ide-cd: remove ide_cd_drain_data and ide_cd_pad_transfer
[linux-2.6/mini2440.git] / mm / mmap.c
blob1d102b956fd88bec3ca95753909e1696799f659d
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@redhat.com>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
30 #include <asm/uaccess.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlb.h>
33 #include <asm/mmu_context.h>
35 #ifndef arch_mmap_check
36 #define arch_mmap_check(addr, len, flags) (0)
37 #endif
39 #ifndef arch_rebalance_pgtables
40 #define arch_rebalance_pgtables(addr, len) (addr)
41 #endif
43 static void unmap_region(struct mm_struct *mm,
44 struct vm_area_struct *vma, struct vm_area_struct *prev,
45 unsigned long start, unsigned long end);
48 * WARNING: the debugging will use recursive algorithms so never enable this
49 * unless you know what you are doing.
51 #undef DEBUG_MM_RB
53 /* description of effects of mapping type and prot in current implementation.
54 * this is due to the limited x86 page protection hardware. The expected
55 * behavior is in parens:
57 * map_type prot
58 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
59 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
60 * w: (no) no w: (no) no w: (yes) yes w: (no) no
61 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
63 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
64 * w: (no) no w: (no) no w: (copy) copy w: (no) no
65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 pgprot_t protection_map[16] = {
69 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
70 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
73 pgprot_t vm_get_page_prot(unsigned long vm_flags)
75 return __pgprot(pgprot_val(protection_map[vm_flags &
76 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
77 pgprot_val(arch_vm_get_page_prot(vm_flags)));
79 EXPORT_SYMBOL(vm_get_page_prot);
81 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
82 int sysctl_overcommit_ratio = 50; /* default is 50% */
83 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
84 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
87 * Check that a process has enough memory to allocate a new virtual
88 * mapping. 0 means there is enough memory for the allocation to
89 * succeed and -ENOMEM implies there is not.
91 * We currently support three overcommit policies, which are set via the
92 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
94 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
95 * Additional code 2002 Jul 20 by Robert Love.
97 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
99 * Note this is a helper function intended to be used by LSMs which
100 * wish to use this logic.
102 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
104 unsigned long free, allowed;
106 vm_acct_memory(pages);
109 * Sometimes we want to use more memory than we have
111 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
112 return 0;
114 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
115 unsigned long n;
117 free = global_page_state(NR_FILE_PAGES);
118 free += nr_swap_pages;
121 * Any slabs which are created with the
122 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
123 * which are reclaimable, under pressure. The dentry
124 * cache and most inode caches should fall into this
126 free += global_page_state(NR_SLAB_RECLAIMABLE);
129 * Leave the last 3% for root
131 if (!cap_sys_admin)
132 free -= free / 32;
134 if (free > pages)
135 return 0;
138 * nr_free_pages() is very expensive on large systems,
139 * only call if we're about to fail.
141 n = nr_free_pages();
144 * Leave reserved pages. The pages are not for anonymous pages.
146 if (n <= totalreserve_pages)
147 goto error;
148 else
149 n -= totalreserve_pages;
152 * Leave the last 3% for root
154 if (!cap_sys_admin)
155 n -= n / 32;
156 free += n;
158 if (free > pages)
159 return 0;
161 goto error;
164 allowed = (totalram_pages - hugetlb_total_pages())
165 * sysctl_overcommit_ratio / 100;
167 * Leave the last 3% for root
169 if (!cap_sys_admin)
170 allowed -= allowed / 32;
171 allowed += total_swap_pages;
173 /* Don't let a single process grow too big:
174 leave 3% of the size of this process for other processes */
175 allowed -= mm->total_vm / 32;
178 * cast `allowed' as a signed long because vm_committed_space
179 * sometimes has a negative value
181 if (atomic_long_read(&vm_committed_space) < (long)allowed)
182 return 0;
183 error:
184 vm_unacct_memory(pages);
186 return -ENOMEM;
190 * Requires inode->i_mapping->i_mmap_lock
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193 struct file *file, struct address_space *mapping)
195 if (vma->vm_flags & VM_DENYWRITE)
196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197 if (vma->vm_flags & VM_SHARED)
198 mapping->i_mmap_writable--;
200 flush_dcache_mmap_lock(mapping);
201 if (unlikely(vma->vm_flags & VM_NONLINEAR))
202 list_del_init(&vma->shared.vm_set.list);
203 else
204 vma_prio_tree_remove(vma, &mapping->i_mmap);
205 flush_dcache_mmap_unlock(mapping);
209 * Unlink a file-based vm structure from its prio_tree, to hide
210 * vma from rmap and vmtruncate before freeing its page tables.
212 void unlink_file_vma(struct vm_area_struct *vma)
214 struct file *file = vma->vm_file;
216 if (file) {
217 struct address_space *mapping = file->f_mapping;
218 spin_lock(&mapping->i_mmap_lock);
219 __remove_shared_vm_struct(vma, file, mapping);
220 spin_unlock(&mapping->i_mmap_lock);
225 * Close a vm structure and free it, returning the next.
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229 struct vm_area_struct *next = vma->vm_next;
231 might_sleep();
232 if (vma->vm_ops && vma->vm_ops->close)
233 vma->vm_ops->close(vma);
234 if (vma->vm_file) {
235 fput(vma->vm_file);
236 if (vma->vm_flags & VM_EXECUTABLE)
237 removed_exe_file_vma(vma->vm_mm);
239 mpol_put(vma_policy(vma));
240 kmem_cache_free(vm_area_cachep, vma);
241 return next;
244 asmlinkage unsigned long sys_brk(unsigned long brk)
246 unsigned long rlim, retval;
247 unsigned long newbrk, oldbrk;
248 struct mm_struct *mm = current->mm;
249 unsigned long min_brk;
251 down_write(&mm->mmap_sem);
253 #ifdef CONFIG_COMPAT_BRK
254 min_brk = mm->end_code;
255 #else
256 min_brk = mm->start_brk;
257 #endif
258 if (brk < min_brk)
259 goto out;
262 * Check against rlimit here. If this check is done later after the test
263 * of oldbrk with newbrk then it can escape the test and let the data
264 * segment grow beyond its set limit the in case where the limit is
265 * not page aligned -Ram Gupta
267 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
268 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
269 (mm->end_data - mm->start_data) > rlim)
270 goto out;
272 newbrk = PAGE_ALIGN(brk);
273 oldbrk = PAGE_ALIGN(mm->brk);
274 if (oldbrk == newbrk)
275 goto set_brk;
277 /* Always allow shrinking brk. */
278 if (brk <= mm->brk) {
279 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
280 goto set_brk;
281 goto out;
284 /* Check against existing mmap mappings. */
285 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
286 goto out;
288 /* Ok, looks good - let it rip. */
289 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
290 goto out;
291 set_brk:
292 mm->brk = brk;
293 out:
294 retval = mm->brk;
295 up_write(&mm->mmap_sem);
296 return retval;
299 #ifdef DEBUG_MM_RB
300 static int browse_rb(struct rb_root *root)
302 int i = 0, j;
303 struct rb_node *nd, *pn = NULL;
304 unsigned long prev = 0, pend = 0;
306 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
307 struct vm_area_struct *vma;
308 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
309 if (vma->vm_start < prev)
310 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
311 if (vma->vm_start < pend)
312 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
313 if (vma->vm_start > vma->vm_end)
314 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
