[PATCH] ipw2200: version string rework
[linux-2.6/mini2440.git] / drivers / net / wireless / ipw2200.c
blobd4f5cce8fb2f960f975628b55b93e9597a1945a5
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
33 #include "ipw2200.h"
34 #include <linux/version.h>
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
61 #ifdef CONFIG_IEEE80211_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
73 #define IPW2200_VERSION "1.1.1" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
85 static int cmdlog = 0;
86 #ifdef CONFIG_IPW2200_DEBUG
87 static int debug = 0;
88 #endif
89 static int channel = 0;
90 static int mode = 0;
92 static u32 ipw_debug_level;
93 static int associate = 1;
94 static int auto_create = 1;
95 static int led = 0;
96 static int disable = 0;
97 static int bt_coexist = 0;
98 static int hwcrypto = 0;
99 static int roaming = 1;
100 static const char ipw_modes[] = {
101 'a', 'b', 'g', '?'
103 static int antenna = CFG_SYS_ANTENNA_BOTH;
105 #ifdef CONFIG_IPW2200_PROMISCUOUS
106 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
107 #endif
110 #ifdef CONFIG_IPW_QOS
111 static int qos_enable = 0;
112 static int qos_burst_enable = 0;
113 static int qos_no_ack_mask = 0;
114 static int burst_duration_CCK = 0;
115 static int burst_duration_OFDM = 0;
117 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
118 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
119 QOS_TX3_CW_MIN_OFDM},
120 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
121 QOS_TX3_CW_MAX_OFDM},
122 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
123 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
124 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
125 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
128 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
129 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
130 QOS_TX3_CW_MIN_CCK},
131 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
132 QOS_TX3_CW_MAX_CCK},
133 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
134 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
135 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
136 QOS_TX3_TXOP_LIMIT_CCK}
139 static struct ieee80211_qos_parameters def_parameters_OFDM = {
140 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
141 DEF_TX3_CW_MIN_OFDM},
142 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
143 DEF_TX3_CW_MAX_OFDM},
144 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
145 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
146 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
147 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
150 static struct ieee80211_qos_parameters def_parameters_CCK = {
151 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
152 DEF_TX3_CW_MIN_CCK},
153 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
154 DEF_TX3_CW_MAX_CCK},
155 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
156 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
157 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
158 DEF_TX3_TXOP_LIMIT_CCK}
161 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
163 static int from_priority_to_tx_queue[] = {
164 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
165 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
168 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
170 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
171 *qos_param);
172 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
173 *qos_param);
174 #endif /* CONFIG_IPW_QOS */
176 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
177 static void ipw_remove_current_network(struct ipw_priv *priv);
178 static void ipw_rx(struct ipw_priv *priv);
179 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
180 struct clx2_tx_queue *txq, int qindex);
181 static int ipw_queue_reset(struct ipw_priv *priv);
183 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
184 int len, int sync);
186 static void ipw_tx_queue_free(struct ipw_priv *);
188 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
189 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
190 static void ipw_rx_queue_replenish(void *);
191 static int ipw_up(struct ipw_priv *);
192 static void ipw_bg_up(void *);
193 static void ipw_down(struct ipw_priv *);
194 static void ipw_bg_down(void *);
195 static int ipw_config(struct ipw_priv *);
196 static int init_supported_rates(struct ipw_priv *priv,
197 struct ipw_supported_rates *prates);
198 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
199 static void ipw_send_wep_keys(struct ipw_priv *, int);
201 static int snprint_line(char *buf, size_t count,
202 const u8 * data, u32 len, u32 ofs)
204 int out, i, j, l;
205 char c;
207 out = snprintf(buf, count, "%08X", ofs);
209 for (l = 0, i = 0; i < 2; i++) {
210 out += snprintf(buf + out, count - out, " ");
211 for (j = 0; j < 8 && l < len; j++, l++)
212 out += snprintf(buf + out, count - out, "%02X ",
213 data[(i * 8 + j)]);
214 for (; j < 8; j++)
215 out += snprintf(buf + out, count - out, " ");
218 out += snprintf(buf + out, count - out, " ");
219 for (l = 0, i = 0; i < 2; i++) {
220 out += snprintf(buf + out, count - out, " ");
221 for (j = 0; j < 8 && l < len; j++, l++) {
222 c = data[(i * 8 + j)];
223 if (!isascii(c) || !isprint(c))
224 c = '.';
226 out += snprintf(buf + out, count - out, "%c", c);
229 for (; j < 8; j++)
230 out += snprintf(buf + out, count - out, " ");
233 return out;
236 static void printk_buf(int level, const u8 * data, u32 len)
238 char line[81];
239 u32 ofs = 0;
240 if (!(ipw_debug_level & level))
241 return;
243 while (len) {
244 snprint_line(line, sizeof(line), &data[ofs],
245 min(len, 16U), ofs);
246 printk(KERN_DEBUG "%s\n", line);
247 ofs += 16;
248 len -= min(len, 16U);
252 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
254 size_t out = size;
255 u32 ofs = 0;
256 int total = 0;
258 while (size && len) {
259 out = snprint_line(output, size, &data[ofs],
260 min_t(size_t, len, 16U), ofs);
262 ofs += 16;
263 output += out;
264 size -= out;
265 len -= min_t(size_t, len, 16U);
266 total += out;
268 return total;
271 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
272 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
273 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
275 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
276 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
277 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
279 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
280 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
281 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
283 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
284 __LINE__, (u32) (b), (u32) (c));
285 _ipw_write_reg8(a, b, c);
288 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
289 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
290 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
292 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
293 __LINE__, (u32) (b), (u32) (c));
294 _ipw_write_reg16(a, b, c);
297 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
298 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
299 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
301 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
302 __LINE__, (u32) (b), (u32) (c));
303 _ipw_write_reg32(a, b, c);
306 /* 8-bit direct write (low 4K) */
307 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
309 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
310 #define ipw_write8(ipw, ofs, val) \
311 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
312 _ipw_write8(ipw, ofs, val)
314 /* 16-bit direct write (low 4K) */
315 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
317 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
318 #define ipw_write16(ipw, ofs, val) \
319 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
320 _ipw_write16(ipw, ofs, val)
322 /* 32-bit direct write (low 4K) */
323 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
325 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
326 #define ipw_write32(ipw, ofs, val) \
327 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
328 _ipw_write32(ipw, ofs, val)
330 /* 8-bit direct read (low 4K) */
331 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
333 /* 8-bit direct read (low 4K), with debug wrapper */
334 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
336 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
337 return _ipw_read8(ipw, ofs);
340 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
341 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
343 /* 16-bit direct read (low 4K) */
344 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
346 /* 16-bit direct read (low 4K), with debug wrapper */
347 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
349 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
350 return _ipw_read16(ipw, ofs);
353 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
354 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
356 /* 32-bit direct read (low 4K) */
357 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
359 /* 32-bit direct read (low 4K), with debug wrapper */
360 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
362 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
363 return _ipw_read32(ipw, ofs);
366 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
367 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
369 /* multi-byte read (above 4K), with debug wrapper */
370 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
371 static inline void __ipw_read_indirect(const char *f, int l,
372 struct ipw_priv *a, u32 b, u8 * c, int d)
374 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
376 _ipw_read_indirect(a, b, c, d);
379 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
380 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
382 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
383 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
384 int num);
385 #define ipw_write_indirect(a, b, c, d) \
386 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
387 _ipw_write_indirect(a, b, c, d)
