4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr
;
69 EXPORT_SYMBOL(max_mapnr
);
70 EXPORT_SYMBOL(mem_map
);
73 unsigned long num_physpages
;
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
83 EXPORT_SYMBOL(num_physpages
);
84 EXPORT_SYMBOL(high_memory
);
87 * Randomize the address space (stacks, mmaps, brk, etc.).
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 * as ancient (libc5 based) binaries can segfault. )
92 int randomize_va_space __read_mostly
=
93 #ifdef CONFIG_COMPAT_BRK
99 static int __init
disable_randmaps(char *s
)
101 randomize_va_space
= 0;
104 __setup("norandmaps", disable_randmaps
);
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none. Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
113 void pgd_clear_bad(pgd_t
*pgd
)
119 void pud_clear_bad(pud_t
*pud
)
125 void pmd_clear_bad(pmd_t
*pmd
)
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
135 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
137 pgtable_t token
= pmd_pgtable(*pmd
);
139 pte_free_tlb(tlb
, token
);
143 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
144 unsigned long addr
, unsigned long end
,
145 unsigned long floor
, unsigned long ceiling
)
152 pmd
= pmd_offset(pud
, addr
);
154 next
= pmd_addr_end(addr
, end
);
155 if (pmd_none_or_clear_bad(pmd
))
157 free_pte_range(tlb
, pmd
);
158 } while (pmd
++, addr
= next
, addr
!= end
);
168 if (end
- 1 > ceiling
- 1)
171 pmd
= pmd_offset(pud
, start
);
173 pmd_free_tlb(tlb
, pmd
);
176 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
177 unsigned long addr
, unsigned long end
,
178 unsigned long floor
, unsigned long ceiling
)
185 pud
= pud_offset(pgd
, addr
);
187 next
= pud_addr_end(addr
, end
);
188 if (pud_none_or_clear_bad(pud
))
190 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
191 } while (pud
++, addr
= next
, addr
!= end
);
197 ceiling
&= PGDIR_MASK
;
201 if (end
- 1 > ceiling
- 1)
204 pud
= pud_offset(pgd
, start
);
206 pud_free_tlb(tlb
, pud
);
210 * This function frees user-level page tables of a process.
212 * Must be called with pagetable lock held.
214 void free_pgd_range(struct mmu_gather
**tlb
,
215 unsigned long addr
, unsigned long end
,
216 unsigned long floor
, unsigned long ceiling
)
223 * The next few lines have given us lots of grief...
225 * Why are we testing PMD* at this top level? Because often
226 * there will be no work to do at all, and we'd prefer not to
227 * go all the way down to the bottom just to discover that.
229 * Why all these "- 1"s? Because 0 represents both the bottom
230 * of the address space and the top of it (using -1 for the
231 * top wouldn't help much: the masks would do the wrong thing).
232 * The rule is that addr 0 and floor 0 refer to the bottom of
233 * the address space, but end 0 and ceiling 0 refer to the top
234 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235 * that end 0 case should be mythical).
237 * Wherever addr is brought up or ceiling brought down, we must
238 * be careful to reject "the opposite 0" before it confuses the
239 * subsequent tests. But what about where end is brought down
240 * by PMD_SIZE below? no, end can't go down to 0 there.
242 * Whereas we round start (addr) and ceiling down, by different
243 * masks at different levels, in order to test whether a table
244 * now has no other vmas using it, so can be freed, we don't
245 * bother to round floor or end up - the tests don't need that.
259 if (end
- 1 > ceiling
- 1)
265 pgd
= pgd_offset((*tlb
)->mm
, addr
);
267 next
= pgd_addr_end(addr
, end
);
268 if (pgd_none_or_clear_bad(pgd
))
270 free_pud_range(*tlb
, pgd
, addr
, next
, floor
, ceiling
);
271 } while (pgd
++, addr
= next
, addr
!= end
);
274 void free_pgtables(struct mmu_gather
**tlb
, struct vm_area_struct
*vma
,
275 unsigned long floor
, unsigned long ceiling
)
278 struct vm_area_struct
*next
= vma
->vm_next
;
279 unsigned long addr
= vma
->vm_start
;
282 * Hide vma from rmap and vmtruncate before freeing pgtables
284 anon_vma_unlink(vma
);
285 unlink_file_vma(vma
);
287 if (is_vm_hugetlb_page(vma
)) {
288 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
289 floor
, next
? next
->vm_start
: ceiling
);
292 * Optimization: gather nearby vmas into one call down
294 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
295 && !is_vm_hugetlb_page(next
)) {
298 anon_vma_unlink(vma
);
299 unlink_file_vma(vma
);
301 free_pgd_range(tlb
, addr
, vma
->vm_end
,
302 floor
, next
? next
->vm_start
: ceiling
);
308 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
310 pgtable_t
new = pte_alloc_one(mm
, address
);
315 * Ensure all pte setup (eg. pte page lock and page clearing) are
316 * visible before the pte is made visible to other CPUs by being
317 * put into page tables.
319 * The other side of the story is the pointer chasing in the page
320 * table walking code (when walking the page table without locking;
321 * ie. most of the time). Fortunately, these data accesses consist
322 * of a chain of data-dependent loads, meaning most CPUs (alpha
323 * being the notable exception) will already guarantee loads are
324 * seen in-order. See the alpha page table accessors for the
325 * smp_read_barrier_depends() barriers in page table walking code.
327 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
329 spin_lock(&mm
->page_table_lock
);
330 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
332 pmd_populate(mm
, pmd
, new);
335 spin_unlock(&mm
->page_table_lock
);
341 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
343 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
347 smp_wmb(); /* See comment in __pte_alloc */
349 spin_lock(&init_mm
.page_table_lock
);
350 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
351 pmd_populate_kernel(&init_mm
, pmd
, new);
354 spin_unlock(&init_mm
.page_table_lock
);
356 pte_free_kernel(&init_mm
, new);
360 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
363 add_mm_counter(mm
, file_rss
, file_rss
);
365 add_mm_counter(mm
, anon_rss
, anon_rss
);
369 * This function is called to print an error when a bad pte
370 * is found. For example, we might have a PFN-mapped pte in
371 * a region that doesn't allow it.
373 * The calling function must still handle the error.
375 void print_bad_pte(struct vm_area_struct
*vma
, pte_t pte
, unsigned long vaddr
)
377 printk(KERN_ERR
"Bad pte = %08llx, process = %s, "
378 "vm_flags = %lx, vaddr = %lx\n",
379 (long long)pte_val(pte
),
380 (vma
->vm_mm
== current
->mm
? current
->comm
: "???"),
381 vma
->vm_flags
, vaddr
);
385 static inline int is_cow_mapping(unsigned int flags
)
387 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
391 * vm_normal_page -- This function gets the "struct page" associated with a pte.
393 * "Special" mappings do not wish to be associated with a "struct page" (either
394 * it doesn't exist, or it exists but they don't want to touch it). In this
395 * case, NULL is returned here. "Normal" mappings do have a struct page.
397 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
398 * pte bit, in which case this function is trivial. Secondly, an architecture
399 * may not have a spare pte bit, which requires a more complicated scheme,
402 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
403 * special mapping (even if there are underlying and valid "struct pages").
404 * COWed pages of a VM_PFNMAP are always normal.
406 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
407 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
408 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
409 * mapping will always honor the rule
411 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
413 * And for normal mappings this is false.
415 * This restricts such mappings to be a linear translation from virtual address
416 * to pfn. To get around this restriction, we allow arbitrary mappings so long
417 * as the vma is not a COW mapping; in that case, we know that all ptes are
418 * special (because none can have been COWed).
421 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
423 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
424 * page" backing, however the difference is that _all_ pages with a struct
425 * page (that is, those where pfn_valid is true) are refcounted and considered
426 * normal pages by the VM. The disadvantage is that pages are refcounted
427 * (which can be slower and simply not an option for some PFNMAP users). The
428 * advantage is that we don't have to follow the strict linearity rule of
429 * PFNMAP mappings in order to support COWable mappings.
