Linux 2.6.19-rc4
[linux-2.6/mini2440.git] / arch / mips / mm / tlbex.c
blob6f8b25cfa6f022b81b921b975b61c832f14f7f40
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004,2005,2006 by Thiemo Seufer
9 * Copyright (C) 2005 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
12 * ... and the days got worse and worse and now you see
13 * I've gone completly out of my mind.
15 * They're coming to take me a away haha
16 * they're coming to take me a away hoho hihi haha
17 * to the funny farm where code is beautiful all the time ...
19 * (Condolences to Napoleon XIV)
22 #include <stdarg.h>
24 #include <linux/mm.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
30 #include <asm/pgtable.h>
31 #include <asm/cacheflush.h>
32 #include <asm/mmu_context.h>
33 #include <asm/inst.h>
34 #include <asm/elf.h>
35 #include <asm/smp.h>
36 #include <asm/war.h>
38 static __init int __attribute__((unused)) r45k_bvahwbug(void)
40 /* XXX: We should probe for the presence of this bug, but we don't. */
41 return 0;
44 static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
46 /* XXX: We should probe for the presence of this bug, but we don't. */
47 return 0;
50 static __init int __attribute__((unused)) bcm1250_m3_war(void)
52 return BCM1250_M3_WAR;
55 static __init int __attribute__((unused)) r10000_llsc_war(void)
57 return R10000_LLSC_WAR;
61 * A little micro-assembler, intended for TLB refill handler
62 * synthesizing. It is intentionally kept simple, does only support
63 * a subset of instructions, and does not try to hide pipeline effects
64 * like branch delay slots.
67 enum fields
69 RS = 0x001,
70 RT = 0x002,
71 RD = 0x004,
72 RE = 0x008,
73 SIMM = 0x010,
74 UIMM = 0x020,
75 BIMM = 0x040,
76 JIMM = 0x080,
77 FUNC = 0x100,
78 SET = 0x200
81 #define OP_MASK 0x2f
82 #define OP_SH 26
83 #define RS_MASK 0x1f
84 #define RS_SH 21
85 #define RT_MASK 0x1f
86 #define RT_SH 16
87 #define RD_MASK 0x1f
88 #define RD_SH 11
89 #define RE_MASK 0x1f
90 #define RE_SH 6
91 #define IMM_MASK 0xffff
92 #define IMM_SH 0
93 #define JIMM_MASK 0x3ffffff
94 #define JIMM_SH 0
95 #define FUNC_MASK 0x2f
96 #define FUNC_SH 0
97 #define SET_MASK 0x7
98 #define SET_SH 0
100 enum opcode {
101 insn_invalid,
102 insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
103 insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
104 insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
105 insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
106 insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
107 insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
108 insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
109 insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
110 insn_tlbwr, insn_xor, insn_xori
113 struct insn {
114 enum opcode opcode;
115 u32 match;
116 enum fields fields;
119 /* This macro sets the non-variable bits of an instruction. */
120 #define M(a, b, c, d, e, f) \
121 ((a) << OP_SH \
122 | (b) << RS_SH \
123 | (c) << RT_SH \
124 | (d) << RD_SH \
125 | (e) << RE_SH \
126 | (f) << FUNC_SH)
128 static __initdata struct insn insn_table[] = {
129 { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
130 { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
131 { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
132 { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
133 { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
134 { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
135 { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
136 { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
137 { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
138 { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
139 { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
140 { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
141 { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
142 { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
143 { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
144 { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
145 { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
146 { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
147 { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
148 { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
149 { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
150 { insn_j, M(j_op,0,0,0,0,0), JIMM },
151 { insn_jal, M(jal_op,0,0,0,0,0), JIMM },
152 { insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
153 { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
154 { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
155 { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
156 { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
157 { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
158 { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
159 { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
160 { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
161 { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
162 { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
163 { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
164 { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
165 { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
166 { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
167 { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
168 { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
169 { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
170 { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
171 { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
172 { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
173 { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
174 { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
175 { insn_invalid, 0, 0 }
178 #undef M
180 static __init u32 build_rs(u32 arg)
182 if (arg & ~RS_MASK)
183 printk(KERN_WARNING "TLB synthesizer field overflow\n");
185 return (arg & RS_MASK) << RS_SH;
188 static __init u32 build_rt(u32 arg)
190 if (arg & ~RT_MASK)
191 printk(KERN_WARNING "TLB synthesizer field overflow\n");
193 return (arg & RT_MASK) << RT_SH;
196 static __init u32 build_rd(u32 arg)
198 if (arg & ~RD_MASK)
199 printk(KERN_WARNING "TLB synthesizer field overflow\n");
201 return (arg & RD_MASK) << RD_SH;
204 static __init u32 build_re(u32 arg)
206 if (arg & ~RE_MASK)
207 printk(KERN_WARNING "TLB synthesizer field overflow\n");
209 return (arg & RE_MASK) << RE_SH;
212 static __init u32 build_simm(s32 arg)
214 if (arg > 0x7fff || arg < -0x8000)
215 printk(KERN_WARNING "TLB synthesizer field overflow\n");
217 return arg & 0xffff;
220 static __init u32 build_uimm(u32 arg)
222 if (arg & ~IMM_MASK)
223 printk(KERN_WARNING "TLB synthesizer field overflow\n");
225 return arg & IMM_MASK;
228 static __init u32 build_bimm(s32 arg)
230 if (arg > 0x1ffff || arg < -0x20000)
231 printk(KERN_WARNING "TLB synthesizer field overflow\n");
233 if (arg & 0x3)
234 printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
236 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
239 static __init u32 build_jimm(u32 arg)
241 if (arg & ~((JIMM_MASK) << 2))
242 printk(KERN_WARNING "TLB synthesizer field overflow\n");
244 return (arg >> 2) & JIMM_MASK;
247 static __init u32 build_func(u32 arg)
249 if (arg & ~FUNC_MASK)
250 printk(KERN_WARNING "TLB synthesizer field overflow\n");
252 return arg & FUNC_MASK;
255 static __init u32 build_set(u32 arg)
257 if (arg & ~SET_MASK)
258 printk(KERN_WARNING "TLB synthesizer field overflow\n");
260 return arg & SET_MASK;
264 * The order of opcode arguments is implicitly left to right,
265 * starting with RS and ending with FUNC or IMM.