315 i++;
316 pn = nd;
317 prev = vma->vm_start;
318 pend = vma->vm_end;
320 j = 0;
321 for (nd = pn; nd; nd = rb_prev(nd)) {
322 j++;
324 if (i != j)
325 printk("backwards %d, forwards %d\n", j, i), i = 0;
326 return i;
329 void validate_mm(struct mm_struct *mm)
331 int bug = 0;
332 int i = 0;
333 struct vm_area_struct *tmp = mm->mmap;
334 while (tmp) {
335 tmp = tmp->vm_next;
336 i++;
338 if (i != mm->map_count)
339 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
340 i = browse_rb(&mm->mm_rb);
341 if (i != mm->map_count)
342 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
343 BUG_ON(bug);
345 #else
346 #define validate_mm(mm) do { } while (0)
347 #endif
349 static struct vm_area_struct *
350 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
351 struct vm_area_struct **pprev, struct rb_node ***rb_link,
352 struct rb_node ** rb_parent)
354 struct vm_area_struct * vma;
355 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
357 __rb_link = &mm->mm_rb.rb_node;
358 rb_prev = __rb_parent = NULL;
359 vma = NULL;
361 while (*__rb_link) {
362 struct vm_area_struct *vma_tmp;
364 __rb_parent = *__rb_link;
365 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
367 if (vma_tmp->vm_end > addr) {
368 vma = vma_tmp;
369 if (vma_tmp->vm_start <= addr)
370 return vma;
371 __rb_link = &__rb_parent->rb_left;
372 } else {
373 rb_prev = __rb_parent;
374 __rb_link = &__rb_parent->rb_right;
378 *pprev = NULL;
379 if (rb_prev)
380 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
381 *rb_link = __rb_link;
382 *rb_parent = __rb_parent;
383 return vma;
386 static inline void
387 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
388 struct vm_area_struct *prev, struct rb_node *rb_parent)
390 if (prev) {
391 vma->vm_next = prev->vm_next;
392 prev->vm_next = vma;
393 } else {
394 mm->mmap = vma;
395 if (rb_parent)
396 vma->vm_next = rb_entry(rb_parent,
397 struct vm_area_struct, vm_rb);
398 else
399 vma->vm_next = NULL;
403 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
404 struct rb_node **rb_link, struct rb_node *rb_parent)
406 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
407 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
410 static inline void __vma_link_file(struct vm_area_struct *vma)
412 struct file * file;
414 file = vma->vm_file;
415 if (file) {
416 struct address_space *mapping = file->f_mapping;
418 if (vma->vm_flags & VM_DENYWRITE)
419 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
420 if (vma->vm_flags & VM_SHARED)
421 mapping->i_mmap_writable++;
423 flush_dcache_mmap_lock(mapping);
424 if (unlikely(vma->vm_flags & VM_NONLINEAR))
425 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
426 else
427 vma_prio_tree_insert(vma, &mapping->i_mmap);
428 flush_dcache_mmap_unlock(mapping);
432 static void
433 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
434 struct vm_area_struct *prev, struct rb_node **rb_link,
435 struct rb_node *rb_parent)
437 __vma_link_list(mm, vma, prev, rb_parent);
438 __vma_link_rb(mm, vma, rb_link, rb_parent);
439 __anon_vma_link(vma);
442 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
443 struct vm_area_struct *prev, struct rb_node **rb_link,
444 struct rb_node *rb_parent)
446 struct address_space *mapping = NULL;
448 if (vma->vm_file)
449 mapping = vma->vm_file->f_mapping;
451 if (mapping) {
452 spin_lock(&mapping->i_mmap_lock);
453 vma->vm_truncate_count = mapping->truncate_count;
455 anon_vma_lock(vma);
457 __vma_link(mm, vma, prev, rb_link, rb_parent);
458 __vma_link_file(vma);
460 anon_vma_unlock(vma);
461 if (mapping)
462 spin_unlock(&mapping->i_mmap_lock);
464 mm->map_count++;
465 validate_mm(mm);
469 * Helper for vma_adjust in the split_vma insert case:
470 * insert vm structure into list and rbtree and anon_vma,
471 * but it has already been inserted into prio_tree earlier.
473 static void
474 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
476 struct vm_area_struct * __vma, * prev;
477 struct rb_node ** rb_link, * rb_parent;
479 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
480 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
481 __vma_link(mm, vma, prev, rb_link, rb_parent);
482 mm->map_count++;
485 static inline void
486 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
487 struct vm_area_struct *prev)
489 prev->vm_next = vma->vm_next;
490 rb_erase(&vma->vm_rb, &mm->mm_rb);
491 if (mm->mmap_cache == vma)
492 mm->mmap_cache = prev;
496 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
497 * is already present in an i_mmap tree without adjusting the tree.
498 * The following helper function should be used when such adjustments
499 * are necessary. The "insert" vma (if any) is to be inserted
500 * before we drop the necessary locks.
502 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
503 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
505 struct mm_struct *mm = vma->vm_mm;
506 struct vm_area_struct *next = vma->vm_next;
507 struct vm_area_struct *importer = NULL;
508 struct address_space *mapping = NULL;
509 struct prio_tree_root *root = NULL;
510 struct file *file = vma->vm_file;
511 struct anon_vma *anon_vma = NULL;
512 long adjust_next = 0;
513 int remove_next = 0;
515 if (next && !insert) {
516 if (end >= next->vm_end) {
518 * vma expands, overlapping all the next, and
519 * perhaps the one after too (mprotect case 6).
521 again: remove_next = 1 + (end > next->vm_end);
522 end = next->vm_end;
523 anon_vma = next->anon_vma;
524 importer = vma;
525 } else if (end > next->vm_start) {
527 * vma expands, overlapping part of the next:
528 * mprotect case 5 shifting the boundary up.
530 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
531 anon_vma = next->anon_vma;
532 importer = vma;
533 } else if (end < vma->vm_end) {
535 * vma shrinks, and !insert tells it's not
536 * split_vma inserting another: so it must be
537 * mprotect case 4 shifting the boundary down.
539 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
540 anon_vma = next->anon_vma;
541 importer = next;
545 if (file) {
546 mapping = file->f_mapping;
547 if (!(vma->vm_flags & VM_NONLINEAR))
548 root = &mapping->i_mmap;
549 spin_lock(&mapping->i_mmap_lock);
550 if (importer &&
551 vma->vm_truncate_count != next->vm_truncate_count) {
553 * unmap_mapping_range might be in progress:
554 * ensure that the expanding vma is rescanned.
556 importer->vm_truncate_count = 0;
558 if (insert) {
559 insert->vm_truncate_count = vma->vm_truncate_count;
561 * Put into prio_tree now, so instantiated pages
562 * are visible to arm/parisc __flush_dcache_page
563 * throughout; but we cannot insert into address
564 * space until vma start or end is updated.
566 __vma_link_file(insert);
571 * When changing only vma->vm_end, we don't really need
572 * anon_vma lock: but is that case worth optimizing out?
574 if (vma->anon_vma)
575 anon_vma = vma->anon_vma;
576 if (anon_vma) {
577 spin_lock(&anon_vma->lock);
579 * Easily overlooked: when mprotect shifts the boundary,
580 * make sure the expanding vma has anon_vma set if the
581 * shrinking vma had, to cover any anon pages imported.
583 if (importer && !importer->anon_vma) {
584 importer->anon_vma = anon_vma;
585 __anon_vma_link(importer);
589 if (root) {
590 flush_dcache_mmap_lock(mapping);
591 vma_prio_tree_remove(vma, root);
592 if (adjust_next)
593 vma_prio_tree_remove(next, root);
596 vma->vm_start = start;
597 vma->vm_end = end;
598 vma->vm_pgoff = pgoff;
599 if (adjust_next) {
600 next->vm_start += adjust_next << PAGE_SHIFT;
601 next->vm_pgoff += adjust_next;
604 if (root) {
605 if (adjust_next)
606 vma_prio_tree_insert(next, root);
607 vma_prio_tree_insert(vma, root);
608 flush_dcache_mmap_unlock(mapping);
611 if (remove_next) {
613 * vma_merge has merged next into vma, and needs
614 * us to remove next before dropping the locks.
