ext4: Fix sub-block zeroing for writes into preallocated extents
[linux-2.6/mini2440.git] / mm / mmap.c
blobefff81b133e64efecab48f7174473970c4535b0d
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
31 #include <asm/uaccess.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlb.h>
34 #include <asm/mmu_context.h>
36 #include "internal.h"
38 #ifndef arch_mmap_check
39 #define arch_mmap_check(addr, len, flags) (0)
40 #endif
42 #ifndef arch_rebalance_pgtables
43 #define arch_rebalance_pgtables(addr, len) (addr)
44 #endif
46 static void unmap_region(struct mm_struct *mm,
47 struct vm_area_struct *vma, struct vm_area_struct *prev,
48 unsigned long start, unsigned long end);
51 * WARNING: the debugging will use recursive algorithms so never enable this
52 * unless you know what you are doing.
54 #undef DEBUG_MM_RB
56 /* description of effects of mapping type and prot in current implementation.
57 * this is due to the limited x86 page protection hardware. The expected
58 * behavior is in parens:
60 * map_type prot
61 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
62 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
63 * w: (no) no w: (no) no w: (yes) yes w: (no) no
64 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
66 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (copy) copy w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
71 pgprot_t protection_map[16] = {
72 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
76 pgprot_t vm_get_page_prot(unsigned long vm_flags)
78 return __pgprot(pgprot_val(protection_map[vm_flags &
79 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80 pgprot_val(arch_vm_get_page_prot(vm_flags)));
82 EXPORT_SYMBOL(vm_get_page_prot);
84 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
85 int sysctl_overcommit_ratio = 50; /* default is 50% */
86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 struct percpu_counter vm_committed_as;
90 * Check that a process has enough memory to allocate a new virtual
91 * mapping. 0 means there is enough memory for the allocation to
92 * succeed and -ENOMEM implies there is not.
94 * We currently support three overcommit policies, which are set via the
95 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
97 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
98 * Additional code 2002 Jul 20 by Robert Love.
100 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102 * Note this is a helper function intended to be used by LSMs which
103 * wish to use this logic.
105 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
107 unsigned long free, allowed;
109 vm_acct_memory(pages);
112 * Sometimes we want to use more memory than we have
114 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
115 return 0;
117 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
118 unsigned long n;
120 free = global_page_state(NR_FILE_PAGES);
121 free += nr_swap_pages;
124 * Any slabs which are created with the
125 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
126 * which are reclaimable, under pressure. The dentry
127 * cache and most inode caches should fall into this
129 free += global_page_state(NR_SLAB_RECLAIMABLE);
132 * Leave the last 3% for root
134 if (!cap_sys_admin)
135 free -= free / 32;
137 if (free > pages)
138 return 0;
141 * nr_free_pages() is very expensive on large systems,
142 * only call if we're about to fail.
144 n = nr_free_pages();
147 * Leave reserved pages. The pages are not for anonymous pages.
149 if (n <= totalreserve_pages)
150 goto error;
151 else
152 n -= totalreserve_pages;
155 * Leave the last 3% for root
157 if (!cap_sys_admin)
158 n -= n / 32;
159 free += n;
161 if (free > pages)
162 return 0;
164 goto error;
167 allowed = (totalram_pages - hugetlb_total_pages())
168 * sysctl_overcommit_ratio / 100;
170 * Leave the last 3% for root
172 if (!cap_sys_admin)
173 allowed -= allowed / 32;
174 allowed += total_swap_pages;
176 /* Don't let a single process grow too big:
177 leave 3% of the size of this process for other processes */
178 if (mm)
179 allowed -= mm->total_vm / 32;
181 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182 return 0;
183 error:
184 vm_unacct_memory(pages);
186 return -ENOMEM;
190 * Requires inode->i_mapping->i_mmap_lock
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193 struct file *file, struct address_space *mapping)
195 if (vma->vm_flags & VM_DENYWRITE)
196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197 if (vma->vm_flags & VM_SHARED)
198 mapping->i_mmap_writable--;
200 flush_dcache_mmap_lock(mapping);
201 if (unlikely(vma->vm_flags & VM_NONLINEAR))
202 list_del_init(&vma->shared.vm_set.list);
203 else
204 vma_prio_tree_remove(vma, &mapping->i_mmap);
205 flush_dcache_mmap_unlock(mapping);
209 * Unlink a file-based vm structure from its prio_tree, to hide
210 * vma from rmap and vmtruncate before freeing its page tables.
212 void unlink_file_vma(struct vm_area_struct *vma)
214 struct file *file = vma->vm_file;
216 if (file) {
217 struct address_space *mapping = file->f_mapping;
218 spin_lock(&mapping->i_mmap_lock);
219 __remove_shared_vm_struct(vma, file, mapping);
220 spin_unlock(&mapping->i_mmap_lock);
225 * Close a vm structure and free it, returning the next.
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229 struct vm_area_struct *next = vma->vm_next;
231 might_sleep();
232 if (vma->vm_ops && vma->vm_ops->close)
233 vma->vm_ops->close(vma);
234 if (vma->vm_file) {
235 fput(vma->vm_file);
236 if (vma->vm_flags & VM_EXECUTABLE)
237 removed_exe_file_vma(vma->vm_mm);
239 mpol_put(vma_policy(vma));
240 kmem_cache_free(vm_area_cachep, vma);
241 return next;
244 SYSCALL_DEFINE1(brk, unsigned long, brk)
246 unsigned long rlim, retval;
247 unsigned long newbrk, oldbrk;
248 struct mm_struct *mm = current->mm;
249 unsigned long min_brk;
251 down_write(&mm->mmap_sem);
253 #ifdef CONFIG_COMPAT_BRK
254 min_brk = mm->end_code;
255 #else
256 min_brk = mm->start_brk;
257 #endif
258 if (brk < min_brk)
259 goto out;
262 * Check against rlimit here. If this check is done later after the test
263 * of oldbrk with newbrk then it can escape the test and let the data
264 * segment grow beyond its set limit the in case where the limit is
265 * not page aligned -Ram Gupta
267 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
268 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
269 (mm->end_data - mm->start_data) > rlim)
270 goto out;
272 newbrk = PAGE_ALIGN(brk);
273 oldbrk = PAGE_ALIGN(mm->brk);
274 if (oldbrk == newbrk)
275 goto set_brk;
277 /* Always allow shrinking brk. */
278 if (brk <= mm->brk) {
279 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
280 goto set_brk;
281 goto out;
284 /* Check against existing mmap mappings. */
285 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
286 goto out;
288 /* Ok, looks good - let it rip. */
289 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
290 goto out;
291 set_brk:
292 mm->brk = brk;
293 out:
294 retval = mm->brk;
295 up_write(&mm->mmap_sem);
296 return retval;
299 #ifdef DEBUG_MM_RB
300 static int browse_rb(struct rb_root *root)
302 int i = 0, j;
303 struct rb_node *nd, *pn = NULL;
304 unsigned long prev = 0, pend = 0;
306 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
307 struct vm_area_struct *vma;
308 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
309 if (vma->vm_start < prev)
310 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
311 if (vma->vm_start < pend)
312 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
313 if (vma->vm_start > vma->vm_end)
314 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
315 i++;
316 pn = nd;
317 prev = vma->vm_start;
318 pend = vma->vm_end;
320 j = 0;
321 for (nd = pn; nd; nd = rb_prev(nd)) {
322 j++;
324 if (i != j)
325 printk("backwards %d, forwards %d\n", j, i), i = 0;
326 return i;
329 void validate_mm(struct mm_struct *mm)
331 int bug = 0;
332 int i = 0;
333 struct vm_area_struct *tmp = mm->mmap;
334 while (tmp) {
335 tmp = tmp->vm_next;
336 i++;
338 if (i != mm->map_count)
339 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
340 i = browse_rb(&mm->mm_rb);
341 if (i != mm->map_count)
342 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
343 BUG_ON(bug);
345 #else
346 #define validate_mm(mm) do { } while (0)
347 #endif
349 static struct vm_area_struct *