432 #ifdef __HAVE_ARCH_PTE_SPECIAL
433 # define HAVE_PTE_SPECIAL 1
435 # define HAVE_PTE_SPECIAL 0
437 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
442 if (HAVE_PTE_SPECIAL
) {
443 if (likely(!pte_special(pte
))) {
444 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
445 return pte_page(pte
);
447 VM_BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
)));
451 /* !HAVE_PTE_SPECIAL case follows: */
455 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
456 if (vma
->vm_flags
& VM_MIXEDMAP
) {
462 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
463 if (pfn
== vma
->vm_pgoff
+ off
)
465 if (!is_cow_mapping(vma
->vm_flags
))
470 VM_BUG_ON(!pfn_valid(pfn
));
473 * NOTE! We still have PageReserved() pages in the page tables.
475 * eg. VDSO mappings can cause them to exist.
478 return pfn_to_page(pfn
);
482 * copy one vm_area from one task to the other. Assumes the page tables
483 * already present in the new task to be cleared in the whole range
484 * covered by this vma.
488 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
489 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
490 unsigned long addr
, int *rss
)
492 unsigned long vm_flags
= vma
->vm_flags
;
493 pte_t pte
= *src_pte
;
496 /* pte contains position in swap or file, so copy. */
497 if (unlikely(!pte_present(pte
))) {
498 if (!pte_file(pte
)) {
499 swp_entry_t entry
= pte_to_swp_entry(pte
);
501 swap_duplicate(entry
);
502 /* make sure dst_mm is on swapoff's mmlist. */
503 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
504 spin_lock(&mmlist_lock
);
505 if (list_empty(&dst_mm
->mmlist
))
506 list_add(&dst_mm
->mmlist
,
508 spin_unlock(&mmlist_lock
);
510 if (is_write_migration_entry(entry
) &&
511 is_cow_mapping(vm_flags
)) {
513 * COW mappings require pages in both parent
514 * and child to be set to read.
516 make_migration_entry_read(&entry
);
517 pte
= swp_entry_to_pte(entry
);
518 set_pte_at(src_mm
, addr
, src_pte
, pte
);
525 * If it's a COW mapping, write protect it both
526 * in the parent and the child
528 if (is_cow_mapping(vm_flags
)) {
529 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
530 pte
= pte_wrprotect(pte
);
534 * If it's a shared mapping, mark it clean in
537 if (vm_flags
& VM_SHARED
)
538 pte
= pte_mkclean(pte
);
539 pte
= pte_mkold(pte
);
541 page
= vm_normal_page(vma
, addr
, pte
);
544 page_dup_rmap(page
, vma
, addr
);
545 rss
[!!PageAnon(page
)]++;
549 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
552 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
553 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
554 unsigned long addr
, unsigned long end
)
556 pte_t
*src_pte
, *dst_pte
;
557 spinlock_t
*src_ptl
, *dst_ptl
;
563 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
566 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
567 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
568 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
569 arch_enter_lazy_mmu_mode();
573 * We are holding two locks at this point - either of them
574 * could generate latencies in another task on another CPU.
576 if (progress
>= 32) {
578 if (need_resched() ||
579 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
582 if (pte_none(*src_pte
)) {
586 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
588 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
590 arch_leave_lazy_mmu_mode();
591 spin_unlock(src_ptl
);
592 pte_unmap_nested(src_pte
- 1);
593 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
594 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
601 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
602 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
603 unsigned long addr
, unsigned long end
)
605 pmd_t
*src_pmd
, *dst_pmd
;
608 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
611 src_pmd
= pmd_offset(src_pud
, addr
);
613 next
= pmd_addr_end(addr
, end
);
614 if (pmd_none_or_clear_bad(src_pmd
))
616 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
619 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
623 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
624 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
625 unsigned long addr
, unsigned long end
)
627 pud_t
*src_pud
, *dst_pud
;
630 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
633 src_pud
= pud_offset(src_pgd
, addr
);
635 next
= pud_addr_end(addr
, end
);
636 if (pud_none_or_clear_bad(src_pud
))
638 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
641 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
645 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
646 struct vm_area_struct
*vma
)
648 pgd_t
*src_pgd
, *dst_pgd
;
650 unsigned long addr
= vma
->vm_start
;
651 unsigned long end
= vma
->vm_end
;
654 * Don't copy ptes where a page fault will fill them correctly.
655 * Fork becomes much lighter when there are big shared or private
656 * readonly mappings. The tradeoff is that copy_page_range is more
657 * efficient than faulting.
659 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
664 if (is_vm_hugetlb_page(vma
))
665 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
667 dst_pgd
= pgd_offset(dst_mm
, addr
);
668 src_pgd
= pgd_offset(src_mm
, addr
);
670 next
= pgd_addr_end(addr
, end
);
671 if (pgd_none_or_clear_bad(src_pgd
))
673 if (copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
676 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
680 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
681 struct vm_area_struct
*vma
, pmd_t
*pmd
,
682 unsigned long addr
, unsigned long end
,
683 long *zap_work
, struct zap_details
*details
)
685 struct mm_struct
*mm
= tlb
->mm
;
691 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
692 arch_enter_lazy_mmu_mode();
695 if (pte_none(ptent
)) {
700 (*zap_work
) -= PAGE_SIZE
;
702 if (pte_present(ptent
)) {
705 page
= vm_normal_page(vma
, addr
, ptent
);
706 if (unlikely(details
) && page
) {
708 * unmap_shared_mapping_pages() wants to
709 * invalidate cache without truncating:
710 * unmap shared but keep private pages.
712 if (details
->check_mapping
&&
713 details
->check_mapping
!= page
->mapping
)
716 * Each page->index must be checked when
717 * invalidating or truncating nonlinear.
719 if (details
->nonlinear_vma
&&
720 (page
->index
< details
->first_index
||
721 page
->index
> details
->last_index
))
724 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
726 tlb_remove_tlb_entry(tlb
, pte
, addr
);
729 if (unlikely(details
) && details
->nonlinear_vma
730 && linear_page_index(details
->nonlinear_vma
,
731 addr
) != page
->index
)
732 set_pte_at(mm
, addr
, pte
,
733 pgoff_to_pte(page
->index
));
737 if (pte_dirty(ptent
))
738 set_page_dirty(page
);
739 if (pte_young(ptent
))
740 SetPageReferenced(page
);
743 page_remove_rmap(page
, vma
);
744 tlb_remove_page(tlb
, page
);
748 * If details->check_mapping, we leave swap entries;
749 * if details->nonlinear_vma, we leave file entries.
751 if (unlikely(details
))
753 if (!pte_file(ptent
))
754 free_swap_and_cache(pte_to_swp_entry(ptent
));
755 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
756 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
758 add_mm_rss(mm
, file_rss
, anon_rss
);
759 arch_leave_lazy_mmu_mode();
760 pte_unmap_unlock(pte
- 1, ptl
);
765 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
766 struct vm_area_struct
*vma
, pud_t
*pud
,
767 unsigned long addr
, unsigned long end
,
768 long *zap_work
, struct zap_details
*details
)
773 pmd
= pmd_offset(pud
, addr
);
775 next
= pmd_addr_end(addr
, end
);
776 if (pmd_none_or_clear_bad(pmd
)) {
780 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
782 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
787 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
788 struct vm_area_struct
*vma
, pgd_t
*pgd
,
789 unsigned long addr
, unsigned long end
,
790 long *zap_work
, struct zap_details
*details
)
795 pud
= pud_offset(pgd
, addr
);
797 next
= pud_addr_end(addr
, end
);
798 if (pud_none_or_clear_bad(pud
)) {
802 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
804 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
809 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
810 struct vm_area_struct
*vma
,
811 unsigned long addr
, unsigned long end
,
812 long *zap_work
, struct zap_details
*details
)
817 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
821 tlb_start_vma(tlb
, vma
);
822 pgd
= pgd_offset(vma
->vm_mm
, addr
);
824 next
= pgd_addr_end(addr
, end
);
825 if (pgd_none_or_clear_bad(pgd
)) {
829 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
831 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
832 tlb_end_vma(tlb
, vma
);
837 #ifdef CONFIG_PREEMPT
838 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
840 /* No preempt: go for improved straight-line efficiency */
841 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
845 * unmap_vmas - unmap a range of memory covered by a list of vma's
846 * @tlbp: address of the caller's struct mmu_gather
847 * @vma: the starting vma
848 * @start_addr: virtual address at which to start unmapping
849 * @end_addr: virtual address at which to end unmapping
850 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
851 * @details: details of nonlinear truncation or shared cache invalidation
853 * Returns the end address of the unmapping (restart addr if interrupted).