389 /* 32-bit indirect write (above 4K) */
390 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
392 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
393 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
394 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
397 /* 8-bit indirect write (above 4K) */
398 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
400 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
401 u32 dif_len = reg - aligned_addr;
403 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
404 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
405 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
408 /* 16-bit indirect write (above 4K) */
409 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
411 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
412 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
414 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
415 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
416 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
419 /* 8-bit indirect read (above 4K) */
420 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
422 u32 word;
423 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
424 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
425 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
426 return (word >> ((reg & 0x3) * 8)) & 0xff;
429 /* 32-bit indirect read (above 4K) */
430 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
432 u32 value;
434 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
436 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
437 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
438 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
439 return value;
442 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
443 /* for area above 1st 4K of SRAM/reg space */
444 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
445 int num)
447 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
448 u32 dif_len = addr - aligned_addr;
449 u32 i;
451 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
453 if (num <= 0) {
454 return;
457 /* Read the first dword (or portion) byte by byte */
458 if (unlikely(dif_len)) {
459 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
460 /* Start reading at aligned_addr + dif_len */
461 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
462 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
463 aligned_addr += 4;
466 /* Read all of the middle dwords as dwords, with auto-increment */
467 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
468 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
469 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
471 /* Read the last dword (or portion) byte by byte */
472 if (unlikely(num)) {
473 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
474 for (i = 0; num > 0; i++, num--)
475 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
479 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
480 /* for area above 1st 4K of SRAM/reg space */
481 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482 int num)
484 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
485 u32 dif_len = addr - aligned_addr;
486 u32 i;
488 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
490 if (num <= 0) {
491 return;
494 /* Write the first dword (or portion) byte by byte */
495 if (unlikely(dif_len)) {
496 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
497 /* Start writing at aligned_addr + dif_len */
498 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
499 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
500 aligned_addr += 4;
503 /* Write all of the middle dwords as dwords, with auto-increment */
504 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
505 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
506 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
508 /* Write the last dword (or portion) byte by byte */
509 if (unlikely(num)) {
510 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
511 for (i = 0; num > 0; i++, num--, buf++)
512 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
516 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
517 /* for 1st 4K of SRAM/regs space */
518 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
519 int num)
521 memcpy_toio((priv->hw_base + addr), buf, num);
524 /* Set bit(s) in low 4K of SRAM/regs */
525 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
527 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
530 /* Clear bit(s) in low 4K of SRAM/regs */
531 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
533 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
536 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
538 if (priv->status & STATUS_INT_ENABLED)
539 return;
540 priv->status |= STATUS_INT_ENABLED;
541 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
544 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
546 if (!(priv->status & STATUS_INT_ENABLED))
547 return;
548 priv->status &= ~STATUS_INT_ENABLED;
549 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
552 #ifdef CONFIG_IPW2200_DEBUG
553 static char *ipw_error_desc(u32 val)
555 switch (val) {
556 case IPW_FW_ERROR_OK:
557 return "ERROR_OK";
558 case IPW_FW_ERROR_FAIL:
559 return "ERROR_FAIL";
560 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
561 return "MEMORY_UNDERFLOW";
562 case IPW_FW_ERROR_MEMORY_OVERFLOW:
563 return "MEMORY_OVERFLOW";
564 case IPW_FW_ERROR_BAD_PARAM:
565 return "BAD_PARAM";
566 case IPW_FW_ERROR_BAD_CHECKSUM:
567 return "BAD_CHECKSUM";
568 case IPW_FW_ERROR_NMI_INTERRUPT:
569 return "NMI_INTERRUPT";
570 case IPW_FW_ERROR_BAD_DATABASE:
571 return "BAD_DATABASE";
572 case IPW_FW_ERROR_ALLOC_FAIL:
573 return "ALLOC_FAIL";
574 case IPW_FW_ERROR_DMA_UNDERRUN:
575 return "DMA_UNDERRUN";
576 case IPW_FW_ERROR_DMA_STATUS:
577 return "DMA_STATUS";
578 case IPW_FW_ERROR_DINO_ERROR:
579 return "DINO_ERROR";
580 case IPW_FW_ERROR_EEPROM_ERROR:
581 return "EEPROM_ERROR";
582 case IPW_FW_ERROR_SYSASSERT:
583 return "SYSASSERT";
584 case IPW_FW_ERROR_FATAL_ERROR:
585 return "FATAL_ERROR";
586 default:
587 return "UNKNOWN_ERROR";
591 static void ipw_dump_error_log(struct ipw_priv *priv,
592 struct ipw_fw_error *error)
594 u32 i;
596 if (!error) {
597 IPW_ERROR("Error allocating and capturing error log. "
598 "Nothing to dump.\n");
599 return;
602 IPW_ERROR("Start IPW Error Log Dump:\n");
603 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
604 error->status, error->config);
606 for (i = 0; i < error->elem_len; i++)
607 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
608 ipw_error_desc(error->elem[i].desc),
609 error->elem[i].time,
610 error->elem[i].blink1,
611 error->elem[i].blink2,
612 error->elem[i].link1,
613 error->elem[i].link2, error->elem[i].data);
614 for (i = 0; i < error->log_len; i++)
615 IPW_ERROR("%i\t0x%08x\t%i\n",
616 error->log[i].time,
617 error->log[i].data, error->log[i].event);
619 #endif
621 static inline int ipw_is_init(struct ipw_priv *priv)
623 return (priv->status & STATUS_INIT) ? 1 : 0;
626 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
628 u32 addr, field_info, field_len, field_count, total_len;
630 IPW_DEBUG_ORD("ordinal = %i\n", ord);
632 if (!priv || !val || !len) {
633 IPW_DEBUG_ORD("Invalid argument\n");
634 return -EINVAL;
637 /* verify device ordinal tables have been initialized */
638 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
639 IPW_DEBUG_ORD("Access ordinals before initialization\n");
640 return -EINVAL;
643 switch (IPW_ORD_TABLE_ID_MASK & ord) {
644 case IPW_ORD_TABLE_0_MASK:
646 * TABLE 0: Direct access to a table of 32 bit values
648 * This is a very simple table with the data directly
649 * read from the table
652 /* remove the table id from the ordinal */
653 ord &= IPW_ORD_TABLE_VALUE_MASK;
655 /* boundary check */
656 if (ord > priv->table0_len) {
657 IPW_DEBUG_ORD("ordinal value (%i) longer then "
658 "max (%i)\n", ord, priv->table0_len);
659 return -EINVAL;
662 /* verify we have enough room to store the value */
663 if (*len < sizeof(u32)) {
664 IPW_DEBUG_ORD("ordinal buffer length too small, "
665 "need %zd\n", sizeof(u32));
666 return -EINVAL;
669 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
670 ord, priv->table0_addr + (ord << 2));
672 *len = sizeof(u32);
673 ord <<= 2;
674 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
675 break;
677 case IPW_ORD_TABLE_1_MASK:
679 * TABLE 1: Indirect access to a table of 32 bit values
681 * This is a fairly large table of u32 values each
682 * representing starting addr for the data (which is
683 * also a u32)
686 /* remove the table id from the ordinal */
687 ord &= IPW_ORD_TABLE_VALUE_MASK;
689 /* boundary check */
690 if (ord > priv->table1_len) {
691 IPW_DEBUG_ORD("ordinal value too long\n");
692 return -EINVAL;
695 /* verify we have enough room to store the value */
696 if (*len < sizeof(u32)) {
697 IPW_DEBUG_ORD("ordinal buffer length too small, "
698 "need %zd\n", sizeof(u32));
699 return -EINVAL;
702 *((u32 *) val) =
703 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
704 *len = sizeof(u32);
705 break;
707 case IPW_ORD_TABLE_2_MASK:
709 * TABLE 2: Indirect access to a table of variable sized values
711 * This table consist of six values, each containing
712 * - dword containing the starting offset of the data
713 * - dword containing the lengh in the first 16bits
714 * and the count in the second 16bits
717 /* remove the table id from the ordinal */
718 ord &= IPW_ORD_TABLE_VALUE_MASK;
720 /* boundary check */
721 if (ord > priv->table2_len) {
722 IPW_DEBUG_ORD("ordinal value too long\n");
723 return -EINVAL;
726 /* get the address of statistic */
727 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
729 /* get the second DW of statistics ;
730 * two 16-bit words - first is length, second is count */
731 field_info =
732 ipw_read_reg32(priv,
733 priv->table2_addr + (ord << 3) +
734 sizeof(u32));
736 /* get each entry length */
737 field_len = *((u16 *) & field_info);
739 /* get number of entries */
740 field_count = *(((u16 *) & field_info) + 1);
742 /* abort if not enought memory */
743 total_len = field_len * field_count;