267 static void __init build_insn(u32 **buf, enum opcode opc, ...)
269 struct insn *ip = NULL;
270 unsigned int i;
271 va_list ap;
272 u32 op;
274 for (i = 0; insn_table[i].opcode != insn_invalid; i++)
275 if (insn_table[i].opcode == opc) {
276 ip = &insn_table[i];
277 break;
280 if (!ip)
281 panic("Unsupported TLB synthesizer instruction %d", opc);
283 op = ip->match;
284 va_start(ap, opc);
285 if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
286 if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
287 if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
288 if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
289 if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
290 if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
291 if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
292 if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
293 if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
294 if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
295 va_end(ap);
297 **buf = op;
298 (*buf)++;
301 #define I_u1u2u3(op) \
302 static inline void __init i##op(u32 **buf, unsigned int a, \
303 unsigned int b, unsigned int c) \
305 build_insn(buf, insn##op, a, b, c); \
308 #define I_u2u1u3(op) \
309 static inline void __init i##op(u32 **buf, unsigned int a, \
310 unsigned int b, unsigned int c) \
312 build_insn(buf, insn##op, b, a, c); \
315 #define I_u3u1u2(op) \
316 static inline void __init i##op(u32 **buf, unsigned int a, \
317 unsigned int b, unsigned int c) \
319 build_insn(buf, insn##op, b, c, a); \
322 #define I_u1u2s3(op) \
323 static inline void __init i##op(u32 **buf, unsigned int a, \
324 unsigned int b, signed int c) \
326 build_insn(buf, insn##op, a, b, c); \
329 #define I_u2s3u1(op) \
330 static inline void __init i##op(u32 **buf, unsigned int a, \
331 signed int b, unsigned int c) \
333 build_insn(buf, insn##op, c, a, b); \
336 #define I_u2u1s3(op) \
337 static inline void __init i##op(u32 **buf, unsigned int a, \
338 unsigned int b, signed int c) \
340 build_insn(buf, insn##op, b, a, c); \
343 #define I_u1u2(op) \
344 static inline void __init i##op(u32 **buf, unsigned int a, \
345 unsigned int b) \
347 build_insn(buf, insn##op, a, b); \
350 #define I_u1s2(op) \
351 static inline void __init i##op(u32 **buf, unsigned int a, \
352 signed int b) \
354 build_insn(buf, insn##op, a, b); \
357 #define I_u1(op) \
358 static inline void __init i##op(u32 **buf, unsigned int a) \
360 build_insn(buf, insn##op, a); \
363 #define I_0(op) \
364 static inline void __init i##op(u32 **buf) \
366 build_insn(buf, insn##op); \
369 I_u2u1s3(_addiu);
370 I_u3u1u2(_addu);
371 I_u2u1u3(_andi);
372 I_u3u1u2(_and);
373 I_u1u2s3(_beq);
374 I_u1u2s3(_beql);
375 I_u1s2(_bgez);
376 I_u1s2(_bgezl);
377 I_u1s2(_bltz);
378 I_u1s2(_bltzl);
379 I_u1u2s3(_bne);
380 I_u1u2u3(_dmfc0);
381 I_u1u2u3(_dmtc0);
382 I_u2u1s3(_daddiu);
383 I_u3u1u2(_daddu);
384 I_u2u1u3(_dsll);
385 I_u2u1u3(_dsll32);
386 I_u2u1u3(_dsra);
387 I_u2u1u3(_dsrl);
388 I_u3u1u2(_dsubu);
389 I_0(_eret);
390 I_u1(_j);
391 I_u1(_jal);
392 I_u1(_jr);
393 I_u2s3u1(_ld);
394 I_u2s3u1(_ll);
395 I_u2s3u1(_lld);
396 I_u1s2(_lui);
397 I_u2s3u1(_lw);
398 I_u1u2u3(_mfc0);
399 I_u1u2u3(_mtc0);
400 I_u2u1u3(_ori);
401 I_0(_rfe);
402 I_u2s3u1(_sc);
403 I_u2s3u1(_scd);
404 I_u2s3u1(_sd);
405 I_u2u1u3(_sll);
406 I_u2u1u3(_sra);
407 I_u2u1u3(_srl);
408 I_u3u1u2(_subu);
409 I_u2s3u1(_sw);
410 I_0(_tlbp);
411 I_0(_tlbwi);
412 I_0(_tlbwr);
413 I_u3u1u2(_xor)
414 I_u2u1u3(_xori);
417 * handling labels
420 enum label_id {
421 label_invalid,
422 label_second_part,
423 label_leave,
424 label_vmalloc,
425 label_vmalloc_done,
426 label_tlbw_hazard,
427 label_split,
428 label_nopage_tlbl,
429 label_nopage_tlbs,
430 label_nopage_tlbm,
431 label_smp_pgtable_change,
432 label_r3000_write_probe_fail,
435 struct label {
436 u32 *addr;
437 enum label_id lab;
440 static __init void build_label(struct label **lab, u32 *addr,
441 enum label_id l)
443 (*lab)->addr = addr;
444 (*lab)->lab = l;
445 (*lab)++;
448 #define L_LA(lb) \
449 static inline void l##lb(struct label **lab, u32 *addr) \
451 build_label(lab, addr, label##lb); \
454 L_LA(_second_part)
455 L_LA(_leave)
456 L_LA(_vmalloc)
457 L_LA(_vmalloc_done)
458 L_LA(_tlbw_hazard)
459 L_LA(_split)
460 L_LA(_nopage_tlbl)
461 L_LA(_nopage_tlbs)
462 L_LA(_nopage_tlbm)
463 L_LA(_smp_pgtable_change)
464 L_LA(_r3000_write_probe_fail)
466 /* convenience macros for instructions */
467 #ifdef CONFIG_64BIT
468 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
469 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
470 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
471 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
472 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
473 # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
474 # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
475 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
476 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
477 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
478 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
479 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
480 #else
481 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
482 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
483 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
484 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
485 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
486 # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
487 # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
488 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
489 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
490 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
491 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
492 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
493 #endif
495 #define i_b(buf, off) i_beq(buf, 0, 0, off)
496 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
497 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
498 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
499 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
500 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
501 #define i_nop(buf) i_sll(buf, 0, 0, 0)
502 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
503 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
505 #ifdef CONFIG_64BIT