855 * Unmap all pages in the vma list.
857 * We aim to not hold locks for too long (for scheduling latency reasons).
858 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
859 * return the ending mmu_gather to the caller.
861 * Only addresses between `start' and `end' will be unmapped.
863 * The VMA list must be sorted in ascending virtual address order.
865 * unmap_vmas() assumes that the caller will flush the whole unmapped address
866 * range after unmap_vmas() returns. So the only responsibility here is to
867 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
868 * drops the lock and schedules.
870 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
871 struct vm_area_struct
*vma
, unsigned long start_addr
,
872 unsigned long end_addr
, unsigned long *nr_accounted
,
873 struct zap_details
*details
)
875 long zap_work
= ZAP_BLOCK_SIZE
;
876 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
877 int tlb_start_valid
= 0;
878 unsigned long start
= start_addr
;
879 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
880 int fullmm
= (*tlbp
)->fullmm
;
882 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
885 start
= max(vma
->vm_start
, start_addr
);
886 if (start
>= vma
->vm_end
)
888 end
= min(vma
->vm_end
, end_addr
);
889 if (end
<= vma
->vm_start
)
892 if (vma
->vm_flags
& VM_ACCOUNT
)
893 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
895 while (start
!= end
) {
896 if (!tlb_start_valid
) {
901 if (unlikely(is_vm_hugetlb_page(vma
))) {
902 unmap_hugepage_range(vma
, start
, end
);
903 zap_work
-= (end
- start
) /
904 (HPAGE_SIZE
/ PAGE_SIZE
);
907 start
= unmap_page_range(*tlbp
, vma
,
908 start
, end
, &zap_work
, details
);
911 BUG_ON(start
!= end
);
915 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
917 if (need_resched() ||
918 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
926 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
928 zap_work
= ZAP_BLOCK_SIZE
;
932 return start
; /* which is now the end (or restart) address */
936 * zap_page_range - remove user pages in a given range
937 * @vma: vm_area_struct holding the applicable pages
938 * @address: starting address of pages to zap
939 * @size: number of bytes to zap
940 * @details: details of nonlinear truncation or shared cache invalidation
942 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
943 unsigned long size
, struct zap_details
*details
)
945 struct mm_struct
*mm
= vma
->vm_mm
;
946 struct mmu_gather
*tlb
;
947 unsigned long end
= address
+ size
;
948 unsigned long nr_accounted
= 0;
951 tlb
= tlb_gather_mmu(mm
, 0);
952 update_hiwater_rss(mm
);
953 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
955 tlb_finish_mmu(tlb
, address
, end
);
960 * Do a quick page-table lookup for a single page.
962 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
971 struct mm_struct
*mm
= vma
->vm_mm
;
973 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
975 BUG_ON(flags
& FOLL_GET
);
980 pgd
= pgd_offset(mm
, address
);
981 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
984 pud
= pud_offset(pgd
, address
);
985 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
988 pmd
= pmd_offset(pud
, address
);
992 if (pmd_huge(*pmd
)) {
993 BUG_ON(flags
& FOLL_GET
);
994 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
998 if (unlikely(pmd_bad(*pmd
)))
1001 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1006 if (!pte_present(pte
))
1008 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1010 page
= vm_normal_page(vma
, address
, pte
);
1011 if (unlikely(!page
))
1014 if (flags
& FOLL_GET
)
1016 if (flags
& FOLL_TOUCH
) {
1017 if ((flags
& FOLL_WRITE
) &&
1018 !pte_dirty(pte
) && !PageDirty(page
))
1019 set_page_dirty(page
);
1020 mark_page_accessed(page
);
1023 pte_unmap_unlock(ptep
, ptl
);
1029 * When core dumping an enormous anonymous area that nobody
1030 * has touched so far, we don't want to allocate page tables.
1032 if (flags
& FOLL_ANON
) {
1033 page
= ZERO_PAGE(0);
1034 if (flags
& FOLL_GET
)
1036 BUG_ON(flags
& FOLL_WRITE
);
1041 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1042 unsigned long start
, int len
, int write
, int force
,
1043 struct page
**pages
, struct vm_area_struct
**vmas
)
1046 unsigned int vm_flags
;
1051 * Require read or write permissions.
1052 * If 'force' is set, we only require the "MAY" flags.
1054 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1055 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1059 struct vm_area_struct
*vma
;
1060 unsigned int foll_flags
;
1062 vma
= find_extend_vma(mm
, start
);
1063 if (!vma
&& in_gate_area(tsk
, start
)) {
1064 unsigned long pg
= start
& PAGE_MASK
;
1065 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1070 if (write
) /* user gate pages are read-only */
1071 return i
? : -EFAULT
;
1073 pgd
= pgd_offset_k(pg
);
1075 pgd
= pgd_offset_gate(mm
, pg
);
1076 BUG_ON(pgd_none(*pgd
));
1077 pud
= pud_offset(pgd
, pg
);
1078 BUG_ON(pud_none(*pud
));
1079 pmd
= pmd_offset(pud
, pg
);
1081 return i
? : -EFAULT
;
1082 pte
= pte_offset_map(pmd
, pg
);
1083 if (pte_none(*pte
)) {
1085 return i
? : -EFAULT
;
1088 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1102 if (!vma
|| (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1103 || !(vm_flags
& vma
->vm_flags
))
1104 return i
? : -EFAULT
;
1106 if (is_vm_hugetlb_page(vma
)) {
1107 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1108 &start
, &len
, i
, write
);
1112 foll_flags
= FOLL_TOUCH
;
1114 foll_flags
|= FOLL_GET
;
1115 if (!write
&& !(vma
->vm_flags
& VM_LOCKED
) &&
1116 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1117 foll_flags
|= FOLL_ANON
;
1123 * If tsk is ooming, cut off its access to large memory
1124 * allocations. It has a pending SIGKILL, but it can't
1125 * be processed until returning to user space.
1127 if (unlikely(test_tsk_thread_flag(tsk
, TIF_MEMDIE
)))
1131 foll_flags
|= FOLL_WRITE
;
1134 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1136 ret
= handle_mm_fault(mm
, vma
, start
,
1137 foll_flags
& FOLL_WRITE
);
1138 if (ret
& VM_FAULT_ERROR
) {
1139 if (ret
& VM_FAULT_OOM
)
1140 return i
? i
: -ENOMEM
;
1141 else if (ret
& VM_FAULT_SIGBUS
)
1142 return i
? i
: -EFAULT
;
1145 if (ret
& VM_FAULT_MAJOR
)
1151 * The VM_FAULT_WRITE bit tells us that
1152 * do_wp_page has broken COW when necessary,
1153 * even if maybe_mkwrite decided not to set
1154 * pte_write. We can thus safely do subsequent
1155 * page lookups as if they were reads.
1157 if (ret
& VM_FAULT_WRITE
)
1158 foll_flags
&= ~FOLL_WRITE
;
1165 flush_anon_page(vma
, page
, start
);
1166 flush_dcache_page(page
);
1173 } while (len
&& start
< vma
->vm_end
);
1177 EXPORT_SYMBOL(get_user_pages
);
1179 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1182 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1183 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1185 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1187 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1193 * This is the old fallback for page remapping.
1195 * For historical reasons, it only allows reserved pages. Only
1196 * old drivers should use this, and they needed to mark their
1197 * pages reserved for the old functions anyway.