350 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
351 struct vm_area_struct **pprev, struct rb_node ***rb_link,
352 struct rb_node ** rb_parent)
354 struct vm_area_struct * vma;
355 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
357 __rb_link = &mm->mm_rb.rb_node;
358 rb_prev = __rb_parent = NULL;
359 vma = NULL;
361 while (*__rb_link) {
362 struct vm_area_struct *vma_tmp;
364 __rb_parent = *__rb_link;
365 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
367 if (vma_tmp->vm_end > addr) {
368 vma = vma_tmp;
369 if (vma_tmp->vm_start <= addr)
370 break;
371 __rb_link = &__rb_parent->rb_left;
372 } else {
373 rb_prev = __rb_parent;
374 __rb_link = &__rb_parent->rb_right;
378 *pprev = NULL;
379 if (rb_prev)
380 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
381 *rb_link = __rb_link;
382 *rb_parent = __rb_parent;
383 return vma;
386 static inline void
387 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
388 struct vm_area_struct *prev, struct rb_node *rb_parent)
390 if (prev) {
391 vma->vm_next = prev->vm_next;
392 prev->vm_next = vma;
393 } else {
394 mm->mmap = vma;
395 if (rb_parent)
396 vma->vm_next = rb_entry(rb_parent,
397 struct vm_area_struct, vm_rb);
398 else
399 vma->vm_next = NULL;
403 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
404 struct rb_node **rb_link, struct rb_node *rb_parent)
406 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
407 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
410 static void __vma_link_file(struct vm_area_struct *vma)
412 struct file *file;
414 file = vma->vm_file;
415 if (file) {
416 struct address_space *mapping = file->f_mapping;
418 if (vma->vm_flags & VM_DENYWRITE)
419 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
420 if (vma->vm_flags & VM_SHARED)
421 mapping->i_mmap_writable++;
423 flush_dcache_mmap_lock(mapping);
424 if (unlikely(vma->vm_flags & VM_NONLINEAR))
425 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
426 else
427 vma_prio_tree_insert(vma, &mapping->i_mmap);
428 flush_dcache_mmap_unlock(mapping);
432 static void
433 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
434 struct vm_area_struct *prev, struct rb_node **rb_link,
435 struct rb_node *rb_parent)
437 __vma_link_list(mm, vma, prev, rb_parent);
438 __vma_link_rb(mm, vma, rb_link, rb_parent);
439 __anon_vma_link(vma);
442 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
443 struct vm_area_struct *prev, struct rb_node **rb_link,
444 struct rb_node *rb_parent)
446 struct address_space *mapping = NULL;
448 if (vma->vm_file)
449 mapping = vma->vm_file->f_mapping;
451 if (mapping) {
452 spin_lock(&mapping->i_mmap_lock);
453 vma->vm_truncate_count = mapping->truncate_count;
455 anon_vma_lock(vma);
457 __vma_link(mm, vma, prev, rb_link, rb_parent);
458 __vma_link_file(vma);
460 anon_vma_unlock(vma);
461 if (mapping)
462 spin_unlock(&mapping->i_mmap_lock);
464 mm->map_count++;
465 validate_mm(mm);
469 * Helper for vma_adjust in the split_vma insert case:
470 * insert vm structure into list and rbtree and anon_vma,
471 * but it has already been inserted into prio_tree earlier.
473 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
475 struct vm_area_struct *__vma, *prev;
476 struct rb_node **rb_link, *rb_parent;
478 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
479 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
480 __vma_link(mm, vma, prev, rb_link, rb_parent);
481 mm->map_count++;
484 static inline void
485 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
486 struct vm_area_struct *prev)
488 prev->vm_next = vma->vm_next;
489 rb_erase(&vma->vm_rb, &mm->mm_rb);
490 if (mm->mmap_cache == vma)
491 mm->mmap_cache = prev;
495 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
496 * is already present in an i_mmap tree without adjusting the tree.
497 * The following helper function should be used when such adjustments
498 * are necessary. The "insert" vma (if any) is to be inserted
499 * before we drop the necessary locks.
501 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
502 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
504 struct mm_struct *mm = vma->vm_mm;
505 struct vm_area_struct *next = vma->vm_next;
506 struct vm_area_struct *importer = NULL;
507 struct address_space *mapping = NULL;
508 struct prio_tree_root *root = NULL;
509 struct file *file = vma->vm_file;
510 struct anon_vma *anon_vma = NULL;
511 long adjust_next = 0;
512 int remove_next = 0;
514 if (next && !insert) {
515 if (end >= next->vm_end) {
517 * vma expands, overlapping all the next, and
518 * perhaps the one after too (mprotect case 6).
520 again: remove_next = 1 + (end > next->vm_end);
521 end = next->vm_end;
522 anon_vma = next->anon_vma;
523 importer = vma;
524 } else if (end > next->vm_start) {
526 * vma expands, overlapping part of the next:
527 * mprotect case 5 shifting the boundary up.
529 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
530 anon_vma = next->anon_vma;
531 importer = vma;
532 } else if (end < vma->vm_end) {
534 * vma shrinks, and !insert tells it's not
535 * split_vma inserting another: so it must be
536 * mprotect case 4 shifting the boundary down.
538 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
539 anon_vma = next->anon_vma;
540 importer = next;
544 if (file) {
545 mapping = file->f_mapping;
546 if (!(vma->vm_flags & VM_NONLINEAR))
547 root = &mapping->i_mmap;
548 spin_lock(&mapping->i_mmap_lock);
549 if (importer &&
550 vma->vm_truncate_count != next->vm_truncate_count) {
552 * unmap_mapping_range might be in progress:
553 * ensure that the expanding vma is rescanned.
555 importer->vm_truncate_count = 0;
557 if (insert) {
558 insert->vm_truncate_count = vma->vm_truncate_count;
560 * Put into prio_tree now, so instantiated pages
561 * are visible to arm/parisc __flush_dcache_page
562 * throughout; but we cannot insert into address
563 * space until vma start or end is updated.
565 __vma_link_file(insert);
570 * When changing only vma->vm_end, we don't really need
571 * anon_vma lock: but is that case worth optimizing out?
573 if (vma->anon_vma)
574 anon_vma = vma->anon_vma;
575 if (anon_vma) {
576 spin_lock(&anon_vma->lock);
578 * Easily overlooked: when mprotect shifts the boundary,
579 * make sure the expanding vma has anon_vma set if the
580 * shrinking vma had, to cover any anon pages imported.
582 if (importer && !importer->anon_vma) {
583 importer->anon_vma = anon_vma;
584 __anon_vma_link(importer);
588 if (root) {
589 flush_dcache_mmap_lock(mapping);
590 vma_prio_tree_remove(vma, root);
591 if (adjust_next)
592 vma_prio_tree_remove(next, root);
595 vma->vm_start = start;
596 vma->vm_end = end;
597 vma->vm_pgoff = pgoff;
598 if (adjust_next) {
599 next->vm_start += adjust_next << PAGE_SHIFT;
600 next->vm_pgoff += adjust_next;
603 if (root) {
604 if (adjust_next)
605 vma_prio_tree_insert(next, root);
606 vma_prio_tree_insert(vma, root);
607 flush_dcache_mmap_unlock(mapping);
610 if (remove_next) {
612 * vma_merge has merged next into vma, and needs
613 * us to remove next before dropping the locks.
615 __vma_unlink(mm, next, vma);
616 if (file)
617 __remove_shared_vm_struct(next, file, mapping);
618 if (next->anon_vma)
619 __anon_vma_merge(vma, next);
620 } else if (insert) {
622 * split_vma has split insert from vma, and needs
623 * us to insert it before dropping the locks
624 * (it may either follow vma or precede it).
626 __insert_vm_struct(mm, insert);
629 if (anon_vma)
630 spin_unlock(&anon_vma->lock);
631 if (mapping)
632 spin_unlock(&mapping->i_mmap_lock);
634 if (remove_next) {
635 if (file) {
636 fput(file);
637 if (next->vm_flags & VM_EXECUTABLE)
638 removed_exe_file_vma(mm);
640 mm->map_count--;
641 mpol_put(vma_policy(next));
642 kmem_cache_free(vm_area_cachep, next);
644 * In mprotect's case 6 (see comments on vma_merge),
645 * we must remove another next too. It would clutter
646 * up the code too much to do both in one go.
648 if (remove_next == 2) {
649 next = vma->vm_next;
650 goto again;
654 validate_mm(mm);
657 /* Flags that can be inherited from an existing mapping when merging */
658 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
661 * If the vma has a ->close operation then the driver probably needs to release
662 * per-vma resources, so we don't attempt to merge those.
