ptrace: reintroduce __ptrace_detach() as a callee of ptrace_exit()
[linux-2.6/mini2440.git] / mm / vmscan.c
blob06e72693b4587a6181b002dec4f14ac5a7d4ba06
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
49 #include "internal.h"
51 struct scan_control {
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
58 /* This context's GFP mask */
59 gfp_t gfp_mask;
61 int may_writepage;
63 /* Can mapped pages be reclaimed? */
64 int may_unmap;
66 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68 * In this context, it doesn't matter that we scan the
69 * whole list at once. */
70 int swap_cluster_max;
72 int swappiness;
74 int all_unreclaimable;
76 int order;
78 /* Which cgroup do we reclaim from */
79 struct mem_cgroup *mem_cgroup;
82 * Nodemask of nodes allowed by the caller. If NULL, all nodes
83 * are scanned.
85 nodemask_t *nodemask;
87 /* Pluggable isolate pages callback */
88 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
89 unsigned long *scanned, int order, int mode,
90 struct zone *z, struct mem_cgroup *mem_cont,
91 int active, int file);
94 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96 #ifdef ARCH_HAS_PREFETCH
97 #define prefetch_prev_lru_page(_page, _base, _field) \
98 do { \
99 if ((_page)->lru.prev != _base) { \
100 struct page *prev; \
102 prev = lru_to_page(&(_page->lru)); \
103 prefetch(&prev->_field); \
105 } while (0)
106 #else
107 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
108 #endif
110 #ifdef ARCH_HAS_PREFETCHW
111 #define prefetchw_prev_lru_page(_page, _base, _field) \
112 do { \
113 if ((_page)->lru.prev != _base) { \
114 struct page *prev; \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetchw(&prev->_field); \
119 } while (0)
120 #else
121 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
122 #endif
125 * From 0 .. 100. Higher means more swappy.
127 int vm_swappiness = 60;
128 long vm_total_pages; /* The total number of pages which the VM controls */
130 static LIST_HEAD(shrinker_list);
131 static DECLARE_RWSEM(shrinker_rwsem);
133 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
134 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
135 #else
136 #define scanning_global_lru(sc) (1)
137 #endif
139 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
140 struct scan_control *sc)
142 if (!scanning_global_lru(sc))
143 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
145 return &zone->reclaim_stat;
148 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
149 enum lru_list lru)
151 if (!scanning_global_lru(sc))
152 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
154 return zone_page_state(zone, NR_LRU_BASE + lru);
159 * Add a shrinker callback to be called from the vm
161 void register_shrinker(struct shrinker *shrinker)
163 shrinker->nr = 0;
164 down_write(&shrinker_rwsem);
165 list_add_tail(&shrinker->list, &shrinker_list);
166 up_write(&shrinker_rwsem);
168 EXPORT_SYMBOL(register_shrinker);
171 * Remove one
173 void unregister_shrinker(struct shrinker *shrinker)
175 down_write(&shrinker_rwsem);
176 list_del(&shrinker->list);
177 up_write(&shrinker_rwsem);
179 EXPORT_SYMBOL(unregister_shrinker);
181 #define SHRINK_BATCH 128
183 * Call the shrink functions to age shrinkable caches
185 * Here we assume it costs one seek to replace a lru page and that it also
186 * takes a seek to recreate a cache object. With this in mind we age equal
187 * percentages of the lru and ageable caches. This should balance the seeks
188 * generated by these structures.
190 * If the vm encountered mapped pages on the LRU it increase the pressure on
191 * slab to avoid swapping.
193 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
195 * `lru_pages' represents the number of on-LRU pages in all the zones which
196 * are eligible for the caller's allocation attempt. It is used for balancing
197 * slab reclaim versus page reclaim.
199 * Returns the number of slab objects which we shrunk.
201 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
202 unsigned long lru_pages)
204 struct shrinker *shrinker;
205 unsigned long ret = 0;
207 if (scanned == 0)
208 scanned = SWAP_CLUSTER_MAX;
210 if (!down_read_trylock(&shrinker_rwsem))
211 return 1; /* Assume we'll be able to shrink next time */
213 list_for_each_entry(shrinker, &shrinker_list, list) {
214 unsigned long long delta;
215 unsigned long total_scan;
216 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
218 delta = (4 * scanned) / shrinker->seeks;
219 delta *= max_pass;
220 do_div(delta, lru_pages + 1);
221 shrinker->nr += delta;
222 if (shrinker->nr < 0) {
223 printk(KERN_ERR "shrink_slab: %pF negative objects to "
224 "delete nr=%ld\n",
225 shrinker->shrink, shrinker->nr);
226 shrinker->nr = max_pass;
230 * Avoid risking looping forever due to too large nr value:
231 * never try to free more than twice the estimate number of
232 * freeable entries.
234 if (shrinker->nr > max_pass * 2)
235 shrinker->nr = max_pass * 2;
237 total_scan = shrinker->nr;
238 shrinker->nr = 0;
240 while (total_scan >= SHRINK_BATCH) {
241 long this_scan = SHRINK_BATCH;
242 int shrink_ret;
243 int nr_before;
245 nr_before = (*shrinker->shrink)(0, gfp_mask);
246 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
247 if (shrink_ret == -1)
248 break;
249 if (shrink_ret < nr_before)
250 ret += nr_before - shrink_ret;
251 count_vm_events(SLABS_SCANNED, this_scan);
252 total_scan -= this_scan;
254 cond_resched();
257 shrinker->nr += total_scan;
259 up_read(&shrinker_rwsem);
260 return ret;
263 /* Called without lock on whether page is mapped, so answer is unstable */
264 static inline int page_mapping_inuse(struct page *page)
266 struct address_space *mapping;
268 /* Page is in somebody's page tables. */
269 if (page_mapped(page))
270 return 1;
272 /* Be more reluctant to reclaim swapcache than pagecache */
273 if (PageSwapCache(page))
274 return 1;
276 mapping = page_mapping(page);
277 if (!mapping)
278 return 0;
280 /* File is mmap'd by somebody? */
281 return mapping_mapped(mapping);
284 static inline int is_page_cache_freeable(struct page *page)
286 return page_count(page) - !!PagePrivate(page) == 2;
289 static int may_write_to_queue(struct backing_dev_info *bdi)
291 if (current->flags & PF_SWAPWRITE)
292 return 1;
293 if (!bdi_write_congested(bdi))
294 return 1;
295 if (bdi == current->backing_dev_info)
296 return 1;
297 return 0;
301 * We detected a synchronous write error writing a page out. Probably
302 * -ENOSPC. We need to propagate that into the address_space for a subsequent
303 * fsync(), msync() or close().
305 * The tricky part is that after writepage we cannot touch the mapping: nothing
306 * prevents it from being freed up. But we have a ref on the page and once
307 * that page is locked, the mapping is pinned.
309 * We're allowed to run sleeping lock_page() here because we know the caller has
310 * __GFP_FS.
312 static void handle_write_error(struct address_space *mapping,
313 struct page *page, int error)
315 lock_page(page);
316 if (page_mapping(page) == mapping)
317 mapping_set_error(mapping, error);
318 unlock_page(page);
321 /* Request for sync pageout. */
322 enum pageout_io {
323 PAGEOUT_IO_ASYNC,
324 PAGEOUT_IO_SYNC,
327 /* possible outcome of pageout() */
328 typedef enum {
329 /* failed to write page out, page is locked */
330 PAGE_KEEP,
331 /* move page to the active list, page is locked */
332 PAGE_ACTIVATE,
333 /* page has been sent to the disk successfully, page is unlocked */
334 PAGE_SUCCESS,
335 /* page is clean and locked */
336 PAGE_CLEAN,
337 } pageout_t;
340 * pageout is called by shrink_page_list() for each dirty page.
341 * Calls ->writepage().
343 static pageout_t pageout(struct page *page, struct address_space *mapping,
344 enum pageout_io sync_writeback)
347 * If the page is dirty, only perform writeback if that write
348 * will be non-blocking. To prevent this allocation from being
349 * stalled by pagecache activity. But note that there may be
350 * stalls if we need to run get_block(). We could test
351 * PagePrivate for that.
353 * If this process is currently in generic_file_write() against
354 * this page's queue, we can perform writeback even if that
355 * will block.
357 * If the page is swapcache, write it back even if that would
358 * block, for some throttling. This happens by accident, because
359 * swap_backing_dev_info is bust: it doesn't reflect the
360 * congestion state of the swapdevs. Easy to fix, if needed.
361 * See swapfile.c:page_queue_congested().
363 if (!is_page_cache_freeable(page))
364 return PAGE_KEEP;
365 if (!mapping) {
367 * Some data journaling orphaned pages can have
368 * page->mapping == NULL while being dirty with clean buffers.