1199 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1200 struct page
*page
, pgprot_t prot
)
1202 struct mm_struct
*mm
= vma
->vm_mm
;
1207 retval
= mem_cgroup_charge(page
, mm
, GFP_KERNEL
);
1215 flush_dcache_page(page
);
1216 pte
= get_locked_pte(mm
, addr
, &ptl
);
1220 if (!pte_none(*pte
))
1223 /* Ok, finally just insert the thing.. */
1225 inc_mm_counter(mm
, file_rss
);
1226 page_add_file_rmap(page
);
1227 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1230 pte_unmap_unlock(pte
, ptl
);
1233 pte_unmap_unlock(pte
, ptl
);
1235 mem_cgroup_uncharge_page(page
);
1241 * vm_insert_page - insert single page into user vma
1242 * @vma: user vma to map to
1243 * @addr: target user address of this page
1244 * @page: source kernel page
1246 * This allows drivers to insert individual pages they've allocated
1249 * The page has to be a nice clean _individual_ kernel allocation.
1250 * If you allocate a compound page, you need to have marked it as
1251 * such (__GFP_COMP), or manually just split the page up yourself
1252 * (see split_page()).
1254 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1255 * took an arbitrary page protection parameter. This doesn't allow
1256 * that. Your vma protection will have to be set up correctly, which
1257 * means that if you want a shared writable mapping, you'd better
1258 * ask for a shared writable mapping!
1260 * The page does not need to be reserved.
1262 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1265 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1267 if (!page_count(page
))
1269 vma
->vm_flags
|= VM_INSERTPAGE
;
1270 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1272 EXPORT_SYMBOL(vm_insert_page
);
1274 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1275 unsigned long pfn
, pgprot_t prot
)
1277 struct mm_struct
*mm
= vma
->vm_mm
;
1283 pte
= get_locked_pte(mm
, addr
, &ptl
);
1287 if (!pte_none(*pte
))
1290 /* Ok, finally just insert the thing.. */
1291 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1292 set_pte_at(mm
, addr
, pte
, entry
);
1293 update_mmu_cache(vma
, addr
, entry
); /* XXX: why not for insert_page? */
1297 pte_unmap_unlock(pte
, ptl
);
1303 * vm_insert_pfn - insert single pfn into user vma
1304 * @vma: user vma to map to
1305 * @addr: target user address of this page
1306 * @pfn: source kernel pfn
1308 * Similar to vm_inert_page, this allows drivers to insert individual pages
1309 * they've allocated into a user vma. Same comments apply.
1311 * This function should only be called from a vm_ops->fault handler, and
1312 * in that case the handler should return NULL.
1314 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1318 * Technically, architectures with pte_special can avoid all these
1319 * restrictions (same for remap_pfn_range). However we would like
1320 * consistency in testing and feature parity among all, so we should
1321 * try to keep these invariants in place for everybody.
1323 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1324 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1325 (VM_PFNMAP
|VM_MIXEDMAP
));
1326 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1327 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1329 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1331 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1333 EXPORT_SYMBOL(vm_insert_pfn
);
1335 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1338 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1340 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1344 * If we don't have pte special, then we have to use the pfn_valid()
1345 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1346 * refcount the page if pfn_valid is true (hence insert_page rather
1349 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1352 page
= pfn_to_page(pfn
);
1353 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1355 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1357 EXPORT_SYMBOL(vm_insert_mixed
);
1360 * maps a range of physical memory into the requested pages. the old
1361 * mappings are removed. any references to nonexistent pages results
1362 * in null mappings (currently treated as "copy-on-access")
1364 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1365 unsigned long addr
, unsigned long end
,
1366 unsigned long pfn
, pgprot_t prot
)
1371 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1374 arch_enter_lazy_mmu_mode();
1376 BUG_ON(!pte_none(*pte
));
1377 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1379 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1380 arch_leave_lazy_mmu_mode();
1381 pte_unmap_unlock(pte
- 1, ptl
);
1385 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1386 unsigned long addr
, unsigned long end
,
1387 unsigned long pfn
, pgprot_t prot
)
1392 pfn
-= addr
>> PAGE_SHIFT
;
1393 pmd
= pmd_alloc(mm
, pud
, addr
);
1397 next
= pmd_addr_end(addr
, end
);
1398 if (remap_pte_range(mm
, pmd
, addr
, next
,
1399 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1401 } while (pmd
++, addr
= next
, addr
!= end
);
1405 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1406 unsigned long addr
, unsigned long end
,
1407 unsigned long pfn
, pgprot_t prot
)
1412 pfn
-= addr
>> PAGE_SHIFT
;
1413 pud
= pud_alloc(mm
, pgd
, addr
);
1417 next
= pud_addr_end(addr
, end
);
1418 if (remap_pmd_range(mm
, pud
, addr
, next
,
1419 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1421 } while (pud
++, addr
= next
, addr
!= end
);
1426 * remap_pfn_range - remap kernel memory to userspace
1427 * @vma: user vma to map to
1428 * @addr: target user address to start at
1429 * @pfn: physical address of kernel memory
1430 * @size: size of map area
1431 * @prot: page protection flags for this mapping
1433 * Note: this is only safe if the mm semaphore is held when called.
1435 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1436 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1440 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1441 struct mm_struct
*mm
= vma
->vm_mm
;
1445 * Physically remapped pages are special. Tell the
1446 * rest of the world about it:
1447 * VM_IO tells people not to look at these pages
1448 * (accesses can have side effects).
1449 * VM_RESERVED is specified all over the place, because
1450 * in 2.4 it kept swapout's vma scan off this vma; but
1451 * in 2.6 the LRU scan won't even find its pages, so this
1452 * flag means no more than count its pages in reserved_vm,
1453 * and omit it from core dump, even when VM_IO turned off.
1454 * VM_PFNMAP tells the core MM that the base pages are just
1455 * raw PFN mappings, and do not have a "struct page" associated
1458 * There's a horrible special case to handle copy-on-write
1459 * behaviour that some programs depend on. We mark the "original"
1460 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1462 if (is_cow_mapping(vma
->vm_flags
)) {
1463 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1465 vma
->vm_pgoff
= pfn
;
1468 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1470 BUG_ON(addr
>= end
);
1471 pfn
-= addr
>> PAGE_SHIFT
;
1472 pgd
= pgd_offset(mm
, addr
);
1473 flush_cache_range(vma
, addr
, end
);
1475 next
= pgd_addr_end(addr
, end
);
1476 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1477 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1480 } while (pgd
++, addr
= next
, addr
!= end
);
1483 EXPORT_SYMBOL(remap_pfn_range
);
1485 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1486 unsigned long addr
, unsigned long end
,
1487 pte_fn_t fn
, void *data
)
1492 spinlock_t
*uninitialized_var(ptl
);
1494 pte
= (mm
== &init_mm
) ?
1495 pte_alloc_kernel(pmd
, addr
) :
1496 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1500 BUG_ON(pmd_huge(*pmd
));
1502 token
= pmd_pgtable(*pmd
);
1505 err
= fn(pte
, token
, addr
, data
);
1508 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1511 pte_unmap_unlock(pte
-1, ptl
);
1515 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1516 unsigned long addr
, unsigned long end
,
1517 pte_fn_t fn
, void *data
)
1523 pmd
= pmd_alloc(mm
, pud
, addr
);
1527 next
= pmd_addr_end(addr
, end
);
1528 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1531 } while (pmd
++, addr
= next
, addr
!= end
);
1535 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1536 unsigned long addr
, unsigned long end
,
1537 pte_fn_t fn
, void *data
)
1543 pud
= pud_alloc(mm
, pgd
, addr
);
1547 next
= pud_addr_end(addr
, end
);
1548 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1551 } while (pud
++, addr
= next
, addr
!= end
);
1556 * Scan a region of virtual memory, filling in page tables as necessary
1557 * and calling a provided function on each leaf page table.
