2 * Copyright (C) International Business Machines Corp., 2000-2004
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * jfs_dtree.c: directory B+-tree manager
22 * B+-tree with variable length key directory:
24 * each directory page is structured as an array of 32-byte
25 * directory entry slots initialized as a freelist
26 * to avoid search/compaction of free space at insertion.
27 * when an entry is inserted, a number of slots are allocated
28 * from the freelist as required to store variable length data
29 * of the entry; when the entry is deleted, slots of the entry
30 * are returned to freelist.
32 * leaf entry stores full name as key and file serial number
33 * (aka inode number) as data.
34 * internal/router entry stores sufffix compressed name
35 * as key and simple extent descriptor as data.
37 * each directory page maintains a sorted entry index table
38 * which stores the start slot index of sorted entries
39 * to allow binary search on the table.
41 * directory starts as a root/leaf page in on-disk inode
43 * when it becomes full, it starts a leaf of a external extent
44 * of length of 1 block. each time the first leaf becomes full,
45 * it is extended rather than split (its size is doubled),
46 * until its length becoms 4 KBytes, from then the extent is split
47 * with new 4 Kbyte extent when it becomes full
48 * to reduce external fragmentation of small directories.
50 * blah, blah, blah, for linear scan of directory in pieces by
54 * case-insensitive directory file system
56 * names are stored in case-sensitive way in leaf entry.
57 * but stored, searched and compared in case-insensitive (uppercase) order
58 * (i.e., both search key and entry key are folded for search/compare):
59 * (note that case-sensitive order is BROKEN in storage, e.g.,
60 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
62 * entries which folds to the same key makes up a equivalent class
63 * whose members are stored as contiguous cluster (may cross page boundary)
64 * but whose order is arbitrary and acts as duplicate, e.g.,
67 * once match is found at leaf, requires scan forward/backward
68 * either for, in case-insensitive search, duplicate
69 * or for, in case-sensitive search, for exact match
71 * router entry must be created/stored in case-insensitive way
73 * (right most key of left page and left most key of right page
74 * are folded, and its suffix compression is propagated as router
76 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77 * should be made the router key for the split)
79 * case-insensitive search:
83 * case-insensitive search of B-tree:
84 * for internal entry, router key is already folded;
85 * for leaf entry, fold the entry key before comparison.
87 * if (leaf entry case-insensitive match found)
88 * if (next entry satisfies case-insensitive match)
90 * if (prev entry satisfies case-insensitive match)
97 * target directory inode lock is being held on entry/exit
98 * of all main directory service routines.
100 * log based recovery:
103 #include <linux/fs.h>
104 #include <linux/quotaops.h>
105 #include "jfs_incore.h"
106 #include "jfs_superblock.h"
107 #include "jfs_filsys.h"
108 #include "jfs_metapage.h"
109 #include "jfs_dmap.h"
110 #include "jfs_unicode.h"
111 #include "jfs_debug.h"
113 /* dtree split parameter */
118 struct component_name
*key
;
120 struct pxdlist
*pxdlist
;
123 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
125 /* get page buffer for specified block address */
126 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\
128 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\
131 if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\
132 ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\
135 jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\
142 /* for consistency */
143 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
145 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
146 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
151 static int dtSplitUp(tid_t tid
, struct inode
*ip
,
152 struct dtsplit
* split
, struct btstack
* btstack
);
154 static int dtSplitPage(tid_t tid
, struct inode
*ip
, struct dtsplit
* split
,
155 struct metapage
** rmpp
, dtpage_t
** rpp
, pxd_t
* rxdp
);
157 static int dtExtendPage(tid_t tid
, struct inode
*ip
,
158 struct dtsplit
* split
, struct btstack
* btstack
);
160 static int dtSplitRoot(tid_t tid
, struct inode
*ip
,
161 struct dtsplit
* split
, struct metapage
** rmpp
);
163 static int dtDeleteUp(tid_t tid
, struct inode
*ip
, struct metapage
* fmp
,
164 dtpage_t
* fp
, struct btstack
* btstack
);
166 static int dtRelink(tid_t tid
, struct inode
*ip
, dtpage_t
* p
);
168 static int dtReadFirst(struct inode
*ip
, struct btstack
* btstack
);
170 static int dtReadNext(struct inode
*ip
,
171 loff_t
* offset
, struct btstack
* btstack
);
173 static int dtCompare(struct component_name
* key
, dtpage_t
* p
, int si
);
175 static int ciCompare(struct component_name
* key
, dtpage_t
* p
, int si
,
178 static void dtGetKey(dtpage_t
* p
, int i
, struct component_name
* key
,
181 static int ciGetLeafPrefixKey(dtpage_t
* lp
, int li
, dtpage_t
* rp
,
182 int ri
, struct component_name
* key
, int flag
);
184 static void dtInsertEntry(dtpage_t
* p
, int index
, struct component_name
* key
,
185 ddata_t
* data
, struct dt_lock
**);
187 static void dtMoveEntry(dtpage_t
* sp
, int si
, dtpage_t
* dp
,
188 struct dt_lock
** sdtlock
, struct dt_lock
** ddtlock
,
191 static void dtDeleteEntry(dtpage_t
* p
, int fi
, struct dt_lock
** dtlock
);
193 static void dtTruncateEntry(dtpage_t
* p
, int ti
, struct dt_lock
** dtlock
);
195 static void dtLinelockFreelist(dtpage_t
* p
, int m
, struct dt_lock
** dtlock
);
197 #define ciToUpper(c) UniStrupr((c)->name)
202 * Reads a page of a directory's index table.
203 * Having metadata mapped into the directory inode's address space
204 * presents a multitude of problems. We avoid this by mapping to
205 * the absolute address space outside of the *_metapage routines
207 static struct metapage
*read_index_page(struct inode
*inode
, s64 blkno
)
214 rc
= xtLookup(inode
, blkno
, 1, &xflag
, &xaddr
, &xlen
, 1);
215 if (rc
|| (xaddr
== 0))
218 return read_metapage(inode
, xaddr
, PSIZE
, 1);
224 * Same as get_index_page(), but get's a new page without reading
226 static struct metapage
*get_index_page(struct inode
*inode
, s64 blkno
)
233 rc
= xtLookup(inode
, blkno
, 1, &xflag
, &xaddr
, &xlen
, 1);
234 if (rc
|| (xaddr
== 0))
237 return get_metapage(inode
, xaddr
, PSIZE
, 1);
243 * Returns dtree page containing directory table entry for specified
244 * index and pointer to its entry.
246 * mp must be released by caller.
248 static struct dir_table_slot
*find_index(struct inode
*ip
, u32 index
,
249 struct metapage
** mp
, s64
*lblock
)
251 struct jfs_inode_info
*jfs_ip
= JFS_IP(ip
);
255 struct dir_table_slot
*slot
;
256 static int maxWarnings
= 10;
260 jfs_warn("find_entry called with index = %d", index
);
266 if (index
>= jfs_ip
->next_index
) {
267 jfs_warn("find_entry called with index >= next_index");
271 if (jfs_dirtable_inline(ip
)) {
273 * Inline directory table
276 slot
= &jfs_ip
->i_dirtable
[index
- 2];
278 offset
= (index
- 2) * sizeof(struct dir_table_slot
);
279 page_offset
= offset
& (PSIZE
- 1);
280 blkno
= ((offset
+ 1) >> L2PSIZE
) <<
281 JFS_SBI(ip
->i_sb
)->l2nbperpage
;
283 if (*mp
&& (*lblock
!= blkno
)) {
284 release_metapage(*mp
);
289 *mp
= read_index_page(ip
, blkno
);
292 jfs_err("free_index: error reading directory table");
297 (struct dir_table_slot
*) ((char *) (*mp
)->data
+
303 static inline void lock_index(tid_t tid
, struct inode
*ip
, struct metapage
* mp
,
307 struct linelock
*llck
;
310 tlck
= txLock(tid
, ip
, mp
, tlckDATA
);
311 llck
= (struct linelock
*) tlck
->lock
;
313 if (llck
->index
>= llck
->maxcnt
)
314 llck
= txLinelock(llck
);
315 lv
= &llck
->lv
[llck
->index
];
318 * Linelock slot size is twice the size of directory table
319 * slot size. 512 entries per page.
321 lv
->offset
= ((index
- 2) & 511) >> 1;
329 * Adds an entry to the directory index table. This is used to provide
330 * each directory entry with a persistent index in which to resume
331 * directory traversals
333 static u32
add_index(tid_t tid
, struct inode
*ip
, s64 bn
, int slot
)
335 struct super_block
*sb
= ip
->i_sb
;
336 struct jfs_sb_info
*sbi
= JFS_SBI(sb
);
337 struct jfs_inode_info
*jfs_ip
= JFS_IP(ip
);
339 struct dir_table_slot
*dirtab_slot
;
341 struct linelock
*llck
;
349 ASSERT(DO_INDEX(ip
));
351 if (jfs_ip
->next_index
< 2) {
352 jfs_warn("add_index: next_index = %d. Resetting!",
354 jfs_ip
->next_index
= 2;
357 index
= jfs_ip
->next_index
++;
359 if (index
<= MAX_INLINE_DIRTABLE_ENTRY
) {
361 * i_size reflects size of index table, or 8 bytes per entry.
363 ip
->i_size
= (loff_t
) (index
- 1) << 3;
366 * dir table fits inline within inode
368 dirtab_slot
= &jfs_ip
->i_dirtable
[index
-2];
369 dirtab_slot
->flag
= DIR_INDEX_VALID
;
370 dirtab_slot
->slot
= slot
;
371 DTSaddress(dirtab_slot
, bn
);
373 set_cflag(COMMIT_Dirtable
, ip
);
377 if (index
== (MAX_INLINE_DIRTABLE_ENTRY
+ 1)) {
378 struct dir_table_slot temp_table
[12];
381 * It's time to move the inline table to an external
382 * page and begin to build the xtree
384 if (DQUOT_ALLOC_BLOCK(ip
, sbi
->nbperpage
))
386 if (dbAlloc(ip
, 0, sbi
->nbperpage
, &xaddr
)) {
387 DQUOT_FREE_BLOCK(ip
, sbi
->nbperpage
);
392 * Save the table, we're going to overwrite it with the
395 memcpy(temp_table
, &jfs_ip
->i_dirtable
, sizeof(temp_table
));
398 * Initialize empty x-tree
403 * Add the first block to the xtree
405 if (xtInsert(tid
, ip
, 0, 0, sbi
->nbperpage
, &xaddr
, 0)) {
406 /* This really shouldn't fail */
407 jfs_warn("add_index: xtInsert failed!");
408 memcpy(&jfs_ip
->i_dirtable
, temp_table
,
409 sizeof (temp_table
));
410 dbFree(ip
, xaddr
, sbi
->nbperpage
);
411 DQUOT_FREE_BLOCK(ip
, sbi
->nbperpage
);
416 if ((mp
= get_index_page(ip
, 0)) == 0) {
417 jfs_err("add_index: get_metapage failed!");
418 xtTruncate(tid
, ip
, 0, COMMIT_PWMAP
);
419 memcpy(&jfs_ip
->i_dirtable
, temp_table
,
420 sizeof (temp_table
));
423 tlck
= txLock(tid
, ip
, mp
, tlckDATA
);
424 llck
= (struct linelock
*) & tlck
->lock
;
425 ASSERT(llck
->index
== 0);
429 lv
->length
= 6; /* tlckDATA slot size is 16 bytes */
432 memcpy(mp
->data
, temp_table
, sizeof(temp_table
));
434 mark_metapage_dirty(mp
);
435 release_metapage(mp
);
438 * Logging is now directed by xtree tlocks
440 clear_cflag(COMMIT_Dirtable
, ip
);
443 offset
= (index
- 2) * sizeof(struct dir_table_slot
);
444 page_offset
= offset
& (PSIZE
- 1);
445 blkno
= ((offset
+ 1) >> L2PSIZE
) << sbi
->l2nbperpage
;
446 if (page_offset
== 0) {
448 * This will be the beginning of a new page
451 if (xtInsert(tid
, ip
, 0, blkno
, sbi
->nbperpage
, &xaddr
, 0)) {
452 jfs_warn("add_index: xtInsert failed!");
457 if ((mp
= get_index_page(ip
, blkno
)))
458 memset(mp
->data
, 0, PSIZE
); /* Just looks better */
460 xtTruncate(tid
, ip
, offset
, COMMIT_PWMAP
);
462 mp
= read_index_page(ip
, blkno
);
465 jfs_err("add_index: get/read_metapage failed!");
469 lock_index(tid
, ip
, mp
, index
);
472 (struct dir_table_slot
*) ((char *) mp
->data
+ page_offset
);
473 dirtab_slot
->flag
= DIR_INDEX_VALID
;
474 dirtab_slot
->slot
= slot
;
475 DTSaddress(dirtab_slot
, bn
);
477 mark_metapage_dirty(mp
);
478 release_metapage(mp
);
484 jfs_ip
->next_index
--;
492 * Marks an entry to the directory index table as free.