370 if (PagePrivate(page)) {
371 if (try_to_free_buffers(page)) {
372 ClearPageDirty(page);
373 printk("%s: orphaned page\n", __func__);
374 return PAGE_CLEAN;
377 return PAGE_KEEP;
379 if (mapping->a_ops->writepage == NULL)
380 return PAGE_ACTIVATE;
381 if (!may_write_to_queue(mapping->backing_dev_info))
382 return PAGE_KEEP;
384 if (clear_page_dirty_for_io(page)) {
385 int res;
386 struct writeback_control wbc = {
387 .sync_mode = WB_SYNC_NONE,
388 .nr_to_write = SWAP_CLUSTER_MAX,
389 .range_start = 0,
390 .range_end = LLONG_MAX,
391 .nonblocking = 1,
392 .for_reclaim = 1,
395 SetPageReclaim(page);
396 res = mapping->a_ops->writepage(page, &wbc);
397 if (res < 0)
398 handle_write_error(mapping, page, res);
399 if (res == AOP_WRITEPAGE_ACTIVATE) {
400 ClearPageReclaim(page);
401 return PAGE_ACTIVATE;
405 * Wait on writeback if requested to. This happens when
406 * direct reclaiming a large contiguous area and the
407 * first attempt to free a range of pages fails.
409 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
410 wait_on_page_writeback(page);
412 if (!PageWriteback(page)) {
413 /* synchronous write or broken a_ops? */
414 ClearPageReclaim(page);
416 inc_zone_page_state(page, NR_VMSCAN_WRITE);
417 return PAGE_SUCCESS;
420 return PAGE_CLEAN;
424 * Same as remove_mapping, but if the page is removed from the mapping, it
425 * gets returned with a refcount of 0.
427 static int __remove_mapping(struct address_space *mapping, struct page *page)
429 BUG_ON(!PageLocked(page));
430 BUG_ON(mapping != page_mapping(page));
432 spin_lock_irq(&mapping->tree_lock);
434 * The non racy check for a busy page.
436 * Must be careful with the order of the tests. When someone has
437 * a ref to the page, it may be possible that they dirty it then
438 * drop the reference. So if PageDirty is tested before page_count
439 * here, then the following race may occur:
441 * get_user_pages(&page);
442 * [user mapping goes away]
443 * write_to(page);
444 * !PageDirty(page) [good]
445 * SetPageDirty(page);
446 * put_page(page);
447 * !page_count(page) [good, discard it]
449 * [oops, our write_to data is lost]
451 * Reversing the order of the tests ensures such a situation cannot
452 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
453 * load is not satisfied before that of page->_count.
455 * Note that if SetPageDirty is always performed via set_page_dirty,
456 * and thus under tree_lock, then this ordering is not required.
458 if (!page_freeze_refs(page, 2))
459 goto cannot_free;
460 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
461 if (unlikely(PageDirty(page))) {
462 page_unfreeze_refs(page, 2);
463 goto cannot_free;
466 if (PageSwapCache(page)) {
467 swp_entry_t swap = { .val = page_private(page) };
468 __delete_from_swap_cache(page);
469 spin_unlock_irq(&mapping->tree_lock);
470 swap_free(swap);
471 } else {
472 __remove_from_page_cache(page);
473 spin_unlock_irq(&mapping->tree_lock);
476 return 1;
478 cannot_free:
479 spin_unlock_irq(&mapping->tree_lock);
480 return 0;
484 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
485 * someone else has a ref on the page, abort and return 0. If it was
486 * successfully detached, return 1. Assumes the caller has a single ref on
487 * this page.
489 int remove_mapping(struct address_space *mapping, struct page *page)
491 if (__remove_mapping(mapping, page)) {
493 * Unfreezing the refcount with 1 rather than 2 effectively
494 * drops the pagecache ref for us without requiring another
495 * atomic operation.
497 page_unfreeze_refs(page, 1);
498 return 1;
500 return 0;
504 * putback_lru_page - put previously isolated page onto appropriate LRU list
505 * @page: page to be put back to appropriate lru list
507 * Add previously isolated @page to appropriate LRU list.
508 * Page may still be unevictable for other reasons.
510 * lru_lock must not be held, interrupts must be enabled.
512 #ifdef CONFIG_UNEVICTABLE_LRU
513 void putback_lru_page(struct page *page)
515 int lru;
516 int active = !!TestClearPageActive(page);
517 int was_unevictable = PageUnevictable(page);
519 VM_BUG_ON(PageLRU(page));
521 redo:
522 ClearPageUnevictable(page);
524 if (page_evictable(page, NULL)) {
526 * For evictable pages, we can use the cache.
527 * In event of a race, worst case is we end up with an
528 * unevictable page on [in]active list.
529 * We know how to handle that.
531 lru = active + page_is_file_cache(page);
532 lru_cache_add_lru(page, lru);
533 } else {
535 * Put unevictable pages directly on zone's unevictable
536 * list.
538 lru = LRU_UNEVICTABLE;
539 add_page_to_unevictable_list(page);
543 * page's status can change while we move it among lru. If an evictable
544 * page is on unevictable list, it never be freed. To avoid that,
545 * check after we added it to the list, again.
547 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
548 if (!isolate_lru_page(page)) {
549 put_page(page);
550 goto redo;
552 /* This means someone else dropped this page from LRU
553 * So, it will be freed or putback to LRU again. There is
554 * nothing to do here.
558 if (was_unevictable && lru != LRU_UNEVICTABLE)
559 count_vm_event(UNEVICTABLE_PGRESCUED);
560 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
561 count_vm_event(UNEVICTABLE_PGCULLED);
563 put_page(page); /* drop ref from isolate */
566 #else /* CONFIG_UNEVICTABLE_LRU */
568 void putback_lru_page(struct page *page)
570 int lru;
571 VM_BUG_ON(PageLRU(page));
573 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
574 lru_cache_add_lru(page, lru);
575 put_page(page);
577 #endif /* CONFIG_UNEVICTABLE_LRU */
581 * shrink_page_list() returns the number of reclaimed pages
583 static unsigned long shrink_page_list(struct list_head *page_list,
584 struct scan_control *sc,
585 enum pageout_io sync_writeback)
587 LIST_HEAD(ret_pages);
588 struct pagevec freed_pvec;
589 int pgactivate = 0;
590 unsigned long nr_reclaimed = 0;
592 cond_resched();
594 pagevec_init(&freed_pvec, 1);
595 while (!list_empty(page_list)) {
596 struct address_space *mapping;
597 struct page *page;
598 int may_enter_fs;
599 int referenced;
601 cond_resched();
603 page = lru_to_page(page_list);
604 list_del(&page->lru);
606 if (!trylock_page(page))
607 goto keep;
609 VM_BUG_ON(PageActive(page));
611 sc->nr_scanned++;
613 if (unlikely(!page_evictable(page, NULL)))
614 goto cull_mlocked;
616 if (!sc->may_unmap && page_mapped(page))
617 goto keep_locked;
619 /* Double the slab pressure for mapped and swapcache pages */
620 if (page_mapped(page) || PageSwapCache(page))
621 sc->nr_scanned++;
623 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
624 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
626 if (PageWriteback(page)) {
628 * Synchronous reclaim is performed in two passes,
629 * first an asynchronous pass over the list to
630 * start parallel writeback, and a second synchronous
631 * pass to wait for the IO to complete. Wait here
632 * for any page for which writeback has already
633 * started.
635 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
636 wait_on_page_writeback(page);
637 else
638 goto keep_locked;
641 referenced = page_referenced(page, 1, sc->mem_cgroup);
642 /* In active use or really unfreeable? Activate it. */
643 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
644 referenced && page_mapping_inuse(page))
645 goto activate_locked;
648 * Anonymous process memory has backing store?
649 * Try to allocate it some swap space here.
651 if (PageAnon(page) && !PageSwapCache(page)) {
652 if (!(sc->gfp_mask & __GFP_IO))
653 goto keep_locked;
654 if (!add_to_swap(page))
655 goto activate_locked;
656 may_enter_fs = 1;
659 mapping = page_mapping(page);
662 * The page is mapped into the page tables of one or more
663 * processes. Try to unmap it here.
665 if (page_mapped(page) && mapping) {
666 switch (try_to_unmap(page, 0)) {
667 case SWAP_FAIL:
668 goto activate_locked;
669 case SWAP_AGAIN:
670 goto keep_locked;
671 case SWAP_MLOCK:
672 goto cull_mlocked;
673 case SWAP_SUCCESS:
674 ; /* try to free the page below */
678 if (PageDirty(page)) {
679 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
680 goto keep_locked;
681 if (!may_enter_fs)
682 goto keep_locked;
683 if (!sc->may_writepage)
684 goto keep_locked;
686 /* Page is dirty, try to write it out here */
687 switch (pageout(page, mapping, sync_writeback)) {
688 case PAGE_KEEP:
689 goto keep_locked;
690 case PAGE_ACTIVATE:
691 goto activate_locked;
692 case PAGE_SUCCESS:
693 if (PageWriteback(page) || PageDirty(page))
694 goto keep;
696 * A synchronous write - probably a ramdisk. Go
697 * ahead and try to reclaim the page.
699 if (!trylock_page(page))
700 goto keep;
701 if (PageDirty(page) || PageWriteback(page))
702 goto keep_locked;
703 mapping = page_mapping(page);
704 case PAGE_CLEAN:
705 ; /* try to free the page below */
710 * If the page has buffers, try to free the buffer mappings
711 * associated with this page. If we succeed we try to free
712 * the page as well.