1559 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1560 unsigned long size
, pte_fn_t fn
, void *data
)
1564 unsigned long end
= addr
+ size
;
1567 BUG_ON(addr
>= end
);
1568 pgd
= pgd_offset(mm
, addr
);
1570 next
= pgd_addr_end(addr
, end
);
1571 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1574 } while (pgd
++, addr
= next
, addr
!= end
);
1577 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1580 * handle_pte_fault chooses page fault handler according to an entry
1581 * which was read non-atomically. Before making any commitment, on
1582 * those architectures or configurations (e.g. i386 with PAE) which
1583 * might give a mix of unmatched parts, do_swap_page and do_file_page
1584 * must check under lock before unmapping the pte and proceeding
1585 * (but do_wp_page is only called after already making such a check;
1586 * and do_anonymous_page and do_no_page can safely check later on).
1588 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1589 pte_t
*page_table
, pte_t orig_pte
)
1592 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1593 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1594 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1596 same
= pte_same(*page_table
, orig_pte
);
1600 pte_unmap(page_table
);
1605 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1606 * servicing faults for write access. In the normal case, do always want
1607 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1608 * that do not have writing enabled, when used by access_process_vm.
1610 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1612 if (likely(vma
->vm_flags
& VM_WRITE
))
1613 pte
= pte_mkwrite(pte
);
1617 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1620 * If the source page was a PFN mapping, we don't have
1621 * a "struct page" for it. We do a best-effort copy by
1622 * just copying from the original user address. If that
1623 * fails, we just zero-fill it. Live with it.
1625 if (unlikely(!src
)) {
1626 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1627 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1630 * This really shouldn't fail, because the page is there
1631 * in the page tables. But it might just be unreadable,
1632 * in which case we just give up and fill the result with
1635 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1636 memset(kaddr
, 0, PAGE_SIZE
);
1637 kunmap_atomic(kaddr
, KM_USER0
);
1638 flush_dcache_page(dst
);
1640 copy_user_highpage(dst
, src
, va
, vma
);
1644 * This routine handles present pages, when users try to write
1645 * to a shared page. It is done by copying the page to a new address
1646 * and decrementing the shared-page counter for the old page.
1648 * Note that this routine assumes that the protection checks have been
1649 * done by the caller (the low-level page fault routine in most cases).
1650 * Thus we can safely just mark it writable once we've done any necessary
1653 * We also mark the page dirty at this point even though the page will
1654 * change only once the write actually happens. This avoids a few races,
1655 * and potentially makes it more efficient.
1657 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1658 * but allow concurrent faults), with pte both mapped and locked.
1659 * We return with mmap_sem still held, but pte unmapped and unlocked.
1661 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1662 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1663 spinlock_t
*ptl
, pte_t orig_pte
)
1665 struct page
*old_page
, *new_page
;
1667 int reuse
= 0, ret
= 0;
1668 int page_mkwrite
= 0;
1669 struct page
*dirty_page
= NULL
;
1671 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1676 * Take out anonymous pages first, anonymous shared vmas are
1677 * not dirty accountable.
1679 if (PageAnon(old_page
)) {
1680 if (!TestSetPageLocked(old_page
)) {
1681 reuse
= can_share_swap_page(old_page
);
1682 unlock_page(old_page
);
1684 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1685 (VM_WRITE
|VM_SHARED
))) {
1687 * Only catch write-faults on shared writable pages,
1688 * read-only shared pages can get COWed by
1689 * get_user_pages(.write=1, .force=1).
1691 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
1693 * Notify the address space that the page is about to
1694 * become writable so that it can prohibit this or wait
1695 * for the page to get into an appropriate state.
1697 * We do this without the lock held, so that it can
1698 * sleep if it needs to.
1700 page_cache_get(old_page
);
1701 pte_unmap_unlock(page_table
, ptl
);
1703 if (vma
->vm_ops
->page_mkwrite(vma
, old_page
) < 0)
1704 goto unwritable_page
;
1707 * Since we dropped the lock we need to revalidate
1708 * the PTE as someone else may have changed it. If
1709 * they did, we just return, as we can count on the
1710 * MMU to tell us if they didn't also make it writable.
1712 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1714 page_cache_release(old_page
);
1715 if (!pte_same(*page_table
, orig_pte
))
1720 dirty_page
= old_page
;
1721 get_page(dirty_page
);
1726 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1727 entry
= pte_mkyoung(orig_pte
);
1728 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1729 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
1730 update_mmu_cache(vma
, address
, entry
);
1731 ret
|= VM_FAULT_WRITE
;
1736 * Ok, we need to copy. Oh, well..
1738 page_cache_get(old_page
);
1740 pte_unmap_unlock(page_table
, ptl
);
1742 if (unlikely(anon_vma_prepare(vma
)))
1744 VM_BUG_ON(old_page
== ZERO_PAGE(0));
1745 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1748 cow_user_page(new_page
, old_page
, address
, vma
);
1749 __SetPageUptodate(new_page
);
1751 if (mem_cgroup_charge(new_page
, mm
, GFP_KERNEL
))
1755 * Re-check the pte - we dropped the lock
1757 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1758 if (likely(pte_same(*page_table
, orig_pte
))) {
1760 page_remove_rmap(old_page
, vma
);
1761 if (!PageAnon(old_page
)) {
1762 dec_mm_counter(mm
, file_rss
);
1763 inc_mm_counter(mm
, anon_rss
);
1766 inc_mm_counter(mm
, anon_rss
);
1767 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1768 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
1769 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1771 * Clear the pte entry and flush it first, before updating the
1772 * pte with the new entry. This will avoid a race condition
1773 * seen in the presence of one thread doing SMC and another
1776 ptep_clear_flush(vma
, address
, page_table
);
1777 set_pte_at(mm
, address
, page_table
, entry
);
1778 update_mmu_cache(vma
, address
, entry
);
1779 lru_cache_add_active(new_page
);
1780 page_add_new_anon_rmap(new_page
, vma
, address
);
1782 /* Free the old page.. */
1783 new_page
= old_page
;
1784 ret
|= VM_FAULT_WRITE
;
1786 mem_cgroup_uncharge_page(new_page
);
1789 page_cache_release(new_page
);
1791 page_cache_release(old_page
);
1793 pte_unmap_unlock(page_table
, ptl
);
1796 file_update_time(vma
->vm_file
);
1799 * Yes, Virginia, this is actually required to prevent a race
1800 * with clear_page_dirty_for_io() from clearing the page dirty
1801 * bit after it clear all dirty ptes, but before a racing
1802 * do_wp_page installs a dirty pte.
1804 * do_no_page is protected similarly.
1806 wait_on_page_locked(dirty_page
);
1807 set_page_dirty_balance(dirty_page
, page_mkwrite
);
1808 put_page(dirty_page
);
1812 page_cache_release(new_page
);
1815 page_cache_release(old_page
);
1816 return VM_FAULT_OOM
;
1819 page_cache_release(old_page
);
1820 return VM_FAULT_SIGBUS
;
1824 * Helper functions for unmap_mapping_range().
1826 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1828 * We have to restart searching the prio_tree whenever we drop the lock,
1829 * since the iterator is only valid while the lock is held, and anyway
1830 * a later vma might be split and reinserted earlier while lock dropped.
1832 * The list of nonlinear vmas could be handled more efficiently, using
1833 * a placeholder, but handle it in the same way until a need is shown.
1834 * It is important to search the prio_tree before nonlinear list: a vma
1835 * may become nonlinear and be shifted from prio_tree to nonlinear list
1836 * while the lock is dropped; but never shifted from list to prio_tree.
1838 * In order to make forward progress despite restarting the search,
1839 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1840 * quickly skip it next time around. Since the prio_tree search only
1841 * shows us those vmas affected by unmapping the range in question, we
1842 * can't efficiently keep all vmas in step with mapping->truncate_count:
1843 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1844 * mapping->truncate_count and vma->vm_truncate_count are protected by
1847 * In order to make forward progress despite repeatedly restarting some
1848 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1849 * and restart from that address when we reach that vma again. It might
1850 * have been split or merged, shrunk or extended, but never shifted: so
1851 * restart_addr remains valid so long as it remains in the vma's range.
1852 * unmap_mapping_range forces truncate_count to leap over page-aligned
1853 * values so we can save vma's restart_addr in its truncate_count field.