744 if (total_len > *len) {
745 *len = total_len;
746 return -EINVAL;
749 *len = total_len;
750 if (!total_len)
751 return 0;
753 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
754 "field_info = 0x%08x\n",
755 addr, total_len, field_info);
756 ipw_read_indirect(priv, addr, val, total_len);
757 break;
759 default:
760 IPW_DEBUG_ORD("Invalid ordinal!\n");
761 return -EINVAL;
765 return 0;
768 static void ipw_init_ordinals(struct ipw_priv *priv)
770 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
771 priv->table0_len = ipw_read32(priv, priv->table0_addr);
773 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
774 priv->table0_addr, priv->table0_len);
776 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
777 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
779 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
780 priv->table1_addr, priv->table1_len);
782 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
783 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
784 priv->table2_len &= 0x0000ffff; /* use first two bytes */
786 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
787 priv->table2_addr, priv->table2_len);
791 static u32 ipw_register_toggle(u32 reg)
793 reg &= ~IPW_START_STANDBY;
794 if (reg & IPW_GATE_ODMA)
795 reg &= ~IPW_GATE_ODMA;
796 if (reg & IPW_GATE_IDMA)
797 reg &= ~IPW_GATE_IDMA;
798 if (reg & IPW_GATE_ADMA)
799 reg &= ~IPW_GATE_ADMA;
800 return reg;
804 * LED behavior:
805 * - On radio ON, turn on any LEDs that require to be on during start
806 * - On initialization, start unassociated blink
807 * - On association, disable unassociated blink
808 * - On disassociation, start unassociated blink
809 * - On radio OFF, turn off any LEDs started during radio on
812 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
813 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
814 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
816 static void ipw_led_link_on(struct ipw_priv *priv)
818 unsigned long flags;
819 u32 led;
821 /* If configured to not use LEDs, or nic_type is 1,
822 * then we don't toggle a LINK led */
823 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
824 return;
826 spin_lock_irqsave(&priv->lock, flags);
828 if (!(priv->status & STATUS_RF_KILL_MASK) &&
829 !(priv->status & STATUS_LED_LINK_ON)) {
830 IPW_DEBUG_LED("Link LED On\n");
831 led = ipw_read_reg32(priv, IPW_EVENT_REG);
832 led |= priv->led_association_on;
834 led = ipw_register_toggle(led);
836 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
837 ipw_write_reg32(priv, IPW_EVENT_REG, led);
839 priv->status |= STATUS_LED_LINK_ON;
841 /* If we aren't associated, schedule turning the LED off */
842 if (!(priv->status & STATUS_ASSOCIATED))
843 queue_delayed_work(priv->workqueue,
844 &priv->led_link_off,
845 LD_TIME_LINK_ON);
848 spin_unlock_irqrestore(&priv->lock, flags);
851 static void ipw_bg_led_link_on(void *data)
853 struct ipw_priv *priv = data;
854 mutex_lock(&priv->mutex);
855 ipw_led_link_on(data);
856 mutex_unlock(&priv->mutex);
859 static void ipw_led_link_off(struct ipw_priv *priv)
861 unsigned long flags;
862 u32 led;
864 /* If configured not to use LEDs, or nic type is 1,
865 * then we don't goggle the LINK led. */
866 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
867 return;
869 spin_lock_irqsave(&priv->lock, flags);
871 if (priv->status & STATUS_LED_LINK_ON) {
872 led = ipw_read_reg32(priv, IPW_EVENT_REG);
873 led &= priv->led_association_off;
874 led = ipw_register_toggle(led);
876 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
877 ipw_write_reg32(priv, IPW_EVENT_REG, led);
879 IPW_DEBUG_LED("Link LED Off\n");
881 priv->status &= ~STATUS_LED_LINK_ON;
883 /* If we aren't associated and the radio is on, schedule
884 * turning the LED on (blink while unassociated) */
885 if (!(priv->status & STATUS_RF_KILL_MASK) &&
886 !(priv->status & STATUS_ASSOCIATED))
887 queue_delayed_work(priv->workqueue, &priv->led_link_on,
888 LD_TIME_LINK_OFF);
892 spin_unlock_irqrestore(&priv->lock, flags);
895 static void ipw_bg_led_link_off(void *data)
897 struct ipw_priv *priv = data;
898 mutex_lock(&priv->mutex);
899 ipw_led_link_off(data);
900 mutex_unlock(&priv->mutex);
903 static void __ipw_led_activity_on(struct ipw_priv *priv)
905 u32 led;
907 if (priv->config & CFG_NO_LED)
908 return;
910 if (priv->status & STATUS_RF_KILL_MASK)
911 return;
913 if (!(priv->status & STATUS_LED_ACT_ON)) {
914 led = ipw_read_reg32(priv, IPW_EVENT_REG);
915 led |= priv->led_activity_on;
917 led = ipw_register_toggle(led);
919 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
920 ipw_write_reg32(priv, IPW_EVENT_REG, led);
922 IPW_DEBUG_LED("Activity LED On\n");
924 priv->status |= STATUS_LED_ACT_ON;
926 cancel_delayed_work(&priv->led_act_off);
927 queue_delayed_work(priv->workqueue, &priv->led_act_off,
928 LD_TIME_ACT_ON);
929 } else {
930 /* Reschedule LED off for full time period */
931 cancel_delayed_work(&priv->led_act_off);
932 queue_delayed_work(priv->workqueue, &priv->led_act_off,
933 LD_TIME_ACT_ON);
937 #if 0
938 void ipw_led_activity_on(struct ipw_priv *priv)
940 unsigned long flags;
941 spin_lock_irqsave(&priv->lock, flags);
942 __ipw_led_activity_on(priv);
943 spin_unlock_irqrestore(&priv->lock, flags);
945 #endif /* 0 */
947 static void ipw_led_activity_off(struct ipw_priv *priv)
949 unsigned long flags;
950 u32 led;
952 if (priv->config & CFG_NO_LED)
953 return;
955 spin_lock_irqsave(&priv->lock, flags);
957 if (priv->status & STATUS_LED_ACT_ON) {
958 led = ipw_read_reg32(priv, IPW_EVENT_REG);
959 led &= priv->led_activity_off;
961 led = ipw_register_toggle(led);
963 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
964 ipw_write_reg32(priv, IPW_EVENT_REG, led);
966 IPW_DEBUG_LED("Activity LED Off\n");
968 priv->status &= ~STATUS_LED_ACT_ON;
971 spin_unlock_irqrestore(&priv->lock, flags);
974 static void ipw_bg_led_activity_off(void *data)
976 struct ipw_priv *priv = data;
977 mutex_lock(&priv->mutex);
978 ipw_led_activity_off(data);
979 mutex_unlock(&priv->mutex);
982 static void ipw_led_band_on(struct ipw_priv *priv)
984 unsigned long flags;
985 u32 led;
987 /* Only nic type 1 supports mode LEDs */
988 if (priv->config & CFG_NO_LED ||
989 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
990 return;
992 spin_lock_irqsave(&priv->lock, flags);
994 led = ipw_read_reg32(priv, IPW_EVENT_REG);
995 if (priv->assoc_network->mode == IEEE_A) {
996 led |= priv->led_ofdm_on;
997 led &= priv->led_association_off;
998 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
999 } else if (priv->assoc_network->mode == IEEE_G) {
1000 led |= priv->led_ofdm_on;
1001 led |= priv->led_association_on;
1002 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1003 } else {
1004 led &= priv->led_ofdm_off;
1005 led |= priv->led_association_on;
1006 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1009 led = ipw_register_toggle(led);
1011 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1012 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1014 spin_unlock_irqrestore(&priv->lock, flags);
1017 static void ipw_led_band_off(struct ipw_priv *priv)
1019 unsigned long flags;
1020 u32 led;
1022 /* Only nic type 1 supports mode LEDs */
1023 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1024 return;
1026 spin_lock_irqsave(&priv->lock, flags);
1028 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1029 led &= priv->led_ofdm_off;
1030 led &= priv->led_association_off;
1032 led = ipw_register_toggle(led);
1034 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1035 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1037 spin_unlock_irqrestore(&priv->lock, flags);
1040 static void ipw_led_radio_on(struct ipw_priv *priv)
1042 ipw_led_link_on(priv);
1045 static void ipw_led_radio_off(struct ipw_priv *priv)
1047 ipw_led_activity_off(priv);
1048 ipw_led_link_off(priv);
1051 static void ipw_led_link_up(struct ipw_priv *priv)
1053 /* Set the Link Led on for all nic types */
1054 ipw_led_link_on(priv);
1057 static void ipw_led_link_down(struct ipw_priv *priv)
1059 ipw_led_activity_off(priv);
1060 ipw_led_link_off(priv);
1062 if (priv->status & STATUS_RF_KILL_MASK)
1063 ipw_led_radio_off(priv);
1066 static void ipw_led_init(struct ipw_priv *priv)
1068 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1070 /* Set the default PINs for the link and activity leds */
1071 priv->led_activity_on = IPW_ACTIVITY_LED;
1072 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1074 priv->led_association_on = IPW_ASSOCIATED_LED;
1075 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1077 /* Set the default PINs for the OFDM leds */
1078 priv->led_ofdm_on = IPW_OFDM_LED;
1079 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1081 switch (priv->nic_type) {
1082 case EEPROM_NIC_TYPE_1:
1083 /* In this NIC type, the LEDs are reversed.... */
1084 priv->led_activity_on = IPW_ASSOCIATED_LED;
1085 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1086 priv->led_association_on = IPW_ACTIVITY_LED;
1087 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1089 if (!(priv->config & CFG_NO_LED))
1090 ipw_led_band_on(priv);
1092 /* And we don't blink link LEDs for this nic, so
1093 * just return here */
1094 return;
1096 case EEPROM_NIC_TYPE_3:
1097 case EEPROM_NIC_TYPE_2:
1098 case EEPROM_NIC_TYPE_4:
1099 case EEPROM_NIC_TYPE_0:
1100 break;
1102 default:
1103 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1104 priv->nic_type);
1105 priv->nic_type = EEPROM_NIC_TYPE_0;
1106 break;
1109 if (!(priv->config & CFG_NO_LED)) {
1110 if (priv->status & STATUS_ASSOCIATED)
1111 ipw_led_link_on(priv);
1112 else
1113 ipw_led_link_off(priv);
1117 static void ipw_led_shutdown(struct ipw_priv *priv)
1119 ipw_led_activity_off(priv);
1120 ipw_led_link_off(priv);
1121 ipw_led_band_off(priv);
1122 cancel_delayed_work(&priv->led_link_on);
1123 cancel_delayed_work(&priv->led_link_off);
1124 cancel_delayed_work(&priv->led_act_off);
1128 * The following adds a new attribute to the sysfs representation
1129 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1130 * used for controling the debug level.
1132 * See the level definitions in ipw for details.
