);
6145 * ata_host_detach - Detach all ports of an ATA host
6146 * @host: Host to detach
6148 * Detach all ports of @host.
6151 * Kernel thread context (may sleep).
6153 void ata_host_detach(struct ata_host
*host
)
6157 for (i
= 0; i
< host
->n_ports
; i
++)
6158 ata_port_detach(host
->ports
[i
]);
6160 /* the host is dead now, dissociate ACPI */
6161 ata_acpi_dissociate(host
);
6167 * ata_pci_remove_one - PCI layer callback for device removal
6168 * @pdev: PCI device that was removed
6170 * PCI layer indicates to libata via this hook that hot-unplug or
6171 * module unload event has occurred. Detach all ports. Resource
6172 * release is handled via devres.
6175 * Inherited from PCI layer (may sleep).
6177 void ata_pci_remove_one(struct pci_dev
*pdev
)
6179 struct device
*dev
= &pdev
->dev
;
6180 struct ata_host
*host
= dev_get_drvdata(dev
);
6182 ata_host_detach(host
);
6185 /* move to PCI subsystem */
6186 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6188 unsigned long tmp
= 0;
6190 switch (bits
->width
) {
6193 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6199 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6205 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6216 return (tmp
== bits
->val
) ? 1 : 0;
6220 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6222 pci_save_state(pdev
);
6223 pci_disable_device(pdev
);
6225 if (mesg
.event
& PM_EVENT_SLEEP
)
6226 pci_set_power_state(pdev
, PCI_D3hot
);
6229 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6233 pci_set_power_state(pdev
, PCI_D0
);
6234 pci_restore_state(pdev
);
6236 rc
= pcim_enable_device(pdev
);
6238 dev_printk(KERN_ERR
, &pdev
->dev
,
6239 "failed to enable device after resume (%d)\n", rc
);
6243 pci_set_master(pdev
);
6247 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6249 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6252 rc
= ata_host_suspend(host
, mesg
);
6256 ata_pci_device_do_suspend(pdev
, mesg
);
6261 int ata_pci_device_resume(struct pci_dev
*pdev
)
6263 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6266 rc
= ata_pci_device_do_resume(pdev
);
6268 ata_host_resume(host
);
6271 #endif /* CONFIG_PM */
6273 #endif /* CONFIG_PCI */
6275 static int __init
ata_parse_force_one(char **cur
,
6276 struct ata_force_ent
*force_ent
,
6277 const char **reason
)
6279 /* FIXME: Currently, there's no way to tag init const data and
6280 * using __initdata causes build failure on some versions of
6281 * gcc. Once __initdataconst is implemented, add const to the
6282 * following structure.
6284 static struct ata_force_param force_tbl
[] __initdata
= {
6285 { "40c", .cbl
= ATA_CBL_PATA40
},
6286 { "80c", .cbl
= ATA_CBL_PATA80
},
6287 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6288 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6289 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6290 { "sata", .cbl
= ATA_CBL_SATA
},
6291 { "1.5Gbps", .spd_limit
= 1 },
6292 { "3.0Gbps", .spd_limit
= 2 },
6293 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6294 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6295 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6296 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6297 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6298 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6299 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6300 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6301 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6302 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6303 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6304 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6305 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6306 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6307 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6308 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6309 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6310 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6311 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6312 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6313 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6314 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6315 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6316 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6317 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6318 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6319 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6320 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6321 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6322 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6323 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6324 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6325 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6326 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6327 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6328 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6329 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6330 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6331 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6333 char *start
= *cur
, *p
= *cur
;
6334 char *id
, *val
, *endp
;
6335 const struct ata_force_param
*match_fp
= NULL
;
6336 int nr_matches
= 0, i
;
6338 /* find where this param ends and update *cur */
6339 while (*p
!= '\0' && *p
!= ',')
6350 p
= strchr(start
, ':');
6352 val
= strstrip(start
);
6357 id
= strstrip(start
);
6358 val
= strstrip(p
+ 1);
6361 p
= strchr(id
, '.');
6364 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6365 if (p
== endp
|| *endp
!= '\0') {
6366 *reason
= "invalid device";
6371 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6372 if (p
== endp
|| *endp
!= '\0') {
6373 *reason
= "invalid port/link";
6378 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6379 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6380 const struct ata_force_param
*fp
= &force_tbl
[i
];
6382 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6388 if (strcasecmp(val
, fp
->name
) == 0) {
6395 *reason
= "unknown value";
6398 if (nr_matches
> 1) {
6399 *reason
= "ambigious value";
6403 force_ent
->param
= *match_fp
;
6408 static void __init
ata_parse_force_param(void)
6410 int idx
= 0, size
= 1;
6411 int last_port
= -1, last_device
= -1;
6412 char *p
, *cur
, *next
;
6414 /* calculate maximum number of params and allocate force_tbl */
6415 for (p
= ata_force_param_buf
; *p
; p
++)
6419 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6420 if (!ata_force_tbl
) {
6421 printk(KERN_WARNING
"ata: failed to extend force table, "
6422 "libata.force ignored\n");
6426 /* parse and populate the table */
6427 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6428 const char *reason
= "";
6429 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6432 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6433 printk(KERN_WARNING
"ata: failed to parse force "
6434 "parameter \"%s\" (%s)\n",
6439 if (te
.port
== -1) {
6440 te
.port
= last_port
;
6441 te
.device
= last_device
;
6444 ata_force_tbl
[idx
++] = te
;
6446 last_port
= te
.port
;
6447 last_device
= te
.device
;
6450 ata_force_tbl_size
= idx
;
6453 static int __init
ata_init(void)
6455 ata_parse_force_param();
6457 ata_wq
= create_workqueue("ata");
6459 goto free_force_tbl
;
6461 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6465 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6469 destroy_workqueue(ata_wq
);
6471 kfree(ata_force_tbl
);
6475 static void __exit
ata_exit(void)
6477 kfree(ata_force_tbl
);
6478 destroy_workqueue(ata_wq
);
6479 destroy_workqueue(ata_aux_wq
);
6482 subsys_initcall(ata_init
);
6483 module_exit(ata_exit
);
6485 static unsigned long ratelimit_time
;
6486 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6488 int ata_ratelimit(void)
6491 unsigned long flags
;
6493 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6495 if (time_after(jiffies
, ratelimit_time
)) {
6497 ratelimit_time
= jiffies
+ (HZ
/5);
6501 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6507 * ata_wait_register - wait until register value changes
6508 * @reg: IO-mapped register
6509 * @mask: Mask to apply to read register value
6510 * @val: Wait condition
6511 * @interval: polling interval in milliseconds
6512 * @timeout: timeout in milliseconds
6514 * Waiting for some bits of register to change is a common
6515 * operation for ATA controllers. This function reads 32bit LE
6516 * IO-mapped register @reg and tests for the following condition.