1855 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1857 static void reset_vma_truncate_counts(struct address_space
*mapping
)
1859 struct vm_area_struct
*vma
;
1860 struct prio_tree_iter iter
;
1862 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
1863 vma
->vm_truncate_count
= 0;
1864 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1865 vma
->vm_truncate_count
= 0;
1868 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
1869 unsigned long start_addr
, unsigned long end_addr
,
1870 struct zap_details
*details
)
1872 unsigned long restart_addr
;
1876 * files that support invalidating or truncating portions of the
1877 * file from under mmaped areas must have their ->fault function
1878 * return a locked page (and set VM_FAULT_LOCKED in the return).
1879 * This provides synchronisation against concurrent unmapping here.
1883 restart_addr
= vma
->vm_truncate_count
;
1884 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
1885 start_addr
= restart_addr
;
1886 if (start_addr
>= end_addr
) {
1887 /* Top of vma has been split off since last time */
1888 vma
->vm_truncate_count
= details
->truncate_count
;
1893 restart_addr
= zap_page_range(vma
, start_addr
,
1894 end_addr
- start_addr
, details
);
1895 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
1897 if (restart_addr
>= end_addr
) {
1898 /* We have now completed this vma: mark it so */
1899 vma
->vm_truncate_count
= details
->truncate_count
;
1903 /* Note restart_addr in vma's truncate_count field */
1904 vma
->vm_truncate_count
= restart_addr
;
1909 spin_unlock(details
->i_mmap_lock
);
1911 spin_lock(details
->i_mmap_lock
);
1915 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
1916 struct zap_details
*details
)
1918 struct vm_area_struct
*vma
;
1919 struct prio_tree_iter iter
;
1920 pgoff_t vba
, vea
, zba
, zea
;
1923 vma_prio_tree_foreach(vma
, &iter
, root
,
1924 details
->first_index
, details
->last_index
) {
1925 /* Skip quickly over those we have already dealt with */
1926 if (vma
->vm_truncate_count
== details
->truncate_count
)
1929 vba
= vma
->vm_pgoff
;
1930 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
1931 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1932 zba
= details
->first_index
;
1935 zea
= details
->last_index
;
1939 if (unmap_mapping_range_vma(vma
,
1940 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
1941 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
1947 static inline void unmap_mapping_range_list(struct list_head
*head
,
1948 struct zap_details
*details
)
1950 struct vm_area_struct
*vma
;
1953 * In nonlinear VMAs there is no correspondence between virtual address
1954 * offset and file offset. So we must perform an exhaustive search
1955 * across *all* the pages in each nonlinear VMA, not just the pages
1956 * whose virtual address lies outside the file truncation point.
1959 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
1960 /* Skip quickly over those we have already dealt with */
1961 if (vma
->vm_truncate_count
== details
->truncate_count
)
1963 details
->nonlinear_vma
= vma
;
1964 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
1965 vma
->vm_end
, details
) < 0)
1971 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1972 * @mapping: the address space containing mmaps to be unmapped.
1973 * @holebegin: byte in first page to unmap, relative to the start of
1974 * the underlying file. This will be rounded down to a PAGE_SIZE
1975 * boundary. Note that this is different from vmtruncate(), which
1976 * must keep the partial page. In contrast, we must get rid of
1978 * @holelen: size of prospective hole in bytes. This will be rounded
1979 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1981 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1982 * but 0 when invalidating pagecache, don't throw away private data.
1984 void unmap_mapping_range(struct address_space
*mapping
,
1985 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
1987 struct zap_details details
;
1988 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
1989 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1991 /* Check for overflow. */
1992 if (sizeof(holelen
) > sizeof(hlen
)) {
1994 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1995 if (holeend
& ~(long long)ULONG_MAX
)
1996 hlen
= ULONG_MAX
- hba
+ 1;
1999 details
.check_mapping
= even_cows
? NULL
: mapping
;
2000 details
.nonlinear_vma
= NULL
;
2001 details
.first_index
= hba
;
2002 details
.last_index
= hba
+ hlen
- 1;
2003 if (details
.last_index
< details
.first_index
)
2004 details
.last_index
= ULONG_MAX
;
2005 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2007 spin_lock(&mapping
->i_mmap_lock
);
2009 /* Protect against endless unmapping loops */
2010 mapping
->truncate_count
++;
2011 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2012 if (mapping
->truncate_count
== 0)
2013 reset_vma_truncate_counts(mapping
);
2014 mapping
->truncate_count
++;
2016 details
.truncate_count
= mapping
->truncate_count
;
2018 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2019 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2020 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2021 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2022 spin_unlock(&mapping
->i_mmap_lock
);
2024 EXPORT_SYMBOL(unmap_mapping_range
);
2027 * vmtruncate - unmap mappings "freed" by truncate() syscall
2028 * @inode: inode of the file used
2029 * @offset: file offset to start truncating
2031 * NOTE! We have to be ready to update the memory sharing
2032 * between the file and the memory map for a potential last
2033 * incomplete page. Ugly, but necessary.
2035 int vmtruncate(struct inode
* inode
, loff_t offset
)
2037 if (inode
->i_size
< offset
) {
2038 unsigned long limit
;
2040 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2041 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
2043 if (offset
> inode
->i_sb
->s_maxbytes
)
2045 i_size_write(inode
, offset
);
2047 struct address_space
*mapping
= inode
->i_mapping
;
2050 * truncation of in-use swapfiles is disallowed - it would
2051 * cause subsequent swapout to scribble on the now-freed
2054 if (IS_SWAPFILE(inode
))
2056 i_size_write(inode
, offset
);
2059 * unmap_mapping_range is called twice, first simply for
2060 * efficiency so that truncate_inode_pages does fewer
2061 * single-page unmaps. However after this first call, and
2062 * before truncate_inode_pages finishes, it is possible for
2063 * private pages to be COWed, which remain after
2064 * truncate_inode_pages finishes, hence the second
2065 * unmap_mapping_range call must be made for correctness.
2067 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2068 truncate_inode_pages(mapping
, offset
);
2069 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2072 if (inode
->i_op
&& inode
->i_op
->truncate
)
2073 inode
->i_op
->truncate(inode
);
2077 send_sig(SIGXFSZ
, current
, 0);
2081 EXPORT_SYMBOL(vmtruncate
);
2083 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2085 struct address_space
*mapping
= inode
->i_mapping
;
2088 * If the underlying filesystem is not going to provide
2089 * a way to truncate a range of blocks (punch a hole) -
2090 * we should return failure right now.
2092 if (!inode
->i_op
|| !inode
->i_op
->truncate_range
)
2095 mutex_lock(&inode
->i_mutex
);
2096 down_write(&inode
->i_alloc_sem
);
2097 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2098 truncate_inode_pages_range(mapping
, offset
, end
);
2099 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2100 inode
->i_op
->truncate_range(inode
, offset
, end
);
2101 up_write(&inode
->i_alloc_sem
);
2102 mutex_unlock(&inode
->i_mutex
);
2108 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2109 * but allow concurrent faults), and pte mapped but not yet locked.
2110 * We return with mmap_sem still held, but pte unmapped and unlocked.
2112 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2113 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2114 int write_access
, pte_t orig_pte
)
2122 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2125 entry
= pte_to_swp_entry(orig_pte
);
2126 if (is_migration_entry(entry
)) {
2127 migration_entry_wait(mm
, pmd
, address
);
2130 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2131 page
= lookup_swap_cache(entry
);
2133 grab_swap_token(); /* Contend for token _before_ read-in */
2134 page
= swapin_readahead(entry
,
2135 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2138 * Back out if somebody else faulted in this pte
2139 * while we released the pte lock.
2141 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2142 if (likely(pte_same(*page_table
, orig_pte
)))
2144 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2148 /* Had to read the page from swap area: Major fault */
2149 ret
= VM_FAULT_MAJOR
;
2150 count_vm_event(PGMAJFAULT
);
2153 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
)) {
2154 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2159 mark_page_accessed(page
);
2161 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2164 * Back out if somebody else already faulted in this pte.
