USB: add new routine for checking port-resume type
[linux-2.6/mini2440.git] / include / asm-arm / cacheflush.h
blob70b0fe724b62686a3485b66e747b46300117d8ec
1 /*
2 * linux/include/asm-arm/cacheflush.h
4 * Copyright (C) 1999-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
13 #include <linux/sched.h>
14 #include <linux/mm.h>
16 #include <asm/glue.h>
17 #include <asm/shmparam.h>
19 #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
22 * Cache Model
23 * ===========
25 #undef _CACHE
26 #undef MULTI_CACHE
28 #if defined(CONFIG_CPU_CACHE_V3)
29 # ifdef _CACHE
30 # define MULTI_CACHE 1
31 # else
32 # define _CACHE v3
33 # endif
34 #endif
36 #if defined(CONFIG_CPU_CACHE_V4)
37 # ifdef _CACHE
38 # define MULTI_CACHE 1
39 # else
40 # define _CACHE v4
41 # endif
42 #endif
44 #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
45 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
46 # define MULTI_CACHE 1
47 #endif
49 #if defined(CONFIG_CPU_ARM926T)
50 # ifdef _CACHE
51 # define MULTI_CACHE 1
52 # else
53 # define _CACHE arm926
54 # endif
55 #endif
57 #if defined(CONFIG_CPU_ARM940T)
58 # ifdef _CACHE
59 # define MULTI_CACHE 1
60 # else
61 # define _CACHE arm940
62 # endif
63 #endif
65 #if defined(CONFIG_CPU_ARM946E)
66 # ifdef _CACHE
67 # define MULTI_CACHE 1
68 # else
69 # define _CACHE arm946
70 # endif
71 #endif
73 #if defined(CONFIG_CPU_CACHE_V4WB)
74 # ifdef _CACHE
75 # define MULTI_CACHE 1
76 # else
77 # define _CACHE v4wb
78 # endif
79 #endif
81 #if defined(CONFIG_CPU_XSCALE)
82 # ifdef _CACHE
83 # define MULTI_CACHE 1
84 # else
85 # define _CACHE xscale
86 # endif
87 #endif
89 #if defined(CONFIG_CPU_XSC3)
90 # ifdef _CACHE
91 # define MULTI_CACHE 1
92 # else
93 # define _CACHE xsc3
94 # endif
95 #endif
97 #if defined(CONFIG_CPU_FEROCEON)
98 # define MULTI_CACHE 1
99 #endif
101 #if defined(CONFIG_CPU_V6)
102 //# ifdef _CACHE
103 # define MULTI_CACHE 1
104 //# else
105 //# define _CACHE v6
106 //# endif
107 #endif
109 #if defined(CONFIG_CPU_V7)
110 //# ifdef _CACHE
111 # define MULTI_CACHE 1
112 //# else
113 //# define _CACHE v7
114 //# endif
115 #endif
117 #if !defined(_CACHE) && !defined(MULTI_CACHE)
118 #error Unknown cache maintainence model
119 #endif
122 * This flag is used to indicate that the page pointed to by a pte
123 * is dirty and requires cleaning before returning it to the user.
125 #define PG_dcache_dirty PG_arch_1
128 * MM Cache Management
129 * ===================
131 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
132 * implement these methods.
134 * Start addresses are inclusive and end addresses are exclusive;
135 * start addresses should be rounded down, end addresses up.
137 * See Documentation/cachetlb.txt for more information.
138 * Please note that the implementation of these, and the required
139 * effects are cache-type (VIVT/VIPT/PIPT) specific.
141 * flush_cache_kern_all()
143 * Unconditionally clean and invalidate the entire cache.
145 * flush_cache_user_mm(mm)
147 * Clean and invalidate all user space cache entries
148 * before a change of page tables.
150 * flush_cache_user_range(start, end, flags)
152 * Clean and invalidate a range of cache entries in the
153 * specified address space before a change of page tables.
154 * - start - user start address (inclusive, page aligned)
155 * - end - user end address (exclusive, page aligned)
156 * - flags - vma->vm_flags field
158 * coherent_kern_range(start, end)
160 * Ensure coherency between the Icache and the Dcache in the
161 * region described by start, end. If you have non-snooping
162 * Harvard caches, you need to implement this function.
163 * - start - virtual start address
164 * - end - virtual end address
166 * DMA Cache Coherency
167 * ===================
169 * dma_inv_range(start, end)
171 * Invalidate (discard) the specified virtual address range.
172 * May not write back any entries. If 'start' or 'end'
173 * are not cache line aligned, those lines must be written
174 * back.
175 * - start - virtual start address
176 * - end - virtual end address
178 * dma_clean_range(start, end)
180 * Clean (write back) the specified virtual address range.
181 * - start - virtual start address
182 * - end - virtual end address
184 * dma_flush_range(start, end)
186 * Clean and invalidate the specified virtual address range.