714 * We do this even if the page is PageDirty().
715 * try_to_release_page() does not perform I/O, but it is
716 * possible for a page to have PageDirty set, but it is actually
717 * clean (all its buffers are clean). This happens if the
718 * buffers were written out directly, with submit_bh(). ext3
719 * will do this, as well as the blockdev mapping.
720 * try_to_release_page() will discover that cleanness and will
721 * drop the buffers and mark the page clean - it can be freed.
723 * Rarely, pages can have buffers and no ->mapping. These are
724 * the pages which were not successfully invalidated in
725 * truncate_complete_page(). We try to drop those buffers here
726 * and if that worked, and the page is no longer mapped into
727 * process address space (page_count == 1) it can be freed.
728 * Otherwise, leave the page on the LRU so it is swappable.
730 if (PagePrivate(page)) {
731 if (!try_to_release_page(page, sc->gfp_mask))
732 goto activate_locked;
733 if (!mapping && page_count(page) == 1) {
734 unlock_page(page);
735 if (put_page_testzero(page))
736 goto free_it;
737 else {
739 * rare race with speculative reference.
740 * the speculative reference will free
741 * this page shortly, so we may
742 * increment nr_reclaimed here (and
743 * leave it off the LRU).
745 nr_reclaimed++;
746 continue;
751 if (!mapping || !__remove_mapping(mapping, page))
752 goto keep_locked;
755 * At this point, we have no other references and there is
756 * no way to pick any more up (removed from LRU, removed
757 * from pagecache). Can use non-atomic bitops now (and
758 * we obviously don't have to worry about waking up a process
759 * waiting on the page lock, because there are no references.
761 __clear_page_locked(page);
762 free_it:
763 nr_reclaimed++;
764 if (!pagevec_add(&freed_pvec, page)) {
765 __pagevec_free(&freed_pvec);
766 pagevec_reinit(&freed_pvec);
768 continue;
770 cull_mlocked:
771 if (PageSwapCache(page))
772 try_to_free_swap(page);
773 unlock_page(page);
774 putback_lru_page(page);
775 continue;
777 activate_locked:
778 /* Not a candidate for swapping, so reclaim swap space. */
779 if (PageSwapCache(page) && vm_swap_full())
780 try_to_free_swap(page);
781 VM_BUG_ON(PageActive(page));
782 SetPageActive(page);
783 pgactivate++;
784 keep_locked:
785 unlock_page(page);
786 keep:
787 list_add(&page->lru, &ret_pages);
788 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
790 list_splice(&ret_pages, page_list);
791 if (pagevec_count(&freed_pvec))
792 __pagevec_free(&freed_pvec);
793 count_vm_events(PGACTIVATE, pgactivate);
794 return nr_reclaimed;
797 /* LRU Isolation modes. */
798 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
799 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
800 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
803 * Attempt to remove the specified page from its LRU. Only take this page
804 * if it is of the appropriate PageActive status. Pages which are being
805 * freed elsewhere are also ignored.
807 * page: page to consider
808 * mode: one of the LRU isolation modes defined above
810 * returns 0 on success, -ve errno on failure.
812 int __isolate_lru_page(struct page *page, int mode, int file)
814 int ret = -EINVAL;
816 /* Only take pages on the LRU. */
817 if (!PageLRU(page))
818 return ret;
821 * When checking the active state, we need to be sure we are
822 * dealing with comparible boolean values. Take the logical not
823 * of each.
825 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
826 return ret;
828 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
829 return ret;
832 * When this function is being called for lumpy reclaim, we
833 * initially look into all LRU pages, active, inactive and
834 * unevictable; only give shrink_page_list evictable pages.
836 if (PageUnevictable(page))
837 return ret;
839 ret = -EBUSY;
841 if (likely(get_page_unless_zero(page))) {
843 * Be careful not to clear PageLRU until after we're
844 * sure the page is not being freed elsewhere -- the
845 * page release code relies on it.
847 ClearPageLRU(page);
848 ret = 0;
849 mem_cgroup_del_lru(page);
852 return ret;
856 * zone->lru_lock is heavily contended. Some of the functions that
857 * shrink the lists perform better by taking out a batch of pages
858 * and working on them outside the LRU lock.
860 * For pagecache intensive workloads, this function is the hottest
861 * spot in the kernel (apart from copy_*_user functions).
863 * Appropriate locks must be held before calling this function.
865 * @nr_to_scan: The number of pages to look through on the list.
866 * @src: The LRU list to pull pages off.
867 * @dst: The temp list to put pages on to.
868 * @scanned: The number of pages that were scanned.
869 * @order: The caller's attempted allocation order
870 * @mode: One of the LRU isolation modes
871 * @file: True [1] if isolating file [!anon] pages
873 * returns how many pages were moved onto *@dst.
875 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
876 struct list_head *src, struct list_head *dst,
877 unsigned long *scanned, int order, int mode, int file)
879 unsigned long nr_taken = 0;
880 unsigned long scan;
882 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
883 struct page *page;
884 unsigned long pfn;
885 unsigned long end_pfn;
886 unsigned long page_pfn;
887 int zone_id;
889 page = lru_to_page(src);
890 prefetchw_prev_lru_page(page, src, flags);
892 VM_BUG_ON(!PageLRU(page));
894 switch (__isolate_lru_page(page, mode, file)) {
895 case 0:
896 list_move(&page->lru, dst);
897 nr_taken++;
898 break;
900 case -EBUSY:
901 /* else it is being freed elsewhere */
902 list_move(&page->lru, src);
903 continue;
905 default:
906 BUG();
909 if (!order)
910 continue;
913 * Attempt to take all pages in the order aligned region
914 * surrounding the tag page. Only take those pages of
915 * the same active state as that tag page. We may safely
916 * round the target page pfn down to the requested order
917 * as the mem_map is guarenteed valid out to MAX_ORDER,
918 * where that page is in a different zone we will detect
919 * it from its zone id and abort this block scan.
921 zone_id = page_zone_id(page);
922 page_pfn = page_to_pfn(page);
923 pfn = page_pfn & ~((1 << order) - 1);
924 end_pfn = pfn + (1 << order);
925 for (; pfn < end_pfn; pfn++) {
926 struct page *cursor_page;
928 /* The target page is in the block, ignore it. */
929 if (unlikely(pfn == page_pfn))
930 continue;
932 /* Avoid holes within the zone. */
933 if (unlikely(!pfn_valid_within(pfn)))
934 break;
936 cursor_page = pfn_to_page(pfn);
938 /* Check that we have not crossed a zone boundary. */
939 if (unlikely(page_zone_id(cursor_page) != zone_id))
940 continue;
941 switch (__isolate_lru_page(cursor_page, mode, file)) {
942 case 0:
943 list_move(&cursor_page->lru, dst);
944 nr_taken++;
945 scan++;
946 break;
948 case -EBUSY:
949 /* else it is being freed elsewhere */
950 list_move(&cursor_page->lru, src);
951 default:
952 break; /* ! on LRU or wrong list */
957 *scanned = scan;
958 return nr_taken;
961 static unsigned long isolate_pages_global(unsigned long nr,
962 struct list_head *dst,
963 unsigned long *scanned, int order,
964 int mode, struct zone *z,
965 struct mem_cgroup *mem_cont,
966 int active, int file)
968 int lru = LRU_BASE;
969 if (active)
970 lru += LRU_ACTIVE;
971 if (file)
972 lru += LRU_FILE;
973 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
974 mode, !!file);
978 * clear_active_flags() is a helper for shrink_active_list(), clearing
979 * any active bits from the pages in the list.
981 static unsigned long clear_active_flags(struct list_head *page_list,
982 unsigned int *count)
984 int nr_active = 0;
985 int lru;
986 struct page *page;
988 list_for_each_entry(page, page_list, lru) {
989 lru = page_is_file_cache(page);
990 if (PageActive(page)) {
991 lru += LRU_ACTIVE;
992 ClearPageActive(page);
993 nr_active++;
995 count[lru]++;
998 return nr_active;
1002 * isolate_lru_page - tries to isolate a page from its LRU list
1003 * @page: page to isolate from its LRU list
1005 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1006 * vmstat statistic corresponding to whatever LRU list the page was on.
1008 * Returns 0 if the page was removed from an LRU list.
1009 * Returns -EBUSY if the page was not on an LRU list.
1011 * The returned page will have PageLRU() cleared. If it was found on
1012 * the active list, it will have PageActive set. If it was found on
1013 * the unevictable list, it will have the PageUnevictable bit set. That flag
1014 * may need to be cleared by the caller before letting the page go.
1016 * The vmstat statistic corresponding to the list on which the page was
1017 * found will be decremented.
1019 * Restrictions:
1020 * (1) Must be called with an elevated refcount on the page. This is a
1021 * fundamentnal difference from isolate_lru_pages (which is called
1022 * without a stable reference).
1023 * (2) the lru_lock must not be held.
1024 * (3) interrupts must be enabled.