2166 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2167 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2170 if (unlikely(!PageUptodate(page
))) {
2171 ret
= VM_FAULT_SIGBUS
;
2175 /* The page isn't present yet, go ahead with the fault. */
2177 inc_mm_counter(mm
, anon_rss
);
2178 pte
= mk_pte(page
, vma
->vm_page_prot
);
2179 if (write_access
&& can_share_swap_page(page
)) {
2180 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2184 flush_icache_page(vma
, page
);
2185 set_pte_at(mm
, address
, page_table
, pte
);
2186 page_add_anon_rmap(page
, vma
, address
);
2190 remove_exclusive_swap_page(page
);
2194 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2195 if (ret
& VM_FAULT_ERROR
)
2196 ret
&= VM_FAULT_ERROR
;
2200 /* No need to invalidate - it was non-present before */
2201 update_mmu_cache(vma
, address
, pte
);
2203 pte_unmap_unlock(page_table
, ptl
);
2207 mem_cgroup_uncharge_page(page
);
2208 pte_unmap_unlock(page_table
, ptl
);
2210 page_cache_release(page
);
2215 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2216 * but allow concurrent faults), and pte mapped but not yet locked.
2217 * We return with mmap_sem still held, but pte unmapped and unlocked.
2219 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2220 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2227 /* Allocate our own private page. */
2228 pte_unmap(page_table
);
2230 if (unlikely(anon_vma_prepare(vma
)))
2232 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2235 __SetPageUptodate(page
);
2237 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
))
2240 entry
= mk_pte(page
, vma
->vm_page_prot
);
2241 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2243 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2244 if (!pte_none(*page_table
))
2246 inc_mm_counter(mm
, anon_rss
);
2247 lru_cache_add_active(page
);
2248 page_add_new_anon_rmap(page
, vma
, address
);
2249 set_pte_at(mm
, address
, page_table
, entry
);
2251 /* No need to invalidate - it was non-present before */
2252 update_mmu_cache(vma
, address
, entry
);
2254 pte_unmap_unlock(page_table
, ptl
);
2257 mem_cgroup_uncharge_page(page
);
2258 page_cache_release(page
);
2261 page_cache_release(page
);
2263 return VM_FAULT_OOM
;
2267 * __do_fault() tries to create a new page mapping. It aggressively
2268 * tries to share with existing pages, but makes a separate copy if
2269 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2270 * the next page fault.
2272 * As this is called only for pages that do not currently exist, we
2273 * do not need to flush old virtual caches or the TLB.
2275 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2276 * but allow concurrent faults), and pte neither mapped nor locked.
2277 * We return with mmap_sem still held, but pte unmapped and unlocked.
2279 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2280 unsigned long address
, pmd_t
*pmd
,
2281 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2288 struct page
*dirty_page
= NULL
;
2289 struct vm_fault vmf
;
2291 int page_mkwrite
= 0;
2293 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2298 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2299 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2303 * For consistency in subsequent calls, make the faulted page always
2306 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2307 lock_page(vmf
.page
);
2309 VM_BUG_ON(!PageLocked(vmf
.page
));
2312 * Should we do an early C-O-W break?
2315 if (flags
& FAULT_FLAG_WRITE
) {
2316 if (!(vma
->vm_flags
& VM_SHARED
)) {
2318 if (unlikely(anon_vma_prepare(vma
))) {
2322 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2328 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2329 __SetPageUptodate(page
);
2332 * If the page will be shareable, see if the backing
2333 * address space wants to know that the page is about
2334 * to become writable
2336 if (vma
->vm_ops
->page_mkwrite
) {
2338 if (vma
->vm_ops
->page_mkwrite(vma
, page
) < 0) {
2339 ret
= VM_FAULT_SIGBUS
;
2340 anon
= 1; /* no anon but release vmf.page */
2345 * XXX: this is not quite right (racy vs
2346 * invalidate) to unlock and relock the page
2347 * like this, however a better fix requires
2348 * reworking page_mkwrite locking API, which
2349 * is better done later.
2351 if (!page
->mapping
) {
2353 anon
= 1; /* no anon but release vmf.page */
2362 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
)) {
2367 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2370 * This silly early PAGE_DIRTY setting removes a race
2371 * due to the bad i386 page protection. But it's valid
2372 * for other architectures too.
2374 * Note that if write_access is true, we either now have
2375 * an exclusive copy of the page, or this is a shared mapping,
2376 * so we can make it writable and dirty to avoid having to
2377 * handle that later.
2379 /* Only go through if we didn't race with anybody else... */
2380 if (likely(pte_same(*page_table
, orig_pte
))) {
2381 flush_icache_page(vma
, page
);
2382 entry
= mk_pte(page
, vma
->vm_page_prot
);
2383 if (flags
& FAULT_FLAG_WRITE
)
2384 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2385 set_pte_at(mm
, address
, page_table
, entry
);
2387 inc_mm_counter(mm
, anon_rss
);
2388 lru_cache_add_active(page
);
2389 page_add_new_anon_rmap(page
, vma
, address
);
2391 inc_mm_counter(mm
, file_rss
);
2392 page_add_file_rmap(page
);
2393 if (flags
& FAULT_FLAG_WRITE
) {
2395 get_page(dirty_page
);
2399 /* no need to invalidate: a not-present page won't be cached */
2400 update_mmu_cache(vma
, address
, entry
);
2402 mem_cgroup_uncharge_page(page
);
2404 page_cache_release(page
);
2406 anon
= 1; /* no anon but release faulted_page */
2409 pte_unmap_unlock(page_table
, ptl
);
2412 unlock_page(vmf
.page
);
2415 page_cache_release(vmf
.page
);
2416 else if (dirty_page
) {
2418 file_update_time(vma
->vm_file
);
2420 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2421 put_page(dirty_page
);
2427 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2428 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2429 int write_access
, pte_t orig_pte
)
2431 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2432 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2433 unsigned int flags
= (write_access
? FAULT_FLAG_WRITE
: 0);
2435 pte_unmap(page_table
);
2436 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2441 * do_no_pfn() tries to create a new page mapping for a page without
2442 * a struct_page backing it
2444 * As this is called only for pages that do not currently exist, we
2445 * do not need to flush old virtual caches or the TLB.
2447 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2448 * but allow concurrent faults), and pte mapped but not yet locked.
2449 * We return with mmap_sem still held, but pte unmapped and unlocked.
2451 * It is expected that the ->nopfn handler always returns the same pfn
2452 * for a given virtual mapping.
2454 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2456 static noinline
int do_no_pfn(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2457 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2464 pte_unmap(page_table
);
2465 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2466 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2468 pfn
= vma
->vm_ops
->nopfn(vma
, address
& PAGE_MASK
);
2470 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2472 if (unlikely(pfn
== NOPFN_OOM
))
2473 return VM_FAULT_OOM
;
2474 else if (unlikely(pfn
== NOPFN_SIGBUS
))
2475 return VM_FAULT_SIGBUS
;
2476 else if (unlikely(pfn
== NOPFN_REFAULT
))
2479 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2481 /* Only go through if we didn't race with anybody else... */
2482 if (pte_none(*page_table
)) {
2483 entry
= pfn_pte(pfn
, vma
->vm_page_prot
);
2485 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2486 set_pte_at(mm
, address
, page_table
, entry
);
2488 pte_unmap_unlock(page_table
, ptl
);
2493 * Fault of a previously existing named mapping. Repopulate the pte
2494 * from the encoded file_pte if possible. This enables swappable
2497 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2498 * but allow concurrent faults), and pte mapped but not yet locked.
2499 * We return with mmap_sem still held, but pte unmapped and unlocked.
2501 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2502 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2503 int write_access
, pte_t orig_pte
)
2505 unsigned int flags
= FAULT_FLAG_NONLINEAR
|
2506 (write_access
? FAULT_FLAG_WRITE
: 0);
2509 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2512 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
) ||
2513 !(vma
->vm_flags
& VM_CAN_NONLINEAR
))) {
2515 * Page table corrupted: show pte and kill process.
2517 print_bad_pte(vma
, orig_pte
, address
);
2518 return VM_FAULT_OOM
;
2521 pgoff
= pte_to_pgoff(orig_pte
);
2522 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2526 * These routines also need to handle stuff like marking pages dirty
2527 * and/or accessed for architectures that don't do it in hardware (most
2528 * RISC architectures). The early dirtying is also good on the i386.