506 static __init int __attribute__((unused)) in_compat_space_p(long addr)
508 /* Is this address in 32bit compat space? */
509 return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
512 static __init int __attribute__((unused)) rel_highest(long val)
514 return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
517 static __init int __attribute__((unused)) rel_higher(long val)
519 return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
521 #endif
523 static __init int rel_hi(long val)
525 return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
528 static __init int rel_lo(long val)
530 return ((val & 0xffff) ^ 0x8000) - 0x8000;
533 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
535 #ifdef CONFIG_64BIT
536 if (!in_compat_space_p(addr)) {
537 i_lui(buf, rs, rel_highest(addr));
538 if (rel_higher(addr))
539 i_daddiu(buf, rs, rs, rel_higher(addr));
540 if (rel_hi(addr)) {
541 i_dsll(buf, rs, rs, 16);
542 i_daddiu(buf, rs, rs, rel_hi(addr));
543 i_dsll(buf, rs, rs, 16);
544 } else
545 i_dsll32(buf, rs, rs, 0);
546 } else
547 #endif
548 i_lui(buf, rs, rel_hi(addr));
551 static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
552 long addr)
554 i_LA_mostly(buf, rs, addr);
555 if (rel_lo(addr))
556 i_ADDIU(buf, rs, rs, rel_lo(addr));
560 * handle relocations
563 struct reloc {
564 u32 *addr;
565 unsigned int type;
566 enum label_id lab;
569 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
570 enum label_id l)
572 (*rel)->addr = addr;
573 (*rel)->type = R_MIPS_PC16;
574 (*rel)->lab = l;
575 (*rel)++;
578 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
580 long laddr = (long)lab->addr;
581 long raddr = (long)rel->addr;
583 switch (rel->type) {
584 case R_MIPS_PC16:
585 *rel->addr |= build_bimm(laddr - (raddr + 4));
586 break;
588 default:
589 panic("Unsupported TLB synthesizer relocation %d",
590 rel->type);
594 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
596 struct label *l;
598 for (; rel->lab != label_invalid; rel++)
599 for (l = lab; l->lab != label_invalid; l++)
600 if (rel->lab == l->lab)
601 __resolve_relocs(rel, l);
604 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
605 long off)
607 for (; rel->lab != label_invalid; rel++)
608 if (rel->addr >= first && rel->addr < end)
609 rel->addr += off;
612 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
613 long off)
615 for (; lab->lab != label_invalid; lab++)
616 if (lab->addr >= first && lab->addr < end)
617 lab->addr += off;
620 static __init void copy_handler(struct reloc *rel, struct label *lab,
621 u32 *first, u32 *end, u32 *target)
623 long off = (long)(target - first);
625 memcpy(target, first, (end - first) * sizeof(u32));
627 move_relocs(rel, first, end, off);
628 move_labels(lab, first, end, off);
631 static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
632 u32 *addr)
634 for (; rel->lab != label_invalid; rel++) {
635 if (rel->addr == addr
636 && (rel->type == R_MIPS_PC16
637 || rel->type == R_MIPS_26))
638 return 1;
641 return 0;
644 /* convenience functions for labeled branches */
645 static void __init __attribute__((unused))
646 il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
648 r_mips_pc16(r, *p, l);
649 i_bltz(p, reg, 0);
652 static void __init __attribute__((unused)) il_b(u32 **p, struct reloc **r,
653 enum label_id l)
655 r_mips_pc16(r, *p, l);
656 i_b(p, 0);
659 static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
660 enum label_id l)
662 r_mips_pc16(r, *p, l);
663 i_beqz(p, reg, 0);
666 static void __init __attribute__((unused))
667 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
669 r_mips_pc16(r, *p, l);
670 i_beqzl(p, reg, 0);
673 static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
674 enum label_id l)
676 r_mips_pc16(r, *p, l);
677 i_bnez(p, reg, 0);
680 static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
681 enum label_id l)
683 r_mips_pc16(r, *p, l);
684 i_bgezl(p, reg, 0);
687 /* The only general purpose registers allowed in TLB handlers. */
688 #define K0 26
689 #define K1 27
691 /* Some CP0 registers */
692 #define C0_INDEX 0, 0
693 #define C0_ENTRYLO0 2, 0
694 #define C0_TCBIND 2, 2
695 #define C0_ENTRYLO1 3, 0
696 #define C0_CONTEXT 4, 0
697 #define C0_BADVADDR 8, 0
698 #define C0_ENTRYHI 10, 0
699 #define C0_EPC 14, 0
700 #define C0_XCONTEXT 20, 0
702 #ifdef CONFIG_64BIT
703 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
704 #else
705 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
706 #endif
708 /* The worst case length of the handler is around 18 instructions for
709 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
710 * Maximum space available is 32 instructions for R3000 and 64
711 * instructions for R4000.
713 * We deliberately chose a buffer size of 128, so we won't scribble
714 * over anything important on overflow before we panic.
716 static __initdata u32 tlb_handler[128];
718 /* simply assume worst case size for labels and relocs */
719 static __initdata struct label labels[128];
720 static __initdata struct reloc relocs[128];
723 * The R3000 TLB handler is simple.
725 static void __init build_r3000_tlb_refill_handler(void)
727 long pgdc = (long)pgd_current;
728 u32 *p;
729 int i;
731 memset(tlb_handler, 0, sizeof(tlb_handler));
732 p = tlb_handler;
734 i_mfc0(&p, K0, C0_BADVADDR);
735 i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
736 i_lw(&p, K1, rel_lo(pgdc), K1);
737 i_srl(&p, K0, K0, 22); /* load delay */
738 i_sll(&p, K0, K0, 2);
739 i_addu(&p, K1, K1, K0);
740 i_mfc0(&p, K0, C0_CONTEXT);
741 i_lw(&p, K1, 0, K1); /* cp0 delay */
742 i_andi(&p, K0, K0, 0xffc); /* load delay */
743 i_addu(&p, K1, K1, K0);
744 i_lw(&p, K0, 0, K1);
745 i_nop(&p); /* load delay */
746 i_mtc0(&p, K0, C0_ENTRYLO0);
747 i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
748 i_tlbwr(&p); /* cp0 delay */
749 i_jr(&p, K1);
750 i_rfe(&p); /* branch delay */
752 if (p > tlb_handler + 32)
753 panic("TLB refill handler space exceeded");
755 pr_info("Synthesized TLB refill handler (%u instructions).\n",
756 (unsigned int)(p - tlb_handler));
758 pr_debug("\t.set push\n");
759 pr_debug("\t.set noreorder\n");
760 for (i = 0; i < (p - tlb_handler); i++)
761 pr_debug("\t.word 0x%08x\n", tlb_handler[i]);
762 pr_debug("\t.set pop\n");
764 memcpy((void *)ebase, tlb_handler, 0x80);
768 * The R4000 TLB handler is much more complicated. We have two
769 * consecutive handler areas with 32 instructions space each.