494 static void free_index(tid_t tid
, struct inode
*ip
, u32 index
, u32 next
)
496 struct dir_table_slot
*dirtab_slot
;
498 struct metapage
*mp
= NULL
;
500 dirtab_slot
= find_index(ip
, index
, &mp
, &lblock
);
502 if (dirtab_slot
== 0)
505 dirtab_slot
->flag
= DIR_INDEX_FREE
;
506 dirtab_slot
->slot
= dirtab_slot
->addr1
= 0;
507 dirtab_slot
->addr2
= cpu_to_le32(next
);
510 lock_index(tid
, ip
, mp
, index
);
511 mark_metapage_dirty(mp
);
512 release_metapage(mp
);
514 set_cflag(COMMIT_Dirtable
, ip
);
520 * Changes an entry in the directory index table
522 static void modify_index(tid_t tid
, struct inode
*ip
, u32 index
, s64 bn
,
523 int slot
, struct metapage
** mp
, u64
*lblock
)
525 struct dir_table_slot
*dirtab_slot
;
527 dirtab_slot
= find_index(ip
, index
, mp
, lblock
);
529 if (dirtab_slot
== 0)
532 DTSaddress(dirtab_slot
, bn
);
533 dirtab_slot
->slot
= slot
;
536 lock_index(tid
, ip
, *mp
, index
);
537 mark_metapage_dirty(*mp
);
539 set_cflag(COMMIT_Dirtable
, ip
);
545 * reads a directory table slot
547 static int read_index(struct inode
*ip
, u32 index
,
548 struct dir_table_slot
* dirtab_slot
)
551 struct metapage
*mp
= NULL
;
552 struct dir_table_slot
*slot
;
554 slot
= find_index(ip
, index
, &mp
, &lblock
);
559 memcpy(dirtab_slot
, slot
, sizeof(struct dir_table_slot
));
562 release_metapage(mp
);
571 * Search for the entry with specified key
575 * return: 0 - search result on stack, leaf page pinned;
578 int dtSearch(struct inode
*ip
, struct component_name
* key
, ino_t
* data
,
579 struct btstack
* btstack
, int flag
)
582 int cmp
= 1; /* init for empty page */
587 int base
, index
, lim
;
588 struct btframe
*btsp
;
590 int psize
= 288; /* initial in-line directory */
592 struct component_name ciKey
;
593 struct super_block
*sb
= ip
->i_sb
;
596 (wchar_t *) kmalloc((JFS_NAME_MAX
+ 1) * sizeof(wchar_t),
598 if (ciKey
.name
== 0) {
604 /* uppercase search key for c-i directory */
605 UniStrcpy(ciKey
.name
, key
->name
);
606 ciKey
.namlen
= key
->namlen
;
608 /* only uppercase if case-insensitive support is on */
609 if ((JFS_SBI(sb
)->mntflag
& JFS_OS2
) == JFS_OS2
) {
612 BT_CLR(btstack
); /* reset stack */
614 /* init level count for max pages to split */
618 * search down tree from root:
620 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
621 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
623 * if entry with search key K is not found
624 * internal page search find the entry with largest key Ki
625 * less than K which point to the child page to search;
626 * leaf page search find the entry with smallest key Kj
627 * greater than K so that the returned index is the position of
628 * the entry to be shifted right for insertion of new entry.
629 * for empty tree, search key is greater than any key of the tree.
631 * by convention, root bn = 0.
634 /* get/pin the page to search */
635 DT_GETPAGE(ip
, bn
, mp
, psize
, p
, rc
);
639 /* get sorted entry table of the page */
640 stbl
= DT_GETSTBL(p
);
643 * binary search with search key K on the current page.
645 for (base
= 0, lim
= p
->header
.nextindex
; lim
; lim
>>= 1) {
646 index
= base
+ (lim
>> 1);
648 if (p
->header
.flag
& BT_LEAF
) {
649 /* uppercase leaf name to compare */
651 ciCompare(&ciKey
, p
, stbl
[index
],
652 JFS_SBI(sb
)->mntflag
);
654 /* router key is in uppercase */
656 cmp
= dtCompare(&ciKey
, p
, stbl
[index
]);
664 /* search hit - leaf page:
665 * return the entry found
667 if (p
->header
.flag
& BT_LEAF
) {
668 inumber
= le32_to_cpu(
669 ((struct ldtentry
*) & p
->slot
[stbl
[index
]])->inumber
);
672 * search for JFS_LOOKUP
674 if (flag
== JFS_LOOKUP
) {
681 * search for JFS_CREATE
683 if (flag
== JFS_CREATE
) {
690 * search for JFS_REMOVE or JFS_RENAME
692 if ((flag
== JFS_REMOVE
||
693 flag
== JFS_RENAME
) &&
700 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
702 /* save search result */
713 /* search hit - internal page:
714 * descend/search its child page
728 * base is the smallest index with key (Kj) greater than
729 * search key (K) and may be zero or (maxindex + 1) index.
732 * search miss - leaf page
734 * return location of entry (base) where new entry with
735 * search key K is to be inserted.
737 if (p
->header
.flag
& BT_LEAF
) {
739 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
741 if (flag
== JFS_LOOKUP
|| flag
== JFS_REMOVE
||
742 flag
== JFS_RENAME
) {
748 * search for JFS_CREATE|JFS_FINDDIR:
763 * search miss - internal page
765 * if base is non-zero, decrement base by one to get the parent
766 * entry of the child page to search.
768 index
= base
? base
- 1 : base
;
771 * go down to child page
774 /* update max. number of pages to split */
775 if (BT_STACK_FULL(btstack
)) {
776 /* Something's corrupted, mark filesytem dirty so
777 * chkdsk will fix it.
779 jfs_error(sb
, "stack overrun in dtSearch!");
780 BT_STACK_DUMP(btstack
);
786 /* push (bn, index) of the parent page/entry */
787 BT_PUSH(btstack
, bn
, index
);
789 /* get the child page block number */
790 pxd
= (pxd_t
*) & p
->slot
[stbl
[index
]];
791 bn
= addressPXD(pxd
);
792 psize
= lengthPXD(pxd
) << JFS_SBI(ip
->i_sb
)->l2bsize
;
794 /* unpin the parent page */
814 * function: insert an entry to directory tree
818 * return: 0 - success;
821 int dtInsert(tid_t tid
, struct inode
*ip
,
822 struct component_name
* name
, ino_t
* fsn
, struct btstack
* btstack
)
825 struct metapage
*mp
; /* meta-page buffer */
826 dtpage_t
*p
; /* base B+-tree index page */
829 struct dtsplit split
; /* split information */
831 struct dt_lock
*dtlck
;
837 * retrieve search result
839 * dtSearch() returns (leaf page pinned, index at which to insert).
840 * n.b. dtSearch() may return index of (maxindex + 1) of
843 DT_GETSEARCH(ip
, btstack
->top
, bn
, mp
, p
, index
);
846 * insert entry for new key
849 if (JFS_IP(ip
)->next_index
== DIREND
) {
853 n
= NDTLEAF(name
->namlen
);
857 n
= NDTLEAF_LEGACY(name
->namlen
);
858 data
.leaf
.ip
= NULL
; /* signifies legacy directory format */
860 data
.leaf
.ino
= *fsn
;
863 * leaf page does not have enough room for new entry:
865 * extend/split the leaf page;
867 * dtSplitUp() will insert the entry and unpin the leaf page.
869 if (n
> p
->header
.freecnt
) {
875 rc
= dtSplitUp(tid
, ip
, &split
, btstack
);
880 * leaf page does have enough room for new entry:
882 * insert the new data entry into the leaf page;
884 BT_MARK_DIRTY(mp
, ip
);
886 * acquire a transaction lock on the leaf page
888 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckENTRY
);
889 dtlck
= (struct dt_lock
*) & tlck
->lock
;
890 ASSERT(dtlck
->index
== 0);
893 /* linelock header */
898 dtInsertEntry(p
, index
, name
, &data
, &dtlck
);
900 /* linelock stbl of non-root leaf page */
901 if (!(p
->header
.flag
& BT_ROOT
)) {
902 if (dtlck
->index
>= dtlck
->maxcnt
)
903 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
904 lv
= & dtlck
->lv
[dtlck
->index
];
905 n
= index
>> L2DTSLOTSIZE
;
906 lv
->offset
= p
->header
.stblindex
+ n
;
908 ((p
->header
.nextindex
- 1) >> L2DTSLOTSIZE
) - n
+ 1;
912 /* unpin the leaf page */
922 * function: propagate insertion bottom up;
926 * return: 0 - success;
928 * leaf page unpinned;
930 static int dtSplitUp(tid_t tid
,
931 struct inode
*ip
, struct dtsplit
* split
, struct btstack
* btstack
)
933 struct jfs_sb_info
*sbi
= JFS_SBI(ip
->i_sb
);
935 struct metapage
*smp
;
936 dtpage_t
*sp
; /* split page */
937 struct metapage
*rmp
;
938 dtpage_t
*rp
; /* new right page split from sp */
939 pxd_t rpxd
; /* new right page extent descriptor */
940 struct metapage
*lmp
;
941 dtpage_t
*lp
; /* left child page */
942 int skip
; /* index of entry of insertion */
943 struct btframe
*parent
; /* parent page entry on traverse stack */
946 struct pxdlist pxdlist
;
948 struct component_name key
= { 0, NULL
};
949 ddata_t
*data
= split
->data
;
951 struct dt_lock
*dtlck
;
954 int quota_allocation
= 0;
958 sp
= DT_PAGE(ip
, smp
);
961 (wchar_t *) kmalloc((JFS_NAME_MAX
+ 2) * sizeof(wchar_t),
972 * The split routines insert the new entry, and
973 * acquire txLock as appropriate.
976 * split root leaf page:
978 if (sp
->header
.flag
& BT_ROOT
) {
980 * allocate a single extent child page
983 n
= sbi
->bsize
>> L2DTSLOTSIZE
;
984 n
-= (n
+ 31) >> L2DTSLOTSIZE
; /* stbl size */
985 n
-= DTROOTMAXSLOT
- sp
->header
.freecnt
; /* header + entries */
986 if (n
<= split
->nslot
)
988 if ((rc
= dbAlloc(ip
, 0, (s64
) xlen
, &xaddr
))) {
995 pxd
= &pxdlist
.pxd
[0];
996 PXDaddress(pxd
, xaddr
);
997 PXDlength(pxd
, xlen
);
998 split
->pxdlist
= &pxdlist
;
999 rc
= dtSplitRoot(tid
, ip
, split
, &rmp
);
1002 dbFree(ip
, xaddr
, xlen
);
1012 * extend first leaf page
1014 * extend the 1st extent if less than buffer page size
1015 * (dtExtendPage() reurns leaf page unpinned)
1017 pxd
= &sp
->header
.self
;
1018 xlen
= lengthPXD(pxd
);
1019 xsize
= xlen
<< sbi
->l2bsize
;
1020 if (xsize
< PSIZE
) {
1021 xaddr
= addressPXD(pxd
);
1022 n
= xsize
>> L2DTSLOTSIZE
;
1023 n
-= (n
+ 31) >> L2DTSLOTSIZE
; /* stbl size */
1024 if ((n
+ sp
->header
.freecnt
) <= split
->nslot
)
1025 n
= xlen
+ (xlen
<< 1);
1029 /* Allocate blocks to quota. */
1030 if (DQUOT_ALLOC_BLOCK(ip
, n
)) {
1034 quota_allocation
+= n
;
1036 if ((rc
= dbReAlloc(sbi
->ipbmap
, xaddr
, (s64
) xlen
,
1040 pxdlist
.maxnpxd
= 1;
1042 pxd
= &pxdlist
.pxd
[0];
1043 PXDaddress(pxd
, nxaddr
)
1044 PXDlength(pxd
, xlen
+ n
);
1045 split
->pxdlist
= &pxdlist
;
1046 if ((rc
= dtExtendPage(tid
, ip
, split
, btstack
))) {
1047 nxaddr
= addressPXD(pxd
);
1048 if (xaddr
!= nxaddr
) {
1049 /* free relocated extent */
1050 xlen
= lengthPXD(pxd
);
1051 dbFree(ip
, nxaddr
, (s64
) xlen
);
1053 /* free extended delta */
1054 xlen
= lengthPXD(pxd
) - n
;
1055 xaddr
= addressPXD(pxd
) + xlen
;
1056 dbFree(ip
, xaddr
, (s64
) n
);
1066 * split leaf page <sp> into <sp> and a new right page <rp>.
1068 * return <rp> pinned and its extent descriptor <rpxd>
1071 * allocate new directory page extent and
1072 * new index page(s) to cover page split(s)
1074 * allocation hint: ?
1076 n
= btstack
->nsplit
;
1077 pxdlist
.maxnpxd
= pxdlist
.npxd
= 0;
1078 xlen
= sbi
->nbperpage
;
1079 for (pxd
= pxdlist
.pxd
; n
> 0; n
--, pxd
++) {
1080 if ((rc
= dbAlloc(ip
, 0, (s64
) xlen
, &xaddr
)) == 0) {
1081 PXDaddress(pxd
, xaddr
);
1082 PXDlength(pxd
, xlen
);
1089 /* undo allocation */
1093 split
->pxdlist
= &pxdlist
;
1094 if ((rc
= dtSplitPage(tid
, ip
, split
, &rmp
, &rp
, &rpxd
))) {
1097 /* undo allocation */
1102 * propagate up the router entry for the leaf page just split
1104 * insert a router entry for the new page into the parent page,
1105 * propagate the insert/split up the tree by walking back the stack
1106 * of (bn of parent page, index of child page entry in parent page)
1107 * that were traversed during the search for the page that split.
1109 * the propagation of insert/split up the tree stops if the root
1110 * splits or the page inserted into doesn't have to split to hold
1113 * the parent entry for the split page remains the same, and
1114 * a new entry is inserted at its right with the first key and
1115 * block number of the new right page.