664 static inline int is_mergeable_vma(struct vm_area_struct *vma,
665 struct file *file, unsigned long vm_flags)
667 if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS)
668 return 0;
669 if (vma->vm_file != file)
670 return 0;
671 if (vma->vm_ops && vma->vm_ops->close)
672 return 0;
673 return 1;
676 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
677 struct anon_vma *anon_vma2)
679 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
683 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
684 * in front of (at a lower virtual address and file offset than) the vma.
686 * We cannot merge two vmas if they have differently assigned (non-NULL)
687 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
689 * We don't check here for the merged mmap wrapping around the end of pagecache
690 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
691 * wrap, nor mmaps which cover the final page at index -1UL.
693 static int
694 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
695 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
697 if (is_mergeable_vma(vma, file, vm_flags) &&
698 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
699 if (vma->vm_pgoff == vm_pgoff)
700 return 1;
702 return 0;
706 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
707 * beyond (at a higher virtual address and file offset than) the vma.
709 * We cannot merge two vmas if they have differently assigned (non-NULL)
710 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
712 static int
713 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
714 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
716 if (is_mergeable_vma(vma, file, vm_flags) &&
717 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
718 pgoff_t vm_pglen;
719 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
720 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
721 return 1;
723 return 0;
727 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
728 * whether that can be merged with its predecessor or its successor.
729 * Or both (it neatly fills a hole).
731 * In most cases - when called for mmap, brk or mremap - [addr,end) is
732 * certain not to be mapped by the time vma_merge is called; but when
733 * called for mprotect, it is certain to be already mapped (either at
734 * an offset within prev, or at the start of next), and the flags of
735 * this area are about to be changed to vm_flags - and the no-change
736 * case has already been eliminated.
738 * The following mprotect cases have to be considered, where AAAA is
739 * the area passed down from mprotect_fixup, never extending beyond one
740 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
742 * AAAA AAAA AAAA AAAA
743 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
744 * cannot merge might become might become might become
745 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
746 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
747 * mremap move: PPPPNNNNNNNN 8
748 * AAAA
749 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
750 * might become case 1 below case 2 below case 3 below
752 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
753 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
755 struct vm_area_struct *vma_merge(struct mm_struct *mm,
756 struct vm_area_struct *prev, unsigned long addr,
757 unsigned long end, unsigned long vm_flags,
758 struct anon_vma *anon_vma, struct file *file,
759 pgoff_t pgoff, struct mempolicy *policy)
761 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
762 struct vm_area_struct *area, *next;
765 * We later require that vma->vm_flags == vm_flags,
766 * so this tests vma->vm_flags & VM_SPECIAL, too.
768 if (vm_flags & VM_SPECIAL)
769 return NULL;
771 if (prev)
772 next = prev->vm_next;
773 else
774 next = mm->mmap;
775 area = next;
776 if (next && next->vm_end == end) /* cases 6, 7, 8 */
777 next = next->vm_next;
780 * Can it merge with the predecessor?
782 if (prev && prev->vm_end == addr &&
783 mpol_equal(vma_policy(prev), policy) &&
784 can_vma_merge_after(prev, vm_flags,
785 anon_vma, file, pgoff)) {
787 * OK, it can. Can we now merge in the successor as well?
789 if (next && end == next->vm_start &&
790 mpol_equal(policy, vma_policy(next)) &&
791 can_vma_merge_before(next, vm_flags,
792 anon_vma, file, pgoff+pglen) &&
793 is_mergeable_anon_vma(prev->anon_vma,
794 next->anon_vma)) {
795 /* cases 1, 6 */
796 vma_adjust(prev, prev->vm_start,
797 next->vm_end, prev->vm_pgoff, NULL);
798 } else /* cases 2, 5, 7 */
799 vma_adjust(prev, prev->vm_start,
800 end, prev->vm_pgoff, NULL);
801 return prev;
805 * Can this new request be merged in front of next?
807 if (next && end == next->vm_start &&
808 mpol_equal(policy, vma_policy(next)) &&
809 can_vma_merge_before(next, vm_flags,
810 anon_vma, file, pgoff+pglen)) {
811 if (prev && addr < prev->vm_end) /* case 4 */
812 vma_adjust(prev, prev->vm_start,
813 addr, prev->vm_pgoff, NULL);
814 else /* cases 3, 8 */
815 vma_adjust(area, addr, next->vm_end,
816 next->vm_pgoff - pglen, NULL);
817 return area;
820 return NULL;
824 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
825 * neighbouring vmas for a suitable anon_vma, before it goes off
826 * to allocate a new anon_vma. It checks because a repetitive
827 * sequence of mprotects and faults may otherwise lead to distinct
828 * anon_vmas being allocated, preventing vma merge in subsequent
829 * mprotect.
831 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
833 struct vm_area_struct *near;
834 unsigned long vm_flags;
836 near = vma->vm_next;
837 if (!near)
838 goto try_prev;
841 * Since only mprotect tries to remerge vmas, match flags
842 * which might be mprotected into each other later on.
843 * Neither mlock nor madvise tries to remerge at present,
844 * so leave their flags as obstructing a merge.
846 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
847 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
849 if (near->anon_vma && vma->vm_end == near->vm_start &&
850 mpol_equal(vma_policy(vma), vma_policy(near)) &&
851 can_vma_merge_before(near, vm_flags,
852 NULL, vma->vm_file, vma->vm_pgoff +
853 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
854 return near->anon_vma;
855 try_prev:
857 * It is potentially slow to have to call find_vma_prev here.
858 * But it's only on the first write fault on the vma, not
859 * every time, and we could devise a way to avoid it later
860 * (e.g. stash info in next's anon_vma_node when assigning
861 * an anon_vma, or when trying vma_merge). Another time.
863 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
864 if (!near)
865 goto none;
867 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
868 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
870 if (near->anon_vma && near->vm_end == vma->vm_start &&
871 mpol_equal(vma_policy(near), vma_policy(vma)) &&
872 can_vma_merge_after(near, vm_flags,
873 NULL, vma->vm_file, vma->vm_pgoff))
874 return near->anon_vma;
875 none:
877 * There's no absolute need to look only at touching neighbours:
878 * we could search further afield for "compatible" anon_vmas.
879 * But it would probably just be a waste of time searching,
880 * or lead to too many vmas hanging off the same anon_vma.
881 * We're trying to allow mprotect remerging later on,
882 * not trying to minimize memory used for anon_vmas.
884 return NULL;
887 #ifdef CONFIG_PROC_FS
888 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
889 struct file *file, long pages)
891 const unsigned long stack_flags
892 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
894 if (file) {
895 mm->shared_vm += pages;
896 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
897 mm->exec_vm += pages;
898 } else if (flags & stack_flags)
899 mm->stack_vm += pages;
900 if (flags & (VM_RESERVED|VM_IO))
901 mm->reserved_vm += pages;
903 #endif /* CONFIG_PROC_FS */
906 * The caller must hold down_write(current->mm->mmap_sem).
909 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
910 unsigned long len, unsigned long prot,
911 unsigned long flags, unsigned long pgoff)
913 struct mm_struct * mm = current->mm;
914 struct inode *inode;
915 unsigned int vm_flags;
916 int error;
917 unsigned long reqprot = prot;
920 * Does the application expect PROT_READ to imply PROT_EXEC?
922 * (the exception is when the underlying filesystem is noexec
923 * mounted, in which case we dont add PROT_EXEC.)
925 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
926 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
927 prot |= PROT_EXEC;
929 if (!len)
930 return -EINVAL;
932 if (!(flags & MAP_FIXED))
933 addr = round_hint_to_min(addr);
935 error = arch_mmap_check(addr, len, flags);
936 if (error)
937 return error;
939 /* Careful about overflows.. */
940 len = PAGE_ALIGN(len);
941 if (!len || len > TASK_SIZE)
942 return -ENOMEM;
944 /* offset overflow? */
945 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
946 return -EOVERFLOW;
948 /* Too many mappings? */
949 if (mm->map_count > sysctl_max_map_count)
950 return -ENOMEM;
952 /* Obtain the address to map to. we verify (or select) it and ensure
953 * that it represents a valid section of the address space.
955 addr = get_unmapped_area(file, addr, len, pgoff, flags);
956 if (addr & ~PAGE_MASK)
957 return addr;
959 /* Do simple checking here so the lower-level routines won't have
960 * to. we assume access permissions have been handled by the open
961 * of the memory object, so we don't do any here.