1134 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1136 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1139 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1140 size_t count)
1142 char *p = (char *)buf;
1143 u32 val;
1145 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1146 p++;
1147 if (p[0] == 'x' || p[0] == 'X')
1148 p++;
1149 val = simple_strtoul(p, &p, 16);
1150 } else
1151 val = simple_strtoul(p, &p, 10);
1152 if (p == buf)
1153 printk(KERN_INFO DRV_NAME
1154 ": %s is not in hex or decimal form.\n", buf);
1155 else
1156 ipw_debug_level = val;
1158 return strnlen(buf, count);
1161 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1162 show_debug_level, store_debug_level);
1164 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1166 /* length = 1st dword in log */
1167 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1170 static void ipw_capture_event_log(struct ipw_priv *priv,
1171 u32 log_len, struct ipw_event *log)
1173 u32 base;
1175 if (log_len) {
1176 base = ipw_read32(priv, IPW_EVENT_LOG);
1177 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1178 (u8 *) log, sizeof(*log) * log_len);
1182 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1184 struct ipw_fw_error *error;
1185 u32 log_len = ipw_get_event_log_len(priv);
1186 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1187 u32 elem_len = ipw_read_reg32(priv, base);
1189 error = kmalloc(sizeof(*error) +
1190 sizeof(*error->elem) * elem_len +
1191 sizeof(*error->log) * log_len, GFP_ATOMIC);
1192 if (!error) {
1193 IPW_ERROR("Memory allocation for firmware error log "
1194 "failed.\n");
1195 return NULL;
1197 error->jiffies = jiffies;
1198 error->status = priv->status;
1199 error->config = priv->config;
1200 error->elem_len = elem_len;
1201 error->log_len = log_len;
1202 error->elem = (struct ipw_error_elem *)error->payload;
1203 error->log = (struct ipw_event *)(error->elem + elem_len);
1205 ipw_capture_event_log(priv, log_len, error->log);
1207 if (elem_len)
1208 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1209 sizeof(*error->elem) * elem_len);
1211 return error;
1214 static void ipw_free_error_log(struct ipw_fw_error *error)
1216 if (error)
1217 kfree(error);
1220 static ssize_t show_event_log(struct device *d,
1221 struct device_attribute *attr, char *buf)
1223 struct ipw_priv *priv = dev_get_drvdata(d);
1224 u32 log_len = ipw_get_event_log_len(priv);
1225 struct ipw_event log[log_len];
1226 u32 len = 0, i;
1228 ipw_capture_event_log(priv, log_len, log);
1230 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1231 for (i = 0; i < log_len; i++)
1232 len += snprintf(buf + len, PAGE_SIZE - len,
1233 "\n%08X%08X%08X",
1234 log[i].time, log[i].event, log[i].data);
1235 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1236 return len;
1239 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1241 static ssize_t show_error(struct device *d,
1242 struct device_attribute *attr, char *buf)
1244 struct ipw_priv *priv = dev_get_drvdata(d);
1245 u32 len = 0, i;
1246 if (!priv->error)
1247 return 0;
1248 len += snprintf(buf + len, PAGE_SIZE - len,
1249 "%08lX%08X%08X%08X",
1250 priv->error->jiffies,
1251 priv->error->status,
1252 priv->error->config, priv->error->elem_len);
1253 for (i = 0; i < priv->error->elem_len; i++)
1254 len += snprintf(buf + len, PAGE_SIZE - len,
1255 "\n%08X%08X%08X%08X%08X%08X%08X",
1256 priv->error->elem[i].time,
1257 priv->error->elem[i].desc,
1258 priv->error->elem[i].blink1,
1259 priv->error->elem[i].blink2,
1260 priv->error->elem[i].link1,
1261 priv->error->elem[i].link2,
1262 priv->error->elem[i].data);
1264 len += snprintf(buf + len, PAGE_SIZE - len,
1265 "\n%08X", priv->error->log_len);
1266 for (i = 0; i < priv->error->log_len; i++)
1267 len += snprintf(buf + len, PAGE_SIZE - len,
1268 "\n%08X%08X%08X",
1269 priv->error->log[i].time,
1270 priv->error->log[i].event,
1271 priv->error->log[i].data);
1272 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1273 return len;
1276 static ssize_t clear_error(struct device *d,
1277 struct device_attribute *attr,
1278 const char *buf, size_t count)
1280 struct ipw_priv *priv = dev_get_drvdata(d);
1281 if (priv->error) {
1282 ipw_free_error_log(priv->error);
1283 priv->error = NULL;
1285 return count;
1288 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1290 static ssize_t show_cmd_log(struct device *d,
1291 struct device_attribute *attr, char *buf)
1293 struct ipw_priv *priv = dev_get_drvdata(d);
1294 u32 len = 0, i;
1295 if (!priv->cmdlog)
1296 return 0;
1297 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1298 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1299 i = (i + 1) % priv->cmdlog_len) {
1300 len +=
1301 snprintf(buf + len, PAGE_SIZE - len,
1302 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1303 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1304 priv->cmdlog[i].cmd.len);
1305 len +=
1306 snprintk_buf(buf + len, PAGE_SIZE - len,
1307 (u8 *) priv->cmdlog[i].cmd.param,
1308 priv->cmdlog[i].cmd.len);
1309 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1311 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1312 return len;
1315 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1317 #ifdef CONFIG_IPW2200_PROMISCUOUS
1318 static void ipw_prom_free(struct ipw_priv *priv);
1319 static int ipw_prom_alloc(struct ipw_priv *priv);
1320 static ssize_t store_rtap_iface(struct device *d,
1321 struct device_attribute *attr,
1322 const char *buf, size_t count)
1324 struct ipw_priv *priv = dev_get_drvdata(d);
1325 int rc = 0;
1327 if (count < 1)
1328 return -EINVAL;
1330 switch (buf[0]) {
1331 case '0':
1332 if (!rtap_iface)
1333 return count;
1335 if (netif_running(priv->prom_net_dev)) {
1336 IPW_WARNING("Interface is up. Cannot unregister.\n");
1337 return count;
1340 ipw_prom_free(priv);
1341 rtap_iface = 0;
1342 break;
1344 case '1':
1345 if (rtap_iface)
1346 return count;
1348 rc = ipw_prom_alloc(priv);
1349 if (!rc)
1350 rtap_iface = 1;
1351 break;
1353 default:
1354 return -EINVAL;
1357 if (rc) {
1358 IPW_ERROR("Failed to register promiscuous network "
1359 "device (error %d).\n", rc);
1362 return count;
1365 static ssize_t show_rtap_iface(struct device *d,
1366 struct device_attribute *attr,
1367 char *buf)
1369 struct ipw_priv *priv = dev_get_drvdata(d);
1370 if (rtap_iface)
1371 return sprintf(buf, "%s", priv->prom_net_dev->name);
1372 else {
1373 buf[0] = '-';
1374 buf[1] = '1';
1375 buf[2] = '\0';
1376 return 3;
1380 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1381 store_rtap_iface);
1383 static ssize_t store_rtap_filter(struct device *d,
1384 struct device_attribute *attr,
1385 const char *buf, size_t count)
1387 struct ipw_priv *priv = dev_get_drvdata(d);
1389 if (!priv->prom_priv) {
1390 IPW_ERROR("Attempting to set filter without "
1391 "rtap_iface enabled.\n");
1392 return -EPERM;
1395 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1397 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1398 BIT_ARG16(priv->prom_priv->filter));
1400 return count;
1403 static ssize_t show_rtap_filter(struct device *d,
1404 struct device_attribute *attr,
1405 char *buf)
1407 struct ipw_priv *priv = dev_get_drvdata(d);
1408 return sprintf(buf, "0x%04X",
1409 priv->prom_priv ? priv->prom_priv->filter : 0);
1412 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1413 store_rtap_filter);
1414 #endif
1416 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1417 char *buf)
1419 struct ipw_priv *priv = dev_get_drvdata(d);
1420 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1423 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1424 const char *buf, size_t count)
1426 struct ipw_priv *priv = dev_get_drvdata(d);
1427 #ifdef CONFIG_IPW2200_DEBUG
1428 struct net_device *dev = priv->net_dev;
1429 #endif
1430 char buffer[] = "00000000";
1431 unsigned long len =
1432 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1433 unsigned long val;
1434 char *p = buffer;
1436 IPW_DEBUG_INFO("enter\n");
1438 strncpy(buffer, buf, len);
1439 buffer[len] = 0;
1441 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1442 p++;
1443 if (p[0] == 'x' || p[0] == 'X')
1444 p++;
1445 val = simple_strtoul(p, &p, 16);
1446 } else
1447 val = simple_strtoul(p, &p, 10);
1448 if (p == buffer) {
1449 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1450 } else {
1451 priv->ieee->scan_age = val;
1452 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1455 IPW_DEBUG_INFO("exit\n");
1456 return len;
1459 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1461 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1462 char *buf)
1464 struct ipw_priv *priv = dev_get_drvdata(d);
1465 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1468 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1469 const char *buf, size_t count)
1471 struct ipw_priv *priv = dev_get_drvdata(d);
1473 IPW_DEBUG_INFO("enter\n");
1475 if (count == 0)
1476 return 0;
1478 if (*buf == 0) {
1479 IPW_DEBUG_LED("Disabling LED control.\n");
1480 priv->config |= CFG_NO_LED;
1481 ipw_led_shutdown(priv);
1482 } else {
1483 IPW_DEBUG_LED("Enabling LED control.\n");
1484 priv->config &= ~CFG_NO_LED;
1485 ipw_led_init(priv);
1488 IPW_DEBUG_INFO("exit\n");
1489 return count;
1492 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1494 static ssize_t show_status(struct device *d,
1495 struct device_attribute *attr, char *buf)
1497 struct ipw_priv *p = d->driver_data;
1498 return sprintf(buf, "0x%08x\n", (int)p->status);
1501 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1503 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1504 char *buf)
1506 struct ipw_priv *p = d->driver_data;
1507 return sprintf(buf, "0x%08x\n", (int)p->config);
1510 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1512 static ssize_t show_nic_type(struct device *d,
1513 struct device_attribute *attr, char *buf)
1515 struct ipw_priv *priv = d->driver_data;
1516 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1519 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1521 static ssize_t show_ucode_version(struct device *d,
1522 struct device_attribute *attr, char *buf)
1524 u32 len = sizeof(u32), tmp = 0;
1525 struct ipw_priv *p = d->driver_data;
1527 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1528 return 0;
1530 return sprintf(buf, "0x%08x\n", tmp);
1533 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1535 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1536 char *buf)
1538 u32 len = sizeof(u32), tmp = 0;
1539 struct ipw_priv *p = d->driver_data;
1541 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1542 return 0;
1544 return sprintf(buf, "0x%08x\n", tmp);
1547 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1550 * Add a device attribute to view/control the delay between eeprom
1551 * operations.