1117 * There are a maximum of 4 pages pinned at any time:
1118 * two children, left parent and right parent (when the parent splits).
1119 * keep the child pages pinned while working on the parent.
1120 * make sure that all pins are released at exit.
1122 while ((parent
= BT_POP(btstack
)) != NULL
) {
1123 /* parent page specified by stack frame <parent> */
1125 /* keep current child pages (<lp>, <rp>) pinned */
1130 * insert router entry in parent for new right child page <rp>
1132 /* get the parent page <sp> */
1133 DT_GETPAGE(ip
, parent
->bn
, smp
, PSIZE
, sp
, rc
);
1141 * The new key entry goes ONE AFTER the index of parent entry,
1142 * because the split was to the right.
1144 skip
= parent
->index
+ 1;
1147 * compute the key for the router entry
1149 * key suffix compression:
1150 * for internal pages that have leaf pages as children,
1151 * retain only what's needed to distinguish between
1152 * the new entry and the entry on the page to its left.
1153 * If the keys compare equal, retain the entire key.
1155 * note that compression is performed only at computing
1156 * router key at the lowest internal level.
1157 * further compression of the key between pairs of higher
1158 * level internal pages loses too much information and
1159 * the search may fail.
1160 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1161 * results in two adjacent parent entries (a)(xx).
1162 * if split occurs between these two entries, and
1163 * if compression is applied, the router key of parent entry
1164 * of right page (x) will divert search for x into right
1165 * subtree and miss x in the left subtree.)
1167 * the entire key must be retained for the next-to-leftmost
1168 * internal key at any level of the tree, or search may fail
1171 switch (rp
->header
.flag
& BT_TYPE
) {
1174 * compute the length of prefix for suffix compression
1175 * between last entry of left page and first entry
1178 if ((sp
->header
.flag
& BT_ROOT
&& skip
> 1) ||
1179 sp
->header
.prev
!= 0 || skip
> 1) {
1180 /* compute uppercase router prefix key */
1181 rc
= ciGetLeafPrefixKey(lp
,
1182 lp
->header
.nextindex
-1,
1192 /* next to leftmost entry of
1193 lowest internal level */
1195 /* compute uppercase router key */
1196 dtGetKey(rp
, 0, &key
, sbi
->mntflag
);
1197 key
.name
[key
.namlen
] = 0;
1199 if ((sbi
->mntflag
& JFS_OS2
) == JFS_OS2
)
1203 n
= NDTINTERNAL(key
.namlen
);
1207 dtGetKey(rp
, 0, &key
, sbi
->mntflag
);
1208 n
= NDTINTERNAL(key
.namlen
);
1212 jfs_err("dtSplitUp(): UFO!");
1216 /* unpin left child page */
1220 * compute the data for the router entry
1222 data
->xd
= rpxd
; /* child page xd */
1225 * parent page is full - split the parent page
1227 if (n
> sp
->header
.freecnt
) {
1228 /* init for parent page split */
1230 split
->index
= skip
; /* index at insert */
1233 /* split->data = data; */
1235 /* unpin right child page */
1238 /* The split routines insert the new entry,
1239 * acquire txLock as appropriate.
1240 * return <rp> pinned and its block number <rbn>.
1242 rc
= (sp
->header
.flag
& BT_ROOT
) ?
1243 dtSplitRoot(tid
, ip
, split
, &rmp
) :
1244 dtSplitPage(tid
, ip
, split
, &rmp
, &rp
, &rpxd
);
1250 /* smp and rmp are pinned */
1253 * parent page is not full - insert router entry in parent page
1256 BT_MARK_DIRTY(smp
, ip
);
1258 * acquire a transaction lock on the parent page
1260 tlck
= txLock(tid
, ip
, smp
, tlckDTREE
| tlckENTRY
);
1261 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1262 ASSERT(dtlck
->index
== 0);
1263 lv
= & dtlck
->lv
[0];
1265 /* linelock header */
1270 /* linelock stbl of non-root parent page */
1271 if (!(sp
->header
.flag
& BT_ROOT
)) {
1273 n
= skip
>> L2DTSLOTSIZE
;
1274 lv
->offset
= sp
->header
.stblindex
+ n
;
1276 ((sp
->header
.nextindex
-
1277 1) >> L2DTSLOTSIZE
) - n
+ 1;
1281 dtInsertEntry(sp
, skip
, &key
, data
, &dtlck
);
1283 /* exit propagate up */
1288 /* unpin current split and its right page */
1293 * free remaining extents allocated for split
1297 pxd
= &pxdlist
.pxd
[n
];
1298 for (; n
< pxdlist
.maxnpxd
; n
++, pxd
++)
1299 dbFree(ip
, addressPXD(pxd
), (s64
) lengthPXD(pxd
));
1304 /* Rollback quota allocation */
1305 if (rc
&& quota_allocation
)
1306 DQUOT_FREE_BLOCK(ip
, quota_allocation
);
1317 * function: Split a non-root page of a btree.
1321 * return: 0 - success;
1323 * return split and new page pinned;
1325 static int dtSplitPage(tid_t tid
, struct inode
*ip
, struct dtsplit
* split
,
1326 struct metapage
** rmpp
, dtpage_t
** rpp
, pxd_t
* rpxdp
)
1329 struct metapage
*smp
;
1331 struct metapage
*rmp
;
1332 dtpage_t
*rp
; /* new right page allocated */
1333 s64 rbn
; /* new right page block number */
1334 struct metapage
*mp
;
1337 struct pxdlist
*pxdlist
;
1339 int skip
, nextindex
, half
, left
, nxt
, off
, si
;
1340 struct ldtentry
*ldtentry
;
1341 struct idtentry
*idtentry
;
1346 struct dt_lock
*sdtlck
, *rdtlck
;
1348 struct dt_lock
*dtlck
;
1349 struct lv
*slv
, *rlv
, *lv
;
1351 /* get split page */
1353 sp
= DT_PAGE(ip
, smp
);
1356 * allocate the new right page for the split
1358 pxdlist
= split
->pxdlist
;
1359 pxd
= &pxdlist
->pxd
[pxdlist
->npxd
];
1361 rbn
= addressPXD(pxd
);
1362 rmp
= get_metapage(ip
, rbn
, PSIZE
, 1);
1366 /* Allocate blocks to quota. */
1367 if (DQUOT_ALLOC_BLOCK(ip
, lengthPXD(pxd
))) {
1368 release_metapage(rmp
);
1372 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip
, smp
, rmp
);
1374 BT_MARK_DIRTY(rmp
, ip
);
1376 * acquire a transaction lock on the new right page
1378 tlck
= txLock(tid
, ip
, rmp
, tlckDTREE
| tlckNEW
);
1379 rdtlck
= (struct dt_lock
*) & tlck
->lock
;
1381 rp
= (dtpage_t
*) rmp
->data
;
1383 rp
->header
.self
= *pxd
;
1385 BT_MARK_DIRTY(smp
, ip
);
1387 * acquire a transaction lock on the split page
1391 tlck
= txLock(tid
, ip
, smp
, tlckDTREE
| tlckENTRY
);
1392 sdtlck
= (struct dt_lock
*) & tlck
->lock
;
1394 /* linelock header of split page */
1395 ASSERT(sdtlck
->index
== 0);
1396 slv
= & sdtlck
->lv
[0];
1402 * initialize/update sibling pointers between sp and rp
1404 nextbn
= le64_to_cpu(sp
->header
.next
);
1405 rp
->header
.next
= cpu_to_le64(nextbn
);
1406 rp
->header
.prev
= cpu_to_le64(addressPXD(&sp
->header
.self
));
1407 sp
->header
.next
= cpu_to_le64(rbn
);
1410 * initialize new right page
1412 rp
->header
.flag
= sp
->header
.flag
;
1414 /* compute sorted entry table at start of extent data area */
1415 rp
->header
.nextindex
= 0;
1416 rp
->header
.stblindex
= 1;
1418 n
= PSIZE
>> L2DTSLOTSIZE
;
1419 rp
->header
.maxslot
= n
;
1420 stblsize
= (n
+ 31) >> L2DTSLOTSIZE
; /* in unit of slot */
1423 fsi
= rp
->header
.stblindex
+ stblsize
;
1424 rp
->header
.freelist
= fsi
;
1425 rp
->header
.freecnt
= rp
->header
.maxslot
- fsi
;
1428 * sequential append at tail: append without split
1430 * If splitting the last page on a level because of appending
1431 * a entry to it (skip is maxentry), it's likely that the access is
1432 * sequential. Adding an empty page on the side of the level is less
1433 * work and can push the fill factor much higher than normal.
1434 * If we're wrong it's no big deal, we'll just do the split the right
1436 * (It may look like it's equally easy to do a similar hack for
1437 * reverse sorted data, that is, split the tree left,
1438 * but it's not. Be my guest.)
1440 if (nextbn
== 0 && split
->index
== sp
->header
.nextindex
) {
1441 /* linelock header + stbl (first slot) of new page */
1442 rlv
= & rdtlck
->lv
[rdtlck
->index
];
1448 * initialize freelist of new right page
1451 for (fsi
++; fsi
< rp
->header
.maxslot
; f
++, fsi
++)
1455 /* insert entry at the first entry of the new right page */
1456 dtInsertEntry(rp
, 0, split
->key
, split
->data
, &rdtlck
);
1462 * non-sequential insert (at possibly middle page)
1466 * update prev pointer of previous right sibling page;
1469 DT_GETPAGE(ip
, nextbn
, mp
, PSIZE
, p
, rc
);
1471 discard_metapage(rmp
);
1475 BT_MARK_DIRTY(mp
, ip
);
1477 * acquire a transaction lock on the next page
1479 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckRELINK
);
1480 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1482 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1484 /* linelock header of previous right sibling page */
1485 lv
= & dtlck
->lv
[dtlck
->index
];
1490 p
->header
.prev
= cpu_to_le64(rbn
);
1496 * split the data between the split and right pages.