1026 int isolate_lru_page(struct page *page)
1028 int ret = -EBUSY;
1030 if (PageLRU(page)) {
1031 struct zone *zone = page_zone(page);
1033 spin_lock_irq(&zone->lru_lock);
1034 if (PageLRU(page) && get_page_unless_zero(page)) {
1035 int lru = page_lru(page);
1036 ret = 0;
1037 ClearPageLRU(page);
1039 del_page_from_lru_list(zone, page, lru);
1041 spin_unlock_irq(&zone->lru_lock);
1043 return ret;
1047 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1048 * of reclaimed pages
1050 static unsigned long shrink_inactive_list(unsigned long max_scan,
1051 struct zone *zone, struct scan_control *sc,
1052 int priority, int file)
1054 LIST_HEAD(page_list);
1055 struct pagevec pvec;
1056 unsigned long nr_scanned = 0;
1057 unsigned long nr_reclaimed = 0;
1058 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1060 pagevec_init(&pvec, 1);
1062 lru_add_drain();
1063 spin_lock_irq(&zone->lru_lock);
1064 do {
1065 struct page *page;
1066 unsigned long nr_taken;
1067 unsigned long nr_scan;
1068 unsigned long nr_freed;
1069 unsigned long nr_active;
1070 unsigned int count[NR_LRU_LISTS] = { 0, };
1071 int mode = ISOLATE_INACTIVE;
1074 * If we need a large contiguous chunk of memory, or have
1075 * trouble getting a small set of contiguous pages, we
1076 * will reclaim both active and inactive pages.
1078 * We use the same threshold as pageout congestion_wait below.
1080 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1081 mode = ISOLATE_BOTH;
1082 else if (sc->order && priority < DEF_PRIORITY - 2)
1083 mode = ISOLATE_BOTH;
1085 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1086 &page_list, &nr_scan, sc->order, mode,
1087 zone, sc->mem_cgroup, 0, file);
1088 nr_active = clear_active_flags(&page_list, count);
1089 __count_vm_events(PGDEACTIVATE, nr_active);
1091 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1092 -count[LRU_ACTIVE_FILE]);
1093 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1094 -count[LRU_INACTIVE_FILE]);
1095 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1096 -count[LRU_ACTIVE_ANON]);
1097 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1098 -count[LRU_INACTIVE_ANON]);
1100 if (scanning_global_lru(sc))
1101 zone->pages_scanned += nr_scan;
1103 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1104 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1105 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1106 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1108 spin_unlock_irq(&zone->lru_lock);
1110 nr_scanned += nr_scan;
1111 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1114 * If we are direct reclaiming for contiguous pages and we do
1115 * not reclaim everything in the list, try again and wait
1116 * for IO to complete. This will stall high-order allocations
1117 * but that should be acceptable to the caller
1119 if (nr_freed < nr_taken && !current_is_kswapd() &&
1120 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1121 congestion_wait(WRITE, HZ/10);
1124 * The attempt at page out may have made some
1125 * of the pages active, mark them inactive again.
1127 nr_active = clear_active_flags(&page_list, count);
1128 count_vm_events(PGDEACTIVATE, nr_active);
1130 nr_freed += shrink_page_list(&page_list, sc,
1131 PAGEOUT_IO_SYNC);
1134 nr_reclaimed += nr_freed;
1135 local_irq_disable();
1136 if (current_is_kswapd()) {
1137 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1138 __count_vm_events(KSWAPD_STEAL, nr_freed);
1139 } else if (scanning_global_lru(sc))
1140 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1142 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1144 if (nr_taken == 0)
1145 goto done;
1147 spin_lock(&zone->lru_lock);
1149 * Put back any unfreeable pages.
1151 while (!list_empty(&page_list)) {
1152 int lru;
1153 page = lru_to_page(&page_list);
1154 VM_BUG_ON(PageLRU(page));
1155 list_del(&page->lru);
1156 if (unlikely(!page_evictable(page, NULL))) {
1157 spin_unlock_irq(&zone->lru_lock);
1158 putback_lru_page(page);
1159 spin_lock_irq(&zone->lru_lock);
1160 continue;
1162 SetPageLRU(page);
1163 lru = page_lru(page);
1164 add_page_to_lru_list(zone, page, lru);
1165 if (PageActive(page)) {
1166 int file = !!page_is_file_cache(page);
1167 reclaim_stat->recent_rotated[file]++;
1169 if (!pagevec_add(&pvec, page)) {
1170 spin_unlock_irq(&zone->lru_lock);
1171 __pagevec_release(&pvec);
1172 spin_lock_irq(&zone->lru_lock);
1175 } while (nr_scanned < max_scan);
1176 spin_unlock(&zone->lru_lock);
1177 done:
1178 local_irq_enable();
1179 pagevec_release(&pvec);
1180 return nr_reclaimed;
1184 * We are about to scan this zone at a certain priority level. If that priority
1185 * level is smaller (ie: more urgent) than the previous priority, then note
1186 * that priority level within the zone. This is done so that when the next
1187 * process comes in to scan this zone, it will immediately start out at this
1188 * priority level rather than having to build up its own scanning priority.
1189 * Here, this priority affects only the reclaim-mapped threshold.
1191 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1193 if (priority < zone->prev_priority)
1194 zone->prev_priority = priority;
1198 * This moves pages from the active list to the inactive list.
1200 * We move them the other way if the page is referenced by one or more
1201 * processes, from rmap.
1203 * If the pages are mostly unmapped, the processing is fast and it is
1204 * appropriate to hold zone->lru_lock across the whole operation. But if
1205 * the pages are mapped, the processing is slow (page_referenced()) so we
1206 * should drop zone->lru_lock around each page. It's impossible to balance
1207 * this, so instead we remove the pages from the LRU while processing them.
1208 * It is safe to rely on PG_active against the non-LRU pages in here because
1209 * nobody will play with that bit on a non-LRU page.
1211 * The downside is that we have to touch page->_count against each page.
1212 * But we had to alter page->flags anyway.
1216 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1217 struct scan_control *sc, int priority, int file)
1219 unsigned long pgmoved;
1220 int pgdeactivate = 0;
1221 unsigned long pgscanned;
1222 LIST_HEAD(l_hold); /* The pages which were snipped off */
1223 LIST_HEAD(l_inactive);
1224 struct page *page;
1225 struct pagevec pvec;
1226 enum lru_list lru;
1227 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1229 lru_add_drain();
1230 spin_lock_irq(&zone->lru_lock);
1231 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1232 ISOLATE_ACTIVE, zone,
1233 sc->mem_cgroup, 1, file);
1235 * zone->pages_scanned is used for detect zone's oom
1236 * mem_cgroup remembers nr_scan by itself.
1238 if (scanning_global_lru(sc)) {
1239 zone->pages_scanned += pgscanned;
1241 reclaim_stat->recent_scanned[!!file] += pgmoved;
1243 if (file)
1244 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1245 else
1246 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1247 spin_unlock_irq(&zone->lru_lock);
1249 pgmoved = 0;
1250 while (!list_empty(&l_hold)) {
1251 cond_resched();
1252 page = lru_to_page(&l_hold);
1253 list_del(&page->lru);
1255 if (unlikely(!page_evictable(page, NULL))) {
1256 putback_lru_page(page);
1257 continue;
1260 /* page_referenced clears PageReferenced */
1261 if (page_mapping_inuse(page) &&
1262 page_referenced(page, 0, sc->mem_cgroup))
1263 pgmoved++;
1265 list_add(&page->lru, &l_inactive);
1269 * Move the pages to the [file or anon] inactive list.
1271 pagevec_init(&pvec, 1);
1272 lru = LRU_BASE + file * LRU_FILE;
1274 spin_lock_irq(&zone->lru_lock);
1276 * Count referenced pages from currently used mappings as
1277 * rotated, even though they are moved to the inactive list.
1278 * This helps balance scan pressure between file and anonymous
1279 * pages in get_scan_ratio.
1281 reclaim_stat->recent_rotated[!!file] += pgmoved;
1283 pgmoved = 0;
1284 while (!list_empty(&l_inactive)) {
1285 page = lru_to_page(&l_inactive);
1286 prefetchw_prev_lru_page(page, &l_inactive, flags);
1287 VM_BUG_ON(PageLRU(page));
1288 SetPageLRU(page);
1289 VM_BUG_ON(!PageActive(page));
1290 ClearPageActive(page);
1292 list_move(&page->lru, &zone->lru[lru].list);
1293 mem_cgroup_add_lru_list(page, lru);
1294 pgmoved++;
1295 if (!pagevec_add(&pvec, page)) {
1296 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1297 spin_unlock_irq(&zone->lru_lock);
1298 pgdeactivate += pgmoved;
1299 pgmoved = 0;
1300 if (buffer_heads_over_limit)
1301 pagevec_strip(&pvec);
1302 __pagevec_release(&pvec);
1303 spin_lock_irq(&zone->lru_lock);
1306 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1307 pgdeactivate += pgmoved;
1308 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1309 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1310 spin_unlock_irq(&zone->lru_lock);
1311 if (buffer_heads_over_limit)
1312 pagevec_strip(&pvec);
1313 pagevec_release(&pvec);
1316 static int inactive_anon_is_low_global(struct zone *zone)
1318 unsigned long active, inactive;
1320 active = zone_page_state(zone, NR_ACTIVE_ANON);
1321 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1323 if (inactive * zone->inactive_ratio < active)
1324 return 1;
1326 return 0;
1330 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1331 * @zone: zone to check
1332 * @sc: scan control of this context
1334 * Returns true if the zone does not have enough inactive anon pages,
1335 * meaning some active anon pages need to be deactivated.