963 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
964 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
966 if (flags & MAP_LOCKED) {
967 if (!can_do_mlock())
968 return -EPERM;
969 vm_flags |= VM_LOCKED;
972 /* mlock MCL_FUTURE? */
973 if (vm_flags & VM_LOCKED) {
974 unsigned long locked, lock_limit;
975 locked = len >> PAGE_SHIFT;
976 locked += mm->locked_vm;
977 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
978 lock_limit >>= PAGE_SHIFT;
979 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
980 return -EAGAIN;
983 inode = file ? file->f_path.dentry->d_inode : NULL;
985 if (file) {
986 switch (flags & MAP_TYPE) {
987 case MAP_SHARED:
988 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
989 return -EACCES;
992 * Make sure we don't allow writing to an append-only
993 * file..
995 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
996 return -EACCES;
999 * Make sure there are no mandatory locks on the file.
1001 if (locks_verify_locked(inode))
1002 return -EAGAIN;
1004 vm_flags |= VM_SHARED | VM_MAYSHARE;
1005 if (!(file->f_mode & FMODE_WRITE))
1006 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1008 /* fall through */
1009 case MAP_PRIVATE:
1010 if (!(file->f_mode & FMODE_READ))
1011 return -EACCES;
1012 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1013 if (vm_flags & VM_EXEC)
1014 return -EPERM;
1015 vm_flags &= ~VM_MAYEXEC;
1018 if (!file->f_op || !file->f_op->mmap)
1019 return -ENODEV;
1020 break;
1022 default:
1023 return -EINVAL;
1025 } else {
1026 switch (flags & MAP_TYPE) {
1027 case MAP_SHARED:
1029 * Ignore pgoff.
1031 pgoff = 0;
1032 vm_flags |= VM_SHARED | VM_MAYSHARE;
1033 break;
1034 case MAP_PRIVATE:
1036 * Set pgoff according to addr for anon_vma.
1038 pgoff = addr >> PAGE_SHIFT;
1039 break;
1040 default:
1041 return -EINVAL;
1045 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1046 if (error)
1047 return error;
1049 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1051 EXPORT_SYMBOL(do_mmap_pgoff);
1054 * Some shared mappigns will want the pages marked read-only
1055 * to track write events. If so, we'll downgrade vm_page_prot
1056 * to the private version (using protection_map[] without the
1057 * VM_SHARED bit).
1059 int vma_wants_writenotify(struct vm_area_struct *vma)
1061 unsigned int vm_flags = vma->vm_flags;
1063 /* If it was private or non-writable, the write bit is already clear */
1064 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1065 return 0;
1067 /* The backer wishes to know when pages are first written to? */
1068 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1069 return 1;
1071 /* The open routine did something to the protections already? */
1072 if (pgprot_val(vma->vm_page_prot) !=
1073 pgprot_val(vm_get_page_prot(vm_flags)))
1074 return 0;
1076 /* Specialty mapping? */
1077 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1078 return 0;
1080 /* Can the mapping track the dirty pages? */
1081 return vma->vm_file && vma->vm_file->f_mapping &&
1082 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1086 * We account for memory if it's a private writeable mapping,
1087 * not hugepages and VM_NORESERVE wasn't set.
1089 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1092 * hugetlb has its own accounting separate from the core VM
1093 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1095 if (file && is_file_hugepages(file))
1096 return 0;
1098 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1101 unsigned long mmap_region(struct file *file, unsigned long addr,
1102 unsigned long len, unsigned long flags,
1103 unsigned int vm_flags, unsigned long pgoff)
1105 struct mm_struct *mm = current->mm;
1106 struct vm_area_struct *vma, *prev;
1107 int correct_wcount = 0;
1108 int error;
1109 struct rb_node **rb_link, *rb_parent;
1110 unsigned long charged = 0;
1111 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1113 /* Clear old maps */
1114 error = -ENOMEM;
1115 munmap_back:
1116 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1117 if (vma && vma->vm_start < addr + len) {
1118 if (do_munmap(mm, addr, len))
1119 return -ENOMEM;
1120 goto munmap_back;
1123 /* Check against address space limit. */
1124 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1125 return -ENOMEM;
1128 * Set 'VM_NORESERVE' if we should not account for the
1129 * memory use of this mapping.
1131 if ((flags & MAP_NORESERVE)) {
1132 /* We honor MAP_NORESERVE if allowed to overcommit */
1133 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1134 vm_flags |= VM_NORESERVE;
1136 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1137 if (file && is_file_hugepages(file))
1138 vm_flags |= VM_NORESERVE;
1142 * Private writable mapping: check memory availability
1144 if (accountable_mapping(file, vm_flags)) {
1145 charged = len >> PAGE_SHIFT;
1146 if (security_vm_enough_memory(charged))
1147 return -ENOMEM;
1148 vm_flags |= VM_ACCOUNT;
1152 * Can we just expand an old mapping?
1154 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1155 if (vma)
1156 goto out;
1159 * Determine the object being mapped and call the appropriate
1160 * specific mapper. the address has already been validated, but
1161 * not unmapped, but the maps are removed from the list.
1163 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1164 if (!vma) {
1165 error = -ENOMEM;
1166 goto unacct_error;
1169 vma->vm_mm = mm;
1170 vma->vm_start = addr;
1171 vma->vm_end = addr + len;
1172 vma->vm_flags = vm_flags;
1173 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1174 vma->vm_pgoff = pgoff;
1176 if (file) {
1177 error = -EINVAL;
1178 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1179 goto free_vma;
1180 if (vm_flags & VM_DENYWRITE) {
1181 error = deny_write_access(file);
1182 if (error)
1183 goto free_vma;
1184 correct_wcount = 1;
1186 vma->vm_file = file;
1187 get_file(file);
1188 error = file->f_op->mmap(file, vma);
1189 if (error)
1190 goto unmap_and_free_vma;
1191 if (vm_flags & VM_EXECUTABLE)
1192 added_exe_file_vma(mm);
1193 } else if (vm_flags & VM_SHARED) {
1194 error = shmem_zero_setup(vma);
1195 if (error)
1196 goto free_vma;
1199 /* Can addr have changed??
1201 * Answer: Yes, several device drivers can do it in their
1202 * f_op->mmap method. -DaveM
1204 addr = vma->vm_start;
1205 pgoff = vma->vm_pgoff;
1206 vm_flags = vma->vm_flags;
1208 if (vma_wants_writenotify(vma))
1209 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1211 vma_link(mm, vma, prev, rb_link, rb_parent);
1212 file = vma->vm_file;
1214 /* Once vma denies write, undo our temporary denial count */
1215 if (correct_wcount)
1216 atomic_inc(&inode->i_writecount);
1217 out:
1218 mm->total_vm += len >> PAGE_SHIFT;
1219 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1220 if (vm_flags & VM_LOCKED) {
1222 * makes pages present; downgrades, drops, reacquires mmap_sem
1224 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1225 if (nr_pages < 0)
1226 return nr_pages; /* vma gone! */
1227 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1228 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1229 make_pages_present(addr, addr + len);
1230 return addr;
1232 unmap_and_free_vma:
1233 if (correct_wcount)
1234 atomic_inc(&inode->i_writecount);
1235 vma->vm_file = NULL;
1236 fput(file);
1238 /* Undo any partial mapping done by a device driver. */
1239 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1240 charged = 0;
1241 free_vma:
1242 kmem_cache_free(vm_area_cachep, vma);
1243 unacct_error:
1244 if (charged)
1245 vm_unacct_memory(charged);
1246 return error;
1249 /* Get an address range which is currently unmapped.
1250 * For shmat() with addr=0.
1252 * Ugly calling convention alert:
1253 * Return value with the low bits set means error value,
1254 * ie
1255 * if (ret & ~PAGE_MASK)
1256 * error = ret;
1258 * This function "knows" that -ENOMEM has the bits set.