1498 skip
= split
->index
;
1499 half
= (PSIZE
>> L2DTSLOTSIZE
) >> 1; /* swag */
1503 * compute fill factor for split pages
1505 * <nxt> traces the next entry to move to rp
1506 * <off> traces the next entry to stay in sp
1508 stbl
= (u8
*) & sp
->slot
[sp
->header
.stblindex
];
1509 nextindex
= sp
->header
.nextindex
;
1510 for (nxt
= off
= 0; nxt
< nextindex
; ++off
) {
1512 /* check for fill factor with new entry size */
1516 switch (sp
->header
.flag
& BT_TYPE
) {
1518 ldtentry
= (struct ldtentry
*) & sp
->slot
[si
];
1520 n
= NDTLEAF(ldtentry
->namlen
);
1522 n
= NDTLEAF_LEGACY(ldtentry
->
1527 idtentry
= (struct idtentry
*) & sp
->slot
[si
];
1528 n
= NDTINTERNAL(idtentry
->namlen
);
1535 ++nxt
; /* advance to next entry to move in sp */
1543 /* <nxt> poins to the 1st entry to move */
1546 * move entries to right page
1548 * dtMoveEntry() initializes rp and reserves entry for insertion
1550 * split page moved out entries are linelocked;
1551 * new/right page moved in entries are linelocked;
1553 /* linelock header + stbl of new right page */
1554 rlv
= & rdtlck
->lv
[rdtlck
->index
];
1559 dtMoveEntry(sp
, nxt
, rp
, &sdtlck
, &rdtlck
, DO_INDEX(ip
));
1561 sp
->header
.nextindex
= nxt
;
1564 * finalize freelist of new right page
1566 fsi
= rp
->header
.freelist
;
1568 for (fsi
++; fsi
< rp
->header
.maxslot
; f
++, fsi
++)
1573 * Update directory index table for entries now in right page
1575 if ((rp
->header
.flag
& BT_LEAF
) && DO_INDEX(ip
)) {
1579 stbl
= DT_GETSTBL(rp
);
1580 for (n
= 0; n
< rp
->header
.nextindex
; n
++) {
1581 ldtentry
= (struct ldtentry
*) & rp
->slot
[stbl
[n
]];
1582 modify_index(tid
, ip
, le32_to_cpu(ldtentry
->index
),
1583 rbn
, n
, &mp
, &lblock
);
1586 release_metapage(mp
);
1590 * the skipped index was on the left page,
1593 /* insert the new entry in the split page */
1594 dtInsertEntry(sp
, skip
, split
->key
, split
->data
, &sdtlck
);
1596 /* linelock stbl of split page */
1597 if (sdtlck
->index
>= sdtlck
->maxcnt
)
1598 sdtlck
= (struct dt_lock
*) txLinelock(sdtlck
);
1599 slv
= & sdtlck
->lv
[sdtlck
->index
];
1600 n
= skip
>> L2DTSLOTSIZE
;
1601 slv
->offset
= sp
->header
.stblindex
+ n
;
1603 ((sp
->header
.nextindex
- 1) >> L2DTSLOTSIZE
) - n
+ 1;
1607 * the skipped index was on the right page,
1610 /* adjust the skip index to reflect the new position */
1613 /* insert the new entry in the right page */
1614 dtInsertEntry(rp
, skip
, split
->key
, split
->data
, &rdtlck
);
1628 * function: extend 1st/only directory leaf page
1632 * return: 0 - success;
1634 * return extended page pinned;
1636 static int dtExtendPage(tid_t tid
,
1637 struct inode
*ip
, struct dtsplit
* split
, struct btstack
* btstack
)
1639 struct super_block
*sb
= ip
->i_sb
;
1641 struct metapage
*smp
, *pmp
, *mp
;
1643 struct pxdlist
*pxdlist
;
1646 int newstblindex
, newstblsize
;
1647 int oldstblindex
, oldstblsize
;
1650 struct btframe
*parent
;
1652 struct dt_lock
*dtlck
;
1655 struct pxd_lock
*pxdlock
;
1658 struct ldtentry
*ldtentry
;
1661 /* get page to extend */
1663 sp
= DT_PAGE(ip
, smp
);
1665 /* get parent/root page */
1666 parent
= BT_POP(btstack
);
1667 DT_GETPAGE(ip
, parent
->bn
, pmp
, PSIZE
, pp
, rc
);
1674 pxdlist
= split
->pxdlist
;
1675 pxd
= &pxdlist
->pxd
[pxdlist
->npxd
];
1678 xaddr
= addressPXD(pxd
);
1679 tpxd
= &sp
->header
.self
;
1680 txaddr
= addressPXD(tpxd
);
1681 /* in-place extension */
1682 if (xaddr
== txaddr
) {
1689 /* save moved extent descriptor for later free */
1690 tlck
= txMaplock(tid
, ip
, tlckDTREE
| tlckRELOCATE
);
1691 pxdlock
= (struct pxd_lock
*) & tlck
->lock
;
1692 pxdlock
->flag
= mlckFREEPXD
;
1693 pxdlock
->pxd
= sp
->header
.self
;
1697 * Update directory index table to reflect new page address
1703 stbl
= DT_GETSTBL(sp
);
1704 for (n
= 0; n
< sp
->header
.nextindex
; n
++) {
1706 (struct ldtentry
*) & sp
->slot
[stbl
[n
]];
1707 modify_index(tid
, ip
,
1708 le32_to_cpu(ldtentry
->index
),
1709 xaddr
, n
, &mp
, &lblock
);
1712 release_metapage(mp
);
1719 sp
->header
.self
= *pxd
;
1721 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip
, smp
, sp
);
1723 BT_MARK_DIRTY(smp
, ip
);
1725 * acquire a transaction lock on the extended/leaf page
1727 tlck
= txLock(tid
, ip
, smp
, tlckDTREE
| type
);
1728 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1729 lv
= & dtlck
->lv
[0];
1731 /* update buffer extent descriptor of extended page */
1732 xlen
= lengthPXD(pxd
);
1733 xsize
= xlen
<< JFS_SBI(sb
)->l2bsize
;
1734 #ifdef _STILL_TO_PORT
1735 bmSetXD(smp
, xaddr
, xsize
);
1736 #endif /* _STILL_TO_PORT */
1739 * copy old stbl to new stbl at start of extended area
1741 oldstblindex
= sp
->header
.stblindex
;
1742 oldstblsize
= (sp
->header
.maxslot
+ 31) >> L2DTSLOTSIZE
;
1743 newstblindex
= sp
->header
.maxslot
;
1744 n
= xsize
>> L2DTSLOTSIZE
;
1745 newstblsize
= (n
+ 31) >> L2DTSLOTSIZE
;
1746 memcpy(&sp
->slot
[newstblindex
], &sp
->slot
[oldstblindex
],
1747 sp
->header
.nextindex
);
1750 * in-line extension: linelock old area of extended page
1752 if (type
== tlckEXTEND
) {
1753 /* linelock header */
1759 /* linelock new stbl of extended page */
1760 lv
->offset
= newstblindex
;
1761 lv
->length
= newstblsize
;
1764 * relocation: linelock whole relocated area
1768 lv
->length
= sp
->header
.maxslot
+ newstblsize
;
1773 sp
->header
.maxslot
= n
;
1774 sp
->header
.stblindex
= newstblindex
;
1775 /* sp->header.nextindex remains the same */
1778 * add old stbl region at head of freelist
1782 last
= sp
->header
.freelist
;
1783 for (n
= 0; n
< oldstblsize
; n
++, fsi
++, f
++) {
1787 sp
->header
.freelist
= last
;
1788 sp
->header
.freecnt
+= oldstblsize
;
1791 * append free region of newly extended area at tail of freelist
1793 /* init free region of newly extended area */
1794 fsi
= n
= newstblindex
+ newstblsize
;
1796 for (fsi
++; fsi
< sp
->header
.maxslot
; f
++, fsi
++)
1800 /* append new free region at tail of old freelist */
1801 fsi
= sp
->header
.freelist
;
1803 sp
->header
.freelist
= n
;
1808 } while (fsi
!= -1);
1813 sp
->header
.freecnt
+= sp
->header
.maxslot
- n
;
1816 * insert the new entry
1818 dtInsertEntry(sp
, split
->index
, split
->key
, split
->data
, &dtlck
);
1820 BT_MARK_DIRTY(pmp
, ip
);
1822 * linelock any freeslots residing in old extent
1824 if (type
== tlckEXTEND
) {
1825 n
= sp
->header
.maxslot
>> 2;
1826 if (sp
->header
.freelist
< n
)
1827 dtLinelockFreelist(sp
, n
, &dtlck
);
1831 * update parent entry on the parent/root page
1834 * acquire a transaction lock on the parent/root page
1836 tlck
= txLock(tid
, ip
, pmp
, tlckDTREE
| tlckENTRY
);
1837 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1838 lv
= & dtlck
->lv
[dtlck
->index
];
1840 /* linelock parent entry - 1st slot */
1845 /* update the parent pxd for page extension */
1846 tpxd
= (pxd_t
*) & pp
->slot
[1];
1858 * split the full root page into
1859 * original/root/split page and new right page
1860 * i.e., root remains fixed in tree anchor (inode) and
1861 * the root is copied to a single new right child page
1862 * since root page << non-root page, and
1863 * the split root page contains a single entry for the
1864 * new right child page.
1868 * return: 0 - success;
1870 * return new page pinned;
1872 static int dtSplitRoot(tid_t tid
,
1873 struct inode
*ip
, struct dtsplit
* split
, struct metapage
** rmpp
)
1875 struct super_block
*sb
= ip
->i_sb
;
1876 struct metapage
*smp
;
1878 struct metapage
*rmp
;
1885 int fsi
, stblsize
, n
;
1888 struct pxdlist
*pxdlist
;
1890 struct dt_lock
*dtlck
;
1894 /* get split root page */
1896 sp
= &JFS_IP(ip
)->i_dtroot
;
1899 * allocate/initialize a single (right) child page
1901 * N.B. at first split, a one (or two) block to fit new entry
1902 * is allocated; at subsequent split, a full page is allocated;
1904 pxdlist
= split
->pxdlist
;
1905 pxd
= &pxdlist
->pxd
[pxdlist
->npxd
];
1907 rbn
= addressPXD(pxd
);
1908 xlen
= lengthPXD(pxd
);
1909 xsize
= xlen
<< JFS_SBI(sb
)->l2bsize
;
1910 rmp
= get_metapage(ip
, rbn
, xsize
, 1);
1916 /* Allocate blocks to quota. */
1917 if (DQUOT_ALLOC_BLOCK(ip
, lengthPXD(pxd
))) {
1918 release_metapage(rmp
);
1922 BT_MARK_DIRTY(rmp
, ip
);
1924 * acquire a transaction lock on the new right page
1926 tlck
= txLock(tid
, ip
, rmp
, tlckDTREE
| tlckNEW
);
1927 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1930 (sp
->header
.flag
& BT_LEAF
) ? BT_LEAF
: BT_INTERNAL
;
1931 rp
->header
.self
= *pxd
;
1933 /* initialize sibling pointers */
1934 rp
->header
.next
= 0;
1935 rp
->header
.prev
= 0;
1938 * move in-line root page into new right page extent
1940 /* linelock header + copied entries + new stbl (1st slot) in new page */
1941 ASSERT(dtlck
->index
== 0);
1942 lv
= & dtlck
->lv
[0];
1944 lv
->length
= 10; /* 1 + 8 + 1 */
1947 n
= xsize
>> L2DTSLOTSIZE
;
1948 rp
->header
.maxslot
= n
;
1949 stblsize
= (n
+ 31) >> L2DTSLOTSIZE
;
1951 /* copy old stbl to new stbl at start of extended area */
1952 rp
->header
.stblindex
= DTROOTMAXSLOT
;
1953 stbl
= (s8
*) & rp
->slot
[DTROOTMAXSLOT
];
1954 memcpy(stbl
, sp
->header
.stbl
, sp
->header
.nextindex
);
1955 rp
->header
.nextindex
= sp
->header
.nextindex
;
1957 /* copy old data area to start of new data area */
1958 memcpy(&rp
->slot
[1], &sp
->slot
[1], IDATASIZE
);
1961 * append free region of newly extended area at tail of freelist
1963 /* init free region of newly extended area */
1964 fsi
= n
= DTROOTMAXSLOT
+ stblsize
;
1966 for (fsi
++; fsi
< rp
->header
.maxslot
; f
++, fsi
++)
1970 /* append new free region at tail of old freelist */
1971 fsi
= sp
->header
.freelist
;
1973 rp
->header
.freelist
= n
;
1975 rp
->header
.freelist
= fsi
;
1980 } while (fsi
!= -1);
1985 rp
->header
.freecnt
= sp
->header
.freecnt
+ rp
->header
.maxslot
- n
;
1988 * Update directory index table for entries now in right page
1990 if ((rp
->header
.flag
& BT_LEAF
) && DO_INDEX(ip
)) {
1992 struct metapage
*mp
= NULL
;
1993 struct ldtentry
*ldtentry
;
1995 stbl
= DT_GETSTBL(rp
);
1996 for (n
= 0; n
< rp
->header
.nextindex
; n
++) {
1997 ldtentry
= (struct ldtentry
*) & rp
->slot
[stbl
[n
]];
1998 modify_index(tid
, ip
, le32_to_cpu(ldtentry
->index
),
1999 rbn
, n
, &mp
, &lblock
);
2002 release_metapage(mp
);
2005 * insert the new entry into the new right/child page
2006 * (skip index in the new right page will not change)
2008 dtInsertEntry(rp
, split
->index
, split
->key
, split
->data
, &dtlck
);
2011 * reset parent/root page
2013 * set the 1st entry offset to 0, which force the left-most key
2014 * at any level of the tree to be less than any search key.
2016 * The btree comparison code guarantees that the left-most key on any
2017 * level of the tree is never used, so it doesn't need to be filled in.
2019 BT_MARK_DIRTY(smp
, ip
);
2021 * acquire a transaction lock on the root page (in-memory inode)
2023 tlck
= txLock(tid
, ip
, smp
, tlckDTREE
| tlckNEW
| tlckBTROOT
);
2024 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2027 ASSERT(dtlck
->index
== 0);
2028 lv
= & dtlck
->lv
[0];
2030 lv
->length
= DTROOTMAXSLOT
;
2033 /* update page header of root */
2034 if (sp
->header
.flag
& BT_LEAF
) {
2035 sp
->header
.flag
&= ~BT_LEAF
;
2036 sp
->header
.flag
|= BT_INTERNAL
;
2039 /* init the first entry */
2040 s
= (struct idtentry
*) & sp
->slot
[DTENTRYSTART
];
2046 stbl
= sp
->header
.stbl
;
2047 stbl
[0] = DTENTRYSTART
;
2048 sp
->header
.nextindex
= 1;
2051 fsi
= DTENTRYSTART
+ 1;
2054 /* init free region of remaining area */
2055 for (fsi
++; fsi
< DTROOTMAXSLOT
; f
++, fsi
++)
2059 sp
->header
.freelist
= DTENTRYSTART
+ 1;
2060 sp
->header
.freecnt
= DTROOTMAXSLOT
- (DTENTRYSTART
+ 1);
2071 * function: delete the entry(s) referenced by a key.
2077 int dtDelete(tid_t tid
,
2078 struct inode
*ip
, struct component_name
* key
, ino_t
* ino
, int flag
)
2082 struct metapage
*mp
, *imp
;
2085 struct btstack btstack
;
2086 struct dt_lock
*dtlck
;
2090 struct ldtentry
*ldtentry
;
2092 u32 table_index
, next_index
;
2093 struct metapage
*nmp
;
2097 * search for the entry to delete:
2099 * dtSearch() returns (leaf page pinned, index at which to delete).
2101 if ((rc
= dtSearch(ip
, key
, ino
, &btstack
, flag
)))
2104 /* retrieve search result */
2105 DT_GETSEARCH(ip
, btstack
.top
, bn
, mp
, p
, index
);
2108 * We need to find put the index of the next entry into the
2109 * directory index table in order to resume a readdir from this
2113 stbl
= DT_GETSTBL(p
);
2114 ldtentry
= (struct ldtentry
*) & p
->slot
[stbl
[index
]];
2115 table_index
= le32_to_cpu(ldtentry
->index
);
2116 if (index
== (p
->header
.nextindex
- 1)) {
2118 * Last entry in this leaf page
2120 if ((p
->header
.flag
& BT_ROOT
)
2121 || (p
->header
.next
== 0))
2124 /* Read next leaf page */
2125 DT_GETPAGE(ip
, le64_to_cpu(p
->header
.next
),
2126 nmp
, PSIZE
, np
, rc
);
2130 stbl
= DT_GETSTBL(np
);
2132 (struct ldtentry
*) & np
->
2135 le32_to_cpu(ldtentry
->index
);
2141 (struct ldtentry
*) & p
->slot
[stbl
[index
+ 1]];
2142 next_index
= le32_to_cpu(ldtentry
->index
);
2144 free_index(tid
, ip
, table_index
, next_index
);
2147 * the leaf page becomes empty, delete the page
2149 if (p
->header
.nextindex
== 1) {
2150 /* delete empty page */
2151 rc
= dtDeleteUp(tid
, ip
, mp
, p
, &btstack
);
2154 * the leaf page has other entries remaining:
2156 * delete the entry from the leaf page.