187 * - start - virtual start address
188 * - end - virtual end address
191 struct cpu_cache_fns {
192 void (*flush_kern_all)(void);
193 void (*flush_user_all)(void);
194 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
196 void (*coherent_kern_range)(unsigned long, unsigned long);
197 void (*coherent_user_range)(unsigned long, unsigned long);
198 void (*flush_kern_dcache_page)(void *);
200 void (*dma_inv_range)(const void *, const void *);
201 void (*dma_clean_range)(const void *, const void *);
202 void (*dma_flush_range)(const void *, const void *);
205 struct outer_cache_fns {
206 void (*inv_range)(unsigned long, unsigned long);
207 void (*clean_range)(unsigned long, unsigned long);
208 void (*flush_range)(unsigned long, unsigned long);
212 * Select the calling method
214 #ifdef MULTI_CACHE
216 extern struct cpu_cache_fns cpu_cache;
218 #define __cpuc_flush_kern_all cpu_cache.flush_kern_all
219 #define __cpuc_flush_user_all cpu_cache.flush_user_all
220 #define __cpuc_flush_user_range cpu_cache.flush_user_range
221 #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
222 #define __cpuc_coherent_user_range cpu_cache.coherent_user_range
223 #define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
226 * These are private to the dma-mapping API. Do not use directly.
227 * Their sole purpose is to ensure that data held in the cache
228 * is visible to DMA, or data written by DMA to system memory is
229 * visible to the CPU.
231 #define dmac_inv_range cpu_cache.dma_inv_range
232 #define dmac_clean_range cpu_cache.dma_clean_range
233 #define dmac_flush_range cpu_cache.dma_flush_range
235 #else
237 #define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
238 #define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
239 #define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
240 #define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
241 #define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
242 #define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
244 extern void __cpuc_flush_kern_all(void);
245 extern void __cpuc_flush_user_all(void);
246 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
247 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
248 extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
249 extern void __cpuc_flush_dcache_page(void *);
252 * These are private to the dma-mapping API. Do not use directly.
253 * Their sole purpose is to ensure that data held in the cache
254 * is visible to DMA, or data written by DMA to system memory is
255 * visible to the CPU.
257 #define dmac_inv_range __glue(_CACHE,_dma_inv_range)
258 #define dmac_clean_range __glue(_CACHE,_dma_clean_range)
259 #define dmac_flush_range __glue(_CACHE,_dma_flush_range)
261 extern void dmac_inv_range(const void *, const void *);
262 extern void dmac_clean_range(const void *, const void *);
263 extern void dmac_flush_range(const void *, const void *);
265 #endif
267 #ifdef CONFIG_OUTER_CACHE
269 extern struct outer_cache_fns outer_cache;
271 static inline void outer_inv_range(unsigned long start, unsigned long end)
273 if (outer_cache.inv_range)
274 outer_cache.inv_range(start, end);
276 static inline void outer_clean_range(unsigned long start, unsigned long end)
278 if (outer_cache.clean_range)
279 outer_cache.clean_range(start, end);
281 static inline void outer_flush_range(unsigned long start, unsigned long end)
283 if (outer_cache.flush_range)
284 outer_cache.flush_range(start, end);
287 #else
289 static inline void outer_inv_range(unsigned long start, unsigned long end)
291 static inline void outer_clean_range(unsigned long start, unsigned long end)
293 static inline void outer_flush_range(unsigned long start, unsigned long end)
296 #endif
299 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
300 * vmalloc, ioremap etc) in kernel space for pages. Since the
301 * direct-mappings of these pages may contain cached data, we need
302 * to do a full cache flush to ensure that writebacks don't corrupt
303 * data placed into these pages via the new mappings.
305 #define flush_cache_vmap(start, end) flush_cache_all()
306 #define flush_cache_vunmap(start, end) flush_cache_all()
309 * Copy user data from/to a page which is mapped into a different
310 * processes address space. Really, we want to allow our "user
311 * space" model to handle this.
313 #define copy_to_user_page(vma, page, vaddr, dst, src, len) \
314 do { \
315 memcpy(dst, src, len); \
316 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\
317 } while (0)
319 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
320 do { \
321 memcpy(dst, src, len); \
322 } while (0)
325 * Convert calls to our calling convention.
327 #define flush_cache_all() __cpuc_flush_kern_all()
328 #ifndef CONFIG_CPU_CACHE_VIPT
329 static inline void flush_cache_mm(struct mm_struct *mm)
331 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
332 __cpuc_flush_user_all();
335 static inline void
336 flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
338 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
339 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
340 vma->vm_flags);
343 static inline void
344 flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
346 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
347 unsigned long addr = user_addr & PAGE_MASK;
348 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
352 static inline void
353 flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
354 unsigned long uaddr, void *kaddr,
355 unsigned long len, int write)
357 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
358 unsigned long addr = (unsigned long)kaddr;
359 __cpuc_coherent_kern_range(addr, addr + len);
362 #else
363 extern void flush_cache_mm(struct mm_struct *mm);
364 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
365 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
366 extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
367 unsigned long uaddr, void *kaddr,
368 unsigned long len, int write);
369 #endif
371 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
374 * flush_cache_user_range is used when we want to ensure that the
375 * Harvard caches are synchronised for the user space address range.
376 * This is used for the ARM private sys_cacheflush system call.