616 __vma_unlink(mm, next, vma);
617 if (file)
618 __remove_shared_vm_struct(next, file, mapping);
619 if (next->anon_vma)
620 __anon_vma_merge(vma, next);
621 } else if (insert) {
623 * split_vma has split insert from vma, and needs
624 * us to insert it before dropping the locks
625 * (it may either follow vma or precede it).
627 __insert_vm_struct(mm, insert);
630 if (anon_vma)
631 spin_unlock(&anon_vma->lock);
632 if (mapping)
633 spin_unlock(&mapping->i_mmap_lock);
635 if (remove_next) {
636 if (file) {
637 fput(file);
638 if (next->vm_flags & VM_EXECUTABLE)
639 removed_exe_file_vma(mm);
641 mm->map_count--;
642 mpol_put(vma_policy(next));
643 kmem_cache_free(vm_area_cachep, next);
645 * In mprotect's case 6 (see comments on vma_merge),
646 * we must remove another next too. It would clutter
647 * up the code too much to do both in one go.
649 if (remove_next == 2) {
650 next = vma->vm_next;
651 goto again;
655 validate_mm(mm);
659 * If the vma has a ->close operation then the driver probably needs to release
660 * per-vma resources, so we don't attempt to merge those.
662 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
664 static inline int is_mergeable_vma(struct vm_area_struct *vma,
665 struct file *file, unsigned long vm_flags)
667 if (vma->vm_flags != vm_flags)
668 return 0;
669 if (vma->vm_file != file)
670 return 0;
671 if (vma->vm_ops && vma->vm_ops->close)
672 return 0;
673 return 1;
676 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
677 struct anon_vma *anon_vma2)
679 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
683 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
684 * in front of (at a lower virtual address and file offset than) the vma.
686 * We cannot merge two vmas if they have differently assigned (non-NULL)
687 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
689 * We don't check here for the merged mmap wrapping around the end of pagecache
690 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
691 * wrap, nor mmaps which cover the final page at index -1UL.
693 static int
694 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
695 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
697 if (is_mergeable_vma(vma, file, vm_flags) &&
698 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
699 if (vma->vm_pgoff == vm_pgoff)
700 return 1;
702 return 0;
706 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
707 * beyond (at a higher virtual address and file offset than) the vma.
709 * We cannot merge two vmas if they have differently assigned (non-NULL)
710 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
712 static int
713 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
714 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
716 if (is_mergeable_vma(vma, file, vm_flags) &&
717 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
718 pgoff_t vm_pglen;
719 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
720 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
721 return 1;
723 return 0;
727 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
728 * whether that can be merged with its predecessor or its successor.
729 * Or both (it neatly fills a hole).
731 * In most cases - when called for mmap, brk or mremap - [addr,end) is
732 * certain not to be mapped by the time vma_merge is called; but when
733 * called for mprotect, it is certain to be already mapped (either at
734 * an offset within prev, or at the start of next), and the flags of
735 * this area are about to be changed to vm_flags - and the no-change
736 * case has already been eliminated.
738 * The following mprotect cases have to be considered, where AAAA is
739 * the area passed down from mprotect_fixup, never extending beyond one
740 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
742 * AAAA AAAA AAAA AAAA
743 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
744 * cannot merge might become might become might become
745 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
746 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
747 * mremap move: PPPPNNNNNNNN 8
748 * AAAA
749 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
750 * might become case 1 below case 2 below case 3 below
752 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
753 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
755 struct vm_area_struct *vma_merge(struct mm_struct *mm,
756 struct vm_area_struct *prev, unsigned long addr,
757 unsigned long end, unsigned long vm_flags,
758 struct anon_vma *anon_vma, struct file *file,
759 pgoff_t pgoff, struct mempolicy *policy)
761 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
762 struct vm_area_struct *area, *next;
765 * We later require that vma->vm_flags == vm_flags,
766 * so this tests vma->vm_flags & VM_SPECIAL, too.
768 if (vm_flags & VM_SPECIAL)
769 return NULL;
771 if (prev)
772 next = prev->vm_next;
773 else
774 next = mm->mmap;
775 area = next;
776 if (next && next->vm_end == end) /* cases 6, 7, 8 */
777 next = next->vm_next;
780 * Can it merge with the predecessor?
782 if (prev && prev->vm_end == addr &&
783 mpol_equal(vma_policy(prev), policy) &&
784 can_vma_merge_after(prev, vm_flags,
785 anon_vma, file, pgoff)) {
787 * OK, it can. Can we now merge in the successor as well?
789 if (next && end == next->vm_start &&
790 mpol_equal(policy, vma_policy(next)) &&
791 can_vma_merge_before(next, vm_flags,
792 anon_vma, file, pgoff+pglen) &&
793 is_mergeable_anon_vma(prev->anon_vma,
794 next->anon_vma)) {
795 /* cases 1, 6 */
796 vma_adjust(prev, prev->vm_start,
797 next->vm_end, prev->vm_pgoff, NULL);
798 } else /* cases 2, 5, 7 */
799 vma_adjust(prev, prev->vm_start,
800 end, prev->vm_pgoff, NULL);
801 return prev;
805 * Can this new request be merged in front of next?
807 if (next && end == next->vm_start &&
808 mpol_equal(policy, vma_policy(next)) &&
809 can_vma_merge_before(next, vm_flags,
810 anon_vma, file, pgoff+pglen)) {
811 if (prev && addr < prev->vm_end) /* case 4 */
812 vma_adjust(prev, prev->vm_start,
813 addr, prev->vm_pgoff, NULL);
814 else /* cases 3, 8 */
815 vma_adjust(area, addr, next->vm_end,
816 next->vm_pgoff - pglen, NULL);
817 return area;
820 return NULL;
824 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
825 * neighbouring vmas for a suitable anon_vma, before it goes off
826 * to allocate a new anon_vma. It checks because a repetitive
827 * sequence of mprotects and faults may otherwise lead to distinct
828 * anon_vmas being allocated, preventing vma merge in subsequent
829 * mprotect.
831 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
833 struct vm_area_struct *near;
834 unsigned long vm_flags;
836 near = vma->vm_next;
837 if (!near)
838 goto try_prev;
841 * Since only mprotect tries to remerge vmas, match flags
842 * which might be mprotected into each other later on.
843 * Neither mlock nor madvise tries to remerge at present,
844 * so leave their flags as obstructing a merge.
846 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
847 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
849 if (near->anon_vma && vma->vm_end == near->vm_start &&
850 mpol_equal(vma_policy(vma), vma_policy(near)) &&
851 can_vma_merge_before(near, vm_flags,
852 NULL, vma->vm_file, vma->vm_pgoff +
853 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
854 return near->anon_vma;
855 try_prev:
857 * It is potentially slow to have to call find_vma_prev here.
858 * But it's only on the first write fault on the vma, not
859 * every time, and we could devise a way to avoid it later
860 * (e.g. stash info in next's anon_vma_node when assigning
861 * an anon_vma, or when trying vma_merge). Another time.
863 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
864 if (!near)
865 goto none;
867 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
868 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
870 if (near->anon_vma && near->vm_end == vma->vm_start &&
871 mpol_equal(vma_policy(near), vma_policy(vma)) &&
872 can_vma_merge_after(near, vm_flags,
873 NULL, vma->vm_file, vma->vm_pgoff))
874 return near->anon_vma;
875 none:
877 * There's no absolute need to look only at touching neighbours:
878 * we could search further afield for "compatible" anon_vmas.