1337 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1339 int low;
1341 if (scanning_global_lru(sc))
1342 low = inactive_anon_is_low_global(zone);
1343 else
1344 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1345 return low;
1348 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1349 struct zone *zone, struct scan_control *sc, int priority)
1351 int file = is_file_lru(lru);
1353 if (lru == LRU_ACTIVE_FILE) {
1354 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1355 return 0;
1358 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1359 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1360 return 0;
1362 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1366 * Determine how aggressively the anon and file LRU lists should be
1367 * scanned. The relative value of each set of LRU lists is determined
1368 * by looking at the fraction of the pages scanned we did rotate back
1369 * onto the active list instead of evict.
1371 * percent[0] specifies how much pressure to put on ram/swap backed
1372 * memory, while percent[1] determines pressure on the file LRUs.
1374 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1375 unsigned long *percent)
1377 unsigned long anon, file, free;
1378 unsigned long anon_prio, file_prio;
1379 unsigned long ap, fp;
1380 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1382 /* If we have no swap space, do not bother scanning anon pages. */
1383 if (nr_swap_pages <= 0) {
1384 percent[0] = 0;
1385 percent[1] = 100;
1386 return;
1389 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1390 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1391 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1392 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1394 if (scanning_global_lru(sc)) {
1395 free = zone_page_state(zone, NR_FREE_PAGES);
1396 /* If we have very few page cache pages,
1397 force-scan anon pages. */
1398 if (unlikely(file + free <= zone->pages_high)) {
1399 percent[0] = 100;
1400 percent[1] = 0;
1401 return;
1406 * OK, so we have swap space and a fair amount of page cache
1407 * pages. We use the recently rotated / recently scanned
1408 * ratios to determine how valuable each cache is.
1410 * Because workloads change over time (and to avoid overflow)
1411 * we keep these statistics as a floating average, which ends
1412 * up weighing recent references more than old ones.
1414 * anon in [0], file in [1]
1416 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1417 spin_lock_irq(&zone->lru_lock);
1418 reclaim_stat->recent_scanned[0] /= 2;
1419 reclaim_stat->recent_rotated[0] /= 2;
1420 spin_unlock_irq(&zone->lru_lock);
1423 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1424 spin_lock_irq(&zone->lru_lock);
1425 reclaim_stat->recent_scanned[1] /= 2;
1426 reclaim_stat->recent_rotated[1] /= 2;
1427 spin_unlock_irq(&zone->lru_lock);
1431 * With swappiness at 100, anonymous and file have the same priority.
1432 * This scanning priority is essentially the inverse of IO cost.
1434 anon_prio = sc->swappiness;
1435 file_prio = 200 - sc->swappiness;
1438 * The amount of pressure on anon vs file pages is inversely
1439 * proportional to the fraction of recently scanned pages on
1440 * each list that were recently referenced and in active use.
1442 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1443 ap /= reclaim_stat->recent_rotated[0] + 1;
1445 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1446 fp /= reclaim_stat->recent_rotated[1] + 1;
1448 /* Normalize to percentages */
1449 percent[0] = 100 * ap / (ap + fp + 1);
1450 percent[1] = 100 - percent[0];
1455 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1457 static void shrink_zone(int priority, struct zone *zone,
1458 struct scan_control *sc)
1460 unsigned long nr[NR_LRU_LISTS];
1461 unsigned long nr_to_scan;
1462 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1463 enum lru_list l;
1464 unsigned long nr_reclaimed = sc->nr_reclaimed;
1465 unsigned long swap_cluster_max = sc->swap_cluster_max;
1467 get_scan_ratio(zone, sc, percent);
1469 for_each_evictable_lru(l) {
1470 int file = is_file_lru(l);
1471 int scan;
1473 scan = zone_nr_pages(zone, sc, l);
1474 if (priority) {
1475 scan >>= priority;
1476 scan = (scan * percent[file]) / 100;
1478 if (scanning_global_lru(sc)) {
1479 zone->lru[l].nr_scan += scan;
1480 nr[l] = zone->lru[l].nr_scan;
1481 if (nr[l] >= swap_cluster_max)
1482 zone->lru[l].nr_scan = 0;
1483 else
1484 nr[l] = 0;
1485 } else
1486 nr[l] = scan;
1489 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1490 nr[LRU_INACTIVE_FILE]) {
1491 for_each_evictable_lru(l) {
1492 if (nr[l]) {
1493 nr_to_scan = min(nr[l], swap_cluster_max);
1494 nr[l] -= nr_to_scan;
1496 nr_reclaimed += shrink_list(l, nr_to_scan,
1497 zone, sc, priority);
1501 * On large memory systems, scan >> priority can become
1502 * really large. This is fine for the starting priority;
1503 * we want to put equal scanning pressure on each zone.
1504 * However, if the VM has a harder time of freeing pages,
1505 * with multiple processes reclaiming pages, the total
1506 * freeing target can get unreasonably large.
1508 if (nr_reclaimed > swap_cluster_max &&
1509 priority < DEF_PRIORITY && !current_is_kswapd())
1510 break;
1513 sc->nr_reclaimed = nr_reclaimed;
1516 * Even if we did not try to evict anon pages at all, we want to
1517 * rebalance the anon lru active/inactive ratio.
1519 if (inactive_anon_is_low(zone, sc))
1520 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1522 throttle_vm_writeout(sc->gfp_mask);
1526 * This is the direct reclaim path, for page-allocating processes. We only
1527 * try to reclaim pages from zones which will satisfy the caller's allocation
1528 * request.
1530 * We reclaim from a zone even if that zone is over pages_high. Because:
1531 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1532 * allocation or
1533 * b) The zones may be over pages_high but they must go *over* pages_high to
1534 * satisfy the `incremental min' zone defense algorithm.
1536 * If a zone is deemed to be full of pinned pages then just give it a light
1537 * scan then give up on it.
1539 static void shrink_zones(int priority, struct zonelist *zonelist,
1540 struct scan_control *sc)
1542 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1543 struct zoneref *z;
1544 struct zone *zone;
1546 sc->all_unreclaimable = 1;
1547 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1548 sc->nodemask) {
1549 if (!populated_zone(zone))
1550 continue;
1552 * Take care memory controller reclaiming has small influence
1553 * to global LRU.
1555 if (scanning_global_lru(sc)) {
1556 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1557 continue;
1558 note_zone_scanning_priority(zone, priority);
1560 if (zone_is_all_unreclaimable(zone) &&
1561 priority != DEF_PRIORITY)
1562 continue; /* Let kswapd poll it */
1563 sc->all_unreclaimable = 0;
1564 } else {
1566 * Ignore cpuset limitation here. We just want to reduce
1567 * # of used pages by us regardless of memory shortage.
1569 sc->all_unreclaimable = 0;
1570 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1571 priority);
1574 shrink_zone(priority, zone, sc);
1579 * This is the main entry point to direct page reclaim.
1581 * If a full scan of the inactive list fails to free enough memory then we
1582 * are "out of memory" and something needs to be killed.
1584 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1585 * high - the zone may be full of dirty or under-writeback pages, which this
1586 * caller can't do much about. We kick pdflush and take explicit naps in the
1587 * hope that some of these pages can be written. But if the allocating task
1588 * holds filesystem locks which prevent writeout this might not work, and the
1589 * allocation attempt will fail.
1591 * returns: 0, if no pages reclaimed
1592 * else, the number of pages reclaimed
1594 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1595 struct scan_control *sc)
1597 int priority;
1598 unsigned long ret = 0;
1599 unsigned long total_scanned = 0;
1600 struct reclaim_state *reclaim_state = current->reclaim_state;
1601 unsigned long lru_pages = 0;
1602 struct zoneref *z;
1603 struct zone *zone;
1604 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1606 delayacct_freepages_start();
1608 if (scanning_global_lru(sc))
1609 count_vm_event(ALLOCSTALL);
1611 * mem_cgroup will not do shrink_slab.
1613 if (scanning_global_lru(sc)) {
1614 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1616 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1617 continue;
1619 lru_pages += zone_lru_pages(zone);
1623 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1624 sc->nr_scanned = 0;
1625 if (!priority)
1626 disable_swap_token();
1627 shrink_zones(priority, zonelist, sc);
1629 * Don't shrink slabs when reclaiming memory from
1630 * over limit cgroups
1632 if (scanning_global_lru(sc)) {
1633 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1634 if (reclaim_state) {
1635 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1636 reclaim_state->reclaimed_slab = 0;
1639 total_scanned += sc->nr_scanned;
1640 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1641 ret = sc->nr_reclaimed;
1642 goto out;
1646 * Try to write back as many pages as we just scanned. This
1647 * tends to cause slow streaming writers to write data to the
1648 * disk smoothly, at the dirtying rate, which is nice. But
1649 * that's undesirable in laptop mode, where we *want* lumpy
1650 * writeout. So in laptop mode, write out the whole world.