2159 BT_MARK_DIRTY(mp
, ip
);
2161 * acquire a transaction lock on the leaf page
2163 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckENTRY
);
2164 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2167 * Do not assume that dtlck->index will be zero. During a
2168 * rename within a directory, this transaction may have
2169 * modified this page already when adding the new entry.
2172 /* linelock header */
2173 if (dtlck
->index
>= dtlck
->maxcnt
)
2174 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2175 lv
= & dtlck
->lv
[dtlck
->index
];
2180 /* linelock stbl of non-root leaf page */
2181 if (!(p
->header
.flag
& BT_ROOT
)) {
2182 if (dtlck
->index
>= dtlck
->maxcnt
)
2183 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2184 lv
= & dtlck
->lv
[dtlck
->index
];
2185 i
= index
>> L2DTSLOTSIZE
;
2186 lv
->offset
= p
->header
.stblindex
+ i
;
2188 ((p
->header
.nextindex
- 1) >> L2DTSLOTSIZE
) -
2193 /* free the leaf entry */
2194 dtDeleteEntry(p
, index
, &dtlck
);
2197 * Update directory index table for entries moved in stbl
2199 if (DO_INDEX(ip
) && index
< p
->header
.nextindex
) {
2203 stbl
= DT_GETSTBL(p
);
2204 for (i
= index
; i
< p
->header
.nextindex
; i
++) {
2206 (struct ldtentry
*) & p
->slot
[stbl
[i
]];
2207 modify_index(tid
, ip
,
2208 le32_to_cpu(ldtentry
->index
),
2209 bn
, i
, &imp
, &lblock
);
2212 release_metapage(imp
);
2226 * free empty pages as propagating deletion up the tree
2232 static int dtDeleteUp(tid_t tid
, struct inode
*ip
,
2233 struct metapage
* fmp
, dtpage_t
* fp
, struct btstack
* btstack
)
2236 struct metapage
*mp
;
2238 int index
, nextindex
;
2240 struct btframe
*parent
;
2241 struct dt_lock
*dtlck
;
2244 struct pxd_lock
*pxdlock
;
2248 * keep the root leaf page which has become empty
2250 if (BT_IS_ROOT(fmp
)) {
2254 * dtInitRoot() acquires txlock on the root
2256 dtInitRoot(tid
, ip
, PARENT(ip
));
2264 * free the non-root leaf page
2267 * acquire a transaction lock on the page
2269 * write FREEXTENT|NOREDOPAGE log record
2270 * N.B. linelock is overlaid as freed extent descriptor, and
2271 * the buffer page is freed;
2273 tlck
= txMaplock(tid
, ip
, tlckDTREE
| tlckFREE
);
2274 pxdlock
= (struct pxd_lock
*) & tlck
->lock
;
2275 pxdlock
->flag
= mlckFREEPXD
;
2276 pxdlock
->pxd
= fp
->header
.self
;
2279 /* update sibling pointers */
2280 if ((rc
= dtRelink(tid
, ip
, fp
))) {
2285 xlen
= lengthPXD(&fp
->header
.self
);
2287 /* Free quota allocation. */
2288 DQUOT_FREE_BLOCK(ip
, xlen
);
2290 /* free/invalidate its buffer page */
2291 discard_metapage(fmp
);
2294 * propagate page deletion up the directory tree
2296 * If the delete from the parent page makes it empty,
2297 * continue all the way up the tree.
2298 * stop if the root page is reached (which is never deleted) or
2299 * if the entry deletion does not empty the page.
2301 while ((parent
= BT_POP(btstack
)) != NULL
) {
2302 /* pin the parent page <sp> */
2303 DT_GETPAGE(ip
, parent
->bn
, mp
, PSIZE
, p
, rc
);
2308 * free the extent of the child page deleted
2310 index
= parent
->index
;
2313 * delete the entry for the child page from parent
2315 nextindex
= p
->header
.nextindex
;
2318 * the parent has the single entry being deleted:
2320 * free the parent page which has become empty.
2322 if (nextindex
== 1) {
2324 * keep the root internal page which has become empty
2326 if (p
->header
.flag
& BT_ROOT
) {
2330 * dtInitRoot() acquires txlock on the root
2332 dtInitRoot(tid
, ip
, PARENT(ip
));
2339 * free the parent page
2343 * acquire a transaction lock on the page
2345 * write FREEXTENT|NOREDOPAGE log record
2349 tlckDTREE
| tlckFREE
);
2350 pxdlock
= (struct pxd_lock
*) & tlck
->lock
;
2351 pxdlock
->flag
= mlckFREEPXD
;
2352 pxdlock
->pxd
= p
->header
.self
;
2355 /* update sibling pointers */
2356 if ((rc
= dtRelink(tid
, ip
, p
))) {
2361 xlen
= lengthPXD(&p
->header
.self
);
2363 /* Free quota allocation */
2364 DQUOT_FREE_BLOCK(ip
, xlen
);
2366 /* free/invalidate its buffer page */
2367 discard_metapage(mp
);
2375 * the parent has other entries remaining:
2377 * delete the router entry from the parent page.
2379 BT_MARK_DIRTY(mp
, ip
);
2381 * acquire a transaction lock on the page
2383 * action: router entry deletion
2385 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckENTRY
);
2386 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2388 /* linelock header */
2389 if (dtlck
->index
>= dtlck
->maxcnt
)
2390 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2391 lv
= & dtlck
->lv
[dtlck
->index
];
2396 /* linelock stbl of non-root leaf page */
2397 if (!(p
->header
.flag
& BT_ROOT
)) {
2398 if (dtlck
->index
< dtlck
->maxcnt
)
2401 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2402 lv
= & dtlck
->lv
[0];
2404 i
= index
>> L2DTSLOTSIZE
;
2405 lv
->offset
= p
->header
.stblindex
+ i
;
2407 ((p
->header
.nextindex
- 1) >> L2DTSLOTSIZE
) -
2412 /* free the router entry */
2413 dtDeleteEntry(p
, index
, &dtlck
);
2415 /* reset key of new leftmost entry of level (for consistency) */
2417 ((p
->header
.flag
& BT_ROOT
) || p
->header
.prev
== 0))
2418 dtTruncateEntry(p
, 0, &dtlck
);
2420 /* unpin the parent page */
2423 /* exit propagation up */
2432 * NAME: dtRelocate()
2434 * FUNCTION: relocate dtpage (internal or leaf) of directory;
2435 * This function is mainly used by defragfs utility.
2437 int dtRelocate(tid_t tid
, struct inode
*ip
, s64 lmxaddr
, pxd_t
* opxd
,
2441 struct metapage
*mp
, *pmp
, *lmp
, *rmp
;
2442 dtpage_t
*p
, *pp
, *rp
= 0, *lp
= 0;
2445 struct btstack btstack
;
2447 s64 oxaddr
, nextbn
, prevbn
;
2450 struct dt_lock
*dtlck
;
2451 struct pxd_lock
*pxdlock
;
2455 oxaddr
= addressPXD(opxd
);
2456 xlen
= lengthPXD(opxd
);
2458 jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2459 (long long)lmxaddr
, (long long)oxaddr
, (long long)nxaddr
,
2463 * 1. get the internal parent dtpage covering
2464 * router entry for the tartget page to be relocated;
2466 rc
= dtSearchNode(ip
, lmxaddr
, opxd
, &btstack
);
2470 /* retrieve search result */
2471 DT_GETSEARCH(ip
, btstack
.top
, bn
, pmp
, pp
, index
);
2472 jfs_info("dtRelocate: parent router entry validated.");
2475 * 2. relocate the target dtpage
2477 /* read in the target page from src extent */
2478 DT_GETPAGE(ip
, oxaddr
, mp
, PSIZE
, p
, rc
);
2480 /* release the pinned parent page */
2486 * read in sibling pages if any to update sibling pointers;
2489 if (p
->header
.next
) {
2490 nextbn
= le64_to_cpu(p
->header
.next
);
2491 DT_GETPAGE(ip
, nextbn
, rmp
, PSIZE
, rp
, rc
);
2500 if (p
->header
.prev
) {
2501 prevbn
= le64_to_cpu(p
->header
.prev
);
2502 DT_GETPAGE(ip
, prevbn
, lmp
, PSIZE
, lp
, rc
);
2512 /* at this point, all xtpages to be updated are in memory */
2515 * update sibling pointers of sibling dtpages if any;
2518 tlck
= txLock(tid
, ip
, lmp
, tlckDTREE
| tlckRELINK
);
2519 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2520 /* linelock header */
2521 ASSERT(dtlck
->index
== 0);
2522 lv
= & dtlck
->lv
[0];
2527 lp
->header
.next
= cpu_to_le64(nxaddr
);
2532 tlck
= txLock(tid
, ip
, rmp
, tlckDTREE
| tlckRELINK
);
2533 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2534 /* linelock header */
2535 ASSERT(dtlck
->index
== 0);
2536 lv
= & dtlck
->lv
[0];
2541 rp
->header
.prev
= cpu_to_le64(nxaddr
);
2546 * update the target dtpage to be relocated
2548 * write LOG_REDOPAGE of LOG_NEW type for dst page
2549 * for the whole target page (logredo() will apply
2550 * after image and update bmap for allocation of the
2551 * dst extent), and update bmap for allocation of
2554 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckNEW
);
2555 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2556 /* linelock header */
2557 ASSERT(dtlck
->index
== 0);
2558 lv
= & dtlck
->lv
[0];
2560 /* update the self address in the dtpage header */
2561 pxd
= &p
->header
.self
;
2562 PXDaddress(pxd
, nxaddr
);
2564 /* the dst page is the same as the src page, i.e.,
2565 * linelock for afterimage of the whole page;
2568 lv
->length
= p
->header
.maxslot
;
2571 /* update the buffer extent descriptor of the dtpage */
2572 xsize
= xlen
<< JFS_SBI(ip
->i_sb
)->l2bsize
;
2573 #ifdef _STILL_TO_PORT
2574 bmSetXD(mp
, nxaddr
, xsize
);
2575 #endif /* _STILL_TO_PORT */
2576 /* unpin the relocated page */
2578 jfs_info("dtRelocate: target dtpage relocated.");
2580 /* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2581 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2582 * will also force a bmap update ).
2586 * 3. acquire maplock for the source extent to be freed;
2588 /* for dtpage relocation, write a LOG_NOREDOPAGE record
2589 * for the source dtpage (logredo() will init NoRedoPage
2590 * filter and will also update bmap for free of the source
2591 * dtpage), and upadte bmap for free of the source dtpage;
2593 tlck
= txMaplock(tid
, ip
, tlckDTREE
| tlckFREE
);
2594 pxdlock
= (struct pxd_lock
*) & tlck
->lock
;
2595 pxdlock
->flag
= mlckFREEPXD
;
2596 PXDaddress(&pxdlock
->pxd
, oxaddr
);
2597 PXDlength(&pxdlock
->pxd
, xlen
);
2601 * 4. update the parent router entry for relocation;
2603 * acquire tlck for the parent entry covering the target dtpage;
2604 * write LOG_REDOPAGE to apply after image only;
2606 jfs_info("dtRelocate: update parent router entry.");
2607 tlck
= txLock(tid
, ip
, pmp
, tlckDTREE
| tlckENTRY
);
2608 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2609 lv
= & dtlck
->lv
[dtlck
->index
];
2611 /* update the PXD with the new address */
2612 stbl
= DT_GETSTBL(pp
);
2613 pxd
= (pxd_t
*) & pp
->slot
[stbl
[index
]];
2614 PXDaddress(pxd
, nxaddr
);
2615 lv
->offset
= stbl
[index
];
2619 /* unpin the parent dtpage */
2626 * NAME: dtSearchNode()
2628 * FUNCTION: Search for an dtpage containing a specified address
2629 * This function is mainly used by defragfs utility.
2631 * NOTE: Search result on stack, the found page is pinned at exit.
2632 * The result page must be an internal dtpage.
2633 * lmxaddr give the address of the left most page of the
2634 * dtree level, in which the required dtpage resides.
2636 static int dtSearchNode(struct inode
*ip
, s64 lmxaddr
, pxd_t
* kpxd
,
2637 struct btstack
* btstack
)
2641 struct metapage
*mp
;
2643 int psize
= 288; /* initial in-line directory */
2647 struct btframe
*btsp
;
2649 BT_CLR(btstack
); /* reset stack */
2652 * descend tree to the level with specified leftmost page
2654 * by convention, root bn = 0.
2657 /* get/pin the page to search */
2658 DT_GETPAGE(ip
, bn
, mp
, psize
, p
, rc
);
2662 /* does the xaddr of leftmost page of the levevl
2663 * matches levevl search key ?