770 * Since they aren't used at the same time, we can overflow in the
771 * other one.To keep things simple, we first assume linear space,
772 * then we relocate it to the final handler layout as needed.
774 static __initdata u32 final_handler[64];
777 * Hazards
779 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
780 * 2. A timing hazard exists for the TLBP instruction.
782 * stalling_instruction
783 * TLBP
785 * The JTLB is being read for the TLBP throughout the stall generated by the
786 * previous instruction. This is not really correct as the stalling instruction
787 * can modify the address used to access the JTLB. The failure symptom is that
788 * the TLBP instruction will use an address created for the stalling instruction
789 * and not the address held in C0_ENHI and thus report the wrong results.
791 * The software work-around is to not allow the instruction preceding the TLBP
792 * to stall - make it an NOP or some other instruction guaranteed not to stall.
794 * Errata 2 will not be fixed. This errata is also on the R5000.
796 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
798 static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
800 switch (current_cpu_data.cputype) {
801 /* Found by experiment: R4600 v2.0 needs this, too. */
802 case CPU_R4600:
803 case CPU_R5000:
804 case CPU_R5000A:
805 case CPU_NEVADA:
806 i_nop(p);
807 i_tlbp(p);
808 break;
810 default:
811 i_tlbp(p);
812 break;
817 * Write random or indexed TLB entry, and care about the hazards from
818 * the preceeding mtc0 and for the following eret.
820 enum tlb_write_entry { tlb_random, tlb_indexed };
822 static __init void build_tlb_write_entry(u32 **p, struct label **l,
823 struct reloc **r,
824 enum tlb_write_entry wmode)
826 void(*tlbw)(u32 **) = NULL;
828 switch (wmode) {
829 case tlb_random: tlbw = i_tlbwr; break;
830 case tlb_indexed: tlbw = i_tlbwi; break;
833 switch (current_cpu_data.cputype) {
834 case CPU_R4000PC:
835 case CPU_R4000SC:
836 case CPU_R4000MC:
837 case CPU_R4400PC:
838 case CPU_R4400SC:
839 case CPU_R4400MC:
841 * This branch uses up a mtc0 hazard nop slot and saves
842 * two nops after the tlbw instruction.
844 il_bgezl(p, r, 0, label_tlbw_hazard);
845 tlbw(p);
846 l_tlbw_hazard(l, *p);
847 i_nop(p);
848 break;
850 case CPU_R4600:
851 case CPU_R4700:
852 case CPU_R5000:
853 case CPU_R5000A:
854 i_nop(p);
855 tlbw(p);
856 i_nop(p);
857 break;
859 case CPU_R4300:
860 case CPU_5KC:
861 case CPU_TX49XX:
862 case CPU_AU1000:
863 case CPU_AU1100:
864 case CPU_AU1500:
865 case CPU_AU1550:
866 case CPU_AU1200:
867 case CPU_PR4450:
868 i_nop(p);
869 tlbw(p);
870 break;
872 case CPU_R10000:
873 case CPU_R12000:
874 case CPU_R14000:
875 case CPU_4KC:
876 case CPU_SB1:
877 case CPU_SB1A:
878 case CPU_4KSC:
879 case CPU_20KC:
880 case CPU_25KF:
881 tlbw(p);
882 break;
884 case CPU_NEVADA:
885 i_nop(p); /* QED specifies 2 nops hazard */
887 * This branch uses up a mtc0 hazard nop slot and saves
888 * a nop after the tlbw instruction.
890 il_bgezl(p, r, 0, label_tlbw_hazard);
891 tlbw(p);
892 l_tlbw_hazard(l, *p);
893 break;
895 case CPU_RM7000:
896 i_nop(p);
897 i_nop(p);
898 i_nop(p);
899 i_nop(p);
900 tlbw(p);
901 break;
903 case CPU_4KEC:
904 case CPU_24K:
905 case CPU_34K:
906 case CPU_74K:
907 i_ehb(p);
908 tlbw(p);
909 break;
911 case CPU_RM9000:
913 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
914 * use of the JTLB for instructions should not occur for 4
915 * cpu cycles and use for data translations should not occur
916 * for 3 cpu cycles.
918 i_ssnop(p);
919 i_ssnop(p);
920 i_ssnop(p);
921 i_ssnop(p);
922 tlbw(p);
923 i_ssnop(p);
924 i_ssnop(p);
925 i_ssnop(p);
926 i_ssnop(p);
927 break;
929 case CPU_VR4111:
930 case CPU_VR4121:
931 case CPU_VR4122:
932 case CPU_VR4181:
933 case CPU_VR4181A:
934 i_nop(p);
935 i_nop(p);
936 tlbw(p);
937 i_nop(p);
938 i_nop(p);
939 break;
941 case CPU_VR4131:
942 case CPU_VR4133:
943 case CPU_R5432:
944 i_nop(p);
945 i_nop(p);
946 tlbw(p);
947 break;
949 default:
950 panic("No TLB refill handler yet (CPU type: %d)",
951 current_cpu_data.cputype);
952 break;
956 #ifdef CONFIG_64BIT
958 * TMP and PTR are scratch.
959 * TMP will be clobbered, PTR will hold the pmd entry.
961 static __init void
962 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
963 unsigned int tmp, unsigned int ptr)
965 long pgdc = (long)pgd_current;
968 * The vmalloc handling is not in the hotpath.
970 i_dmfc0(p, tmp, C0_BADVADDR);
971 il_bltz(p, r, tmp, label_vmalloc);
972 /* No i_nop needed here, since the next insn doesn't touch TMP. */
974 #ifdef CONFIG_SMP
975 # ifdef CONFIG_MIPS_MT_SMTC
977 * SMTC uses TCBind value as "CPU" index
979 i_mfc0(p, ptr, C0_TCBIND);
980 i_dsrl(p, ptr, ptr, 19);
981 # else
983 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
984 * stored in CONTEXT.