1553 static ssize_t show_eeprom_delay(struct device *d,
1554 struct device_attribute *attr, char *buf)
1556 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1557 return sprintf(buf, "%i\n", n);
1559 static ssize_t store_eeprom_delay(struct device *d,
1560 struct device_attribute *attr,
1561 const char *buf, size_t count)
1563 struct ipw_priv *p = d->driver_data;
1564 sscanf(buf, "%i", &p->eeprom_delay);
1565 return strnlen(buf, count);
1568 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1569 show_eeprom_delay, store_eeprom_delay);
1571 static ssize_t show_command_event_reg(struct device *d,
1572 struct device_attribute *attr, char *buf)
1574 u32 reg = 0;
1575 struct ipw_priv *p = d->driver_data;
1577 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1578 return sprintf(buf, "0x%08x\n", reg);
1580 static ssize_t store_command_event_reg(struct device *d,
1581 struct device_attribute *attr,
1582 const char *buf, size_t count)
1584 u32 reg;
1585 struct ipw_priv *p = d->driver_data;
1587 sscanf(buf, "%x", &reg);
1588 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1589 return strnlen(buf, count);
1592 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1593 show_command_event_reg, store_command_event_reg);
1595 static ssize_t show_mem_gpio_reg(struct device *d,
1596 struct device_attribute *attr, char *buf)
1598 u32 reg = 0;
1599 struct ipw_priv *p = d->driver_data;
1601 reg = ipw_read_reg32(p, 0x301100);
1602 return sprintf(buf, "0x%08x\n", reg);
1604 static ssize_t store_mem_gpio_reg(struct device *d,
1605 struct device_attribute *attr,
1606 const char *buf, size_t count)
1608 u32 reg;
1609 struct ipw_priv *p = d->driver_data;
1611 sscanf(buf, "%x", &reg);
1612 ipw_write_reg32(p, 0x301100, reg);
1613 return strnlen(buf, count);
1616 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1617 show_mem_gpio_reg, store_mem_gpio_reg);
1619 static ssize_t show_indirect_dword(struct device *d,
1620 struct device_attribute *attr, char *buf)
1622 u32 reg = 0;
1623 struct ipw_priv *priv = d->driver_data;
1625 if (priv->status & STATUS_INDIRECT_DWORD)
1626 reg = ipw_read_reg32(priv, priv->indirect_dword);
1627 else
1628 reg = 0;
1630 return sprintf(buf, "0x%08x\n", reg);
1632 static ssize_t store_indirect_dword(struct device *d,
1633 struct device_attribute *attr,
1634 const char *buf, size_t count)
1636 struct ipw_priv *priv = d->driver_data;
1638 sscanf(buf, "%x", &priv->indirect_dword);
1639 priv->status |= STATUS_INDIRECT_DWORD;
1640 return strnlen(buf, count);
1643 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1644 show_indirect_dword, store_indirect_dword);
1646 static ssize_t show_indirect_byte(struct device *d,
1647 struct device_attribute *attr, char *buf)
1649 u8 reg = 0;
1650 struct ipw_priv *priv = d->driver_data;
1652 if (priv->status & STATUS_INDIRECT_BYTE)
1653 reg = ipw_read_reg8(priv, priv->indirect_byte);
1654 else
1655 reg = 0;
1657 return sprintf(buf, "0x%02x\n", reg);
1659 static ssize_t store_indirect_byte(struct device *d,
1660 struct device_attribute *attr,
1661 const char *buf, size_t count)
1663 struct ipw_priv *priv = d->driver_data;
1665 sscanf(buf, "%x", &priv->indirect_byte);
1666 priv->status |= STATUS_INDIRECT_BYTE;
1667 return strnlen(buf, count);
1670 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1671 show_indirect_byte, store_indirect_byte);
1673 static ssize_t show_direct_dword(struct device *d,
1674 struct device_attribute *attr, char *buf)
1676 u32 reg = 0;
1677 struct ipw_priv *priv = d->driver_data;
1679 if (priv->status & STATUS_DIRECT_DWORD)
1680 reg = ipw_read32(priv, priv->direct_dword);
1681 else
1682 reg = 0;
1684 return sprintf(buf, "0x%08x\n", reg);
1686 static ssize_t store_direct_dword(struct device *d,
1687 struct device_attribute *attr,
1688 const char *buf, size_t count)
1690 struct ipw_priv *priv = d->driver_data;
1692 sscanf(buf, "%x", &priv->direct_dword);
1693 priv->status |= STATUS_DIRECT_DWORD;
1694 return strnlen(buf, count);
1697 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1698 show_direct_dword, store_direct_dword);
1700 static int rf_kill_active(struct ipw_priv *priv)
1702 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1703 priv->status |= STATUS_RF_KILL_HW;
1704 else
1705 priv->status &= ~STATUS_RF_KILL_HW;
1707 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1710 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1711 char *buf)
1713 /* 0 - RF kill not enabled
1714 1 - SW based RF kill active (sysfs)
1715 2 - HW based RF kill active
1716 3 - Both HW and SW baed RF kill active */
1717 struct ipw_priv *priv = d->driver_data;
1718 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1719 (rf_kill_active(priv) ? 0x2 : 0x0);
1720 return sprintf(buf, "%i\n", val);
1723 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1725 if ((disable_radio ? 1 : 0) ==
1726 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1727 return 0;
1729 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1730 disable_radio ? "OFF" : "ON");
1732 if (disable_radio) {
1733 priv->status |= STATUS_RF_KILL_SW;
1735 if (priv->workqueue)
1736 cancel_delayed_work(&priv->request_scan);
1737 queue_work(priv->workqueue, &priv->down);
1738 } else {
1739 priv->status &= ~STATUS_RF_KILL_SW;
1740 if (rf_kill_active(priv)) {
1741 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1742 "disabled by HW switch\n");
1743 /* Make sure the RF_KILL check timer is running */
1744 cancel_delayed_work(&priv->rf_kill);
1745 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1746 2 * HZ);
1747 } else
1748 queue_work(priv->workqueue, &priv->up);
1751 return 1;
1754 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1755 const char *buf, size_t count)
1757 struct ipw_priv *priv = d->driver_data;
1759 ipw_radio_kill_sw(priv, buf[0] == '1');
1761 return count;
1764 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1766 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1767 char *buf)
1769 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1770 int pos = 0, len = 0;
1771 if (priv->config & CFG_SPEED_SCAN) {
1772 while (priv->speed_scan[pos] != 0)
1773 len += sprintf(&buf[len], "%d ",
1774 priv->speed_scan[pos++]);
1775 return len + sprintf(&buf[len], "\n");
1778 return sprintf(buf, "0\n");
1781 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1782 const char *buf, size_t count)
1784 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1785 int channel, pos = 0;
1786 const char *p = buf;
1788 /* list of space separated channels to scan, optionally ending with 0 */
1789 while ((channel = simple_strtol(p, NULL, 0))) {
1790 if (pos == MAX_SPEED_SCAN - 1) {
1791 priv->speed_scan[pos] = 0;
1792 break;
1795 if (ieee80211_is_valid_channel(priv->ieee, channel))
1796 priv->speed_scan[pos++] = channel;
1797 else
1798 IPW_WARNING("Skipping invalid channel request: %d\n",
1799 channel);
1800 p = strchr(p, ' ');
1801 if (!p)
1802 break;
1803 while (*p == ' ' || *p == '\t')
1804 p++;
1807 if (pos == 0)
1808 priv->config &= ~CFG_SPEED_SCAN;
1809 else {
1810 priv->speed_scan_pos = 0;
1811 priv->config |= CFG_SPEED_SCAN;
1814 return count;
1817 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1818 store_speed_scan);
1820 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1821 char *buf)
1823 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1824 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1827 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1828 const char *buf, size_t count)
1830 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1831 if (buf[0] == '1')
1832 priv->config |= CFG_NET_STATS;
1833 else
1834 priv->config &= ~CFG_NET_STATS;
1836 return count;
1839 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1840 show_net_stats, store_net_stats);
1842 static void notify_wx_assoc_event(struct ipw_priv *priv)
1844 union iwreq_data wrqu;
1845 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1846 if (priv->status & STATUS_ASSOCIATED)
1847 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1848 else
1849 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1850 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1853 static void ipw_irq_tasklet(struct ipw_priv *priv)
1855 u32 inta, inta_mask, handled = 0;
1856 unsigned long flags;
1857 int rc = 0;
1859 spin_lock_irqsave(&priv->lock, flags);
1861 inta = ipw_read32(priv, IPW_INTA_RW);
1862 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1863 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1865 /* Add any cached INTA values that need to be handled */
1866 inta |= priv->isr_inta;
1868 /* handle all the justifications for the interrupt */
1869 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1870 ipw_rx(priv);
1871 handled |= IPW_INTA_BIT_RX_TRANSFER;
1874 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1875 IPW_DEBUG_HC("Command completed.\n");
1876 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1877 priv->status &= ~STATUS_HCMD_ACTIVE;
1878 wake_up_interruptible(&priv->wait_command_queue);
1879 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1882 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1883 IPW_DEBUG_TX("TX_QUEUE_1\n");
1884 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1885 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1888 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1889 IPW_DEBUG_TX("TX_QUEUE_2\n");
1890 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1891 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1894 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1895 IPW_DEBUG_TX("TX_QUEUE_3\n");
1896 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1897 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1900 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1901 IPW_DEBUG_TX("TX_QUEUE_4\n");
1902 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1903 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1906 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1907 IPW_WARNING("STATUS_CHANGE\n");
1908 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1911 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1912 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1913 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1916 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1917 IPW_WARNING("HOST_CMD_DONE\n");
1918 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1921 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1922 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1923 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1926 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1927 IPW_WARNING("PHY_OFF_DONE\n");
1928 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1931 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1932 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1933 priv->status |= STATUS_RF_KILL_HW;
1934 wake_up_interruptible(&priv->wait_command_queue);
1935 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1936 cancel_delayed_work(&priv->request_scan);
1937 schedule_work(&priv->link_down);