879 * But it would probably just be a waste of time searching,
880 * or lead to too many vmas hanging off the same anon_vma.
881 * We're trying to allow mprotect remerging later on,
882 * not trying to minimize memory used for anon_vmas.
884 return NULL;
887 #ifdef CONFIG_PROC_FS
888 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
889 struct file *file, long pages)
891 const unsigned long stack_flags
892 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
894 if (file) {
895 mm->shared_vm += pages;
896 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
897 mm->exec_vm += pages;
898 } else if (flags & stack_flags)
899 mm->stack_vm += pages;
900 if (flags & (VM_RESERVED|VM_IO))
901 mm->reserved_vm += pages;
903 #endif /* CONFIG_PROC_FS */
906 * The caller must hold down_write(current->mm->mmap_sem).
909 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
910 unsigned long len, unsigned long prot,
911 unsigned long flags, unsigned long pgoff)
913 struct mm_struct * mm = current->mm;
914 struct inode *inode;
915 unsigned int vm_flags;
916 int error;
917 int accountable = 1;
918 unsigned long reqprot = prot;
921 * Does the application expect PROT_READ to imply PROT_EXEC?
923 * (the exception is when the underlying filesystem is noexec
924 * mounted, in which case we dont add PROT_EXEC.)
926 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
927 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
928 prot |= PROT_EXEC;
930 if (!len)
931 return -EINVAL;
933 if (!(flags & MAP_FIXED))
934 addr = round_hint_to_min(addr);
936 error = arch_mmap_check(addr, len, flags);
937 if (error)
938 return error;
940 /* Careful about overflows.. */
941 len = PAGE_ALIGN(len);
942 if (!len || len > TASK_SIZE)
943 return -ENOMEM;
945 /* offset overflow? */
946 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
947 return -EOVERFLOW;
949 /* Too many mappings? */
950 if (mm->map_count > sysctl_max_map_count)
951 return -ENOMEM;
953 /* Obtain the address to map to. we verify (or select) it and ensure
954 * that it represents a valid section of the address space.
956 addr = get_unmapped_area(file, addr, len, pgoff, flags);
957 if (addr & ~PAGE_MASK)
958 return addr;
960 /* Do simple checking here so the lower-level routines won't have
961 * to. we assume access permissions have been handled by the open
962 * of the memory object, so we don't do any here.
964 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
965 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
967 if (flags & MAP_LOCKED) {
968 if (!can_do_mlock())
969 return -EPERM;
970 vm_flags |= VM_LOCKED;
972 /* mlock MCL_FUTURE? */
973 if (vm_flags & VM_LOCKED) {
974 unsigned long locked, lock_limit;
975 locked = len >> PAGE_SHIFT;
976 locked += mm->locked_vm;
977 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
978 lock_limit >>= PAGE_SHIFT;
979 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
980 return -EAGAIN;
983 inode = file ? file->f_path.dentry->d_inode : NULL;
985 if (file) {
986 switch (flags & MAP_TYPE) {
987 case MAP_SHARED:
988 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
989 return -EACCES;
992 * Make sure we don't allow writing to an append-only
993 * file..
995 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
996 return -EACCES;
999 * Make sure there are no mandatory locks on the file.
1001 if (locks_verify_locked(inode))
1002 return -EAGAIN;
1004 vm_flags |= VM_SHARED | VM_MAYSHARE;
1005 if (!(file->f_mode & FMODE_WRITE))
1006 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1008 /* fall through */
1009 case MAP_PRIVATE:
1010 if (!(file->f_mode & FMODE_READ))
1011 return -EACCES;
1012 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1013 if (vm_flags & VM_EXEC)
1014 return -EPERM;
1015 vm_flags &= ~VM_MAYEXEC;
1017 if (is_file_hugepages(file))
1018 accountable = 0;
1020 if (!file->f_op || !file->f_op->mmap)
1021 return -ENODEV;
1022 break;
1024 default:
1025 return -EINVAL;
1027 } else {
1028 switch (flags & MAP_TYPE) {
1029 case MAP_SHARED:
1030 vm_flags |= VM_SHARED | VM_MAYSHARE;
1031 break;
1032 case MAP_PRIVATE:
1034 * Set pgoff according to addr for anon_vma.
1036 pgoff = addr >> PAGE_SHIFT;
1037 break;
1038 default:
1039 return -EINVAL;
1043 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1044 if (error)
1045 return error;
1047 return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1048 accountable);
1050 EXPORT_SYMBOL(do_mmap_pgoff);
1053 * Some shared mappigns will want the pages marked read-only
1054 * to track write events. If so, we'll downgrade vm_page_prot
1055 * to the private version (using protection_map[] without the
1056 * VM_SHARED bit).
1058 int vma_wants_writenotify(struct vm_area_struct *vma)
1060 unsigned int vm_flags = vma->vm_flags;
1062 /* If it was private or non-writable, the write bit is already clear */
1063 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1064 return 0;
1066 /* The backer wishes to know when pages are first written to? */
1067 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1068 return 1;
1070 /* The open routine did something to the protections already? */
1071 if (pgprot_val(vma->vm_page_prot) !=
1072 pgprot_val(vm_get_page_prot(vm_flags)))
1073 return 0;
1075 /* Specialty mapping? */
1076 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1077 return 0;
1079 /* Can the mapping track the dirty pages? */
1080 return vma->vm_file && vma->vm_file->f_mapping &&
1081 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1084 unsigned long mmap_region(struct file *file, unsigned long addr,
1085 unsigned long len, unsigned long flags,
1086 unsigned int vm_flags, unsigned long pgoff,
1087 int accountable)
1089 struct mm_struct *mm = current->mm;
1090 struct vm_area_struct *vma, *prev;
1091 int correct_wcount = 0;
1092 int error;
1093 struct rb_node **rb_link, *rb_parent;
1094 unsigned long charged = 0;
1095 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1097 /* Clear old maps */
1098 error = -ENOMEM;
1099 munmap_back:
1100 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1101 if (vma && vma->vm_start < addr + len) {
1102 if (do_munmap(mm, addr, len))
1103 return -ENOMEM;
1104 goto munmap_back;
1107 /* Check against address space limit. */
1108 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1109 return -ENOMEM;
1111 if (accountable && (!(flags & MAP_NORESERVE) ||
1112 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1113 if (vm_flags & VM_SHARED) {
1114 /* Check memory availability in shmem_file_setup? */
1115 vm_flags |= VM_ACCOUNT;
1116 } else if (vm_flags & VM_WRITE) {
1118 * Private writable mapping: check memory availability
1120 charged = len >> PAGE_SHIFT;
1121 if (security_vm_enough_memory(charged))
1122 return -ENOMEM;
1123 vm_flags |= VM_ACCOUNT;
1128 * Can we just expand an old private anonymous mapping?
1129 * The VM_SHARED test is necessary because shmem_zero_setup
1130 * will create the file object for a shared anonymous map below.
1132 if (!file && !(vm_flags & VM_SHARED) &&
1133 vma_merge(mm, prev, addr, addr + len, vm_flags,
1134 NULL, NULL, pgoff, NULL))
1135 goto out;
1138 * Determine the object being mapped and call the appropriate
1139 * specific mapper. the address has already been validated, but
1140 * not unmapped, but the maps are removed from the list.