2665 if (p
->header
.flag
& BT_ROOT
) {
2668 } else if (addressPXD(&p
->header
.self
) == lmxaddr
)
2672 * descend down to leftmost child page
2674 if (p
->header
.flag
& BT_LEAF
) {
2679 /* get the leftmost entry */
2680 stbl
= DT_GETSTBL(p
);
2681 pxd
= (pxd_t
*) & p
->slot
[stbl
[0]];
2683 /* get the child page block address */
2684 bn
= addressPXD(pxd
);
2685 psize
= lengthPXD(pxd
) << JFS_SBI(ip
->i_sb
)->l2bsize
;
2686 /* unpin the parent page */
2691 * search each page at the current levevl
2694 stbl
= DT_GETSTBL(p
);
2695 for (i
= 0; i
< p
->header
.nextindex
; i
++) {
2696 pxd
= (pxd_t
*) & p
->slot
[stbl
[i
]];
2698 /* found the specified router entry */
2699 if (addressPXD(pxd
) == addressPXD(kpxd
) &&
2700 lengthPXD(pxd
) == lengthPXD(kpxd
)) {
2701 btsp
= btstack
->top
;
2710 /* get the right sibling page if any */
2712 bn
= le64_to_cpu(p
->header
.next
);
2718 /* unpin current page */
2721 /* get the right sibling page */
2722 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
2728 #endif /* _NOTYET */
2734 * link around a freed page.
2737 * fp: page to be freed
2741 static int dtRelink(tid_t tid
, struct inode
*ip
, dtpage_t
* p
)
2744 struct metapage
*mp
;
2747 struct dt_lock
*dtlck
;
2750 nextbn
= le64_to_cpu(p
->header
.next
);
2751 prevbn
= le64_to_cpu(p
->header
.prev
);
2753 /* update prev pointer of the next page */
2755 DT_GETPAGE(ip
, nextbn
, mp
, PSIZE
, p
, rc
);
2759 BT_MARK_DIRTY(mp
, ip
);
2761 * acquire a transaction lock on the next page
2763 * action: update prev pointer;
2765 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckRELINK
);
2766 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2768 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2770 /* linelock header */
2771 if (dtlck
->index
>= dtlck
->maxcnt
)
2772 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2773 lv
= & dtlck
->lv
[dtlck
->index
];
2778 p
->header
.prev
= cpu_to_le64(prevbn
);
2782 /* update next pointer of the previous page */
2784 DT_GETPAGE(ip
, prevbn
, mp
, PSIZE
, p
, rc
);
2788 BT_MARK_DIRTY(mp
, ip
);
2790 * acquire a transaction lock on the prev page
2792 * action: update next pointer;
2794 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckRELINK
);
2795 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2797 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2799 /* linelock header */
2800 if (dtlck
->index
>= dtlck
->maxcnt
)
2801 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2802 lv
= & dtlck
->lv
[dtlck
->index
];
2807 p
->header
.next
= cpu_to_le64(nextbn
);
2818 * initialize directory root (inline in inode)
2820 void dtInitRoot(tid_t tid
, struct inode
*ip
, u32 idotdot
)
2822 struct jfs_inode_info
*jfs_ip
= JFS_IP(ip
);
2827 struct dt_lock
*dtlck
;
2832 * If this was previously an non-empty directory, we need to remove
2833 * the old directory table.
2836 if (!jfs_dirtable_inline(ip
)) {
2837 struct tblock
*tblk
= tid_to_tblock(tid
);
2839 * We're playing games with the tid's xflag. If
2840 * we're removing a regular file, the file's xtree
2841 * is committed with COMMIT_PMAP, but we always
2842 * commit the directories xtree with COMMIT_PWMAP.
2844 xflag_save
= tblk
->xflag
;
2847 * xtTruncate isn't guaranteed to fully truncate
2848 * the xtree. The caller needs to check i_size
2849 * after committing the transaction to see if
2850 * additional truncation is needed. The
2851 * COMMIT_Stale flag tells caller that we
2852 * initiated the truncation.
2854 xtTruncate(tid
, ip
, 0, COMMIT_PWMAP
);
2855 set_cflag(COMMIT_Stale
, ip
);
2857 tblk
->xflag
= xflag_save
;
2861 jfs_ip
->next_index
= 2;
2863 ip
->i_size
= IDATASIZE
;
2866 * acquire a transaction lock on the root
2868 * action: directory initialization;
2870 tlck
= txLock(tid
, ip
, (struct metapage
*) & jfs_ip
->bxflag
,
2871 tlckDTREE
| tlckENTRY
| tlckBTROOT
);
2872 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2875 ASSERT(dtlck
->index
== 0);
2876 lv
= & dtlck
->lv
[0];
2878 lv
->length
= DTROOTMAXSLOT
;
2881 p
= &jfs_ip
->i_dtroot
;
2883 p
->header
.flag
= DXD_INDEX
| BT_ROOT
| BT_LEAF
;
2885 p
->header
.nextindex
= 0;
2891 /* init data area of root */
2892 for (fsi
++; fsi
< DTROOTMAXSLOT
; f
++, fsi
++)
2896 p
->header
.freelist
= 1;
2897 p
->header
.freecnt
= 8;
2899 /* init '..' entry */
2900 p
->header
.idotdot
= cpu_to_le32(idotdot
);
2906 * add_missing_indices()
2908 * function: Fix dtree page in which one or more entries has an invalid index.
2909 * fsck.jfs should really fix this, but it currently does not.
2910 * Called from jfs_readdir when bad index is detected.
2912 static void add_missing_indices(struct inode
*inode
, s64 bn
)
2915 struct dt_lock
*dtlck
;
2919 struct metapage
*mp
;
2926 tid
= txBegin(inode
->i_sb
, 0);
2928 DT_GETPAGE(inode
, bn
, mp
, PSIZE
, p
, rc
);
2931 printk(KERN_ERR
"DT_GETPAGE failed!\n");
2934 BT_MARK_DIRTY(mp
, inode
);
2936 ASSERT(p
->header
.flag
& BT_LEAF
);
2938 tlck
= txLock(tid
, inode
, mp
, tlckDTREE
| tlckENTRY
);
2940 tlck
->type
|= tlckBTROOT
;
2942 dtlck
= (struct dt_lock
*) &tlck
->lock
;
2944 stbl
= DT_GETSTBL(p
);
2945 for (i
= 0; i
< p
->header
.nextindex
; i
++) {
2946 d
= (struct ldtentry
*) &p
->slot
[stbl
[i
]];
2947 index
= le32_to_cpu(d
->index
);
2948 if ((index
< 2) || (index
>= JFS_IP(inode
)->next_index
)) {
2949 d
->index
= cpu_to_le32(add_index(tid
, inode
, bn
, i
));
2950 if (dtlck
->index
>= dtlck
->maxcnt
)
2951 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2952 lv
= &dtlck
->lv
[dtlck
->index
];
2953 lv
->offset
= stbl
[i
];
2960 (void) txCommit(tid
, 1, &inode
, 0);
2966 * Buffer to hold directory entry info while traversing a dtree page
2967 * before being fed to the filldir function
2977 * function to determine next variable-sized jfs_dirent in buffer
2979 static inline struct jfs_dirent
*next_jfs_dirent(struct jfs_dirent
*dirent
)
2981 return (struct jfs_dirent
*)
2983 ((sizeof (struct jfs_dirent
) + dirent
->name_len
+ 1 +
2984 sizeof (loff_t
) - 1) &
2985 ~(sizeof (loff_t
) - 1)));
2991 * function: read directory entries sequentially
2992 * from the specified entry offset
2996 * return: offset = (pn, index) of start entry
2997 * of next jfs_readdir()/dtRead()
2999 int jfs_readdir(struct file
*filp
, void *dirent
, filldir_t filldir
)
3001 struct inode
*ip
= filp
->f_dentry
->d_inode
;
3002 struct nls_table
*codepage
= JFS_SBI(ip
->i_sb
)->nls_tab
;
3004 loff_t dtpos
; /* legacy OS/2 style position */
3009 } *dtoffset
= (struct dtoffset
*) &dtpos
;
3011 struct metapage
*mp
;
3015 struct btstack btstack
;
3019 int d_namleft
, len
, outlen
;
3020 unsigned long dirent_buf
;
3024 uint loop_count
= 0;
3025 struct jfs_dirent
*jfs_dirent
;
3027 int overflow
, fix_page
, page_fixed
= 0;
3028 static int unique_pos
= 2; /* If we can't fix broken index */
3030 if (filp
->f_pos
== DIREND
)
3035 * persistent index is stored in directory entries.
3036 * Special cases: 0 = .
3038 * -1 = End of directory
3042 dir_index
= (u32
) filp
->f_pos
;
3044 if (dir_index
> 1) {
3045 struct dir_table_slot dirtab_slot
;
3048 (dir_index
>= JFS_IP(ip
)->next_index
)) {
3049 /* Stale position. Directory has shrunk */
3050 filp
->f_pos
= DIREND
;
3054 rc
= read_index(ip
, dir_index
, &dirtab_slot
);
3056 filp
->f_pos
= DIREND
;
3059 if (dirtab_slot
.flag
== DIR_INDEX_FREE
) {
3060 if (loop_count
++ > JFS_IP(ip
)->next_index
) {
3061 jfs_err("jfs_readdir detected "
3063 filp
->f_pos
= DIREND
;
3066 dir_index
= le32_to_cpu(dirtab_slot
.addr2
);
3067 if (dir_index
== -1) {
3068 filp
->f_pos
= DIREND
;
3073 bn
= addressDTS(&dirtab_slot
);
3074 index
= dirtab_slot
.slot
;
3075 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3077 filp
->f_pos
= DIREND
;
3080 if (p
->header
.flag
& BT_INTERNAL
) {
3081 jfs_err("jfs_readdir: bad index table");
3087 if (dir_index
== 0) {
3092 if (filldir(dirent
, ".", 1, 0, ip
->i_ino
,
3100 if (filldir(dirent
, "..", 2, 1, PARENT(ip
), DT_DIR
))
3104 * Find first entry of left-most leaf
3107 filp
->f_pos
= DIREND
;
3111 if ((rc
= dtReadFirst(ip
, &btstack
)))
3114 DT_GETSEARCH(ip
, btstack
.top
, bn
, mp
, p
, index
);
3118 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3120 * pn = index = 0: First entry "."
3121 * pn = 0; index = 1: Second entry ".."
3122 * pn > 0: Real entries, pn=1 -> leftmost page
3123 * pn = index = -1: No more entries
3125 dtpos
= filp
->f_pos
;
3127 /* build "." entry */
3129 if (filldir(dirent
, ".", 1, filp
->f_pos
, ip
->i_ino
,
3132 dtoffset
->index
= 1;
3133 filp
->f_pos
= dtpos
;
3136 if (dtoffset
->pn
== 0) {
3137 if (dtoffset
->index
== 1) {
3138 /* build ".." entry */
3140 if (filldir(dirent
, "..", 2, filp
->f_pos
,
3141 PARENT(ip
), DT_DIR
))
3144 jfs_err("jfs_readdir called with "
3148 dtoffset
->index
= 0;
3149 filp
->f_pos
= dtpos
;
3153 filp
->f_pos
= DIREND
;
3157 if ((rc
= dtReadNext(ip
, &filp
->f_pos
, &btstack
))) {
3158 jfs_err("jfs_readdir: unexpected rc = %d "
3159 "from dtReadNext", rc
);
3160 filp
->f_pos
= DIREND
;
3163 /* get start leaf page and index */
3164 DT_GETSEARCH(ip
, btstack
.top
, bn
, mp
, p
, index
);
3166 /* offset beyond directory eof ? */
3168 filp
->f_pos
= DIREND
;
3173 dirent_buf
= __get_free_page(GFP_KERNEL
);
3174 if (dirent_buf
== 0) {
3176 jfs_warn("jfs_readdir: __get_free_page failed!");
3177 filp
->f_pos
= DIREND
;
3182 jfs_dirent
= (struct jfs_dirent
*) dirent_buf
;
3184 overflow
= fix_page
= 0;
3186 stbl
= DT_GETSTBL(p
);
3188 for (i
= index
; i
< p
->header
.nextindex
; i
++) {
3189 d
= (struct ldtentry
*) & p
->slot
[stbl
[i
]];
3191 if (((long) jfs_dirent
+ d
->namlen
+ 1) >
3192 (dirent_buf
+ PAGE_SIZE
)) {
3193 /* DBCS codepages could overrun dirent_buf */
3199 d_namleft
= d
->namlen
;
3200 name_ptr
= jfs_dirent
->name
;
3201 jfs_dirent
->ino
= le32_to_cpu(d
->inumber
);
3204 len
= min(d_namleft
, DTLHDRDATALEN
);
3205 jfs_dirent
->position
= le32_to_cpu(d
->index
);
3207 * d->index should always be valid, but it
3208 * isn't. fsck.jfs doesn't create the
3209 * directory index for the lost+found
3210 * directory. Rather than let it go,
3211 * we can try to fix it.