1938 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1939 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1942 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1943 IPW_WARNING("Firmware error detected. Restarting.\n");
1944 if (priv->error) {
1945 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
1946 #ifdef CONFIG_IPW2200_DEBUG
1947 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1948 struct ipw_fw_error *error =
1949 ipw_alloc_error_log(priv);
1950 ipw_dump_error_log(priv, error);
1951 if (error)
1952 ipw_free_error_log(error);
1954 #endif
1955 } else {
1956 priv->error = ipw_alloc_error_log(priv);
1957 if (priv->error)
1958 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
1959 else
1960 IPW_DEBUG_FW("Error allocating sysfs 'error' "
1961 "log.\n");
1962 #ifdef CONFIG_IPW2200_DEBUG
1963 if (ipw_debug_level & IPW_DL_FW_ERRORS)
1964 ipw_dump_error_log(priv, priv->error);
1965 #endif
1968 /* XXX: If hardware encryption is for WPA/WPA2,
1969 * we have to notify the supplicant. */
1970 if (priv->ieee->sec.encrypt) {
1971 priv->status &= ~STATUS_ASSOCIATED;
1972 notify_wx_assoc_event(priv);
1975 /* Keep the restart process from trying to send host
1976 * commands by clearing the INIT status bit */
1977 priv->status &= ~STATUS_INIT;
1979 /* Cancel currently queued command. */
1980 priv->status &= ~STATUS_HCMD_ACTIVE;
1981 wake_up_interruptible(&priv->wait_command_queue);
1983 queue_work(priv->workqueue, &priv->adapter_restart);
1984 handled |= IPW_INTA_BIT_FATAL_ERROR;
1987 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1988 IPW_ERROR("Parity error\n");
1989 handled |= IPW_INTA_BIT_PARITY_ERROR;
1992 if (handled != inta) {
1993 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1996 /* enable all interrupts */
1997 ipw_enable_interrupts(priv);
1999 spin_unlock_irqrestore(&priv->lock, flags);
2002 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2003 static char *get_cmd_string(u8 cmd)
2005 switch (cmd) {
2006 IPW_CMD(HOST_COMPLETE);
2007 IPW_CMD(POWER_DOWN);
2008 IPW_CMD(SYSTEM_CONFIG);
2009 IPW_CMD(MULTICAST_ADDRESS);
2010 IPW_CMD(SSID);
2011 IPW_CMD(ADAPTER_ADDRESS);
2012 IPW_CMD(PORT_TYPE);
2013 IPW_CMD(RTS_THRESHOLD);
2014 IPW_CMD(FRAG_THRESHOLD);
2015 IPW_CMD(POWER_MODE);
2016 IPW_CMD(WEP_KEY);
2017 IPW_CMD(TGI_TX_KEY);
2018 IPW_CMD(SCAN_REQUEST);
2019 IPW_CMD(SCAN_REQUEST_EXT);
2020 IPW_CMD(ASSOCIATE);
2021 IPW_CMD(SUPPORTED_RATES);
2022 IPW_CMD(SCAN_ABORT);
2023 IPW_CMD(TX_FLUSH);
2024 IPW_CMD(QOS_PARAMETERS);
2025 IPW_CMD(DINO_CONFIG);
2026 IPW_CMD(RSN_CAPABILITIES);
2027 IPW_CMD(RX_KEY);
2028 IPW_CMD(CARD_DISABLE);
2029 IPW_CMD(SEED_NUMBER);
2030 IPW_CMD(TX_POWER);
2031 IPW_CMD(COUNTRY_INFO);
2032 IPW_CMD(AIRONET_INFO);
2033 IPW_CMD(AP_TX_POWER);
2034 IPW_CMD(CCKM_INFO);
2035 IPW_CMD(CCX_VER_INFO);
2036 IPW_CMD(SET_CALIBRATION);
2037 IPW_CMD(SENSITIVITY_CALIB);
2038 IPW_CMD(RETRY_LIMIT);
2039 IPW_CMD(IPW_PRE_POWER_DOWN);
2040 IPW_CMD(VAP_BEACON_TEMPLATE);
2041 IPW_CMD(VAP_DTIM_PERIOD);
2042 IPW_CMD(EXT_SUPPORTED_RATES);
2043 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2044 IPW_CMD(VAP_QUIET_INTERVALS);
2045 IPW_CMD(VAP_CHANNEL_SWITCH);
2046 IPW_CMD(VAP_MANDATORY_CHANNELS);
2047 IPW_CMD(VAP_CELL_PWR_LIMIT);
2048 IPW_CMD(VAP_CF_PARAM_SET);
2049 IPW_CMD(VAP_SET_BEACONING_STATE);
2050 IPW_CMD(MEASUREMENT);
2051 IPW_CMD(POWER_CAPABILITY);
2052 IPW_CMD(SUPPORTED_CHANNELS);
2053 IPW_CMD(TPC_REPORT);
2054 IPW_CMD(WME_INFO);
2055 IPW_CMD(PRODUCTION_COMMAND);
2056 default:
2057 return "UNKNOWN";
2061 #define HOST_COMPLETE_TIMEOUT HZ
2063 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2065 int rc = 0;
2066 unsigned long flags;
2068 spin_lock_irqsave(&priv->lock, flags);
2069 if (priv->status & STATUS_HCMD_ACTIVE) {
2070 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2071 get_cmd_string(cmd->cmd));
2072 spin_unlock_irqrestore(&priv->lock, flags);
2073 return -EAGAIN;
2076 priv->status |= STATUS_HCMD_ACTIVE;
2078 if (priv->cmdlog) {
2079 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2080 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2081 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2082 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2083 cmd->len);
2084 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2087 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2088 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2089 priv->status);
2091 #ifndef DEBUG_CMD_WEP_KEY
2092 if (cmd->cmd == IPW_CMD_WEP_KEY)
2093 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2094 else
2095 #endif
2096 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2098 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2099 if (rc) {
2100 priv->status &= ~STATUS_HCMD_ACTIVE;
2101 IPW_ERROR("Failed to send %s: Reason %d\n",
2102 get_cmd_string(cmd->cmd), rc);
2103 spin_unlock_irqrestore(&priv->lock, flags);
2104 goto exit;
2106 spin_unlock_irqrestore(&priv->lock, flags);
2108 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2109 !(priv->
2110 status & STATUS_HCMD_ACTIVE),
2111 HOST_COMPLETE_TIMEOUT);
2112 if (rc == 0) {
2113 spin_lock_irqsave(&priv->lock, flags);
2114 if (priv->status & STATUS_HCMD_ACTIVE) {
2115 IPW_ERROR("Failed to send %s: Command timed out.\n",
2116 get_cmd_string(cmd->cmd));
2117 priv->status &= ~STATUS_HCMD_ACTIVE;
2118 spin_unlock_irqrestore(&priv->lock, flags);
2119 rc = -EIO;
2120 goto exit;
2122 spin_unlock_irqrestore(&priv->lock, flags);
2123 } else
2124 rc = 0;
2126 if (priv->status & STATUS_RF_KILL_HW) {
2127 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2128 get_cmd_string(cmd->cmd));
2129 rc = -EIO;
2130 goto exit;
2133 exit:
2134 if (priv->cmdlog) {
2135 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2136 priv->cmdlog_pos %= priv->cmdlog_len;
2138 return rc;
2141 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2143 struct host_cmd cmd = {
2144 .cmd = command,
2147 return __ipw_send_cmd(priv, &cmd);
2150 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2151 void *data)
2153 struct host_cmd cmd = {
2154 .cmd = command,
2155 .len = len,
2156 .param = data,
2159 return __ipw_send_cmd(priv, &cmd);
2162 static int ipw_send_host_complete(struct ipw_priv *priv)
2164 if (!priv) {
2165 IPW_ERROR("Invalid args\n");
2166 return -1;
2169 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2172 static int ipw_send_system_config(struct ipw_priv *priv)
2174 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2175 sizeof(priv->sys_config),
2176 &priv->sys_config);
2179 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2181 if (!priv || !ssid) {
2182 IPW_ERROR("Invalid args\n");
2183 return -1;
2186 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2187 ssid);
2190 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2192 if (!priv || !mac) {
2193 IPW_ERROR("Invalid args\n");
2194 return -1;
2197 IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2198 priv->net_dev->name, MAC_ARG(mac));
2200 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2204 * NOTE: This must be executed from our workqueue as it results in udelay
2205 * being called which may corrupt the keyboard if executed on default
2206 * workqueue
2208 static void ipw_adapter_restart(void *adapter)
2210 struct ipw_priv *priv = adapter;
2212 if (priv->status & STATUS_RF_KILL_MASK)
2213 return;
2215 ipw_down(priv);
2217 if (priv->assoc_network &&
2218 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2219 ipw_remove_current_network(priv);
2221 if (ipw_up(priv)) {
2222 IPW_ERROR("Failed to up device\n");
2223 return;
2227 static void ipw_bg_adapter_restart(void *data)
2229 struct ipw_priv *priv = data;
2230 mutex_lock(&priv->mutex);
2231 ipw_adapter_restart(data);
2232 mutex_unlock(&priv->mutex);
2235 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2237 static void ipw_scan_check(void *data)
2239 struct ipw_priv *priv = data;
2240 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2241 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2242 "adapter after (%dms).\n",
2243 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2244 queue_work(priv->workqueue, &priv->adapter_restart);
2248 static void ipw_bg_scan_check(void *data)
2250 struct ipw_priv *priv = data;
2251 mutex_lock(&priv->mutex);
2252 ipw_scan_check(data);
2253 mutex_unlock(&priv->mutex);
2256 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2257 struct ipw_scan_request_ext *request)
2259 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2260 sizeof(*request), request);
2263 static int ipw_send_scan_abort(struct ipw_priv *priv)
2265 if (!priv) {
2266 IPW_ERROR("Invalid args\n");
2267 return -1;
2270 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2273 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2275 struct ipw_sensitivity_calib calib = {
2276 .beacon_rssi_raw = sens,
2279 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2280 &calib);
2283 static int ipw_send_associate(struct ipw_priv *priv,
2284 struct ipw_associate *associate)
2286 struct ipw_associate tmp_associate;
2288 if (!priv || !associate) {
2289 IPW_ERROR("Invalid args\n");
2290 return -1;
2293 memcpy(&tmp_associate, associate, sizeof(*associate));
2294 tmp_associate.policy_support =
2295 cpu_to_le16(tmp_associate.policy_support);
2296 tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2297 tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2298 tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2299 tmp_associate.listen_interval =
2300 cpu_to_le16(tmp_associate.listen_interval);
2301 tmp_associate.beacon_interval =
2302 cpu_to_le16(tmp_associate.beacon_interval);
2303 tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2305 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2306 &tmp_associate);
2309 static int ipw_send_supported_rates(struct ipw_priv *priv,
2310 struct ipw_supported_rates *rates)
2312 if (!priv || !rates) {
2313 IPW_ERROR("Invalid args\n");
2314 return -1;
2317 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2318 rates);
2321 static int ipw_set_random_seed(struct ipw_priv *priv)
2323 u32 val;
2325 if (!priv) {
2326 IPW_ERROR("Invalid args\n");
2327 return -1;
2330 get_random_bytes(&val, sizeof(val));
2332 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2335 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2337 if (!priv) {
2338 IPW_ERROR("Invalid args\n");
2339 return -1;
2342 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2343 &phy_off);
2346 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2348 if (!priv || !power) {
2349 IPW_ERROR("Invalid args\n");
2350 return -1;
2353 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2356 static int ipw_set_tx_power(struct ipw_priv *priv)
2358 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2359 struct ipw_tx_power tx_power;
2360 s8 max_power;
2361 int i;
2363 memset(&tx_power, 0, sizeof(tx_power));
2365 /* configure device for 'G' band */
2366 tx_power.ieee_mode = IPW_G_MODE;
2367 tx_power.num_channels = geo->bg_channels;
2368 for (i = 0; i < geo->bg_channels; i++) {
2369 max_power = geo->bg[i].max_power;
2370 tx_power.channels_tx_power[i].channel_number =
2371 geo->bg[i].channel;
2372 tx_power.channels_tx_power[i].tx_power = max_power ?