1142 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1143 if (!vma) {
1144 error = -ENOMEM;
1145 goto unacct_error;
1148 vma->vm_mm = mm;
1149 vma->vm_start = addr;
1150 vma->vm_end = addr + len;
1151 vma->vm_flags = vm_flags;
1152 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1153 vma->vm_pgoff = pgoff;
1155 if (file) {
1156 error = -EINVAL;
1157 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1158 goto free_vma;
1159 if (vm_flags & VM_DENYWRITE) {
1160 error = deny_write_access(file);
1161 if (error)
1162 goto free_vma;
1163 correct_wcount = 1;
1165 vma->vm_file = file;
1166 get_file(file);
1167 error = file->f_op->mmap(file, vma);
1168 if (error)
1169 goto unmap_and_free_vma;
1170 if (vm_flags & VM_EXECUTABLE)
1171 added_exe_file_vma(mm);
1172 } else if (vm_flags & VM_SHARED) {
1173 error = shmem_zero_setup(vma);
1174 if (error)
1175 goto free_vma;
1178 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1179 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1180 * that memory reservation must be checked; but that reservation
1181 * belongs to shared memory object, not to vma: so now clear it.
1183 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1184 vma->vm_flags &= ~VM_ACCOUNT;
1186 /* Can addr have changed??
1188 * Answer: Yes, several device drivers can do it in their
1189 * f_op->mmap method. -DaveM
1191 addr = vma->vm_start;
1192 pgoff = vma->vm_pgoff;
1193 vm_flags = vma->vm_flags;
1195 if (vma_wants_writenotify(vma))
1196 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1198 if (file && vma_merge(mm, prev, addr, vma->vm_end,
1199 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1200 mpol_put(vma_policy(vma));
1201 kmem_cache_free(vm_area_cachep, vma);
1202 fput(file);
1203 if (vm_flags & VM_EXECUTABLE)
1204 removed_exe_file_vma(mm);
1205 } else {
1206 vma_link(mm, vma, prev, rb_link, rb_parent);
1207 file = vma->vm_file;
1210 /* Once vma denies write, undo our temporary denial count */
1211 if (correct_wcount)
1212 atomic_inc(&inode->i_writecount);
1213 out:
1214 mm->total_vm += len >> PAGE_SHIFT;
1215 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1216 if (vm_flags & VM_LOCKED) {
1217 mm->locked_vm += len >> PAGE_SHIFT;
1218 make_pages_present(addr, addr + len);
1220 if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1221 make_pages_present(addr, addr + len);
1222 return addr;
1224 unmap_and_free_vma:
1225 if (correct_wcount)
1226 atomic_inc(&inode->i_writecount);
1227 vma->vm_file = NULL;
1228 fput(file);
1230 /* Undo any partial mapping done by a device driver. */
1231 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1232 charged = 0;
1233 free_vma:
1234 kmem_cache_free(vm_area_cachep, vma);
1235 unacct_error:
1236 if (charged)
1237 vm_unacct_memory(charged);
1238 return error;
1241 /* Get an address range which is currently unmapped.
1242 * For shmat() with addr=0.
1244 * Ugly calling convention alert:
1245 * Return value with the low bits set means error value,
1246 * ie
1247 * if (ret & ~PAGE_MASK)
1248 * error = ret;
1250 * This function "knows" that -ENOMEM has the bits set.
1252 #ifndef HAVE_ARCH_UNMAPPED_AREA
1253 unsigned long
1254 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1255 unsigned long len, unsigned long pgoff, unsigned long flags)
1257 struct mm_struct *mm = current->mm;
1258 struct vm_area_struct *vma;
1259 unsigned long start_addr;
1261 if (len > TASK_SIZE)
1262 return -ENOMEM;
1264 if (flags & MAP_FIXED)
1265 return addr;
1267 if (addr) {
1268 addr = PAGE_ALIGN(addr);
1269 vma = find_vma(mm, addr);
1270 if (TASK_SIZE - len >= addr &&
1271 (!vma || addr + len <= vma->vm_start))
1272 return addr;
1274 if (len > mm->cached_hole_size) {
1275 start_addr = addr = mm->free_area_cache;
1276 } else {
1277 start_addr = addr = TASK_UNMAPPED_BASE;
1278 mm->cached_hole_size = 0;
1281 full_search:
1282 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1283 /* At this point: (!vma || addr < vma->vm_end). */
1284 if (TASK_SIZE - len < addr) {
1286 * Start a new search - just in case we missed
1287 * some holes.
1289 if (start_addr != TASK_UNMAPPED_BASE) {
1290 addr = TASK_UNMAPPED_BASE;
1291 start_addr = addr;
1292 mm->cached_hole_size = 0;
1293 goto full_search;
1295 return -ENOMEM;
1297 if (!vma || addr + len <= vma->vm_start) {
1299 * Remember the place where we stopped the search:
1301 mm->free_area_cache = addr + len;
1302 return addr;
1304 if (addr + mm->cached_hole_size < vma->vm_start)
1305 mm->cached_hole_size = vma->vm_start - addr;
1306 addr = vma->vm_end;
1309 #endif
1311 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1314 * Is this a new hole at the lowest possible address?
1316 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1317 mm->free_area_cache = addr;
1318 mm->cached_hole_size = ~0UL;
1323 * This mmap-allocator allocates new areas top-down from below the
1324 * stack's low limit (the base):
1326 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1327 unsigned long
1328 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1329 const unsigned long len, const unsigned long pgoff,
1330 const unsigned long flags)
1332 struct vm_area_struct *vma;
1333 struct mm_struct *mm = current->mm;
1334 unsigned long addr = addr0;
1336 /* requested length too big for entire address space */
1337 if (len > TASK_SIZE)
1338 return -ENOMEM;
1340 if (flags & MAP_FIXED)
1341 return addr;
1343 /* requesting a specific address */
1344 if (addr) {
1345 addr = PAGE_ALIGN(addr);
1346 vma = find_vma(mm, addr);
1347 if (TASK_SIZE - len >= addr &&
1348 (!vma || addr + len <= vma->vm_start))
1349 return addr;
1352 /* check if free_area_cache is useful for us */
1353 if (len <= mm->cached_hole_size) {
1354 mm->cached_hole_size = 0;
1355 mm->free_area_cache = mm->mmap_base;
1358 /* either no address requested or can't fit in requested address hole */
1359 addr = mm->free_area_cache;
1361 /* make sure it can fit in the remaining address space */
1362 if (addr > len) {
1363 vma = find_vma(mm, addr-len);
1364 if (!vma || addr <= vma->vm_start)
1365 /* remember the address as a hint for next time */
1366 return (mm->free_area_cache = addr-len);
1369 if (mm->mmap_base < len)
1370 goto bottomup;
1372 addr = mm->mmap_base-len;
1374 do {
1376 * Lookup failure means no vma is above this address,
1377 * else if new region fits below vma->vm_start,
1378 * return with success:
1380 vma = find_vma(mm, addr);
1381 if (!vma || addr+len <= vma->vm_start)
1382 /* remember the address as a hint for next time */
1383 return (mm->free_area_cache = addr);
1385 /* remember the largest hole we saw so far */
1386 if (addr + mm->cached_hole_size < vma->vm_start)
1387 mm->cached_hole_size = vma->vm_start - addr;
1389 /* try just below the current vma->vm_start */
1390 addr = vma->vm_start-len;
1391 } while (len < vma->vm_start);
1393 bottomup:
1395 * A failed mmap() very likely causes application failure,
1396 * so fall back to the bottom-up function here. This scenario
1397 * can happen with large stack limits and large mmap()
1398 * allocations.
1400 mm->cached_hole_size = ~0UL;
1401 mm->free_area_cache = TASK_UNMAPPED_BASE;
1402 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1404 * Restore the topdown base:
1406 mm->free_area_cache = mm->mmap_base;
1407 mm->cached_hole_size = ~0UL;
1409 return addr;
1411 #endif
1413 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1416 * Is this a new hole at the highest possible address?