3213 if ((jfs_dirent
->position
< 2) ||
3214 (jfs_dirent
->position
>=
3215 JFS_IP(ip
)->next_index
)) {
3216 if (!page_fixed
&& !isReadOnly(ip
)) {
3219 * setting overflow and setting
3220 * index to i will cause the
3221 * same page to be processed
3222 * again starting here
3228 jfs_dirent
->position
= unique_pos
++;
3231 jfs_dirent
->position
= dtpos
;
3232 len
= min(d_namleft
, DTLHDRDATALEN_LEGACY
);
3235 /* copy the name of head/only segment */
3236 outlen
= jfs_strfromUCS_le(name_ptr
, d
->name
, len
,
3238 jfs_dirent
->name_len
= outlen
;
3240 /* copy name in the additional segment(s) */
3243 t
= (struct dtslot
*) & p
->slot
[next
];
3247 if (d_namleft
== 0) {
3249 "JFS:Dtree error: ino = "
3250 "%ld, bn=%Ld, index = %d",
3256 len
= min(d_namleft
, DTSLOTDATALEN
);
3257 outlen
= jfs_strfromUCS_le(name_ptr
, t
->name
,
3259 jfs_dirent
->name_len
+= outlen
;
3265 jfs_dirent
= next_jfs_dirent(jfs_dirent
);
3272 /* Point to next leaf page */
3273 if (p
->header
.flag
& BT_ROOT
)
3276 bn
= le64_to_cpu(p
->header
.next
);
3278 /* update offset (pn:index) for new page */
3281 dtoffset
->index
= 0;
3287 /* unpin previous leaf page */
3290 jfs_dirent
= (struct jfs_dirent
*) dirent_buf
;
3291 while (jfs_dirents
--) {
3292 filp
->f_pos
= jfs_dirent
->position
;
3293 if (filldir(dirent
, jfs_dirent
->name
,
3294 jfs_dirent
->name_len
, filp
->f_pos
,
3295 jfs_dirent
->ino
, DT_UNKNOWN
))
3297 jfs_dirent
= next_jfs_dirent(jfs_dirent
);
3301 add_missing_indices(ip
, bn
);
3305 if (!overflow
&& (bn
== 0)) {
3306 filp
->f_pos
= DIREND
;
3310 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3312 free_page(dirent_buf
);
3318 free_page(dirent_buf
);
3327 * function: get the leftmost page of the directory
3329 static int dtReadFirst(struct inode
*ip
, struct btstack
* btstack
)
3333 int psize
= 288; /* initial in-line directory */
3334 struct metapage
*mp
;
3337 struct btframe
*btsp
;
3340 BT_CLR(btstack
); /* reset stack */
3343 * descend leftmost path of the tree
3345 * by convention, root bn = 0.
3348 DT_GETPAGE(ip
, bn
, mp
, psize
, p
, rc
);
3353 * leftmost leaf page
3355 if (p
->header
.flag
& BT_LEAF
) {
3356 /* return leftmost entry */
3357 btsp
= btstack
->top
;
3366 * descend down to leftmost child page
3368 if (BT_STACK_FULL(btstack
)) {
3370 jfs_error(ip
->i_sb
, "dtReadFirst: btstack overrun");
3371 BT_STACK_DUMP(btstack
);
3374 /* push (bn, index) of the parent page/entry */
3375 BT_PUSH(btstack
, bn
, 0);
3377 /* get the leftmost entry */
3378 stbl
= DT_GETSTBL(p
);
3379 xd
= (pxd_t
*) & p
->slot
[stbl
[0]];
3381 /* get the child page block address */
3382 bn
= addressPXD(xd
);
3383 psize
= lengthPXD(xd
) << JFS_SBI(ip
->i_sb
)->l2bsize
;
3385 /* unpin the parent page */
3394 * function: get the page of the specified offset (pn:index)
3396 * return: if (offset > eof), bn = -1;
3398 * note: if index > nextindex of the target leaf page,
3399 * start with 1st entry of next leaf page;
3401 static int dtReadNext(struct inode
*ip
, loff_t
* offset
,
3402 struct btstack
* btstack
)
3409 } *dtoffset
= (struct dtoffset
*) offset
;
3411 struct metapage
*mp
;
3416 struct btframe
*btsp
, *parent
;
3420 * get leftmost leaf page pinned
3422 if ((rc
= dtReadFirst(ip
, btstack
)))
3426 DT_GETSEARCH(ip
, btstack
->top
, bn
, mp
, p
, index
);
3428 /* get the start offset (pn:index) */
3429 pn
= dtoffset
->pn
- 1; /* Now pn = 0 represents leftmost leaf */
3430 index
= dtoffset
->index
;
3432 /* start at leftmost page ? */
3434 /* offset beyond eof ? */
3435 if (index
< p
->header
.nextindex
)
3438 if (p
->header
.flag
& BT_ROOT
) {
3443 /* start with 1st entry of next leaf page */
3445 dtoffset
->index
= index
= 0;
3449 /* start at non-leftmost page: scan parent pages for large pn */
3450 if (p
->header
.flag
& BT_ROOT
) {
3455 /* start after next leaf page ? */
3459 /* get leaf page pn = 1 */
3461 bn
= le64_to_cpu(p
->header
.next
);
3463 /* unpin leaf page */
3466 /* offset beyond eof ? */
3475 * scan last internal page level to get target leaf page
3478 /* unpin leftmost leaf page */
3481 /* get left most parent page */
3482 btsp
= btstack
->top
;
3485 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3489 /* scan parent pages at last internal page level */
3490 while (pn
>= p
->header
.nextindex
) {
3491 pn
-= p
->header
.nextindex
;
3493 /* get next parent page address */
3494 bn
= le64_to_cpu(p
->header
.next
);
3496 /* unpin current parent page */
3499 /* offset beyond eof ? */
3505 /* get next parent page */
3506 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3510 /* update parent page stack frame */
3514 /* get leaf page address */
3515 stbl
= DT_GETSTBL(p
);
3516 xd
= (pxd_t
*) & p
->slot
[stbl
[pn
]];
3517 bn
= addressPXD(xd
);
3519 /* unpin parent page */
3523 * get target leaf page
3526 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3531 * leaf page has been completed:
3532 * start with 1st entry of next leaf page
3534 if (index
>= p
->header
.nextindex
) {
3535 bn
= le64_to_cpu(p
->header
.next
);
3537 /* unpin leaf page */
3540 /* offset beyond eof ? */
3546 /* get next leaf page */
3547 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3551 /* start with 1st entry of next leaf page */
3553 dtoffset
->index
= 0;
3557 /* return target leaf page pinned */
3558 btsp
= btstack
->top
;
3560 btsp
->index
= dtoffset
->index
;
3570 * function: compare search key with an internal entry
3573 * < 0 if k is < record
3574 * = 0 if k is = record
3575 * > 0 if k is > record
3577 static int dtCompare(struct component_name
* key
, /* search key */
3578 dtpage_t
* p
, /* directory page */
3580 { /* entry slot index */
3583 int klen
, namlen
, len
, rc
;
3584 struct idtentry
*ih
;
3588 * force the left-most key on internal pages, at any level of
3589 * the tree, to be less than any search key.
3590 * this obviates having to update the leftmost key on an internal
3591 * page when the user inserts a new key in the tree smaller than
3592 * anything that has been stored.
3594 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3595 * at any internal page at any level of the tree,
3596 * it descends to child of the entry anyway -
3597 * ? make the entry as min size dummy entry)
3599 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3606 ih
= (struct idtentry
*) & p
->slot
[si
];
3609 namlen
= ih
->namlen
;
3610 len
= min(namlen
, DTIHDRDATALEN
);
3612 /* compare with head/only segment */
3613 len
= min(klen
, len
);
3614 if ((rc
= UniStrncmp_le(kname
, name
, len
)))
3620 /* compare with additional segment(s) */
3622 while (klen
> 0 && namlen
> 0) {
3623 /* compare with next name segment */
3624 t
= (struct dtslot
*) & p
->slot
[si
];
3625 len
= min(namlen
, DTSLOTDATALEN
);
3626 len
= min(klen
, len
);
3628 if ((rc
= UniStrncmp_le(kname
, name
, len
)))
3637 return (klen
- namlen
);
3646 * function: compare search key with an (leaf/internal) entry
3649 * < 0 if k is < record
3650 * = 0 if k is = record
3651 * > 0 if k is > record
3653 static int ciCompare(struct component_name
* key
, /* search key */
3654 dtpage_t
* p
, /* directory page */
3655 int si
, /* entry slot index */
3660 int klen
, namlen
, len
, rc
;
3661 struct ldtentry
*lh
;
3662 struct idtentry
*ih
;
3667 * force the left-most key on internal pages, at any level of
3668 * the tree, to be less than any search key.
3669 * this obviates having to update the leftmost key on an internal
3670 * page when the user inserts a new key in the tree smaller than
3671 * anything that has been stored.
3673 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3674 * at any internal page at any level of the tree,
3675 * it descends to child of the entry anyway -
3676 * ? make the entry as min size dummy entry)
3678 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3688 if (p
->header
.flag
& BT_LEAF
) {
3689 lh
= (struct ldtentry
*) & p
->slot
[si
];
3692 namlen
= lh
->namlen
;
3693 if (flag
& JFS_DIR_INDEX
)
3694 len
= min(namlen
, DTLHDRDATALEN
);
3696 len
= min(namlen
, DTLHDRDATALEN_LEGACY
);
3699 * internal page entry
3702 ih
= (struct idtentry
*) & p
->slot
[si
];
3705 namlen
= ih
->namlen
;
3706 len
= min(namlen
, DTIHDRDATALEN
);
3709 /* compare with head/only segment */
3710 len
= min(klen
, len
);
3711 for (i
= 0; i
< len
; i
++, kname
++, name
++) {
3712 /* only uppercase if case-insensitive support is on */
3713 if ((flag
& JFS_OS2
) == JFS_OS2
)
3714 x
= UniToupper(le16_to_cpu(*name
));
3716 x
= le16_to_cpu(*name
);
3717 if ((rc
= *kname
- x
))
3724 /* compare with additional segment(s) */
3725 while (klen
> 0 && namlen
> 0) {
3726 /* compare with next name segment */
3727 t
= (struct dtslot
*) & p
->slot
[si
];
3728 len
= min(namlen
, DTSLOTDATALEN
);
3729 len
= min(klen
, len
);
3731 for (i
= 0; i
< len
; i
++, kname
++, name
++) {
3732 /* only uppercase if case-insensitive support is on */
3733 if ((flag
& JFS_OS2
) == JFS_OS2
)
3734 x
= UniToupper(le16_to_cpu(*name
));
3736 x
= le16_to_cpu(*name
);
3738 if ((rc
= *kname
- x
))
3747 return (klen
- namlen
);
3752 * ciGetLeafPrefixKey()
3754 * function: compute prefix of suffix compression
3755 * from two adjacent leaf entries
3756 * across page boundary
3758 * return: non-zero on error
3761 static int ciGetLeafPrefixKey(dtpage_t
* lp
, int li
, dtpage_t
* rp
,
3762 int ri
, struct component_name
* key
, int flag
)
3765 wchar_t *pl
, *pr
, *kname
;
3766 struct component_name lkey
;
3767 struct component_name rkey
;
3769 lkey
.name
= (wchar_t *) kmalloc((JFS_NAME_MAX
+ 1) * sizeof(wchar_t),
3771 if (lkey
.name
== NULL
)
3774 rkey
.name
= (wchar_t *) kmalloc((JFS_NAME_MAX
+ 1) * sizeof(wchar_t),
3776 if (rkey
.name
== NULL
) {
3781 /* get left and right key */
3782 dtGetKey(lp
, li
, &lkey
, flag
);
3783 lkey
.name
[lkey
.namlen
] = 0;
3785 if ((flag
& JFS_OS2
) == JFS_OS2
)
3788 dtGetKey(rp
, ri
, &rkey
, flag
);
3789 rkey
.name
[rkey
.namlen
] = 0;
3792 if ((flag
& JFS_OS2
) == JFS_OS2
)
3795 /* compute prefix */
3798 namlen
= min(lkey
.namlen
, rkey
.namlen
);
3799 for (pl
= lkey
.name
, pr
= rkey
.name
;
3800 namlen
; pl
++, pr
++, namlen
--, klen
++, kname
++) {
3803 key
->namlen
= klen
+ 1;
3808 /* l->namlen <= r->namlen since l <= r */
3809 if (lkey
.namlen
< rkey
.namlen
) {
3811 key
->namlen
= klen
+ 1;
3812 } else /* l->namelen == r->namelen */
3826 * function: get key of the entry
3828 static void dtGetKey(dtpage_t
* p
, int i
, /* entry index */
3829 struct component_name
* key
, int flag
)
3833 struct ldtentry
*lh
;
3834 struct idtentry
*ih
;
3841 stbl
= DT_GETSTBL(p
);
3843 if (p
->header
.flag
& BT_LEAF
) {
3844 lh
= (struct ldtentry
*) & p
->slot
[si
];
3846 namlen
= lh
->namlen
;
3848 if (flag
& JFS_DIR_INDEX
)
3849 len
= min(namlen
, DTLHDRDATALEN
);
3851 len
= min(namlen
, DTLHDRDATALEN_LEGACY
);
3853 ih
= (struct idtentry
*) & p
->slot
[si
];
3855 namlen
= ih
->namlen
;
3857 len
= min(namlen
, DTIHDRDATALEN
);
3860 key
->namlen
= namlen
;
3864 * move head/only segment
3866 UniStrncpy_from_le(kname
, name
, len
);
3869 * move additional segment(s)
3872 /* get next segment */
3876 len
= min(namlen
, DTSLOTDATALEN
);
3877 UniStrncpy_from_le(kname
, t
->name
, len
);