2530 * There is also a hook called "update_mmu_cache()" that architectures
2531 * with external mmu caches can use to update those (ie the Sparc or
2532 * PowerPC hashed page tables that act as extended TLBs).
2534 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2535 * but allow concurrent faults), and pte mapped but not yet locked.
2536 * We return with mmap_sem still held, but pte unmapped and unlocked.
2538 static inline int handle_pte_fault(struct mm_struct
*mm
,
2539 struct vm_area_struct
*vma
, unsigned long address
,
2540 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2546 if (!pte_present(entry
)) {
2547 if (pte_none(entry
)) {
2549 if (likely(vma
->vm_ops
->fault
))
2550 return do_linear_fault(mm
, vma
, address
,
2551 pte
, pmd
, write_access
, entry
);
2552 if (unlikely(vma
->vm_ops
->nopfn
))
2553 return do_no_pfn(mm
, vma
, address
, pte
,
2556 return do_anonymous_page(mm
, vma
, address
,
2557 pte
, pmd
, write_access
);
2559 if (pte_file(entry
))
2560 return do_nonlinear_fault(mm
, vma
, address
,
2561 pte
, pmd
, write_access
, entry
);
2562 return do_swap_page(mm
, vma
, address
,
2563 pte
, pmd
, write_access
, entry
);
2566 ptl
= pte_lockptr(mm
, pmd
);
2568 if (unlikely(!pte_same(*pte
, entry
)))
2571 if (!pte_write(entry
))
2572 return do_wp_page(mm
, vma
, address
,
2573 pte
, pmd
, ptl
, entry
);
2574 entry
= pte_mkdirty(entry
);
2576 entry
= pte_mkyoung(entry
);
2577 if (ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
)) {
2578 update_mmu_cache(vma
, address
, entry
);
2581 * This is needed only for protection faults but the arch code
2582 * is not yet telling us if this is a protection fault or not.
2583 * This still avoids useless tlb flushes for .text page faults
2587 flush_tlb_page(vma
, address
);
2590 pte_unmap_unlock(pte
, ptl
);
2595 * By the time we get here, we already hold the mm semaphore
2597 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2598 unsigned long address
, int write_access
)
2605 __set_current_state(TASK_RUNNING
);
2607 count_vm_event(PGFAULT
);
2609 if (unlikely(is_vm_hugetlb_page(vma
)))
2610 return hugetlb_fault(mm
, vma
, address
, write_access
);
2612 pgd
= pgd_offset(mm
, address
);
2613 pud
= pud_alloc(mm
, pgd
, address
);
2615 return VM_FAULT_OOM
;
2616 pmd
= pmd_alloc(mm
, pud
, address
);
2618 return VM_FAULT_OOM
;
2619 pte
= pte_alloc_map(mm
, pmd
, address
);
2621 return VM_FAULT_OOM
;
2623 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2626 #ifndef __PAGETABLE_PUD_FOLDED
2628 * Allocate page upper directory.
2629 * We've already handled the fast-path in-line.
2631 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2633 pud_t
*new = pud_alloc_one(mm
, address
);
2637 smp_wmb(); /* See comment in __pte_alloc */
2639 spin_lock(&mm
->page_table_lock
);
2640 if (pgd_present(*pgd
)) /* Another has populated it */
2643 pgd_populate(mm
, pgd
, new);
2644 spin_unlock(&mm
->page_table_lock
);
2647 #endif /* __PAGETABLE_PUD_FOLDED */
2649 #ifndef __PAGETABLE_PMD_FOLDED
2651 * Allocate page middle directory.
2652 * We've already handled the fast-path in-line.
2654 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2656 pmd_t
*new = pmd_alloc_one(mm
, address
);
2660 smp_wmb(); /* See comment in __pte_alloc */
2662 spin_lock(&mm
->page_table_lock
);
2663 #ifndef __ARCH_HAS_4LEVEL_HACK
2664 if (pud_present(*pud
)) /* Another has populated it */
2667 pud_populate(mm
, pud
, new);
2669 if (pgd_present(*pud
)) /* Another has populated it */
2672 pgd_populate(mm
, pud
, new);
2673 #endif /* __ARCH_HAS_4LEVEL_HACK */
2674 spin_unlock(&mm
->page_table_lock
);
2677 #endif /* __PAGETABLE_PMD_FOLDED */
2679 int make_pages_present(unsigned long addr
, unsigned long end
)
2681 int ret
, len
, write
;
2682 struct vm_area_struct
* vma
;
2684 vma
= find_vma(current
->mm
, addr
);
2687 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
2688 BUG_ON(addr
>= end
);
2689 BUG_ON(end
> vma
->vm_end
);
2690 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
2691 ret
= get_user_pages(current
, current
->mm
, addr
,
2692 len
, write
, 0, NULL
, NULL
);
2695 return ret
== len
? 0 : -1;
2698 #if !defined(__HAVE_ARCH_GATE_AREA)
2700 #if defined(AT_SYSINFO_EHDR)
2701 static struct vm_area_struct gate_vma
;
2703 static int __init
gate_vma_init(void)
2705 gate_vma
.vm_mm
= NULL
;
2706 gate_vma
.vm_start
= FIXADDR_USER_START
;
2707 gate_vma
.vm_end
= FIXADDR_USER_END
;
2708 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
2709 gate_vma
.vm_page_prot
= __P101
;
2711 * Make sure the vDSO gets into every core dump.
2712 * Dumping its contents makes post-mortem fully interpretable later
2713 * without matching up the same kernel and hardware config to see
2714 * what PC values meant.
2716 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
2719 __initcall(gate_vma_init
);
2722 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
2724 #ifdef AT_SYSINFO_EHDR
2731 int in_gate_area_no_task(unsigned long addr
)
2733 #ifdef AT_SYSINFO_EHDR
2734 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
2740 #endif /* __HAVE_ARCH_GATE_AREA */
2743 * Access another process' address space.
2744 * Source/target buffer must be kernel space,
2745 * Do not walk the page table directly, use get_user_pages
2747 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2749 struct mm_struct
*mm
;
2750 struct vm_area_struct
*vma
;
2752 void *old_buf
= buf
;
2754 mm
= get_task_mm(tsk
);
2758 down_read(&mm
->mmap_sem
);
2759 /* ignore errors, just check how much was successfully transferred */
2761 int bytes
, ret
, offset
;
2764 ret
= get_user_pages(tsk
, mm
, addr
, 1,
2765 write
, 1, &page
, &vma
);
2770 offset
= addr
& (PAGE_SIZE
-1);
2771 if (bytes
> PAGE_SIZE
-offset
)
2772 bytes
= PAGE_SIZE
-offset
;
2776 copy_to_user_page(vma
, page
, addr
,
2777 maddr
+ offset
, buf
, bytes
);
2778 set_page_dirty_lock(page
);
2780 copy_from_user_page(vma
, page
, addr
,
2781 buf
, maddr
+ offset
, bytes
);
2784 page_cache_release(page
);
2789 up_read(&mm
->mmap_sem
);
2792 return buf
- old_buf
;
2796 * Print the name of a VMA.
2798 void print_vma_addr(char *prefix
, unsigned long ip
)
2800 struct mm_struct
*mm
= current
->mm
;
2801 struct vm_area_struct
*vma
;
2804 * Do not print if we are in atomic
2805 * contexts (in exception stacks, etc.):
2807 if (preempt_count())
2810 down_read(&mm
->mmap_sem
);
2811 vma
= find_vma(mm
, ip
);
2812 if (vma
&& vma
->vm_file
) {
2813 struct file
*f
= vma
->vm_file
;
2814 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
2818 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
2821 s
= strrchr(p
, '/');
2824 printk("%s%s[%lx+%lx]", prefix
, p
,
2826 vma
->vm_end
- vma
->vm_start
);
2827 free_page((unsigned long)buf
);
2830 up_read(¤t
->mm
->mmap_sem
);