6518 * (*@reg & mask) != val
6520 * If the condition is met, it returns; otherwise, the process is
6521 * repeated after @interval_msec until timeout.
6524 * Kernel thread context (may sleep)
6527 * The final register value.
6529 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6530 unsigned long interval
, unsigned long timeout
)
6532 unsigned long deadline
;
6535 tmp
= ioread32(reg
);
6537 /* Calculate timeout _after_ the first read to make sure
6538 * preceding writes reach the controller before starting to
6539 * eat away the timeout.
6541 deadline
= ata_deadline(jiffies
, timeout
);
6543 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
6545 tmp
= ioread32(reg
);
6554 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6556 return AC_ERR_SYSTEM
;
6559 static void ata_dummy_error_handler(struct ata_port
*ap
)
6564 struct ata_port_operations ata_dummy_port_ops
= {
6565 .qc_prep
= ata_noop_qc_prep
,
6566 .qc_issue
= ata_dummy_qc_issue
,
6567 .error_handler
= ata_dummy_error_handler
,
6570 const struct ata_port_info ata_dummy_port_info
= {
6571 .port_ops
= &ata_dummy_port_ops
,
6575 * libata is essentially a library of internal helper functions for
6576 * low-level ATA host controller drivers. As such, the API/ABI is
6577 * likely to change as new drivers are added and updated.
6578 * Do not depend on ABI/API stability.
6580 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6581 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6582 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6583 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6584 EXPORT_SYMBOL_GPL(sata_port_ops
);
6585 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6586 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6587 EXPORT_SYMBOL_GPL(ata_link_next
);
6588 EXPORT_SYMBOL_GPL(ata_dev_next
);
6589 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6590 EXPORT_SYMBOL_GPL(ata_host_init
);
6591 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6592 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6593 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
6594 EXPORT_SYMBOL_GPL(ata_host_start
);
6595 EXPORT_SYMBOL_GPL(ata_host_register
);
6596 EXPORT_SYMBOL_GPL(ata_host_activate
);
6597 EXPORT_SYMBOL_GPL(ata_host_detach
);
6598 EXPORT_SYMBOL_GPL(ata_sg_init
);
6599 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6600 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6601 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6602 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6603 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6604 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6605 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6606 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6607 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6608 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6609 EXPORT_SYMBOL_GPL(ata_mode_string
);
6610 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6611 EXPORT_SYMBOL_GPL(ata_port_start
);
6612 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6613 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6614 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6615 EXPORT_SYMBOL_GPL(ata_port_probe
);
6616 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6617 EXPORT_SYMBOL_GPL(sata_set_spd
);
6618 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6619 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6620 EXPORT_SYMBOL_GPL(sata_link_resume
);
6621 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6622 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6623 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6624 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6625 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6626 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6627 EXPORT_SYMBOL_GPL(ata_port_disable
);
6628 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6629 EXPORT_SYMBOL_GPL(ata_wait_register
);
6630 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6631 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6632 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6633 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6634 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6635 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6636 EXPORT_SYMBOL_GPL(sata_scr_read
);
6637 EXPORT_SYMBOL_GPL(sata_scr_write
);
6638 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6639 EXPORT_SYMBOL_GPL(ata_link_online
);
6640 EXPORT_SYMBOL_GPL(ata_link_offline
);
6642 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6643 EXPORT_SYMBOL_GPL(ata_host_resume
);
6644 #endif /* CONFIG_PM */
6645 EXPORT_SYMBOL_GPL(ata_id_string
);
6646 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6647 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
6648 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6650 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6651 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6652 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6653 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6654 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6657 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6658 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6660 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6661 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6662 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6663 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6664 #endif /* CONFIG_PM */
6665 #endif /* CONFIG_PCI */
6667 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
6668 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
6669 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
6670 EXPORT_SYMBOL_GPL(ata_port_desc
);
6672 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
6673 #endif /* CONFIG_PCI */
6674 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6675 EXPORT_SYMBOL_GPL(ata_link_abort
);
6676 EXPORT_SYMBOL_GPL(ata_port_abort
);
6677 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6678 EXPORT_SYMBOL_GPL(sata_async_notification
);
6679 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6680 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6681 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6682 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6683 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
6684 EXPORT_SYMBOL_GPL(ata_do_eh
);
6685 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
6687 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6688 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6689 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6690 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
6691 EXPORT_SYMBOL_GPL(ata_cable_sata
);