3887 * function: allocate free slot(s) and
3888 * write a leaf/internal entry
3890 * return: entry slot index
3892 static void dtInsertEntry(dtpage_t
* p
, int index
, struct component_name
* key
,
3893 ddata_t
* data
, struct dt_lock
** dtlock
)
3895 struct dtslot
*h
, *t
;
3896 struct ldtentry
*lh
= NULL
;
3897 struct idtentry
*ih
= NULL
;
3898 int hsi
, fsi
, klen
, len
, nextindex
;
3903 struct dt_lock
*dtlck
= *dtlock
;
3907 struct metapage
*mp
= NULL
;
3912 /* allocate a free slot */
3913 hsi
= fsi
= p
->header
.freelist
;
3915 p
->header
.freelist
= h
->next
;
3916 --p
->header
.freecnt
;
3918 /* open new linelock */
3919 if (dtlck
->index
>= dtlck
->maxcnt
)
3920 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
3922 lv
= & dtlck
->lv
[dtlck
->index
];
3925 /* write head/only segment */
3926 if (p
->header
.flag
& BT_LEAF
) {
3927 lh
= (struct ldtentry
*) h
;
3929 lh
->inumber
= cpu_to_le32(data
->leaf
.ino
);
3932 if (data
->leaf
.ip
) {
3933 len
= min(klen
, DTLHDRDATALEN
);
3934 if (!(p
->header
.flag
& BT_ROOT
))
3935 bn
= addressPXD(&p
->header
.self
);
3936 lh
->index
= cpu_to_le32(add_index(data
->leaf
.tid
,
3940 len
= min(klen
, DTLHDRDATALEN_LEGACY
);
3942 ih
= (struct idtentry
*) h
;
3948 len
= min(klen
, DTIHDRDATALEN
);
3951 UniStrncpy_to_le(name
, kname
, len
);
3956 /* write additional segment(s) */
3961 fsi
= p
->header
.freelist
;
3963 p
->header
.freelist
= t
->next
;
3964 --p
->header
.freecnt
;
3966 /* is next slot contiguous ? */
3967 if (fsi
!= xsi
+ 1) {
3968 /* close current linelock */
3972 /* open new linelock */
3973 if (dtlck
->index
< dtlck
->maxcnt
)
3976 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
3977 lv
= & dtlck
->lv
[0];
3985 len
= min(klen
, DTSLOTDATALEN
);
3986 UniStrncpy_to_le(t
->name
, kname
, len
);
3993 /* close current linelock */
3999 /* terminate last/only segment */
4001 /* single segment entry */
4002 if (p
->header
.flag
& BT_LEAF
)
4007 /* multi-segment entry */
4010 /* if insert into middle, shift right succeeding entries in stbl */
4011 stbl
= DT_GETSTBL(p
);
4012 nextindex
= p
->header
.nextindex
;
4013 if (index
< nextindex
) {
4014 memmove(stbl
+ index
+ 1, stbl
+ index
, nextindex
- index
);
4016 if ((p
->header
.flag
& BT_LEAF
) && data
->leaf
.ip
) {
4020 * Need to update slot number for entries that moved
4024 for (n
= index
+ 1; n
<= nextindex
; n
++) {
4025 lh
= (struct ldtentry
*) & (p
->slot
[stbl
[n
]]);
4026 modify_index(data
->leaf
.tid
, data
->leaf
.ip
,
4027 le32_to_cpu(lh
->index
), bn
, n
,
4031 release_metapage(mp
);
4037 /* advance next available entry index of stbl */
4038 ++p
->header
.nextindex
;
4045 * function: move entries from split/left page to new/right page
4047 * nextindex of dst page and freelist/freecnt of both pages
4050 static void dtMoveEntry(dtpage_t
* sp
, int si
, dtpage_t
* dp
,
4051 struct dt_lock
** sdtlock
, struct dt_lock
** ddtlock
,
4054 int ssi
, next
; /* src slot index */
4055 int di
; /* dst entry index */
4056 int dsi
; /* dst slot index */
4057 s8
*sstbl
, *dstbl
; /* sorted entry table */
4059 struct ldtentry
*slh
, *dlh
= NULL
;
4060 struct idtentry
*sih
, *dih
= NULL
;
4061 struct dtslot
*h
, *s
, *d
;
4062 struct dt_lock
*sdtlck
= *sdtlock
, *ddtlck
= *ddtlock
;
4063 struct lv
*slv
, *dlv
;
4067 sstbl
= (s8
*) & sp
->slot
[sp
->header
.stblindex
];
4068 dstbl
= (s8
*) & dp
->slot
[dp
->header
.stblindex
];
4070 dsi
= dp
->header
.freelist
; /* first (whole page) free slot */
4071 sfsi
= sp
->header
.freelist
;
4073 /* linelock destination entry slot */
4074 dlv
= & ddtlck
->lv
[ddtlck
->index
];
4077 /* linelock source entry slot */
4078 slv
= & sdtlck
->lv
[sdtlck
->index
];
4079 slv
->offset
= sstbl
[si
];
4080 xssi
= slv
->offset
- 1;
4086 for (di
= 0; si
< sp
->header
.nextindex
; si
++, di
++) {
4090 /* is next slot contiguous ? */
4091 if (ssi
!= xssi
+ 1) {
4092 /* close current linelock */
4096 /* open new linelock */
4097 if (sdtlck
->index
< sdtlck
->maxcnt
)
4100 sdtlck
= (struct dt_lock
*) txLinelock(sdtlck
);
4101 slv
= & sdtlck
->lv
[0];
4109 * move head/only segment of an entry
4112 h
= d
= &dp
->slot
[dsi
];
4114 /* get src slot and move */
4116 if (sp
->header
.flag
& BT_LEAF
) {
4117 /* get source entry */
4118 slh
= (struct ldtentry
*) s
;
4119 dlh
= (struct ldtentry
*) h
;
4120 snamlen
= slh
->namlen
;
4123 len
= min(snamlen
, DTLHDRDATALEN
);
4124 dlh
->index
= slh
->index
; /* little-endian */
4126 len
= min(snamlen
, DTLHDRDATALEN_LEGACY
);
4128 memcpy(dlh
, slh
, 6 + len
* 2);
4132 /* update dst head/only segment next field */
4136 sih
= (struct idtentry
*) s
;
4137 snamlen
= sih
->namlen
;
4139 len
= min(snamlen
, DTIHDRDATALEN
);
4140 dih
= (struct idtentry
*) h
;
4141 memcpy(dih
, sih
, 10 + len
* 2);
4148 /* free src head/only segment */
4158 * move additional segment(s) of the entry
4161 while ((ssi
= next
) >= 0) {
4162 /* is next slot contiguous ? */
4163 if (ssi
!= xssi
+ 1) {
4164 /* close current linelock */
4168 /* open new linelock */
4169 if (sdtlck
->index
< sdtlck
->maxcnt
)
4175 slv
= & sdtlck
->lv
[0];
4182 /* get next source segment */
4185 /* get next destination free slot */
4188 len
= min(snamlen
, DTSLOTDATALEN
);
4189 UniStrncpy_le(d
->name
, s
->name
, len
);
4198 /* free source segment */
4207 /* terminate dst last/only segment */
4209 /* single segment entry */
4210 if (dp
->header
.flag
& BT_LEAF
)
4215 /* multi-segment entry */
4219 /* close current linelock */
4228 /* update source header */
4229 sp
->header
.freelist
= sfsi
;
4230 sp
->header
.freecnt
+= nd
;
4232 /* update destination header */
4233 dp
->header
.nextindex
= di
;
4235 dp
->header
.freelist
= dsi
;
4236 dp
->header
.freecnt
-= nd
;
4243 * function: free a (leaf/internal) entry
4245 * log freelist header, stbl, and each segment slot of entry
4246 * (even though last/only segment next field is modified,
4247 * physical image logging requires all segment slots of
4248 * the entry logged to avoid applying previous updates
4249 * to the same slots)
4251 static void dtDeleteEntry(dtpage_t
* p
, int fi
, struct dt_lock
** dtlock
)
4253 int fsi
; /* free entry slot index */
4257 struct dt_lock
*dtlck
= *dtlock
;
4261 /* get free entry slot index */
4262 stbl
= DT_GETSTBL(p
);
4265 /* open new linelock */
4266 if (dtlck
->index
>= dtlck
->maxcnt
)
4267 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4268 lv
= & dtlck
->lv
[dtlck
->index
];
4272 /* get the head/only segment */
4274 if (p
->header
.flag
& BT_LEAF
)
4275 si
= ((struct ldtentry
*) t
)->next
;
4277 si
= ((struct idtentry
*) t
)->next
;
4284 /* find the last/only segment */
4286 /* is next slot contiguous ? */
4287 if (si
!= xsi
+ 1) {
4288 /* close current linelock */
4292 /* open new linelock */
4293 if (dtlck
->index
< dtlck
->maxcnt
)
4296 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4297 lv
= & dtlck
->lv
[0];
4313 /* close current linelock */
4319 /* update freelist */
4320 t
->next
= p
->header
.freelist
;
4321 p
->header
.freelist
= fsi
;
4322 p
->header
.freecnt
+= freecnt
;
4324 /* if delete from middle,
4325 * shift left the succedding entries in the stbl
4327 si
= p
->header
.nextindex
;
4329 memmove(&stbl
[fi
], &stbl
[fi
+ 1], si
- fi
- 1);
4331 p
->header
.nextindex
--;
4338 * function: truncate a (leaf/internal) entry
4340 * log freelist header, stbl, and each segment slot of entry
4341 * (even though last/only segment next field is modified,
4342 * physical image logging requires all segment slots of
4343 * the entry logged to avoid applying previous updates
4344 * to the same slots)
4346 static void dtTruncateEntry(dtpage_t
* p
, int ti
, struct dt_lock
** dtlock
)
4348 int tsi
; /* truncate entry slot index */
4352 struct dt_lock
*dtlck
= *dtlock
;
4356 /* get free entry slot index */
4357 stbl
= DT_GETSTBL(p
);
4360 /* open new linelock */
4361 if (dtlck
->index
>= dtlck
->maxcnt
)
4362 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4363 lv
= & dtlck
->lv
[dtlck
->index
];
4367 /* get the head/only segment */
4369 ASSERT(p
->header
.flag
& BT_INTERNAL
);
4370 ((struct idtentry
*) t
)->namlen
= 0;
4371 si
= ((struct idtentry
*) t
)->next
;
4372 ((struct idtentry
*) t
)->next
= -1;
4379 /* find the last/only segment */
4381 /* is next slot contiguous ? */
4382 if (si
!= xsi
+ 1) {
4383 /* close current linelock */
4387 /* open new linelock */
4388 if (dtlck
->index
< dtlck
->maxcnt
)
4391 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4392 lv
= & dtlck
->lv
[0];
4408 /* close current linelock */
4414 /* update freelist */
4417 t
->next
= p
->header
.freelist
;
4418 p
->header
.freelist
= fsi
;
4419 p
->header
.freecnt
+= freecnt
;
4424 * dtLinelockFreelist()
4426 static void dtLinelockFreelist(dtpage_t
* p
, /* directory page */
4427 int m
, /* max slot index */
4428 struct dt_lock
** dtlock
)
4430 int fsi
; /* free entry slot index */
4433 struct dt_lock
*dtlck
= *dtlock
;
4437 /* get free entry slot index */
4438 fsi
= p
->header
.freelist
;
4440 /* open new linelock */
4441 if (dtlck
->index
>= dtlck
->maxcnt
)
4442 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4443 lv
= & dtlck
->lv
[dtlck
->index
];
4453 /* find the last/only segment */
4454 while (si
< m
&& si
>= 0) {
4455 /* is next slot contiguous ? */
4456 if (si
!= xsi
+ 1) {
4457 /* close current linelock */
4461 /* open new linelock */
4462 if (dtlck
->index
< dtlck
->maxcnt
)
4465 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4466 lv
= & dtlck
->lv
[0];
4480 /* close current linelock */
4491 * FUNCTION: Modify the inode number part of a directory entry
4494 * tid - Transaction id
4495 * ip - Inode of parent directory
4496 * key - Name of entry to be modified
4497 * orig_ino - Original inode number expected in entry
4498 * new_ino - New inode number to put into entry
4502 * -ESTALE - If entry found does not match orig_ino passed in
4503 * -ENOENT - If no entry can be found to match key
4504 * 0 - If successfully modified entry
4506 int dtModify(tid_t tid
, struct inode
*ip
,
4507 struct component_name
* key
, ino_t
* orig_ino
, ino_t new_ino
, int flag
)
4511 struct metapage
*mp
;
4514 struct btstack btstack
;
4516 struct dt_lock
*dtlck
;
4519 int entry_si
; /* entry slot index */
4520 struct ldtentry
*entry
;
4523 * search for the entry to modify:
4525 * dtSearch() returns (leaf page pinned, index at which to modify).
4527 if ((rc
= dtSearch(ip
, key
, orig_ino
, &btstack
, flag
)))
4530 /* retrieve search result */
4531 DT_GETSEARCH(ip
, btstack
.top
, bn
, mp
, p
, index
);
4533 BT_MARK_DIRTY(mp
, ip
);
4535 * acquire a transaction lock on the leaf page of named entry
4537 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckENTRY
);
4538 dtlck
= (struct dt_lock
*) & tlck
->lock
;
4540 /* get slot index of the entry */
4541 stbl
= DT_GETSTBL(p
);
4542 entry_si
= stbl
[index
];
4544 /* linelock entry */
4545 ASSERT(dtlck
->index
== 0);
4546 lv
= & dtlck
->lv
[0];
4547 lv
->offset
= entry_si
;
4551 /* get the head/only segment */
4552 entry
= (struct ldtentry
*) & p
->slot
[entry_si
];
4554 /* substitute the inode number of the entry */
4555 entry
->inumber
= cpu_to_le32(new_ino
);
4557 /* unpin the leaf page */