1418 if (addr > mm->free_area_cache)
1419 mm->free_area_cache = addr;
1421 /* dont allow allocations above current base */
1422 if (mm->free_area_cache > mm->mmap_base)
1423 mm->free_area_cache = mm->mmap_base;
1426 unsigned long
1427 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1428 unsigned long pgoff, unsigned long flags)
1430 unsigned long (*get_area)(struct file *, unsigned long,
1431 unsigned long, unsigned long, unsigned long);
1433 get_area = current->mm->get_unmapped_area;
1434 if (file && file->f_op && file->f_op->get_unmapped_area)
1435 get_area = file->f_op->get_unmapped_area;
1436 addr = get_area(file, addr, len, pgoff, flags);
1437 if (IS_ERR_VALUE(addr))
1438 return addr;
1440 if (addr > TASK_SIZE - len)
1441 return -ENOMEM;
1442 if (addr & ~PAGE_MASK)
1443 return -EINVAL;
1445 return arch_rebalance_pgtables(addr, len);
1448 EXPORT_SYMBOL(get_unmapped_area);
1450 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1451 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1453 struct vm_area_struct *vma = NULL;
1455 if (mm) {
1456 /* Check the cache first. */
1457 /* (Cache hit rate is typically around 35%.) */
1458 vma = mm->mmap_cache;
1459 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1460 struct rb_node * rb_node;
1462 rb_node = mm->mm_rb.rb_node;
1463 vma = NULL;
1465 while (rb_node) {
1466 struct vm_area_struct * vma_tmp;
1468 vma_tmp = rb_entry(rb_node,
1469 struct vm_area_struct, vm_rb);
1471 if (vma_tmp->vm_end > addr) {
1472 vma = vma_tmp;
1473 if (vma_tmp->vm_start <= addr)
1474 break;
1475 rb_node = rb_node->rb_left;
1476 } else
1477 rb_node = rb_node->rb_right;
1479 if (vma)
1480 mm->mmap_cache = vma;
1483 return vma;
1486 EXPORT_SYMBOL(find_vma);
1488 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1489 struct vm_area_struct *
1490 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1491 struct vm_area_struct **pprev)
1493 struct vm_area_struct *vma = NULL, *prev = NULL;
1494 struct rb_node * rb_node;
1495 if (!mm)
1496 goto out;
1498 /* Guard against addr being lower than the first VMA */
1499 vma = mm->mmap;
1501 /* Go through the RB tree quickly. */
1502 rb_node = mm->mm_rb.rb_node;
1504 while (rb_node) {
1505 struct vm_area_struct *vma_tmp;
1506 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1508 if (addr < vma_tmp->vm_end) {
1509 rb_node = rb_node->rb_left;
1510 } else {
1511 prev = vma_tmp;
1512 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1513 break;
1514 rb_node = rb_node->rb_right;
1518 out:
1519 *pprev = prev;
1520 return prev ? prev->vm_next : vma;
1524 * Verify that the stack growth is acceptable and
1525 * update accounting. This is shared with both the
1526 * grow-up and grow-down cases.
1528 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1530 struct mm_struct *mm = vma->vm_mm;
1531 struct rlimit *rlim = current->signal->rlim;
1532 unsigned long new_start;
1534 /* address space limit tests */
1535 if (!may_expand_vm(mm, grow))
1536 return -ENOMEM;
1538 /* Stack limit test */
1539 if (size > rlim[RLIMIT_STACK].rlim_cur)
1540 return -ENOMEM;
1542 /* mlock limit tests */
1543 if (vma->vm_flags & VM_LOCKED) {
1544 unsigned long locked;
1545 unsigned long limit;
1546 locked = mm->locked_vm + grow;
1547 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1548 if (locked > limit && !capable(CAP_IPC_LOCK))
1549 return -ENOMEM;
1552 /* Check to ensure the stack will not grow into a hugetlb-only region */
1553 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1554 vma->vm_end - size;
1555 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1556 return -EFAULT;
1559 * Overcommit.. This must be the final test, as it will
1560 * update security statistics.
1562 if (security_vm_enough_memory(grow))
1563 return -ENOMEM;
1565 /* Ok, everything looks good - let it rip */
1566 mm->total_vm += grow;
1567 if (vma->vm_flags & VM_LOCKED)
1568 mm->locked_vm += grow;
1569 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1570 return 0;
1573 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1575 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1576 * vma is the last one with address > vma->vm_end. Have to extend vma.
1578 #ifndef CONFIG_IA64
1579 static inline
1580 #endif
1581 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1583 int error;
1585 if (!(vma->vm_flags & VM_GROWSUP))
1586 return -EFAULT;
1589 * We must make sure the anon_vma is allocated
1590 * so that the anon_vma locking is not a noop.
1592 if (unlikely(anon_vma_prepare(vma)))
1593 return -ENOMEM;
1594 anon_vma_lock(vma);
1597 * vma->vm_start/vm_end cannot change under us because the caller
1598 * is required to hold the mmap_sem in read mode. We need the
1599 * anon_vma lock to serialize against concurrent expand_stacks.
1600 * Also guard against wrapping around to address 0.
1602 if (address < PAGE_ALIGN(address+4))
1603 address = PAGE_ALIGN(address+4);
1604 else {
1605 anon_vma_unlock(vma);
1606 return -ENOMEM;
1608 error = 0;
1610 /* Somebody else might have raced and expanded it already */
1611 if (address > vma->vm_end) {
1612 unsigned long size, grow;
1614 size = address - vma->vm_start;
1615 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1617 error = acct_stack_growth(vma, size, grow);
1618 if (!error)
1619 vma->vm_end = address;
1621 anon_vma_unlock(vma);
1622 return error;
1624 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1627 * vma is the first one with address < vma->vm_start. Have to extend vma.
1629 static inline int expand_downwards(struct vm_area_struct *vma,
1630 unsigned long address)
1632 int error;
1635 * We must make sure the anon_vma is allocated
1636 * so that the anon_vma locking is not a noop.
1638 if (unlikely(anon_vma_prepare(vma)))
1639 return -ENOMEM;
1641 address &= PAGE_MASK;
1642 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1643 if (error)
1644 return error;
1646 anon_vma_lock(vma);
1649 * vma->vm_start/vm_end cannot change under us because the caller
1650 * is required to hold the mmap_sem in read mode. We need the
1651 * anon_vma lock to serialize against concurrent expand_stacks.
1654 /* Somebody else might have raced and expanded it already */
1655 if (address < vma->vm_start) {
1656 unsigned long size, grow;
1658 size = vma->vm_end - address;
1659 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1661 error = acct_stack_growth(vma, size, grow);
1662 if (!error) {
1663 vma->vm_start = address;
1664 vma->vm_pgoff -= grow;
1667 anon_vma_unlock(vma);
1668 return error;
1671 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1673 return expand_downwards(vma, address);
1676 #ifdef CONFIG_STACK_GROWSUP
1677 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1679 return expand_upwards(vma, address);
1682 struct vm_area_struct *
1683 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1685 struct vm_area_struct *vma, *prev;
1687 addr &= PAGE_MASK;
1688 vma = find_vma_prev(mm, addr, &prev);
1689 if (vma && (vma->vm_start <= addr))
1690 return vma;
1691 if (!prev || expand_stack(prev, addr))
1692 return NULL;
1693 if (prev->vm_flags & VM_LOCKED)
1694 make_pages_present(addr, prev->vm_end);
1695 return prev;
1697 #else
1698 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1700 return expand_downwards(vma, address);
1703 struct vm_area_struct *
1704 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1706 struct vm_area_struct * vma;
1707 unsigned long start;
1709 addr &= PAGE_MASK;
1710 vma = find_vma(mm,addr);
1711 if (!vma)
1712 return NULL;
1713 if (vma->vm_start <= addr)
1714 return vma;
1715 if (!(vma->vm_flags & VM_GROWSDOWN))
1716 return NULL;
1717 start = vma->vm_start;
1718 if (expand_stack(vma, addr))
1719 return NULL;
1720 if (vma->vm_flags & VM_LOCKED)
1721 make_pages_present(addr, start);
1722 return vma;
1724 #endif
1727 * Ok - we have the memory areas we should free on the vma list,
1728 * so release them, and do the vma updates.