986 i_dmfc0(p, ptr, C0_CONTEXT);
987 i_dsrl(p, ptr, ptr, 23);
988 #endif
989 i_LA_mostly(p, tmp, pgdc);
990 i_daddu(p, ptr, ptr, tmp);
991 i_dmfc0(p, tmp, C0_BADVADDR);
992 i_ld(p, ptr, rel_lo(pgdc), ptr);
993 #else
994 i_LA_mostly(p, ptr, pgdc);
995 i_ld(p, ptr, rel_lo(pgdc), ptr);
996 #endif
998 l_vmalloc_done(l, *p);
999 i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
1000 i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
1001 i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
1002 i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1003 i_ld(p, ptr, 0, ptr); /* get pmd pointer */
1004 i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
1005 i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
1006 i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
1010 * BVADDR is the faulting address, PTR is scratch.
1011 * PTR will hold the pgd for vmalloc.
1013 static __init void
1014 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
1015 unsigned int bvaddr, unsigned int ptr)
1017 long swpd = (long)swapper_pg_dir;
1019 l_vmalloc(l, *p);
1020 i_LA(p, ptr, VMALLOC_START);
1021 i_dsubu(p, bvaddr, bvaddr, ptr);
1023 if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1024 il_b(p, r, label_vmalloc_done);
1025 i_lui(p, ptr, rel_hi(swpd));
1026 } else {
1027 i_LA_mostly(p, ptr, swpd);
1028 il_b(p, r, label_vmalloc_done);
1029 i_daddiu(p, ptr, ptr, rel_lo(swpd));
1033 #else /* !CONFIG_64BIT */
1036 * TMP and PTR are scratch.
1037 * TMP will be clobbered, PTR will hold the pgd entry.
1039 static __init void __attribute__((unused))
1040 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1042 long pgdc = (long)pgd_current;
1044 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1045 #ifdef CONFIG_SMP
1046 #ifdef CONFIG_MIPS_MT_SMTC
1048 * SMTC uses TCBind value as "CPU" index
1050 i_mfc0(p, ptr, C0_TCBIND);
1051 i_LA_mostly(p, tmp, pgdc);
1052 i_srl(p, ptr, ptr, 19);
1053 #else
1055 * smp_processor_id() << 3 is stored in CONTEXT.
1057 i_mfc0(p, ptr, C0_CONTEXT);
1058 i_LA_mostly(p, tmp, pgdc);
1059 i_srl(p, ptr, ptr, 23);
1060 #endif
1061 i_addu(p, ptr, tmp, ptr);
1062 #else
1063 i_LA_mostly(p, ptr, pgdc);
1064 #endif
1065 i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1066 i_lw(p, ptr, rel_lo(pgdc), ptr);
1067 i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1068 i_sll(p, tmp, tmp, PGD_T_LOG2);
1069 i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1072 #endif /* !CONFIG_64BIT */
1074 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1076 unsigned int shift = 4 - (PTE_T_LOG2 + 1);
1077 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1079 switch (current_cpu_data.cputype) {
1080 case CPU_VR41XX:
1081 case CPU_VR4111:
1082 case CPU_VR4121:
1083 case CPU_VR4122:
1084 case CPU_VR4131:
1085 case CPU_VR4181:
1086 case CPU_VR4181A:
1087 case CPU_VR4133:
1088 shift += 2;
1089 break;
1091 default:
1092 break;
1095 if (shift)
1096 i_SRL(p, ctx, ctx, shift);
1097 i_andi(p, ctx, ctx, mask);
1100 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1103 * Bug workaround for the Nevada. It seems as if under certain
1104 * circumstances the move from cp0_context might produce a
1105 * bogus result when the mfc0 instruction and its consumer are
1106 * in a different cacheline or a load instruction, probably any
1107 * memory reference, is between them.
1109 switch (current_cpu_data.cputype) {
1110 case CPU_NEVADA:
1111 i_LW(p, ptr, 0, ptr);
1112 GET_CONTEXT(p, tmp); /* get context reg */
1113 break;
1115 default:
1116 GET_CONTEXT(p, tmp); /* get context reg */
1117 i_LW(p, ptr, 0, ptr);
1118 break;
1121 build_adjust_context(p, tmp);
1122 i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1125 static __init void build_update_entries(u32 **p, unsigned int tmp,
1126 unsigned int ptep)
1129 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1130 * Kernel is a special case. Only a few CPUs use it.
1132 #ifdef CONFIG_64BIT_PHYS_ADDR
1133 if (cpu_has_64bits) {
1134 i_ld(p, tmp, 0, ptep); /* get even pte */
1135 i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1136 i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1137 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1138 i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1139 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1140 } else {
1141 int pte_off_even = sizeof(pte_t) / 2;
1142 int pte_off_odd = pte_off_even + sizeof(pte_t);
1144 /* The pte entries are pre-shifted */
1145 i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1146 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1147 i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1148 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1150 #else
1151 i_LW(p, tmp, 0, ptep); /* get even pte */
1152 i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1153 if (r45k_bvahwbug())
1154 build_tlb_probe_entry(p);
1155 i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1156 if (r4k_250MHZhwbug())
1157 i_mtc0(p, 0, C0_ENTRYLO0);
1158 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1159 i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1160 if (r45k_bvahwbug())
1161 i_mfc0(p, tmp, C0_INDEX);
1162 if (r4k_250MHZhwbug())
1163 i_mtc0(p, 0, C0_ENTRYLO1);
1164 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1165 #endif
1168 static void __init build_r4000_tlb_refill_handler(void)
1170 u32 *p = tlb_handler;
1171 struct label *l = labels;
1172 struct reloc *r = relocs;
1173 u32 *f;
1174 unsigned int final_len;
1175 int i;
1177 memset(tlb_handler, 0, sizeof(tlb_handler));
1178 memset(labels, 0, sizeof(labels));
1179 memset(relocs, 0, sizeof(relocs));
1180 memset(final_handler, 0, sizeof(final_handler));
1183 * create the plain linear handler
1185 if (bcm1250_m3_war()) {
1186 i_MFC0(&p, K0, C0_BADVADDR);
1187 i_MFC0(&p, K1, C0_ENTRYHI);
1188 i_xor(&p, K0, K0, K1);
1189 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1190 il_bnez(&p, &r, K0, label_leave);
1191 /* No need for i_nop */
1194 #ifdef CONFIG_64BIT
1195 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1196 #else
1197 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1198 #endif
1200 build_get_ptep(&p, K0, K1);
1201 build_update_entries(&p, K0, K1);
1202 build_tlb_write_entry(&p, &l, &r, tlb_random);
1203 l_leave(&l, p);
1204 i_eret(&p); /* return from trap */
1206 #ifdef CONFIG_64BIT
1207 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1208 #endif
1211 * Overflow check: For the 64bit handler, we need at least one
1212 * free instruction slot for the wrap-around branch. In worst
1213 * case, if the intended insertion point is a delay slot, we
1214 * need three, with the second nop'ed and the third being
1215 * unused.