2373 min(max_power, priv->tx_power) : priv->tx_power;
2375 if (ipw_send_tx_power(priv, &tx_power))
2376 return -EIO;
2378 /* configure device to also handle 'B' band */
2379 tx_power.ieee_mode = IPW_B_MODE;
2380 if (ipw_send_tx_power(priv, &tx_power))
2381 return -EIO;
2383 /* configure device to also handle 'A' band */
2384 if (priv->ieee->abg_true) {
2385 tx_power.ieee_mode = IPW_A_MODE;
2386 tx_power.num_channels = geo->a_channels;
2387 for (i = 0; i < tx_power.num_channels; i++) {
2388 max_power = geo->a[i].max_power;
2389 tx_power.channels_tx_power[i].channel_number =
2390 geo->a[i].channel;
2391 tx_power.channels_tx_power[i].tx_power = max_power ?
2392 min(max_power, priv->tx_power) : priv->tx_power;
2394 if (ipw_send_tx_power(priv, &tx_power))
2395 return -EIO;
2397 return 0;
2400 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2402 struct ipw_rts_threshold rts_threshold = {
2403 .rts_threshold = rts,
2406 if (!priv) {
2407 IPW_ERROR("Invalid args\n");
2408 return -1;
2411 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2412 sizeof(rts_threshold), &rts_threshold);
2415 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2417 struct ipw_frag_threshold frag_threshold = {
2418 .frag_threshold = frag,
2421 if (!priv) {
2422 IPW_ERROR("Invalid args\n");
2423 return -1;
2426 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2427 sizeof(frag_threshold), &frag_threshold);
2430 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2432 u32 param;
2434 if (!priv) {
2435 IPW_ERROR("Invalid args\n");
2436 return -1;
2439 /* If on battery, set to 3, if AC set to CAM, else user
2440 * level */
2441 switch (mode) {
2442 case IPW_POWER_BATTERY:
2443 param = IPW_POWER_INDEX_3;
2444 break;
2445 case IPW_POWER_AC:
2446 param = IPW_POWER_MODE_CAM;
2447 break;
2448 default:
2449 param = mode;
2450 break;
2453 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2454 &param);
2457 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2459 struct ipw_retry_limit retry_limit = {
2460 .short_retry_limit = slimit,
2461 .long_retry_limit = llimit
2464 if (!priv) {
2465 IPW_ERROR("Invalid args\n");
2466 return -1;
2469 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2470 &retry_limit);
2474 * The IPW device contains a Microwire compatible EEPROM that stores
2475 * various data like the MAC address. Usually the firmware has exclusive
2476 * access to the eeprom, but during device initialization (before the
2477 * device driver has sent the HostComplete command to the firmware) the
2478 * device driver has read access to the EEPROM by way of indirect addressing
2479 * through a couple of memory mapped registers.
2481 * The following is a simplified implementation for pulling data out of the
2482 * the eeprom, along with some helper functions to find information in
2483 * the per device private data's copy of the eeprom.
2485 * NOTE: To better understand how these functions work (i.e what is a chip
2486 * select and why do have to keep driving the eeprom clock?), read
2487 * just about any data sheet for a Microwire compatible EEPROM.
2490 /* write a 32 bit value into the indirect accessor register */
2491 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2493 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2495 /* the eeprom requires some time to complete the operation */
2496 udelay(p->eeprom_delay);
2498 return;
2501 /* perform a chip select operation */
2502 static void eeprom_cs(struct ipw_priv *priv)
2504 eeprom_write_reg(priv, 0);
2505 eeprom_write_reg(priv, EEPROM_BIT_CS);
2506 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2507 eeprom_write_reg(priv, EEPROM_BIT_CS);
2510 /* perform a chip select operation */
2511 static void eeprom_disable_cs(struct ipw_priv *priv)
2513 eeprom_write_reg(priv, EEPROM_BIT_CS);
2514 eeprom_write_reg(priv, 0);
2515 eeprom_write_reg(priv, EEPROM_BIT_SK);
2518 /* push a single bit down to the eeprom */
2519 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2521 int d = (bit ? EEPROM_BIT_DI : 0);
2522 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2523 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2526 /* push an opcode followed by an address down to the eeprom */
2527 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2529 int i;
2531 eeprom_cs(priv);
2532 eeprom_write_bit(priv, 1);
2533 eeprom_write_bit(priv, op & 2);
2534 eeprom_write_bit(priv, op & 1);
2535 for (i = 7; i >= 0; i--) {
2536 eeprom_write_bit(priv, addr & (1 << i));
2540 /* pull 16 bits off the eeprom, one bit at a time */
2541 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2543 int i;
2544 u16 r = 0;
2546 /* Send READ Opcode */
2547 eeprom_op(priv, EEPROM_CMD_READ, addr);
2549 /* Send dummy bit */
2550 eeprom_write_reg(priv, EEPROM_BIT_CS);
2552 /* Read the byte off the eeprom one bit at a time */
2553 for (i = 0; i < 16; i++) {
2554 u32 data = 0;
2555 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2556 eeprom_write_reg(priv, EEPROM_BIT_CS);
2557 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2558 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2561 /* Send another dummy bit */
2562 eeprom_write_reg(priv, 0);
2563 eeprom_disable_cs(priv);
2565 return r;
2568 /* helper function for pulling the mac address out of the private */
2569 /* data's copy of the eeprom data */
2570 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2572 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2576 * Either the device driver (i.e. the host) or the firmware can
2577 * load eeprom data into the designated region in SRAM. If neither
2578 * happens then the FW will shutdown with a fatal error.
2580 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2581 * bit needs region of shared SRAM needs to be non-zero.
2583 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2585 int i;
2586 u16 *eeprom = (u16 *) priv->eeprom;
2588 IPW_DEBUG_TRACE(">>\n");
2590 /* read entire contents of eeprom into private buffer */
2591 for (i = 0; i < 128; i++)
2592 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2595 If the data looks correct, then copy it to our private
2596 copy. Otherwise let the firmware know to perform the operation
2597 on its own.