1260 #ifndef HAVE_ARCH_UNMAPPED_AREA
1261 unsigned long
1262 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1263 unsigned long len, unsigned long pgoff, unsigned long flags)
1265 struct mm_struct *mm = current->mm;
1266 struct vm_area_struct *vma;
1267 unsigned long start_addr;
1269 if (len > TASK_SIZE)
1270 return -ENOMEM;
1272 if (flags & MAP_FIXED)
1273 return addr;
1275 if (addr) {
1276 addr = PAGE_ALIGN(addr);
1277 vma = find_vma(mm, addr);
1278 if (TASK_SIZE - len >= addr &&
1279 (!vma || addr + len <= vma->vm_start))
1280 return addr;
1282 if (len > mm->cached_hole_size) {
1283 start_addr = addr = mm->free_area_cache;
1284 } else {
1285 start_addr = addr = TASK_UNMAPPED_BASE;
1286 mm->cached_hole_size = 0;
1289 full_search:
1290 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1291 /* At this point: (!vma || addr < vma->vm_end). */
1292 if (TASK_SIZE - len < addr) {
1294 * Start a new search - just in case we missed
1295 * some holes.
1297 if (start_addr != TASK_UNMAPPED_BASE) {
1298 addr = TASK_UNMAPPED_BASE;
1299 start_addr = addr;
1300 mm->cached_hole_size = 0;
1301 goto full_search;
1303 return -ENOMEM;
1305 if (!vma || addr + len <= vma->vm_start) {
1307 * Remember the place where we stopped the search:
1309 mm->free_area_cache = addr + len;
1310 return addr;
1312 if (addr + mm->cached_hole_size < vma->vm_start)
1313 mm->cached_hole_size = vma->vm_start - addr;
1314 addr = vma->vm_end;
1317 #endif
1319 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1322 * Is this a new hole at the lowest possible address?
1324 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1325 mm->free_area_cache = addr;
1326 mm->cached_hole_size = ~0UL;
1331 * This mmap-allocator allocates new areas top-down from below the
1332 * stack's low limit (the base):
1334 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1335 unsigned long
1336 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1337 const unsigned long len, const unsigned long pgoff,
1338 const unsigned long flags)
1340 struct vm_area_struct *vma;
1341 struct mm_struct *mm = current->mm;
1342 unsigned long addr = addr0;
1344 /* requested length too big for entire address space */
1345 if (len > TASK_SIZE)
1346 return -ENOMEM;
1348 if (flags & MAP_FIXED)
1349 return addr;
1351 /* requesting a specific address */
1352 if (addr) {
1353 addr = PAGE_ALIGN(addr);
1354 vma = find_vma(mm, addr);
1355 if (TASK_SIZE - len >= addr &&
1356 (!vma || addr + len <= vma->vm_start))
1357 return addr;
1360 /* check if free_area_cache is useful for us */
1361 if (len <= mm->cached_hole_size) {
1362 mm->cached_hole_size = 0;
1363 mm->free_area_cache = mm->mmap_base;
1366 /* either no address requested or can't fit in requested address hole */
1367 addr = mm->free_area_cache;
1369 /* make sure it can fit in the remaining address space */
1370 if (addr > len) {
1371 vma = find_vma(mm, addr-len);
1372 if (!vma || addr <= vma->vm_start)
1373 /* remember the address as a hint for next time */
1374 return (mm->free_area_cache = addr-len);
1377 if (mm->mmap_base < len)
1378 goto bottomup;
1380 addr = mm->mmap_base-len;
1382 do {
1384 * Lookup failure means no vma is above this address,
1385 * else if new region fits below vma->vm_start,
1386 * return with success:
1388 vma = find_vma(mm, addr);
1389 if (!vma || addr+len <= vma->vm_start)
1390 /* remember the address as a hint for next time */
1391 return (mm->free_area_cache = addr);
1393 /* remember the largest hole we saw so far */
1394 if (addr + mm->cached_hole_size < vma->vm_start)
1395 mm->cached_hole_size = vma->vm_start - addr;
1397 /* try just below the current vma->vm_start */
1398 addr = vma->vm_start-len;
1399 } while (len < vma->vm_start);
1401 bottomup:
1403 * A failed mmap() very likely causes application failure,
1404 * so fall back to the bottom-up function here. This scenario
1405 * can happen with large stack limits and large mmap()
1406 * allocations.
1408 mm->cached_hole_size = ~0UL;
1409 mm->free_area_cache = TASK_UNMAPPED_BASE;
1410 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1412 * Restore the topdown base:
1414 mm->free_area_cache = mm->mmap_base;
1415 mm->cached_hole_size = ~0UL;
1417 return addr;
1419 #endif
1421 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1424 * Is this a new hole at the highest possible address?
1426 if (addr > mm->free_area_cache)
1427 mm->free_area_cache = addr;
1429 /* dont allow allocations above current base */
1430 if (mm->free_area_cache > mm->mmap_base)
1431 mm->free_area_cache = mm->mmap_base;
1434 unsigned long
1435 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1436 unsigned long pgoff, unsigned long flags)
1438 unsigned long (*get_area)(struct file *, unsigned long,
1439 unsigned long, unsigned long, unsigned long);
1441 get_area = current->mm->get_unmapped_area;
1442 if (file && file->f_op && file->f_op->get_unmapped_area)
1443 get_area = file->f_op->get_unmapped_area;
1444 addr = get_area(file, addr, len, pgoff, flags);
1445 if (IS_ERR_VALUE(addr))
1446 return addr;
1448 if (addr > TASK_SIZE - len)
1449 return -ENOMEM;
1450 if (addr & ~PAGE_MASK)
1451 return -EINVAL;
1453 return arch_rebalance_pgtables(addr, len);
1456 EXPORT_SYMBOL(get_unmapped_area);
1458 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1459 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1461 struct vm_area_struct *vma = NULL;
1463 if (mm) {
1464 /* Check the cache first. */
1465 /* (Cache hit rate is typically around 35%.) */
1466 vma = mm->mmap_cache;
1467 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1468 struct rb_node * rb_node;
1470 rb_node = mm->mm_rb.rb_node;
1471 vma = NULL;
1473 while (rb_node) {
1474 struct vm_area_struct * vma_tmp;
1476 vma_tmp = rb_entry(rb_node,
1477 struct vm_area_struct, vm_rb);
1479 if (vma_tmp->vm_end > addr) {
1480 vma = vma_tmp;
1481 if (vma_tmp->vm_start <= addr)
1482 break;
1483 rb_node = rb_node->rb_left;
1484 } else
1485 rb_node = rb_node->rb_right;
1487 if (vma)
1488 mm->mmap_cache = vma;
1491 return vma;
1494 EXPORT_SYMBOL(find_vma);
1496 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1497 struct vm_area_struct *
1498 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1499 struct vm_area_struct **pprev)
1501 struct vm_area_struct *vma = NULL, *prev = NULL;
1502 struct rb_node *rb_node;
1503 if (!mm)
1504 goto out;
1506 /* Guard against addr being lower than the first VMA */
1507 vma = mm->mmap;
1509 /* Go through the RB tree quickly. */
1510 rb_node = mm->mm_rb.rb_node;
1512 while (rb_node) {
1513 struct vm_area_struct *vma_tmp;
1514 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1516 if (addr < vma_tmp->vm_end) {
1517 rb_node = rb_node->rb_left;
1518 } else {
1519 prev = vma_tmp;
1520 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1521 break;
1522 rb_node = rb_node->rb_right;
1526 out:
1527 *pprev = prev;
1528 return prev ? prev->vm_next : vma;
1532 * Verify that the stack growth is acceptable and
1533 * update accounting. This is shared with both the
1534 * grow-up and grow-down cases.
1536 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1538 struct mm_struct *mm = vma->vm_mm;
1539 struct rlimit *rlim = current->signal->rlim;
1540 unsigned long new_start;
1542 /* address space limit tests */
1543 if (!may_expand_vm(mm, grow))
1544 return -ENOMEM;
1546 /* Stack limit test */
1547 if (size > rlim[RLIMIT_STACK].rlim_cur)
1548 return -ENOMEM;
1550 /* mlock limit tests */
1551 if (vma->vm_flags & VM_LOCKED) {
1552 unsigned long locked;
1553 unsigned long limit;
1554 locked = mm->locked_vm + grow;
1555 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1556 if (locked > limit && !capable(CAP_IPC_LOCK))
1557 return -ENOMEM;
1560 /* Check to ensure the stack will not grow into a hugetlb-only region */
1561 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1562 vma->vm_end - size;
1563 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1564 return -EFAULT;
1567 * Overcommit.. This must be the final test, as it will
1568 * update security statistics.