1217 #ifdef CONFIG_32BIT
1218 if ((p - tlb_handler) > 64)
1219 panic("TLB refill handler space exceeded");
1220 #else
1221 if (((p - tlb_handler) > 63)
1222 || (((p - tlb_handler) > 61)
1223 && insn_has_bdelay(relocs, tlb_handler + 29)))
1224 panic("TLB refill handler space exceeded");
1225 #endif
1228 * Now fold the handler in the TLB refill handler space.
1230 #ifdef CONFIG_32BIT
1231 f = final_handler;
1232 /* Simplest case, just copy the handler. */
1233 copy_handler(relocs, labels, tlb_handler, p, f);
1234 final_len = p - tlb_handler;
1235 #else /* CONFIG_64BIT */
1236 f = final_handler + 32;
1237 if ((p - tlb_handler) <= 32) {
1238 /* Just copy the handler. */
1239 copy_handler(relocs, labels, tlb_handler, p, f);
1240 final_len = p - tlb_handler;
1241 } else {
1242 u32 *split = tlb_handler + 30;
1245 * Find the split point.
1247 if (insn_has_bdelay(relocs, split - 1))
1248 split--;
1250 /* Copy first part of the handler. */
1251 copy_handler(relocs, labels, tlb_handler, split, f);
1252 f += split - tlb_handler;
1254 /* Insert branch. */
1255 l_split(&l, final_handler);
1256 il_b(&f, &r, label_split);
1257 if (insn_has_bdelay(relocs, split))
1258 i_nop(&f);
1259 else {
1260 copy_handler(relocs, labels, split, split + 1, f);
1261 move_labels(labels, f, f + 1, -1);
1262 f++;
1263 split++;
1266 /* Copy the rest of the handler. */
1267 copy_handler(relocs, labels, split, p, final_handler);
1268 final_len = (f - (final_handler + 32)) + (p - split);
1270 #endif /* CONFIG_64BIT */
1272 resolve_relocs(relocs, labels);
1273 pr_info("Synthesized TLB refill handler (%u instructions).\n",
1274 final_len);
1276 f = final_handler;
1277 #ifdef CONFIG_64BIT
1278 if (final_len > 32)
1279 final_len = 64;
1280 else
1281 f = final_handler + 32;
1282 #endif /* CONFIG_64BIT */
1283 pr_debug("\t.set push\n");
1284 pr_debug("\t.set noreorder\n");
1285 for (i = 0; i < final_len; i++)
1286 pr_debug("\t.word 0x%08x\n", f[i]);
1287 pr_debug("\t.set pop\n");
1289 memcpy((void *)ebase, final_handler, 0x100);
1293 * TLB load/store/modify handlers.
1295 * Only the fastpath gets synthesized at runtime, the slowpath for
1296 * do_page_fault remains normal asm.
1298 extern void tlb_do_page_fault_0(void);
1299 extern void tlb_do_page_fault_1(void);
1301 #define __tlb_handler_align \
1302 __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1305 * 128 instructions for the fastpath handler is generous and should
1306 * never be exceeded.
1308 #define FASTPATH_SIZE 128
1310 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1311 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1312 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1314 static void __init
1315 iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
1317 #ifdef CONFIG_SMP
1318 # ifdef CONFIG_64BIT_PHYS_ADDR
1319 if (cpu_has_64bits)
1320 i_lld(p, pte, 0, ptr);
1321 else
1322 # endif
1323 i_LL(p, pte, 0, ptr);
1324 #else
1325 # ifdef CONFIG_64BIT_PHYS_ADDR
1326 if (cpu_has_64bits)
1327 i_ld(p, pte, 0, ptr);
1328 else
1329 # endif
1330 i_LW(p, pte, 0, ptr);
1331 #endif
1334 static void __init
1335 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
1336 unsigned int mode)
1338 #ifdef CONFIG_64BIT_PHYS_ADDR
1339 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1340 #endif
1342 i_ori(p, pte, pte, mode);
1343 #ifdef CONFIG_SMP
1344 # ifdef CONFIG_64BIT_PHYS_ADDR
1345 if (cpu_has_64bits)
1346 i_scd(p, pte, 0, ptr);
1347 else
1348 # endif
1349 i_SC(p, pte, 0, ptr);
1351 if (r10000_llsc_war())
1352 il_beqzl(p, r, pte, label_smp_pgtable_change);
1353 else
1354 il_beqz(p, r, pte, label_smp_pgtable_change);
1356 # ifdef CONFIG_64BIT_PHYS_ADDR
1357 if (!cpu_has_64bits) {
1358 /* no i_nop needed */
1359 i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1360 i_ori(p, pte, pte, hwmode);
1361 i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1362 il_beqz(p, r, pte, label_smp_pgtable_change);
1363 /* no i_nop needed */
1364 i_lw(p, pte, 0, ptr);
1365 } else
1366 i_nop(p);
1367 # else
1368 i_nop(p);
1369 # endif
1370 #else
1371 # ifdef CONFIG_64BIT_PHYS_ADDR
1372 if (cpu_has_64bits)
1373 i_sd(p, pte, 0, ptr);
1374 else
1375 # endif
1376 i_SW(p, pte, 0, ptr);
1378 # ifdef CONFIG_64BIT_PHYS_ADDR
1379 if (!cpu_has_64bits) {
1380 i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1381 i_ori(p, pte, pte, hwmode);
1382 i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1383 i_lw(p, pte, 0, ptr);
1385 # endif
1386 #endif
1390 * Check if PTE is present, if not then jump to LABEL. PTR points to
1391 * the page table where this PTE is located, PTE will be re-loaded
1392 * with it's original value.