1652 if (total_scanned > sc->swap_cluster_max +
1653 sc->swap_cluster_max / 2) {
1654 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1655 sc->may_writepage = 1;
1658 /* Take a nap, wait for some writeback to complete */
1659 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1660 congestion_wait(WRITE, HZ/10);
1662 /* top priority shrink_zones still had more to do? don't OOM, then */
1663 if (!sc->all_unreclaimable && scanning_global_lru(sc))
1664 ret = sc->nr_reclaimed;
1665 out:
1667 * Now that we've scanned all the zones at this priority level, note
1668 * that level within the zone so that the next thread which performs
1669 * scanning of this zone will immediately start out at this priority
1670 * level. This affects only the decision whether or not to bring
1671 * mapped pages onto the inactive list.
1673 if (priority < 0)
1674 priority = 0;
1676 if (scanning_global_lru(sc)) {
1677 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1679 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1680 continue;
1682 zone->prev_priority = priority;
1684 } else
1685 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1687 delayacct_freepages_end();
1689 return ret;
1692 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1693 gfp_t gfp_mask, nodemask_t *nodemask)
1695 struct scan_control sc = {
1696 .gfp_mask = gfp_mask,
1697 .may_writepage = !laptop_mode,
1698 .swap_cluster_max = SWAP_CLUSTER_MAX,
1699 .may_unmap = 1,
1700 .swappiness = vm_swappiness,
1701 .order = order,
1702 .mem_cgroup = NULL,
1703 .isolate_pages = isolate_pages_global,
1704 .nodemask = nodemask,
1707 return do_try_to_free_pages(zonelist, &sc);
1710 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1712 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1713 gfp_t gfp_mask,
1714 bool noswap,
1715 unsigned int swappiness)
1717 struct scan_control sc = {
1718 .may_writepage = !laptop_mode,
1719 .may_unmap = 1,
1720 .swap_cluster_max = SWAP_CLUSTER_MAX,
1721 .swappiness = swappiness,
1722 .order = 0,
1723 .mem_cgroup = mem_cont,
1724 .isolate_pages = mem_cgroup_isolate_pages,
1725 .nodemask = NULL, /* we don't care the placement */
1727 struct zonelist *zonelist;
1729 if (noswap)
1730 sc.may_unmap = 0;
1732 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1733 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1734 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1735 return do_try_to_free_pages(zonelist, &sc);
1737 #endif
1740 * For kswapd, balance_pgdat() will work across all this node's zones until
1741 * they are all at pages_high.
1743 * Returns the number of pages which were actually freed.
1745 * There is special handling here for zones which are full of pinned pages.
1746 * This can happen if the pages are all mlocked, or if they are all used by
1747 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1748 * What we do is to detect the case where all pages in the zone have been
1749 * scanned twice and there has been zero successful reclaim. Mark the zone as
1750 * dead and from now on, only perform a short scan. Basically we're polling
1751 * the zone for when the problem goes away.
1753 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1754 * zones which have free_pages > pages_high, but once a zone is found to have
1755 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1756 * of the number of free pages in the lower zones. This interoperates with
1757 * the page allocator fallback scheme to ensure that aging of pages is balanced
1758 * across the zones.
1760 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1762 int all_zones_ok;
1763 int priority;
1764 int i;
1765 unsigned long total_scanned;
1766 struct reclaim_state *reclaim_state = current->reclaim_state;
1767 struct scan_control sc = {
1768 .gfp_mask = GFP_KERNEL,
1769 .may_unmap = 1,
1770 .swap_cluster_max = SWAP_CLUSTER_MAX,
1771 .swappiness = vm_swappiness,
1772 .order = order,
1773 .mem_cgroup = NULL,
1774 .isolate_pages = isolate_pages_global,
1777 * temp_priority is used to remember the scanning priority at which
1778 * this zone was successfully refilled to free_pages == pages_high.
1780 int temp_priority[MAX_NR_ZONES];
1782 loop_again:
1783 total_scanned = 0;
1784 sc.nr_reclaimed = 0;
1785 sc.may_writepage = !laptop_mode;
1786 count_vm_event(PAGEOUTRUN);
1788 for (i = 0; i < pgdat->nr_zones; i++)
1789 temp_priority[i] = DEF_PRIORITY;
1791 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1792 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1793 unsigned long lru_pages = 0;
1795 /* The swap token gets in the way of swapout... */
1796 if (!priority)
1797 disable_swap_token();
1799 all_zones_ok = 1;
1802 * Scan in the highmem->dma direction for the highest
1803 * zone which needs scanning
1805 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1806 struct zone *zone = pgdat->node_zones + i;
1808 if (!populated_zone(zone))
1809 continue;
1811 if (zone_is_all_unreclaimable(zone) &&
1812 priority != DEF_PRIORITY)
1813 continue;
1816 * Do some background aging of the anon list, to give
1817 * pages a chance to be referenced before reclaiming.
1819 if (inactive_anon_is_low(zone, &sc))
1820 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1821 &sc, priority, 0);
1823 if (!zone_watermark_ok(zone, order, zone->pages_high,
1824 0, 0)) {
1825 end_zone = i;
1826 break;
1829 if (i < 0)
1830 goto out;
1832 for (i = 0; i <= end_zone; i++) {
1833 struct zone *zone = pgdat->node_zones + i;
1835 lru_pages += zone_lru_pages(zone);
1839 * Now scan the zone in the dma->highmem direction, stopping
1840 * at the last zone which needs scanning.
1842 * We do this because the page allocator works in the opposite
1843 * direction. This prevents the page allocator from allocating
1844 * pages behind kswapd's direction of progress, which would
1845 * cause too much scanning of the lower zones.
1847 for (i = 0; i <= end_zone; i++) {
1848 struct zone *zone = pgdat->node_zones + i;
1849 int nr_slab;
1851 if (!populated_zone(zone))
1852 continue;
1854 if (zone_is_all_unreclaimable(zone) &&
1855 priority != DEF_PRIORITY)
1856 continue;
1858 if (!zone_watermark_ok(zone, order, zone->pages_high,
1859 end_zone, 0))
1860 all_zones_ok = 0;
1861 temp_priority[i] = priority;
1862 sc.nr_scanned = 0;
1863 note_zone_scanning_priority(zone, priority);
1865 * We put equal pressure on every zone, unless one
1866 * zone has way too many pages free already.
1868 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1869 end_zone, 0))
1870 shrink_zone(priority, zone, &sc);
1871 reclaim_state->reclaimed_slab = 0;
1872 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1873 lru_pages);
1874 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1875 total_scanned += sc.nr_scanned;
1876 if (zone_is_all_unreclaimable(zone))
1877 continue;
1878 if (nr_slab == 0 && zone->pages_scanned >=
1879 (zone_lru_pages(zone) * 6))
1880 zone_set_flag(zone,
1881 ZONE_ALL_UNRECLAIMABLE);
1883 * If we've done a decent amount of scanning and
1884 * the reclaim ratio is low, start doing writepage
1885 * even in laptop mode
1887 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1888 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1889 sc.may_writepage = 1;
1891 if (all_zones_ok)
1892 break; /* kswapd: all done */
1894 * OK, kswapd is getting into trouble. Take a nap, then take
1895 * another pass across the zones.
1897 if (total_scanned && priority < DEF_PRIORITY - 2)
1898 congestion_wait(WRITE, HZ/10);
1901 * We do this so kswapd doesn't build up large priorities for
1902 * example when it is freeing in parallel with allocators. It
1903 * matches the direct reclaim path behaviour in terms of impact
1904 * on zone->*_priority.
1906 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1907 break;
1909 out:
1911 * Note within each zone the priority level at which this zone was
1912 * brought into a happy state. So that the next thread which scans this
1913 * zone will start out at that priority level.
1915 for (i = 0; i < pgdat->nr_zones; i++) {
1916 struct zone *zone = pgdat->node_zones + i;
1918 zone->prev_priority = temp_priority[i];
1920 if (!all_zones_ok) {
1921 cond_resched();
1923 try_to_freeze();
1926 * Fragmentation may mean that the system cannot be
1927 * rebalanced for high-order allocations in all zones.
1928 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1929 * it means the zones have been fully scanned and are still
1930 * not balanced. For high-order allocations, there is
1931 * little point trying all over again as kswapd may
1932 * infinite loop.
1934 * Instead, recheck all watermarks at order-0 as they
1935 * are the most important. If watermarks are ok, kswapd will go
1936 * back to sleep. High-order users can still perform direct
1937 * reclaim if they wish.
1939 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1940 order = sc.order = 0;
1942 goto loop_again;
1945 return sc.nr_reclaimed;
1949 * The background pageout daemon, started as a kernel thread
1950 * from the init process.
1952 * This basically trickles out pages so that we have _some_
1953 * free memory available even if there is no other activity
1954 * that frees anything up. This is needed for things like routing
1955 * etc, where we otherwise might have all activity going on in
1956 * asynchronous contexts that cannot page things out.
1958 * If there are applications that are active memory-allocators
1959 * (most normal use), this basically shouldn't matter.