1730 * Called with the mm semaphore held.
1732 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1734 /* Update high watermark before we lower total_vm */
1735 update_hiwater_vm(mm);
1736 do {
1737 long nrpages = vma_pages(vma);
1739 mm->total_vm -= nrpages;
1740 if (vma->vm_flags & VM_LOCKED)
1741 mm->locked_vm -= nrpages;
1742 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1743 vma = remove_vma(vma);
1744 } while (vma);
1745 validate_mm(mm);
1749 * Get rid of page table information in the indicated region.
1751 * Called with the mm semaphore held.
1753 static void unmap_region(struct mm_struct *mm,
1754 struct vm_area_struct *vma, struct vm_area_struct *prev,
1755 unsigned long start, unsigned long end)
1757 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1758 struct mmu_gather *tlb;
1759 unsigned long nr_accounted = 0;
1761 lru_add_drain();
1762 tlb = tlb_gather_mmu(mm, 0);
1763 update_hiwater_rss(mm);
1764 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1765 vm_unacct_memory(nr_accounted);
1766 free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1767 next? next->vm_start: 0);
1768 tlb_finish_mmu(tlb, start, end);
1772 * Create a list of vma's touched by the unmap, removing them from the mm's
1773 * vma list as we go..
1775 static void
1776 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1777 struct vm_area_struct *prev, unsigned long end)
1779 struct vm_area_struct **insertion_point;
1780 struct vm_area_struct *tail_vma = NULL;
1781 unsigned long addr;
1783 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1784 do {
1785 rb_erase(&vma->vm_rb, &mm->mm_rb);
1786 mm->map_count--;
1787 tail_vma = vma;
1788 vma = vma->vm_next;
1789 } while (vma && vma->vm_start < end);
1790 *insertion_point = vma;
1791 tail_vma->vm_next = NULL;
1792 if (mm->unmap_area == arch_unmap_area)
1793 addr = prev ? prev->vm_end : mm->mmap_base;
1794 else
1795 addr = vma ? vma->vm_start : mm->mmap_base;
1796 mm->unmap_area(mm, addr);
1797 mm->mmap_cache = NULL; /* Kill the cache. */
1801 * Split a vma into two pieces at address 'addr', a new vma is allocated
1802 * either for the first part or the tail.
1804 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1805 unsigned long addr, int new_below)
1807 struct mempolicy *pol;
1808 struct vm_area_struct *new;
1810 if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1811 return -EINVAL;
1813 if (mm->map_count >= sysctl_max_map_count)
1814 return -ENOMEM;
1816 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1817 if (!new)
1818 return -ENOMEM;
1820 /* most fields are the same, copy all, and then fixup */
1821 *new = *vma;
1823 if (new_below)
1824 new->vm_end = addr;
1825 else {
1826 new->vm_start = addr;
1827 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1830 pol = mpol_dup(vma_policy(vma));
1831 if (IS_ERR(pol)) {
1832 kmem_cache_free(vm_area_cachep, new);
1833 return PTR_ERR(pol);
1835 vma_set_policy(new, pol);
1837 if (new->vm_file) {
1838 get_file(new->vm_file);
1839 if (vma->vm_flags & VM_EXECUTABLE)
1840 added_exe_file_vma(mm);
1843 if (new->vm_ops && new->vm_ops->open)
1844 new->vm_ops->open(new);
1846 if (new_below)
1847 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1848 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1849 else
1850 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1852 return 0;
1855 /* Munmap is split into 2 main parts -- this part which finds
1856 * what needs doing, and the areas themselves, which do the
1857 * work. This now handles partial unmappings.
1858 * Jeremy Fitzhardinge <jeremy@goop.org>
1860 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1862 unsigned long end;
1863 struct vm_area_struct *vma, *prev, *last;
1865 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1866 return -EINVAL;
1868 if ((len = PAGE_ALIGN(len)) == 0)
1869 return -EINVAL;
1871 /* Find the first overlapping VMA */
1872 vma = find_vma_prev(mm, start, &prev);
1873 if (!vma)
1874 return 0;
1875 /* we have start < vma->vm_end */
1877 /* if it doesn't overlap, we have nothing.. */
1878 end = start + len;
1879 if (vma->vm_start >= end)
1880 return 0;
1883 * If we need to split any vma, do it now to save pain later.
1885 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1886 * unmapped vm_area_struct will remain in use: so lower split_vma
1887 * places tmp vma above, and higher split_vma places tmp vma below.
1889 if (start > vma->vm_start) {
1890 int error = split_vma(mm, vma, start, 0);
1891 if (error)
1892 return error;
1893 prev = vma;
1896 /* Does it split the last one? */
1897 last = find_vma(mm, end);
1898 if (last && end > last->vm_start) {
1899 int error = split_vma(mm, last, end, 1);
1900 if (error)
1901 return error;
1903 vma = prev? prev->vm_next: mm->mmap;
1906 * Remove the vma's, and unmap the actual pages
1908 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1909 unmap_region(mm, vma, prev, start, end);
1911 /* Fix up all other VM information */
1912 remove_vma_list(mm, vma);
1914 return 0;
1917 EXPORT_SYMBOL(do_munmap);
1919 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1921 int ret;
1922 struct mm_struct *mm = current->mm;
1924 profile_munmap(addr);
1926 down_write(&mm->mmap_sem);
1927 ret = do_munmap(mm, addr, len);
1928 up_write(&mm->mmap_sem);
1929 return ret;
1932 static inline void verify_mm_writelocked(struct mm_struct *mm)
1934 #ifdef CONFIG_DEBUG_VM
1935 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1936 WARN_ON(1);
1937 up_read(&mm->mmap_sem);
1939 #endif
1943 * this is really a simplified "do_mmap". it only handles
1944 * anonymous maps. eventually we may be able to do some
1945 * brk-specific accounting here.
1947 unsigned long do_brk(unsigned long addr, unsigned long len)
1949 struct mm_struct * mm = current->mm;
1950 struct vm_area_struct * vma, * prev;
1951 unsigned long flags;
1952 struct rb_node ** rb_link, * rb_parent;
1953 pgoff_t pgoff = addr >> PAGE_SHIFT;
1954 int error;
1956 len = PAGE_ALIGN(len);
1957 if (!len)
1958 return addr;
1960 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1961 return -EINVAL;
1963 if (is_hugepage_only_range(mm, addr, len))
1964 return -EINVAL;
1966 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1967 if (error)
1968 return error;
1970 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1972 error = arch_mmap_check(addr, len, flags);
1973 if (error)
1974 return error;
1977 * mlock MCL_FUTURE?
1979 if (mm->def_flags & VM_LOCKED) {
1980 unsigned long locked, lock_limit;
1981 locked = len >> PAGE_SHIFT;
1982 locked += mm->locked_vm;
1983 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1984 lock_limit >>= PAGE_SHIFT;
1985 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1986 return -EAGAIN;
1990 * mm->mmap_sem is required to protect against another thread
1991 * changing the mappings in case we sleep.