1394 static void __init
1395 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1396 unsigned int pte, unsigned int ptr, enum label_id lid)
1398 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1399 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1400 il_bnez(p, r, pte, lid);
1401 iPTE_LW(p, l, pte, ptr);
1404 /* Make PTE valid, store result in PTR. */
1405 static void __init
1406 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1407 unsigned int ptr)
1409 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1411 iPTE_SW(p, r, pte, ptr, mode);
1415 * Check if PTE can be written to, if not branch to LABEL. Regardless
1416 * restore PTE with value from PTR when done.
1418 static void __init
1419 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1420 unsigned int pte, unsigned int ptr, enum label_id lid)
1422 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1423 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1424 il_bnez(p, r, pte, lid);
1425 iPTE_LW(p, l, pte, ptr);
1428 /* Make PTE writable, update software status bits as well, then store
1429 * at PTR.
1431 static void __init
1432 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1433 unsigned int ptr)
1435 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1436 | _PAGE_DIRTY);
1438 iPTE_SW(p, r, pte, ptr, mode);
1442 * Check if PTE can be modified, if not branch to LABEL. Regardless
1443 * restore PTE with value from PTR when done.
1445 static void __init
1446 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1447 unsigned int pte, unsigned int ptr, enum label_id lid)
1449 i_andi(p, pte, pte, _PAGE_WRITE);
1450 il_beqz(p, r, pte, lid);
1451 iPTE_LW(p, l, pte, ptr);
1455 * R3000 style TLB load/store/modify handlers.
1459 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1460 * Then it returns.
1462 static void __init
1463 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1465 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1466 i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1467 i_tlbwi(p);
1468 i_jr(p, tmp);
1469 i_rfe(p); /* branch delay */
1473 * This places the pte into ENTRYLO0 and writes it with tlbwi
1474 * or tlbwr as appropriate. This is because the index register
1475 * may have the probe fail bit set as a result of a trap on a
1476 * kseg2 access, i.e. without refill. Then it returns.
1478 static void __init
1479 build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
1480 unsigned int pte, unsigned int tmp)
1482 i_mfc0(p, tmp, C0_INDEX);
1483 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1484 il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1485 i_mfc0(p, tmp, C0_EPC); /* branch delay */
1486 i_tlbwi(p); /* cp0 delay */
1487 i_jr(p, tmp);
1488 i_rfe(p); /* branch delay */
1489 l_r3000_write_probe_fail(l, *p);
1490 i_tlbwr(p); /* cp0 delay */
1491 i_jr(p, tmp);
1492 i_rfe(p); /* branch delay */
1495 static void __init
1496 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1497 unsigned int ptr)
1499 long pgdc = (long)pgd_current;
1501 i_mfc0(p, pte, C0_BADVADDR);
1502 i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1503 i_lw(p, ptr, rel_lo(pgdc), ptr);
1504 i_srl(p, pte, pte, 22); /* load delay */
1505 i_sll(p, pte, pte, 2);
1506 i_addu(p, ptr, ptr, pte);
1507 i_mfc0(p, pte, C0_CONTEXT);
1508 i_lw(p, ptr, 0, ptr); /* cp0 delay */
1509 i_andi(p, pte, pte, 0xffc); /* load delay */
1510 i_addu(p, ptr, ptr, pte);
1511 i_lw(p, pte, 0, ptr);
1512 i_tlbp(p); /* load delay */
1515 static void __init build_r3000_tlb_load_handler(void)
1517 u32 *p = handle_tlbl;
1518 struct label *l = labels;
1519 struct reloc *r = relocs;
1520 int i;
1522 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1523 memset(labels, 0, sizeof(labels));
1524 memset(relocs, 0, sizeof(relocs));
1526 build_r3000_tlbchange_handler_head(&p, K0, K1);
1527 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1528 i_nop(&p); /* load delay */
1529 build_make_valid(&p, &r, K0, K1);
1530 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1532 l_nopage_tlbl(&l, p);
1533 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1534 i_nop(&p);
1536 if ((p - handle_tlbl) > FASTPATH_SIZE)
1537 panic("TLB load handler fastpath space exceeded");
1539 resolve_relocs(relocs, labels);
1540 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1541 (unsigned int)(p - handle_tlbl));
1543 pr_debug("\t.set push\n");
1544 pr_debug("\t.set noreorder\n");
1545 for (i = 0; i < (p - handle_tlbl); i++)
1546 pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1547 pr_debug("\t.set pop\n");
1550 static void __init build_r3000_tlb_store_handler(void)
1552 u32 *p = handle_tlbs;
1553 struct label *l = labels;
1554 struct reloc *r = relocs;
1555 int i;
1557 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1558 memset(labels, 0, sizeof(labels));
1559 memset(relocs, 0, sizeof(relocs));
1561 build_r3000_tlbchange_handler_head(&p, K0, K1);
1562 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1563 i_nop(&p); /* load delay */
1564 build_make_write(&p, &r, K0, K1);
1565 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1567 l_nopage_tlbs(&l, p);
1568 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1569 i_nop(&p);
1571 if ((p - handle_tlbs) > FASTPATH_SIZE)
1572 panic("TLB store handler fastpath space exceeded");
1574 resolve_relocs(relocs, labels);
1575 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1576 (unsigned int)(p - handle_tlbs));
1578 pr_debug("\t.set push\n");
1579 pr_debug("\t.set noreorder\n");
1580 for (i = 0; i < (p - handle_tlbs); i++)
1581 pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1582 pr_debug("\t.set pop\n");
1585 static void __init build_r3000_tlb_modify_handler(void)
1587 u32 *p = handle_tlbm;
1588 struct label *l = labels;
1589 struct reloc *r = relocs;
1590 int i;
1592 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1593 memset(labels, 0, sizeof(labels));
1594 memset(relocs, 0, sizeof(relocs));
1596 build_r3000_tlbchange_handler_head(&p, K0, K1);
1597 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1598 i_nop(&p); /* load delay */
1599 build_make_write(&p, &r, K0, K1);
1600 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1602 l_nopage_tlbm(&l, p);
1603 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1604 i_nop(&p);
1606 if ((p - handle_tlbm) > FASTPATH_SIZE)
1607 panic("TLB modify handler fastpath space exceeded");
1609 resolve_relocs(relocs, labels);
1610 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1611 (unsigned int)(p - handle_tlbm));
1613 pr_debug("\t.set push\n");
1614 pr_debug("\t.set noreorder\n");
1615 for (i = 0; i < (p - handle_tlbm); i++)
1616 pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1617 pr_debug("\t.set pop\n");
1621 * R4000 style TLB load/store/modify handlers.