1570 if (security_vm_enough_memory_mm(mm, grow))
1571 return -ENOMEM;
1573 /* Ok, everything looks good - let it rip */
1574 mm->total_vm += grow;
1575 if (vma->vm_flags & VM_LOCKED)
1576 mm->locked_vm += grow;
1577 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1578 return 0;
1581 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1583 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1584 * vma is the last one with address > vma->vm_end. Have to extend vma.
1586 #ifndef CONFIG_IA64
1587 static
1588 #endif
1589 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1591 int error;
1593 if (!(vma->vm_flags & VM_GROWSUP))
1594 return -EFAULT;
1597 * We must make sure the anon_vma is allocated
1598 * so that the anon_vma locking is not a noop.
1600 if (unlikely(anon_vma_prepare(vma)))
1601 return -ENOMEM;
1602 anon_vma_lock(vma);
1605 * vma->vm_start/vm_end cannot change under us because the caller
1606 * is required to hold the mmap_sem in read mode. We need the
1607 * anon_vma lock to serialize against concurrent expand_stacks.
1608 * Also guard against wrapping around to address 0.
1610 if (address < PAGE_ALIGN(address+4))
1611 address = PAGE_ALIGN(address+4);
1612 else {
1613 anon_vma_unlock(vma);
1614 return -ENOMEM;
1616 error = 0;
1618 /* Somebody else might have raced and expanded it already */
1619 if (address > vma->vm_end) {
1620 unsigned long size, grow;
1622 size = address - vma->vm_start;
1623 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1625 error = acct_stack_growth(vma, size, grow);
1626 if (!error)
1627 vma->vm_end = address;
1629 anon_vma_unlock(vma);
1630 return error;
1632 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1635 * vma is the first one with address < vma->vm_start. Have to extend vma.
1637 static int expand_downwards(struct vm_area_struct *vma,
1638 unsigned long address)
1640 int error;
1643 * We must make sure the anon_vma is allocated
1644 * so that the anon_vma locking is not a noop.
1646 if (unlikely(anon_vma_prepare(vma)))
1647 return -ENOMEM;
1649 address &= PAGE_MASK;
1650 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1651 if (error)
1652 return error;
1654 anon_vma_lock(vma);
1657 * vma->vm_start/vm_end cannot change under us because the caller
1658 * is required to hold the mmap_sem in read mode. We need the
1659 * anon_vma lock to serialize against concurrent expand_stacks.
1662 /* Somebody else might have raced and expanded it already */
1663 if (address < vma->vm_start) {
1664 unsigned long size, grow;
1666 size = vma->vm_end - address;
1667 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1669 error = acct_stack_growth(vma, size, grow);
1670 if (!error) {
1671 vma->vm_start = address;
1672 vma->vm_pgoff -= grow;
1675 anon_vma_unlock(vma);
1676 return error;
1679 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1681 return expand_downwards(vma, address);
1684 #ifdef CONFIG_STACK_GROWSUP
1685 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1687 return expand_upwards(vma, address);
1690 struct vm_area_struct *
1691 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1693 struct vm_area_struct *vma, *prev;
1695 addr &= PAGE_MASK;
1696 vma = find_vma_prev(mm, addr, &prev);
1697 if (vma && (vma->vm_start <= addr))
1698 return vma;
1699 if (!prev || expand_stack(prev, addr))
1700 return NULL;
1701 if (prev->vm_flags & VM_LOCKED) {
1702 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1703 return NULL; /* vma gone! */
1705 return prev;
1707 #else
1708 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1710 return expand_downwards(vma, address);
1713 struct vm_area_struct *
1714 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1716 struct vm_area_struct * vma;
1717 unsigned long start;
1719 addr &= PAGE_MASK;
1720 vma = find_vma(mm,addr);
1721 if (!vma)
1722 return NULL;
1723 if (vma->vm_start <= addr)
1724 return vma;
1725 if (!(vma->vm_flags & VM_GROWSDOWN))
1726 return NULL;
1727 start = vma->vm_start;
1728 if (expand_stack(vma, addr))
1729 return NULL;
1730 if (vma->vm_flags & VM_LOCKED) {
1731 if (mlock_vma_pages_range(vma, addr, start) < 0)
1732 return NULL; /* vma gone! */
1734 return vma;
1736 #endif
1739 * Ok - we have the memory areas we should free on the vma list,
1740 * so release them, and do the vma updates.
1742 * Called with the mm semaphore held.
1744 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1746 /* Update high watermark before we lower total_vm */
1747 update_hiwater_vm(mm);
1748 do {
1749 long nrpages = vma_pages(vma);
1751 mm->total_vm -= nrpages;
1752 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1753 vma = remove_vma(vma);
1754 } while (vma);
1755 validate_mm(mm);
1759 * Get rid of page table information in the indicated region.
1761 * Called with the mm semaphore held.
1763 static void unmap_region(struct mm_struct *mm,
1764 struct vm_area_struct *vma, struct vm_area_struct *prev,
1765 unsigned long start, unsigned long end)
1767 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1768 struct mmu_gather *tlb;
1769 unsigned long nr_accounted = 0;
1771 lru_add_drain();
1772 tlb = tlb_gather_mmu(mm, 0);
1773 update_hiwater_rss(mm);
1774 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1775 vm_unacct_memory(nr_accounted);
1776 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1777 next? next->vm_start: 0);
1778 tlb_finish_mmu(tlb, start, end);
1782 * Create a list of vma's touched by the unmap, removing them from the mm's
1783 * vma list as we go..
1785 static void
1786 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1787 struct vm_area_struct *prev, unsigned long end)
1789 struct vm_area_struct **insertion_point;
1790 struct vm_area_struct *tail_vma = NULL;
1791 unsigned long addr;
1793 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1794 do {
1795 rb_erase(&vma->vm_rb, &mm->mm_rb);
1796 mm->map_count--;
1797 tail_vma = vma;
1798 vma = vma->vm_next;
1799 } while (vma && vma->vm_start < end);
1800 *insertion_point = vma;
1801 tail_vma->vm_next = NULL;
1802 if (mm->unmap_area == arch_unmap_area)
1803 addr = prev ? prev->vm_end : mm->mmap_base;
1804 else
1805 addr = vma ? vma->vm_start : mm->mmap_base;
1806 mm->unmap_area(mm, addr);
1807 mm->mmap_cache = NULL; /* Kill the cache. */
1811 * Split a vma into two pieces at address 'addr', a new vma is allocated
1812 * either for the first part or the tail.
1814 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1815 unsigned long addr, int new_below)
1817 struct mempolicy *pol;
1818 struct vm_area_struct *new;
1820 if (is_vm_hugetlb_page(vma) && (addr &
1821 ~(huge_page_mask(hstate_vma(vma)))))
1822 return -EINVAL;
1824 if (mm->map_count >= sysctl_max_map_count)
1825 return -ENOMEM;
1827 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1828 if (!new)
1829 return -ENOMEM;
1831 /* most fields are the same, copy all, and then fixup */
1832 *new = *vma;
1834 if (new_below)
1835 new->vm_end = addr;
1836 else {
1837 new->vm_start = addr;
1838 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1841 pol = mpol_dup(vma_policy(vma));
1842 if (IS_ERR(pol)) {
1843 kmem_cache_free(vm_area_cachep, new);
1844 return PTR_ERR(pol);
1846 vma_set_policy(new, pol);
1848 if (new->vm_file) {
1849 get_file(new->vm_file);
1850 if (vma->vm_flags & VM_EXECUTABLE)
1851 added_exe_file_vma(mm);
1854 if (new->vm_ops && new->vm_ops->open)
1855 new->vm_ops->open(new);
1857 if (new_below)
1858 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1859 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1860 else
1861 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1863 return 0;
1866 /* Munmap is split into 2 main parts -- this part which finds
1867 * what needs doing, and the areas themselves, which do the
1868 * work. This now handles partial unmappings.
1869 * Jeremy Fitzhardinge <jeremy@goop.org>
1871 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1873 unsigned long end;
1874 struct vm_area_struct *vma, *prev, *last;
1876 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1877 return -EINVAL;
1879 if ((len = PAGE_ALIGN(len)) == 0)
1880 return -EINVAL;
1882 /* Find the first overlapping VMA */
1883 vma = find_vma_prev(mm, start, &prev);
1884 if (!vma)
1885 return 0;
1886 /* we have start < vma->vm_end */
1888 /* if it doesn't overlap, we have nothing.. */
1889 end = start + len;
1890 if (vma->vm_start >= end)
1891 return 0;
1894 * If we need to split any vma, do it now to save pain later.