378 #define flush_cache_user_range(vma,start,end) \
379 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
382 * Perform necessary cache operations to ensure that data previously
383 * stored within this range of addresses can be executed by the CPU.
385 #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
388 * Perform necessary cache operations to ensure that the TLB will
389 * see data written in the specified area.
391 #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
394 * flush_dcache_page is used when the kernel has written to the page
395 * cache page at virtual address page->virtual.
397 * If this page isn't mapped (ie, page_mapping == NULL), or it might
398 * have userspace mappings, then we _must_ always clean + invalidate
399 * the dcache entries associated with the kernel mapping.
401 * Otherwise we can defer the operation, and clean the cache when we are
402 * about to change to user space. This is the same method as used on SPARC64.
403 * See update_mmu_cache for the user space part.
405 extern void flush_dcache_page(struct page *);
407 extern void __flush_dcache_page(struct address_space *mapping, struct page *page);
409 static inline void __flush_icache_all(void)
411 asm("mcr p15, 0, %0, c7, c5, 0 @ invalidate I-cache\n"
413 : "r" (0));
416 #define ARCH_HAS_FLUSH_ANON_PAGE
417 static inline void flush_anon_page(struct vm_area_struct *vma,
418 struct page *page, unsigned long vmaddr)
420 extern void __flush_anon_page(struct vm_area_struct *vma,
421 struct page *, unsigned long);
422 if (PageAnon(page))
423 __flush_anon_page(vma, page, vmaddr);
426 #define flush_dcache_mmap_lock(mapping) \
427 write_lock_irq(&(mapping)->tree_lock)
428 #define flush_dcache_mmap_unlock(mapping) \
429 write_unlock_irq(&(mapping)->tree_lock)
431 #define flush_icache_user_range(vma,page,addr,len) \
432 flush_dcache_page(page)
435 * We don't appear to need to do anything here. In fact, if we did, we'd
436 * duplicate cache flushing elsewhere performed by flush_dcache_page().
438 #define flush_icache_page(vma,page) do { } while (0)
440 static inline void flush_ioremap_region(unsigned long phys, void __iomem *virt,
441 unsigned offset, size_t size)
443 const void *start = (void __force *)virt + offset;
444 dmac_inv_range(start, start + size);
447 #define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
448 #define __cacheid_type_v7(val) ((val & (7 << 29)) == (4 << 29))
450 #define __cacheid_vivt_prev7(val) ((val & (15 << 25)) != (14 << 25))
451 #define __cacheid_vipt_prev7(val) ((val & (15 << 25)) == (14 << 25))
452 #define __cacheid_vipt_nonaliasing_prev7(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
453 #define __cacheid_vipt_aliasing_prev7(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
455 #define __cacheid_vivt(val) (__cacheid_type_v7(val) ? 0 : __cacheid_vivt_prev7(val))
456 #define __cacheid_vipt(val) (__cacheid_type_v7(val) ? 1 : __cacheid_vipt_prev7(val))
457 #define __cacheid_vipt_nonaliasing(val) (__cacheid_type_v7(val) ? 1 : __cacheid_vipt_nonaliasing_prev7(val))
458 #define __cacheid_vipt_aliasing(val) (__cacheid_type_v7(val) ? 0 : __cacheid_vipt_aliasing_prev7(val))
459 #define __cacheid_vivt_asid_tagged_instr(val) (__cacheid_type_v7(val) ? ((val & (3 << 14)) == (1 << 14)) : 0)
461 #if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
463 #define cache_is_vivt() 1
464 #define cache_is_vipt() 0
465 #define cache_is_vipt_nonaliasing() 0
466 #define cache_is_vipt_aliasing() 0
467 #define icache_is_vivt_asid_tagged() 0
469 #elif defined(CONFIG_CPU_CACHE_VIPT)
471 #define cache_is_vivt() 0
472 #define cache_is_vipt() 1
473 #define cache_is_vipt_nonaliasing() \
474 ({ \
475 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
476 __cacheid_vipt_nonaliasing(__val); \
479 #define cache_is_vipt_aliasing() \
480 ({ \
481 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
482 __cacheid_vipt_aliasing(__val); \
485 #define icache_is_vivt_asid_tagged() \
486 ({ \
487 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
488 __cacheid_vivt_asid_tagged_instr(__val); \
491 #else
493 #define cache_is_vivt() \
494 ({ \
495 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
496 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \
499 #define cache_is_vipt() \
500 ({ \
501 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
502 __cacheid_present(__val) && __cacheid_vipt(__val); \
505 #define cache_is_vipt_nonaliasing() \
506 ({ \
507 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
508 __cacheid_present(__val) && \
509 __cacheid_vipt_nonaliasing(__val); \
512 #define cache_is_vipt_aliasing() \
513 ({ \
514 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
515 __cacheid_present(__val) && \
516 __cacheid_vipt_aliasing(__val); \
519 #define icache_is_vivt_asid_tagged() \
520 ({ \
521 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
522 __cacheid_present(__val) && \
523 __cacheid_vivt_asid_tagged_instr(__val); \
526 #endif
528 #endif