1993 verify_mm_writelocked(mm);
1996 * Clear old maps. this also does some error checking for us
1998 munmap_back:
1999 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2000 if (vma && vma->vm_start < addr + len) {
2001 if (do_munmap(mm, addr, len))
2002 return -ENOMEM;
2003 goto munmap_back;
2006 /* Check against address space limits *after* clearing old maps... */
2007 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2008 return -ENOMEM;
2010 if (mm->map_count > sysctl_max_map_count)
2011 return -ENOMEM;
2013 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2014 return -ENOMEM;
2016 /* Can we just expand an old private anonymous mapping? */
2017 if (vma_merge(mm, prev, addr, addr + len, flags,
2018 NULL, NULL, pgoff, NULL))
2019 goto out;
2022 * create a vma struct for an anonymous mapping
2024 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2025 if (!vma) {
2026 vm_unacct_memory(len >> PAGE_SHIFT);
2027 return -ENOMEM;
2030 vma->vm_mm = mm;
2031 vma->vm_start = addr;
2032 vma->vm_end = addr + len;
2033 vma->vm_pgoff = pgoff;
2034 vma->vm_flags = flags;
2035 vma->vm_page_prot = vm_get_page_prot(flags);
2036 vma_link(mm, vma, prev, rb_link, rb_parent);
2037 out:
2038 mm->total_vm += len >> PAGE_SHIFT;
2039 if (flags & VM_LOCKED) {
2040 mm->locked_vm += len >> PAGE_SHIFT;
2041 make_pages_present(addr, addr + len);
2043 return addr;
2046 EXPORT_SYMBOL(do_brk);
2048 /* Release all mmaps. */
2049 void exit_mmap(struct mm_struct *mm)
2051 struct mmu_gather *tlb;
2052 struct vm_area_struct *vma = mm->mmap;
2053 unsigned long nr_accounted = 0;
2054 unsigned long end;
2056 /* mm's last user has gone, and its about to be pulled down */
2057 arch_exit_mmap(mm);
2059 lru_add_drain();
2060 flush_cache_mm(mm);
2061 tlb = tlb_gather_mmu(mm, 1);
2062 /* Don't update_hiwater_rss(mm) here, do_exit already did */
2063 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2064 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2065 vm_unacct_memory(nr_accounted);
2066 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2067 tlb_finish_mmu(tlb, 0, end);
2070 * Walk the list again, actually closing and freeing it,
2071 * with preemption enabled, without holding any MM locks.
2073 while (vma)
2074 vma = remove_vma(vma);
2076 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2079 /* Insert vm structure into process list sorted by address
2080 * and into the inode's i_mmap tree. If vm_file is non-NULL
2081 * then i_mmap_lock is taken here.
2083 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2085 struct vm_area_struct * __vma, * prev;
2086 struct rb_node ** rb_link, * rb_parent;
2089 * The vm_pgoff of a purely anonymous vma should be irrelevant
2090 * until its first write fault, when page's anon_vma and index
2091 * are set. But now set the vm_pgoff it will almost certainly
2092 * end up with (unless mremap moves it elsewhere before that
2093 * first wfault), so /proc/pid/maps tells a consistent story.
2095 * By setting it to reflect the virtual start address of the
2096 * vma, merges and splits can happen in a seamless way, just
2097 * using the existing file pgoff checks and manipulations.
2098 * Similarly in do_mmap_pgoff and in do_brk.
2100 if (!vma->vm_file) {
2101 BUG_ON(vma->anon_vma);
2102 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2104 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2105 if (__vma && __vma->vm_start < vma->vm_end)
2106 return -ENOMEM;
2107 if ((vma->vm_flags & VM_ACCOUNT) &&
2108 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2109 return -ENOMEM;
2110 vma_link(mm, vma, prev, rb_link, rb_parent);
2111 return 0;
2115 * Copy the vma structure to a new location in the same mm,
2116 * prior to moving page table entries, to effect an mremap move.
2118 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2119 unsigned long addr, unsigned long len, pgoff_t pgoff)
2121 struct vm_area_struct *vma = *vmap;
2122 unsigned long vma_start = vma->vm_start;
2123 struct mm_struct *mm = vma->vm_mm;
2124 struct vm_area_struct *new_vma, *prev;
2125 struct rb_node **rb_link, *rb_parent;
2126 struct mempolicy *pol;
2129 * If anonymous vma has not yet been faulted, update new pgoff
2130 * to match new location, to increase its chance of merging.
2132 if (!vma->vm_file && !vma->anon_vma)
2133 pgoff = addr >> PAGE_SHIFT;
2135 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2136 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2137 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2138 if (new_vma) {
2140 * Source vma may have been merged into new_vma
2142 if (vma_start >= new_vma->vm_start &&
2143 vma_start < new_vma->vm_end)
2144 *vmap = new_vma;
2145 } else {
2146 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2147 if (new_vma) {
2148 *new_vma = *vma;
2149 pol = mpol_dup(vma_policy(vma));
2150 if (IS_ERR(pol)) {
2151 kmem_cache_free(vm_area_cachep, new_vma);
2152 return NULL;
2154 vma_set_policy(new_vma, pol);
2155 new_vma->vm_start = addr;
2156 new_vma->vm_end = addr + len;
2157 new_vma->vm_pgoff = pgoff;
2158 if (new_vma->vm_file) {
2159 get_file(new_vma->vm_file);
2160 if (vma->vm_flags & VM_EXECUTABLE)
2161 added_exe_file_vma(mm);
2163 if (new_vma->vm_ops && new_vma->vm_ops->open)
2164 new_vma->vm_ops->open(new_vma);
2165 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2168 return new_vma;
2172 * Return true if the calling process may expand its vm space by the passed
2173 * number of pages
2175 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2177 unsigned long cur = mm->total_vm; /* pages */
2178 unsigned long lim;
2180 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2182 if (cur + npages > lim)
2183 return 0;
2184 return 1;
2188 static int special_mapping_fault(struct vm_area_struct *vma,
2189 struct vm_fault *vmf)
2191 pgoff_t pgoff;
2192 struct page **pages;
2195 * special mappings have no vm_file, and in that case, the mm
2196 * uses vm_pgoff internally. So we have to subtract it from here.
2197 * We are allowed to do this because we are the mm; do not copy
2198 * this code into drivers!
2200 pgoff = vmf->pgoff - vma->vm_pgoff;
2202 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2203 pgoff--;
2205 if (*pages) {
2206 struct page *page = *pages;
2207 get_page(page);
2208 vmf->page = page;
2209 return 0;
2212 return VM_FAULT_SIGBUS;
2216 * Having a close hook prevents vma merging regardless of flags.
2218 static void special_mapping_close(struct vm_area_struct *vma)
2222 static struct vm_operations_struct special_mapping_vmops = {
2223 .close = special_mapping_close,
2224 .fault = special_mapping_fault,
2228 * Called with mm->mmap_sem held for writing.
2229 * Insert a new vma covering the given region, with the given flags.
2230 * Its pages are supplied by the given array of struct page *.
2231 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2232 * The region past the last page supplied will always produce SIGBUS.
2233 * The array pointer and the pages it points to are assumed to stay alive
2234 * for as long as this mapping might exist.
2236 int install_special_mapping(struct mm_struct *mm,
2237 unsigned long addr, unsigned long len,
2238 unsigned long vm_flags, struct page **pages)
2240 struct vm_area_struct *vma;
2242 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2243 if (unlikely(vma == NULL))
2244 return -ENOMEM;
2246 vma->vm_mm = mm;
2247 vma->vm_start = addr;
2248 vma->vm_end = addr + len;
2250 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2251 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2253 vma->vm_ops = &special_mapping_vmops;
2254 vma->vm_private_data = pages;
2256 if (unlikely(insert_vm_struct(mm, vma))) {
2257 kmem_cache_free(vm_area_cachep, vma);
2258 return -ENOMEM;
2261 mm->total_vm += len >> PAGE_SHIFT;
2263 return 0;