1623 static void __init
1624 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1625 struct reloc **r, unsigned int pte,
1626 unsigned int ptr)
1628 #ifdef CONFIG_64BIT
1629 build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1630 #else
1631 build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1632 #endif
1634 i_MFC0(p, pte, C0_BADVADDR);
1635 i_LW(p, ptr, 0, ptr);
1636 i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1637 i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1638 i_ADDU(p, ptr, ptr, pte);
1640 #ifdef CONFIG_SMP
1641 l_smp_pgtable_change(l, *p);
1642 # endif
1643 iPTE_LW(p, l, pte, ptr); /* get even pte */
1644 build_tlb_probe_entry(p);
1647 static void __init
1648 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1649 struct reloc **r, unsigned int tmp,
1650 unsigned int ptr)
1652 i_ori(p, ptr, ptr, sizeof(pte_t));
1653 i_xori(p, ptr, ptr, sizeof(pte_t));
1654 build_update_entries(p, tmp, ptr);
1655 build_tlb_write_entry(p, l, r, tlb_indexed);
1656 l_leave(l, *p);
1657 i_eret(p); /* return from trap */
1659 #ifdef CONFIG_64BIT
1660 build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1661 #endif
1664 static void __init build_r4000_tlb_load_handler(void)
1666 u32 *p = handle_tlbl;
1667 struct label *l = labels;
1668 struct reloc *r = relocs;
1669 int i;
1671 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1672 memset(labels, 0, sizeof(labels));
1673 memset(relocs, 0, sizeof(relocs));
1675 if (bcm1250_m3_war()) {
1676 i_MFC0(&p, K0, C0_BADVADDR);
1677 i_MFC0(&p, K1, C0_ENTRYHI);
1678 i_xor(&p, K0, K0, K1);
1679 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1680 il_bnez(&p, &r, K0, label_leave);
1681 /* No need for i_nop */
1684 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1685 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1686 build_make_valid(&p, &r, K0, K1);
1687 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1689 l_nopage_tlbl(&l, p);
1690 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1691 i_nop(&p);
1693 if ((p - handle_tlbl) > FASTPATH_SIZE)
1694 panic("TLB load handler fastpath space exceeded");
1696 resolve_relocs(relocs, labels);
1697 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1698 (unsigned int)(p - handle_tlbl));
1700 pr_debug("\t.set push\n");
1701 pr_debug("\t.set noreorder\n");
1702 for (i = 0; i < (p - handle_tlbl); i++)
1703 pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1704 pr_debug("\t.set pop\n");
1707 static void __init build_r4000_tlb_store_handler(void)
1709 u32 *p = handle_tlbs;
1710 struct label *l = labels;
1711 struct reloc *r = relocs;
1712 int i;
1714 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1715 memset(labels, 0, sizeof(labels));
1716 memset(relocs, 0, sizeof(relocs));
1718 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1719 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1720 build_make_write(&p, &r, K0, K1);
1721 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1723 l_nopage_tlbs(&l, p);
1724 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1725 i_nop(&p);
1727 if ((p - handle_tlbs) > FASTPATH_SIZE)
1728 panic("TLB store handler fastpath space exceeded");
1730 resolve_relocs(relocs, labels);
1731 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1732 (unsigned int)(p - handle_tlbs));
1734 pr_debug("\t.set push\n");
1735 pr_debug("\t.set noreorder\n");
1736 for (i = 0; i < (p - handle_tlbs); i++)
1737 pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1738 pr_debug("\t.set pop\n");
1741 static void __init build_r4000_tlb_modify_handler(void)
1743 u32 *p = handle_tlbm;
1744 struct label *l = labels;
1745 struct reloc *r = relocs;
1746 int i;
1748 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1749 memset(labels, 0, sizeof(labels));
1750 memset(relocs, 0, sizeof(relocs));
1752 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1753 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1754 /* Present and writable bits set, set accessed and dirty bits. */
1755 build_make_write(&p, &r, K0, K1);
1756 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1758 l_nopage_tlbm(&l, p);
1759 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1760 i_nop(&p);
1762 if ((p - handle_tlbm) > FASTPATH_SIZE)
1763 panic("TLB modify handler fastpath space exceeded");
1765 resolve_relocs(relocs, labels);
1766 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1767 (unsigned int)(p - handle_tlbm));
1769 pr_debug("\t.set push\n");
1770 pr_debug("\t.set noreorder\n");
1771 for (i = 0; i < (p - handle_tlbm); i++)
1772 pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1773 pr_debug("\t.set pop\n");
1776 void __init build_tlb_refill_handler(void)
1779 * The refill handler is generated per-CPU, multi-node systems
1780 * may have local storage for it. The other handlers are only
1781 * needed once.
1783 static int run_once = 0;
1785 switch (current_cpu_data.cputype) {
1786 case CPU_R2000:
1787 case CPU_R3000:
1788 case CPU_R3000A:
1789 case CPU_R3081E:
1790 case CPU_TX3912:
1791 case CPU_TX3922:
1792 case CPU_TX3927:
1793 build_r3000_tlb_refill_handler();
1794 if (!run_once) {
1795 build_r3000_tlb_load_handler();
1796 build_r3000_tlb_store_handler();
1797 build_r3000_tlb_modify_handler();
1798 run_once++;
1800 break;
1802 case CPU_R6000:
1803 case CPU_R6000A:
1804 panic("No R6000 TLB refill handler yet");
1805 break;
1807 case CPU_R8000:
1808 panic("No R8000 TLB refill handler yet");
1809 break;
1811 default:
1812 build_r4000_tlb_refill_handler();
1813 if (!run_once) {
1814 build_r4000_tlb_load_handler();
1815 build_r4000_tlb_store_handler();
1816 build_r4000_tlb_modify_handler();
1817 run_once++;
1822 void __init flush_tlb_handlers(void)
1824 flush_icache_range((unsigned long)handle_tlbl,
1825 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1826 flush_icache_range((unsigned long)handle_tlbs,
1827 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1828 flush_icache_range((unsigned long)handle_tlbm,
1829 (unsigned long)handle_tlbm + sizeof(handle_tlbm));