1961 static int kswapd(void *p)
1963 unsigned long order;
1964 pg_data_t *pgdat = (pg_data_t*)p;
1965 struct task_struct *tsk = current;
1966 DEFINE_WAIT(wait);
1967 struct reclaim_state reclaim_state = {
1968 .reclaimed_slab = 0,
1970 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1972 lockdep_set_current_reclaim_state(GFP_KERNEL);
1974 if (!cpumask_empty(cpumask))
1975 set_cpus_allowed_ptr(tsk, cpumask);
1976 current->reclaim_state = &reclaim_state;
1979 * Tell the memory management that we're a "memory allocator",
1980 * and that if we need more memory we should get access to it
1981 * regardless (see "__alloc_pages()"). "kswapd" should
1982 * never get caught in the normal page freeing logic.
1984 * (Kswapd normally doesn't need memory anyway, but sometimes
1985 * you need a small amount of memory in order to be able to
1986 * page out something else, and this flag essentially protects
1987 * us from recursively trying to free more memory as we're
1988 * trying to free the first piece of memory in the first place).
1990 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1991 set_freezable();
1993 order = 0;
1994 for ( ; ; ) {
1995 unsigned long new_order;
1997 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1998 new_order = pgdat->kswapd_max_order;
1999 pgdat->kswapd_max_order = 0;
2000 if (order < new_order) {
2002 * Don't sleep if someone wants a larger 'order'
2003 * allocation
2005 order = new_order;
2006 } else {
2007 if (!freezing(current))
2008 schedule();
2010 order = pgdat->kswapd_max_order;
2012 finish_wait(&pgdat->kswapd_wait, &wait);
2014 if (!try_to_freeze()) {
2015 /* We can speed up thawing tasks if we don't call
2016 * balance_pgdat after returning from the refrigerator
2018 balance_pgdat(pgdat, order);
2021 return 0;
2025 * A zone is low on free memory, so wake its kswapd task to service it.
2027 void wakeup_kswapd(struct zone *zone, int order)
2029 pg_data_t *pgdat;
2031 if (!populated_zone(zone))
2032 return;
2034 pgdat = zone->zone_pgdat;
2035 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2036 return;
2037 if (pgdat->kswapd_max_order < order)
2038 pgdat->kswapd_max_order = order;
2039 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2040 return;
2041 if (!waitqueue_active(&pgdat->kswapd_wait))
2042 return;
2043 wake_up_interruptible(&pgdat->kswapd_wait);
2046 unsigned long global_lru_pages(void)
2048 return global_page_state(NR_ACTIVE_ANON)
2049 + global_page_state(NR_ACTIVE_FILE)
2050 + global_page_state(NR_INACTIVE_ANON)
2051 + global_page_state(NR_INACTIVE_FILE);
2054 #ifdef CONFIG_PM
2056 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2057 * from LRU lists system-wide, for given pass and priority.
2059 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2061 static void shrink_all_zones(unsigned long nr_pages, int prio,
2062 int pass, struct scan_control *sc)
2064 struct zone *zone;
2065 unsigned long nr_reclaimed = 0;
2067 for_each_populated_zone(zone) {
2068 enum lru_list l;
2070 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2071 continue;
2073 for_each_evictable_lru(l) {
2074 enum zone_stat_item ls = NR_LRU_BASE + l;
2075 unsigned long lru_pages = zone_page_state(zone, ls);
2077 /* For pass = 0, we don't shrink the active list */
2078 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2079 l == LRU_ACTIVE_FILE))
2080 continue;
2082 zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
2083 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2084 unsigned long nr_to_scan;
2086 zone->lru[l].nr_scan = 0;
2087 nr_to_scan = min(nr_pages, lru_pages);
2088 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2089 sc, prio);
2090 if (nr_reclaimed >= nr_pages) {
2091 sc->nr_reclaimed = nr_reclaimed;
2092 return;
2097 sc->nr_reclaimed = nr_reclaimed;
2101 * Try to free `nr_pages' of memory, system-wide, and return the number of
2102 * freed pages.
2104 * Rather than trying to age LRUs the aim is to preserve the overall
2105 * LRU order by reclaiming preferentially
2106 * inactive > active > active referenced > active mapped
2108 unsigned long shrink_all_memory(unsigned long nr_pages)
2110 unsigned long lru_pages, nr_slab;
2111 int pass;
2112 struct reclaim_state reclaim_state;
2113 struct scan_control sc = {
2114 .gfp_mask = GFP_KERNEL,
2115 .may_unmap = 0,
2116 .may_writepage = 1,
2117 .isolate_pages = isolate_pages_global,
2120 current->reclaim_state = &reclaim_state;
2122 lru_pages = global_lru_pages();
2123 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2124 /* If slab caches are huge, it's better to hit them first */
2125 while (nr_slab >= lru_pages) {
2126 reclaim_state.reclaimed_slab = 0;
2127 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2128 if (!reclaim_state.reclaimed_slab)
2129 break;
2131 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2132 if (sc.nr_reclaimed >= nr_pages)
2133 goto out;
2135 nr_slab -= reclaim_state.reclaimed_slab;
2139 * We try to shrink LRUs in 5 passes:
2140 * 0 = Reclaim from inactive_list only
2141 * 1 = Reclaim from active list but don't reclaim mapped
2142 * 2 = 2nd pass of type 1
2143 * 3 = Reclaim mapped (normal reclaim)
2144 * 4 = 2nd pass of type 3
2146 for (pass = 0; pass < 5; pass++) {
2147 int prio;
2149 /* Force reclaiming mapped pages in the passes #3 and #4 */
2150 if (pass > 2)
2151 sc.may_unmap = 1;
2153 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2154 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2156 sc.nr_scanned = 0;
2157 sc.swap_cluster_max = nr_to_scan;
2158 shrink_all_zones(nr_to_scan, prio, pass, &sc);
2159 if (sc.nr_reclaimed >= nr_pages)
2160 goto out;
2162 reclaim_state.reclaimed_slab = 0;
2163 shrink_slab(sc.nr_scanned, sc.gfp_mask,
2164 global_lru_pages());
2165 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2166 if (sc.nr_reclaimed >= nr_pages)
2167 goto out;
2169 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2170 congestion_wait(WRITE, HZ / 10);
2175 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2176 * something in slab caches
2178 if (!sc.nr_reclaimed) {
2179 do {
2180 reclaim_state.reclaimed_slab = 0;
2181 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2182 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2183 } while (sc.nr_reclaimed < nr_pages &&
2184 reclaim_state.reclaimed_slab > 0);
2188 out:
2189 current->reclaim_state = NULL;
2191 return sc.nr_reclaimed;
2193 #endif
2195 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2196 not required for correctness. So if the last cpu in a node goes
2197 away, we get changed to run anywhere: as the first one comes back,
2198 restore their cpu bindings. */
2199 static int __devinit cpu_callback(struct notifier_block *nfb,
2200 unsigned long action, void *hcpu)
2202 int nid;
2204 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2205 for_each_node_state(nid, N_HIGH_MEMORY) {
2206 pg_data_t *pgdat = NODE_DATA(nid);
2207 node_to_cpumask_ptr(mask, pgdat->node_id);
2209 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2210 /* One of our CPUs online: restore mask */
2211 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2214 return NOTIFY_OK;
2218 * This kswapd start function will be called by init and node-hot-add.
2219 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2221 int kswapd_run(int nid)
2223 pg_data_t *pgdat = NODE_DATA(nid);
2224 int ret = 0;
2226 if (pgdat->kswapd)
2227 return 0;
2229 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2230 if (IS_ERR(pgdat->kswapd)) {
2231 /* failure at boot is fatal */
2232 BUG_ON(system_state == SYSTEM_BOOTING);
2233 printk("Failed to start kswapd on node %d\n",nid);
2234 ret = -1;
2236 return ret;
2239 static int __init kswapd_init(void)
2241 int nid;
2243 swap_setup();
2244 for_each_node_state(nid, N_HIGH_MEMORY)
2245 kswapd_run(nid);
2246 hotcpu_notifier(cpu_callback, 0);
2247 return 0;
2250 module_init(kswapd_init)
2252 #ifdef CONFIG_NUMA
2254 * Zone reclaim mode
2256 * If non-zero call zone_reclaim when the number of free pages falls below
2257 * the watermarks.
2259 int zone_reclaim_mode __read_mostly;
2261 #define RECLAIM_OFF 0
2262 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2263 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2264 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2267 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2268 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2269 * a zone.
2271 #define ZONE_RECLAIM_PRIORITY 4
2274 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2275 * occur.
2277 int sysctl_min_unmapped_ratio = 1;
2280 * If the number of slab pages in a zone grows beyond this percentage then
2281 * slab reclaim needs to occur.
2283 int sysctl_min_slab_ratio = 5;
2286 * Try to free up some pages from this zone through reclaim.