1896 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1897 * unmapped vm_area_struct will remain in use: so lower split_vma
1898 * places tmp vma above, and higher split_vma places tmp vma below.
1900 if (start > vma->vm_start) {
1901 int error = split_vma(mm, vma, start, 0);
1902 if (error)
1903 return error;
1904 prev = vma;
1907 /* Does it split the last one? */
1908 last = find_vma(mm, end);
1909 if (last && end > last->vm_start) {
1910 int error = split_vma(mm, last, end, 1);
1911 if (error)
1912 return error;
1914 vma = prev? prev->vm_next: mm->mmap;
1917 * unlock any mlock()ed ranges before detaching vmas
1919 if (mm->locked_vm) {
1920 struct vm_area_struct *tmp = vma;
1921 while (tmp && tmp->vm_start < end) {
1922 if (tmp->vm_flags & VM_LOCKED) {
1923 mm->locked_vm -= vma_pages(tmp);
1924 munlock_vma_pages_all(tmp);
1926 tmp = tmp->vm_next;
1931 * Remove the vma's, and unmap the actual pages
1933 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1934 unmap_region(mm, vma, prev, start, end);
1936 /* Fix up all other VM information */
1937 remove_vma_list(mm, vma);
1939 return 0;
1942 EXPORT_SYMBOL(do_munmap);
1944 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1946 int ret;
1947 struct mm_struct *mm = current->mm;
1949 profile_munmap(addr);
1951 down_write(&mm->mmap_sem);
1952 ret = do_munmap(mm, addr, len);
1953 up_write(&mm->mmap_sem);
1954 return ret;
1957 static inline void verify_mm_writelocked(struct mm_struct *mm)
1959 #ifdef CONFIG_DEBUG_VM
1960 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1961 WARN_ON(1);
1962 up_read(&mm->mmap_sem);
1964 #endif
1968 * this is really a simplified "do_mmap". it only handles
1969 * anonymous maps. eventually we may be able to do some
1970 * brk-specific accounting here.
1972 unsigned long do_brk(unsigned long addr, unsigned long len)
1974 struct mm_struct * mm = current->mm;
1975 struct vm_area_struct * vma, * prev;
1976 unsigned long flags;
1977 struct rb_node ** rb_link, * rb_parent;
1978 pgoff_t pgoff = addr >> PAGE_SHIFT;
1979 int error;
1981 len = PAGE_ALIGN(len);
1982 if (!len)
1983 return addr;
1985 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1986 return -EINVAL;
1988 if (is_hugepage_only_range(mm, addr, len))
1989 return -EINVAL;
1991 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1992 if (error)
1993 return error;
1995 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1997 error = arch_mmap_check(addr, len, flags);
1998 if (error)
1999 return error;
2002 * mlock MCL_FUTURE?
2004 if (mm->def_flags & VM_LOCKED) {
2005 unsigned long locked, lock_limit;
2006 locked = len >> PAGE_SHIFT;
2007 locked += mm->locked_vm;
2008 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2009 lock_limit >>= PAGE_SHIFT;
2010 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2011 return -EAGAIN;
2015 * mm->mmap_sem is required to protect against another thread
2016 * changing the mappings in case we sleep.
2018 verify_mm_writelocked(mm);
2021 * Clear old maps. this also does some error checking for us
2023 munmap_back:
2024 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2025 if (vma && vma->vm_start < addr + len) {
2026 if (do_munmap(mm, addr, len))
2027 return -ENOMEM;
2028 goto munmap_back;
2031 /* Check against address space limits *after* clearing old maps... */
2032 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2033 return -ENOMEM;
2035 if (mm->map_count > sysctl_max_map_count)
2036 return -ENOMEM;
2038 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2039 return -ENOMEM;
2041 /* Can we just expand an old private anonymous mapping? */
2042 vma = vma_merge(mm, prev, addr, addr + len, flags,
2043 NULL, NULL, pgoff, NULL);
2044 if (vma)
2045 goto out;
2048 * create a vma struct for an anonymous mapping
2050 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2051 if (!vma) {
2052 vm_unacct_memory(len >> PAGE_SHIFT);
2053 return -ENOMEM;
2056 vma->vm_mm = mm;
2057 vma->vm_start = addr;
2058 vma->vm_end = addr + len;
2059 vma->vm_pgoff = pgoff;
2060 vma->vm_flags = flags;
2061 vma->vm_page_prot = vm_get_page_prot(flags);
2062 vma_link(mm, vma, prev, rb_link, rb_parent);
2063 out:
2064 mm->total_vm += len >> PAGE_SHIFT;
2065 if (flags & VM_LOCKED) {
2066 if (!mlock_vma_pages_range(vma, addr, addr + len))
2067 mm->locked_vm += (len >> PAGE_SHIFT);
2069 return addr;
2072 EXPORT_SYMBOL(do_brk);
2074 /* Release all mmaps. */
2075 void exit_mmap(struct mm_struct *mm)
2077 struct mmu_gather *tlb;
2078 struct vm_area_struct *vma;
2079 unsigned long nr_accounted = 0;
2080 unsigned long end;
2082 /* mm's last user has gone, and its about to be pulled down */
2083 mmu_notifier_release(mm);
2085 if (mm->locked_vm) {
2086 vma = mm->mmap;
2087 while (vma) {
2088 if (vma->vm_flags & VM_LOCKED)
2089 munlock_vma_pages_all(vma);
2090 vma = vma->vm_next;
2094 arch_exit_mmap(mm);
2096 vma = mm->mmap;
2097 if (!vma) /* Can happen if dup_mmap() received an OOM */
2098 return;
2100 lru_add_drain();
2101 flush_cache_mm(mm);
2102 tlb = tlb_gather_mmu(mm, 1);
2103 /* update_hiwater_rss(mm) here? but nobody should be looking */
2104 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2105 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2106 vm_unacct_memory(nr_accounted);
2107 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2108 tlb_finish_mmu(tlb, 0, end);
2111 * Walk the list again, actually closing and freeing it,
2112 * with preemption enabled, without holding any MM locks.
2114 while (vma)
2115 vma = remove_vma(vma);
2117 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2120 /* Insert vm structure into process list sorted by address
2121 * and into the inode's i_mmap tree. If vm_file is non-NULL
2122 * then i_mmap_lock is taken here.
2124 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2126 struct vm_area_struct * __vma, * prev;
2127 struct rb_node ** rb_link, * rb_parent;
2130 * The vm_pgoff of a purely anonymous vma should be irrelevant
2131 * until its first write fault, when page's anon_vma and index
2132 * are set. But now set the vm_pgoff it will almost certainly
2133 * end up with (unless mremap moves it elsewhere before that
2134 * first wfault), so /proc/pid/maps tells a consistent story.
2136 * By setting it to reflect the virtual start address of the
2137 * vma, merges and splits can happen in a seamless way, just
2138 * using the existing file pgoff checks and manipulations.
2139 * Similarly in do_mmap_pgoff and in do_brk.
2141 if (!vma->vm_file) {
2142 BUG_ON(vma->anon_vma);
2143 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2145 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2146 if (__vma && __vma->vm_start < vma->vm_end)
2147 return -ENOMEM;
2148 if ((vma->vm_flags & VM_ACCOUNT) &&
2149 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2150 return -ENOMEM;
2151 vma_link(mm, vma, prev, rb_link, rb_parent);
2152 return 0;
2156 * Copy the vma structure to a new location in the same mm,
2157 * prior to moving page table entries, to effect an mremap move.
2159 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2160 unsigned long addr, unsigned long len, pgoff_t pgoff)
2162 struct vm_area_struct *vma = *vmap;
2163 unsigned long vma_start = vma->vm_start;
2164 struct mm_struct *mm = vma->vm_mm;
2165 struct vm_area_struct *new_vma, *prev;
2166 struct rb_node **rb_link, *rb_parent;
2167 struct mempolicy *pol;
2170 * If anonymous vma has not yet been faulted, update new pgoff
2171 * to match new location, to increase its chance of merging.