2288 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2290 /* Minimum pages needed in order to stay on node */
2291 const unsigned long nr_pages = 1 << order;
2292 struct task_struct *p = current;
2293 struct reclaim_state reclaim_state;
2294 int priority;
2295 struct scan_control sc = {
2296 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2297 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2298 .swap_cluster_max = max_t(unsigned long, nr_pages,
2299 SWAP_CLUSTER_MAX),
2300 .gfp_mask = gfp_mask,
2301 .swappiness = vm_swappiness,
2302 .order = order,
2303 .isolate_pages = isolate_pages_global,
2305 unsigned long slab_reclaimable;
2307 disable_swap_token();
2308 cond_resched();
2310 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2311 * and we also need to be able to write out pages for RECLAIM_WRITE
2312 * and RECLAIM_SWAP.
2314 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2315 reclaim_state.reclaimed_slab = 0;
2316 p->reclaim_state = &reclaim_state;
2318 if (zone_page_state(zone, NR_FILE_PAGES) -
2319 zone_page_state(zone, NR_FILE_MAPPED) >
2320 zone->min_unmapped_pages) {
2322 * Free memory by calling shrink zone with increasing
2323 * priorities until we have enough memory freed.
2325 priority = ZONE_RECLAIM_PRIORITY;
2326 do {
2327 note_zone_scanning_priority(zone, priority);
2328 shrink_zone(priority, zone, &sc);
2329 priority--;
2330 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2333 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2334 if (slab_reclaimable > zone->min_slab_pages) {
2336 * shrink_slab() does not currently allow us to determine how
2337 * many pages were freed in this zone. So we take the current
2338 * number of slab pages and shake the slab until it is reduced
2339 * by the same nr_pages that we used for reclaiming unmapped
2340 * pages.
2342 * Note that shrink_slab will free memory on all zones and may
2343 * take a long time.
2345 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2346 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2347 slab_reclaimable - nr_pages)
2351 * Update nr_reclaimed by the number of slab pages we
2352 * reclaimed from this zone.
2354 sc.nr_reclaimed += slab_reclaimable -
2355 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2358 p->reclaim_state = NULL;
2359 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2360 return sc.nr_reclaimed >= nr_pages;
2363 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2365 int node_id;
2366 int ret;
2369 * Zone reclaim reclaims unmapped file backed pages and
2370 * slab pages if we are over the defined limits.
2372 * A small portion of unmapped file backed pages is needed for
2373 * file I/O otherwise pages read by file I/O will be immediately
2374 * thrown out if the zone is overallocated. So we do not reclaim
2375 * if less than a specified percentage of the zone is used by
2376 * unmapped file backed pages.
2378 if (zone_page_state(zone, NR_FILE_PAGES) -
2379 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2380 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2381 <= zone->min_slab_pages)
2382 return 0;
2384 if (zone_is_all_unreclaimable(zone))
2385 return 0;
2388 * Do not scan if the allocation should not be delayed.
2390 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2391 return 0;
2394 * Only run zone reclaim on the local zone or on zones that do not
2395 * have associated processors. This will favor the local processor
2396 * over remote processors and spread off node memory allocations
2397 * as wide as possible.
2399 node_id = zone_to_nid(zone);
2400 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2401 return 0;
2403 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2404 return 0;
2405 ret = __zone_reclaim(zone, gfp_mask, order);
2406 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2408 return ret;
2410 #endif
2412 #ifdef CONFIG_UNEVICTABLE_LRU
2414 * page_evictable - test whether a page is evictable
2415 * @page: the page to test
2416 * @vma: the VMA in which the page is or will be mapped, may be NULL
2418 * Test whether page is evictable--i.e., should be placed on active/inactive
2419 * lists vs unevictable list. The vma argument is !NULL when called from the
2420 * fault path to determine how to instantate a new page.
2422 * Reasons page might not be evictable:
2423 * (1) page's mapping marked unevictable
2424 * (2) page is part of an mlocked VMA
2427 int page_evictable(struct page *page, struct vm_area_struct *vma)
2430 if (mapping_unevictable(page_mapping(page)))
2431 return 0;
2433 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2434 return 0;
2436 return 1;
2440 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2441 * @page: page to check evictability and move to appropriate lru list
2442 * @zone: zone page is in
2444 * Checks a page for evictability and moves the page to the appropriate
2445 * zone lru list.
2447 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2448 * have PageUnevictable set.
2450 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2452 VM_BUG_ON(PageActive(page));
2454 retry:
2455 ClearPageUnevictable(page);
2456 if (page_evictable(page, NULL)) {
2457 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2459 __dec_zone_state(zone, NR_UNEVICTABLE);
2460 list_move(&page->lru, &zone->lru[l].list);
2461 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2462 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2463 __count_vm_event(UNEVICTABLE_PGRESCUED);
2464 } else {
2466 * rotate unevictable list
2468 SetPageUnevictable(page);
2469 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2470 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2471 if (page_evictable(page, NULL))
2472 goto retry;
2477 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2478 * @mapping: struct address_space to scan for evictable pages
2480 * Scan all pages in mapping. Check unevictable pages for
2481 * evictability and move them to the appropriate zone lru list.
2483 void scan_mapping_unevictable_pages(struct address_space *mapping)
2485 pgoff_t next = 0;
2486 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2487 PAGE_CACHE_SHIFT;
2488 struct zone *zone;
2489 struct pagevec pvec;
2491 if (mapping->nrpages == 0)
2492 return;
2494 pagevec_init(&pvec, 0);
2495 while (next < end &&
2496 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2497 int i;
2498 int pg_scanned = 0;
2500 zone = NULL;
2502 for (i = 0; i < pagevec_count(&pvec); i++) {
2503 struct page *page = pvec.pages[i];
2504 pgoff_t page_index = page->index;
2505 struct zone *pagezone = page_zone(page);
2507 pg_scanned++;
2508 if (page_index > next)
2509 next = page_index;
2510 next++;
2512 if (pagezone != zone) {
2513 if (zone)
2514 spin_unlock_irq(&zone->lru_lock);
2515 zone = pagezone;
2516 spin_lock_irq(&zone->lru_lock);
2519 if (PageLRU(page) && PageUnevictable(page))
2520 check_move_unevictable_page(page, zone);
2522 if (zone)
2523 spin_unlock_irq(&zone->lru_lock);
2524 pagevec_release(&pvec);
2526 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2532 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2533 * @zone - zone of which to scan the unevictable list
2535 * Scan @zone's unevictable LRU lists to check for pages that have become
2536 * evictable. Move those that have to @zone's inactive list where they
2537 * become candidates for reclaim, unless shrink_inactive_zone() decides
2538 * to reactivate them. Pages that are still unevictable are rotated
2539 * back onto @zone's unevictable list.
2541 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2542 static void scan_zone_unevictable_pages(struct zone *zone)
2544 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2545 unsigned long scan;
2546 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2548 while (nr_to_scan > 0) {
2549 unsigned long batch_size = min(nr_to_scan,
2550 SCAN_UNEVICTABLE_BATCH_SIZE);
2552 spin_lock_irq(&zone->lru_lock);
2553 for (scan = 0; scan < batch_size; scan++) {
2554 struct page *page = lru_to_page(l_unevictable);
2556 if (!trylock_page(page))
2557 continue;
2559 prefetchw_prev_lru_page(page, l_unevictable, flags);
2561 if (likely(PageLRU(page) && PageUnevictable(page)))
2562 check_move_unevictable_page(page, zone);
2564 unlock_page(page);
2566 spin_unlock_irq(&zone->lru_lock);
2568 nr_to_scan -= batch_size;
2574 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2576 * A really big hammer: scan all zones' unevictable LRU lists to check for
2577 * pages that have become evictable. Move those back to the zones'
2578 * inactive list where they become candidates for reclaim.
2579 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2580 * and we add swap to the system. As such, it runs in the context of a task
2581 * that has possibly/probably made some previously unevictable pages
2582 * evictable.
2584 static void scan_all_zones_unevictable_pages(void)
2586 struct zone *zone;
2588 for_each_zone(zone) {
2589 scan_zone_unevictable_pages(zone);
2594 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2595 * all nodes' unevictable lists for evictable pages
2597 unsigned long scan_unevictable_pages;
2599 int scan_unevictable_handler(struct ctl_table *table, int write,
2600 struct file *file, void __user *buffer,
2601 size_t *length, loff_t *ppos)
2603 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2605 if (write && *(unsigned long *)table->data)
2606 scan_all_zones_unevictable_pages();
2608 scan_unevictable_pages = 0;
2609 return 0;
2613 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2614 * a specified node's per zone unevictable lists for evictable pages.
2617 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2618 struct sysdev_attribute *attr,
2619 char *buf)
2621 return sprintf(buf, "0\n"); /* always zero; should fit... */
2624 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2625 struct sysdev_attribute *attr,
2626 const char *buf, size_t count)
2628 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2629 struct zone *zone;
2630 unsigned long res;
2631 unsigned long req = strict_strtoul(buf, 10, &res);
2633 if (!req)
2634 return 1; /* zero is no-op */
2636 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2637 if (!populated_zone(zone))
2638 continue;
2639 scan_zone_unevictable_pages(zone);
2641 return 1;
2645 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2646 read_scan_unevictable_node,
2647 write_scan_unevictable_node);
2649 int scan_unevictable_register_node(struct node *node)
2651 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2654 void scan_unevictable_unregister_node(struct node *node)
2656 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2659 #endif