2173 if (!vma->vm_file && !vma->anon_vma)
2174 pgoff = addr >> PAGE_SHIFT;
2176 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2177 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2178 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2179 if (new_vma) {
2181 * Source vma may have been merged into new_vma
2183 if (vma_start >= new_vma->vm_start &&
2184 vma_start < new_vma->vm_end)
2185 *vmap = new_vma;
2186 } else {
2187 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2188 if (new_vma) {
2189 *new_vma = *vma;
2190 pol = mpol_dup(vma_policy(vma));
2191 if (IS_ERR(pol)) {
2192 kmem_cache_free(vm_area_cachep, new_vma);
2193 return NULL;
2195 vma_set_policy(new_vma, pol);
2196 new_vma->vm_start = addr;
2197 new_vma->vm_end = addr + len;
2198 new_vma->vm_pgoff = pgoff;
2199 if (new_vma->vm_file) {
2200 get_file(new_vma->vm_file);
2201 if (vma->vm_flags & VM_EXECUTABLE)
2202 added_exe_file_vma(mm);
2204 if (new_vma->vm_ops && new_vma->vm_ops->open)
2205 new_vma->vm_ops->open(new_vma);
2206 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2209 return new_vma;
2213 * Return true if the calling process may expand its vm space by the passed
2214 * number of pages
2216 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2218 unsigned long cur = mm->total_vm; /* pages */
2219 unsigned long lim;
2221 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2223 if (cur + npages > lim)
2224 return 0;
2225 return 1;
2229 static int special_mapping_fault(struct vm_area_struct *vma,
2230 struct vm_fault *vmf)
2232 pgoff_t pgoff;
2233 struct page **pages;
2236 * special mappings have no vm_file, and in that case, the mm
2237 * uses vm_pgoff internally. So we have to subtract it from here.
2238 * We are allowed to do this because we are the mm; do not copy
2239 * this code into drivers!
2241 pgoff = vmf->pgoff - vma->vm_pgoff;
2243 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2244 pgoff--;
2246 if (*pages) {
2247 struct page *page = *pages;
2248 get_page(page);
2249 vmf->page = page;
2250 return 0;
2253 return VM_FAULT_SIGBUS;
2257 * Having a close hook prevents vma merging regardless of flags.
2259 static void special_mapping_close(struct vm_area_struct *vma)
2263 static struct vm_operations_struct special_mapping_vmops = {
2264 .close = special_mapping_close,
2265 .fault = special_mapping_fault,
2269 * Called with mm->mmap_sem held for writing.
2270 * Insert a new vma covering the given region, with the given flags.
2271 * Its pages are supplied by the given array of struct page *.
2272 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2273 * The region past the last page supplied will always produce SIGBUS.
2274 * The array pointer and the pages it points to are assumed to stay alive
2275 * for as long as this mapping might exist.
2277 int install_special_mapping(struct mm_struct *mm,
2278 unsigned long addr, unsigned long len,
2279 unsigned long vm_flags, struct page **pages)
2281 struct vm_area_struct *vma;
2283 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2284 if (unlikely(vma == NULL))
2285 return -ENOMEM;
2287 vma->vm_mm = mm;
2288 vma->vm_start = addr;
2289 vma->vm_end = addr + len;
2291 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2292 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2294 vma->vm_ops = &special_mapping_vmops;
2295 vma->vm_private_data = pages;
2297 if (unlikely(insert_vm_struct(mm, vma))) {
2298 kmem_cache_free(vm_area_cachep, vma);
2299 return -ENOMEM;
2302 mm->total_vm += len >> PAGE_SHIFT;
2304 return 0;
2307 static DEFINE_MUTEX(mm_all_locks_mutex);
2309 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2311 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2313 * The LSB of head.next can't change from under us
2314 * because we hold the mm_all_locks_mutex.
2316 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2318 * We can safely modify head.next after taking the
2319 * anon_vma->lock. If some other vma in this mm shares
2320 * the same anon_vma we won't take it again.
2322 * No need of atomic instructions here, head.next
2323 * can't change from under us thanks to the
2324 * anon_vma->lock.
2326 if (__test_and_set_bit(0, (unsigned long *)
2327 &anon_vma->head.next))
2328 BUG();
2332 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2334 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2336 * AS_MM_ALL_LOCKS can't change from under us because
2337 * we hold the mm_all_locks_mutex.
2339 * Operations on ->flags have to be atomic because
2340 * even if AS_MM_ALL_LOCKS is stable thanks to the
2341 * mm_all_locks_mutex, there may be other cpus
2342 * changing other bitflags in parallel to us.
2344 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2345 BUG();
2346 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2351 * This operation locks against the VM for all pte/vma/mm related
2352 * operations that could ever happen on a certain mm. This includes
2353 * vmtruncate, try_to_unmap, and all page faults.
2355 * The caller must take the mmap_sem in write mode before calling
2356 * mm_take_all_locks(). The caller isn't allowed to release the
2357 * mmap_sem until mm_drop_all_locks() returns.
2359 * mmap_sem in write mode is required in order to block all operations
2360 * that could modify pagetables and free pages without need of
2361 * altering the vma layout (for example populate_range() with
2362 * nonlinear vmas). It's also needed in write mode to avoid new
2363 * anon_vmas to be associated with existing vmas.
2365 * A single task can't take more than one mm_take_all_locks() in a row
2366 * or it would deadlock.
2368 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2369 * mapping->flags avoid to take the same lock twice, if more than one
2370 * vma in this mm is backed by the same anon_vma or address_space.
2372 * We can take all the locks in random order because the VM code
2373 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2374 * takes more than one of them in a row. Secondly we're protected
2375 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2377 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2378 * that may have to take thousand of locks.
2380 * mm_take_all_locks() can fail if it's interrupted by signals.
2382 int mm_take_all_locks(struct mm_struct *mm)
2384 struct vm_area_struct *vma;
2385 int ret = -EINTR;
2387 BUG_ON(down_read_trylock(&mm->mmap_sem));
2389 mutex_lock(&mm_all_locks_mutex);
2391 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2392 if (signal_pending(current))
2393 goto out_unlock;
2394 if (vma->vm_file && vma->vm_file->f_mapping)
2395 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2398 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2399 if (signal_pending(current))
2400 goto out_unlock;
2401 if (vma->anon_vma)
2402 vm_lock_anon_vma(mm, vma->anon_vma);
2405 ret = 0;
2407 out_unlock:
2408 if (ret)
2409 mm_drop_all_locks(mm);
2411 return ret;
2414 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2416 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2418 * The LSB of head.next can't change to 0 from under
2419 * us because we hold the mm_all_locks_mutex.
2421 * We must however clear the bitflag before unlocking
2422 * the vma so the users using the anon_vma->head will
2423 * never see our bitflag.
2425 * No need of atomic instructions here, head.next
2426 * can't change from under us until we release the
2427 * anon_vma->lock.
2429 if (!__test_and_clear_bit(0, (unsigned long *)
2430 &anon_vma->head.next))
2431 BUG();
2432 spin_unlock(&anon_vma->lock);
2436 static void vm_unlock_mapping(struct address_space *mapping)
2438 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2440 * AS_MM_ALL_LOCKS can't change to 0 from under us
2441 * because we hold the mm_all_locks_mutex.
2443 spin_unlock(&mapping->i_mmap_lock);
2444 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2445 &mapping->flags))
2446 BUG();
2451 * The mmap_sem cannot be released by the caller until
2452 * mm_drop_all_locks() returns.
2454 void mm_drop_all_locks(struct mm_struct *mm)
2456 struct vm_area_struct *vma;
2458 BUG_ON(down_read_trylock(&mm->mmap_sem));
2459 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2461 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2462 if (vma->anon_vma)
2463 vm_unlock_anon_vma(vma->anon_vma);
2464 if (vma->vm_file && vma->vm_file->f_mapping)
2465 vm_unlock_mapping(vma->vm_file->f_mapping);
2468 mutex_unlock(&mm_all_locks_mutex);
2472 * initialise the VMA slab
2474 void __init mmap_init(void)
2476 int ret;
2478 ret = percpu_counter_init(&vm_committed_as, 0);
2479 VM_BUG_ON(ret);
2480 vm_area_cachep = kmem_cache_create("vm_area_struct",
2481 sizeof(struct vm_area_struct), 0,
2482 SLAB_PANIC, NULL);