2599 if (priv->eeprom[EEPROM_VERSION] != 0) {
2600 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2602 /* write the eeprom data to sram */
2603 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2604 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2606 /* Do not load eeprom data on fatal error or suspend */
2607 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2608 } else {
2609 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2611 /* Load eeprom data on fatal error or suspend */
2612 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2615 IPW_DEBUG_TRACE("<<\n");
2618 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2620 count >>= 2;
2621 if (!count)
2622 return;
2623 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2624 while (count--)
2625 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2628 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2630 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2631 CB_NUMBER_OF_ELEMENTS_SMALL *
2632 sizeof(struct command_block));
2635 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2636 { /* start dma engine but no transfers yet */
2638 IPW_DEBUG_FW(">> : \n");
2640 /* Start the dma */
2641 ipw_fw_dma_reset_command_blocks(priv);
2643 /* Write CB base address */
2644 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2646 IPW_DEBUG_FW("<< : \n");
2647 return 0;
2650 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2652 u32 control = 0;
2654 IPW_DEBUG_FW(">> :\n");
2656 //set the Stop and Abort bit
2657 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2658 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2659 priv->sram_desc.last_cb_index = 0;
2661 IPW_DEBUG_FW("<< \n");
2664 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2665 struct command_block *cb)
2667 u32 address =
2668 IPW_SHARED_SRAM_DMA_CONTROL +
2669 (sizeof(struct command_block) * index);
2670 IPW_DEBUG_FW(">> :\n");
2672 ipw_write_indirect(priv, address, (u8 *) cb,
2673 (int)sizeof(struct command_block));
2675 IPW_DEBUG_FW("<< :\n");
2676 return 0;
2680 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2682 u32 control = 0;
2683 u32 index = 0;
2685 IPW_DEBUG_FW(">> :\n");
2687 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2688 ipw_fw_dma_write_command_block(priv, index,
2689 &priv->sram_desc.cb_list[index]);
2691 /* Enable the DMA in the CSR register */
2692 ipw_clear_bit(priv, IPW_RESET_REG,
2693 IPW_RESET_REG_MASTER_DISABLED |
2694 IPW_RESET_REG_STOP_MASTER);
2696 /* Set the Start bit. */
2697 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2698 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2700 IPW_DEBUG_FW("<< :\n");
2701 return 0;
2704 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2706 u32 address;
2707 u32 register_value = 0;
2708 u32 cb_fields_address = 0;
2710 IPW_DEBUG_FW(">> :\n");
2711 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2712 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2714 /* Read the DMA Controlor register */
2715 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2716 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2718 /* Print the CB values */
2719 cb_fields_address = address;
2720 register_value = ipw_read_reg32(priv, cb_fields_address);
2721 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2723 cb_fields_address += sizeof(u32);
2724 register_value = ipw_read_reg32(priv, cb_fields_address);
2725 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2727 cb_fields_address += sizeof(u32);
2728 register_value = ipw_read_reg32(priv, cb_fields_address);
2729 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2730 register_value);
2732 cb_fields_address += sizeof(u32);
2733 register_value = ipw_read_reg32(priv, cb_fields_address);
2734 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2736 IPW_DEBUG_FW(">> :\n");
2739 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2741 u32 current_cb_address = 0;
2742 u32 current_cb_index = 0;
2744 IPW_DEBUG_FW("<< :\n");
2745 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2747 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2748 sizeof(struct command_block);
2750 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2751 current_cb_index, current_cb_address);
2753 IPW_DEBUG_FW(">> :\n");
2754 return current_cb_index;
2758 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2759 u32 src_address,
2760 u32 dest_address,
2761 u32 length,
2762 int interrupt_enabled, int is_last)
2765 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2766 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2767 CB_DEST_SIZE_LONG;
2768 struct command_block *cb;
2769 u32 last_cb_element = 0;
2771 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2772 src_address, dest_address, length);
2774 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2775 return -1;
2777 last_cb_element = priv->sram_desc.last_cb_index;
2778 cb = &priv->sram_desc.cb_list[last_cb_element];
2779 priv->sram_desc.last_cb_index++;
2781 /* Calculate the new CB control word */
2782 if (interrupt_enabled)
2783 control |= CB_INT_ENABLED;
2785 if (is_last)
2786 control |= CB_LAST_VALID;
2788 control |= length;
2790 /* Calculate the CB Element's checksum value */
2791 cb->status = control ^ src_address ^ dest_address;
2793 /* Copy the Source and Destination addresses */
2794 cb->dest_addr = dest_address;
2795 cb->source_addr = src_address;
2797 /* Copy the Control Word last */
2798 cb->control = control;
2800 return 0;
2803 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2804 u32 src_phys, u32 dest_address, u32 length)
2806 u32 bytes_left = length;
2807 u32 src_offset = 0;
2808 u32 dest_offset = 0;
2809 int status = 0;
2810 IPW_DEBUG_FW(">> \n");
2811 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2812 src_phys, dest_address, length);
2813 while (bytes_left > CB_MAX_LENGTH) {
2814 status = ipw_fw_dma_add_command_block(priv,
2815 src_phys + src_offset,
2816 dest_address +
2817 dest_offset,
2818 CB_MAX_LENGTH, 0, 0);
2819 if (status) {
2820 IPW_DEBUG_FW_INFO(": Failed\n");
2821 return -1;
2822 } else
2823 IPW_DEBUG_FW_INFO(": Added new cb\n");
2825 src_offset += CB_MAX_LENGTH;
2826 dest_offset += CB_MAX_LENGTH;
2827 bytes_left -= CB_MAX_LENGTH;
2830 /* add the buffer tail */
2831 if (bytes_left > 0) {
2832 status =
2833 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2834 dest_address + dest_offset,
2835 bytes_left, 0, 0);
2836 if (status) {
2837 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2838 return -1;
2839 } else
2840 IPW_DEBUG_FW_INFO
2841 (": Adding new cb - the buffer tail\n");
2844 IPW_DEBUG_FW("<< \n");
2845 return 0;
2848 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2850 u32 current_index = 0, previous_index;
2851 u32 watchdog = 0;
2853 IPW_DEBUG_FW(">> : \n");
2855 current_index = ipw_fw_dma_command_block_index(priv);
2856 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2857 (int)priv->sram_desc.last_cb_index);
2859 while (current_index < priv->sram_desc.last_cb_index) {
2860 udelay(50);
2861 previous_index = current_index;
2862 current_index = ipw_fw_dma_command_block_index(priv);
2864 if (previous_index < current_index) {
2865 watchdog = 0;
2866 continue;
2868 if (++watchdog > 400) {
2869 IPW_DEBUG_FW_INFO("Timeout\n");
2870 ipw_fw_dma_dump_command_block(priv);
2871 ipw_fw_dma_abort(priv);
2872 return -1;
2876 ipw_fw_dma_abort(priv);
2878 /*Disable the DMA in the CSR register */
2879 ipw_set_bit(priv, IPW_RESET_REG,
2880 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2882 IPW_DEBUG_FW("<< dmaWaitSync \n");
2883 return 0;
2886 static void ipw_remove_current_network(struct ipw_priv *priv)
2888 struct list_head *element, *safe;
2889 struct ieee80211_network *network = NULL;
2890 unsigned long flags;
2892 spin_lock_irqsave(&priv->ieee->lock, flags);
2893 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2894 network = list_entry(element, struct ieee80211_network, list);
2895 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2896 list_del(element);
2897 list_add_tail(&network->list,
2898 &priv->ieee->network_free_list);
2901 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2905 * Check that card is still alive.
2906 * Reads debug register from domain0.
2907 * If card is present, pre-defined value should
2908 * be found there.
2910 * @param priv
2911 * @return 1 if card is present, 0 otherwise
2913 static inline int ipw_alive(struct ipw_priv *priv)
2915 return ipw_read32(priv, 0x90) == 0xd55555d5;
2918 /* timeout in msec, attempted in 10-msec quanta */
2919 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2920 int timeout)
2922 int i = 0;
2924 do {
2925 if ((ipw_read32(priv, addr) & mask) == mask)
2926 return i;
2927 mdelay(10);
2928 i += 10;
2929 } while (i < timeout);
2931 return -ETIME;
2934 /* These functions load the firmware and micro code for the operation of
2935 * the ipw hardware. It assumes the buffer has all the bits for the
2936 * image and the caller is handling the memory allocation and clean up.
2939 static int ipw_stop_master(struct ipw_priv *priv)
2941 int rc;
2943 IPW_DEBUG_TRACE(">> \n");
2944 /* stop master. typical delay - 0 */
2945 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2947 /* timeout is in msec, polled in 10-msec quanta */
2948 rc = ipw_poll_bit(priv, IPW_RESET_REG,
2949 IPW_RESET_REG_MASTER_DISABLED, 100);
2950 if (rc < 0) {
2951 IPW_ERROR("wait for stop master failed after 100ms\n");
2952 return -1;
2955 IPW_DEBUG_INFO("stop master %dms\n", rc);
2957 return rc;
2960 static void ipw_arc_release(struct ipw_priv *priv)
2962 IPW_DEBUG_TRACE(">> \n");
2963 mdelay(5);
2965 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2967 /* no one knows timing, for safety add some delay */
2968 mdelay(5);
2971 struct fw_chunk {
2972 u32 address;
2973 u32 length;
2976 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2978 int rc = 0, i, addr;
2979 u8 cr = 0;
2980 u16 *image;
2982 image = (u16 *) data;
2984 IPW_DEBUG_TRACE(">> \n");
2986 rc = ipw_stop_master(priv);
2988 if (rc < 0)
2989 return rc;
2991 // spin_lock_irqsave(&priv->lock, flags);
2993 for (addr = IPW_SHARED_LOWER_BOUND;
2994 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2995 ipw_write32(priv, addr, 0);
2998 /* no ucode (yet) */
2999 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3000 /* destroy DMA queues */
3001 /* reset sequence */
3003 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3004 ipw_arc_release(priv);
3005 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3006 mdelay(1);
3008 /* reset PHY */
3009 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3010 mdelay(1);
3012 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3013 mdelay(1);
3015 /* enable ucode store */
3016 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3017 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3018 mdelay(1);
3020 /* write ucode */
3022 * @bug
3023 * Do NOT set indirect address register once and then
3024 * store data to indirect data register in the loop.
3025 * It seems very reasonable, but in this case DINO do not
3026 * accept ucode. It is essential to set address each time.
3028 /* load new ipw uCode */
3029 for (i = 0; i < len / 2; i++)
3030 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3031 cpu_to_le16(image[i]));
3033 /* enable DINO */
3034 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3035 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3037 /* this is where the igx / win driver deveates from the VAP driver. */
3039 /* wait for alive response */
3040 for (i = 0; i < 100; i++) {
3041 /* poll for incoming data */
3042 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3043 if (cr & DINO_RXFIFO_DATA)
3044 break;
3045 mdelay(1);
3048 if (cr & DINO_RXFIFO_DATA) {
3049 /* alive_command_responce size is NOT multiple of 4 */
3050 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3052 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3053 response_buffer[i] =
3054 le32_to_cpu(ipw_read_reg32(priv,
3055 IPW_BASEBAND_RX_FIFO_READ));
3056 memcpy(&priv->dino_alive, response_buffer,
3057 sizeof(priv->dino_alive));
3058 if (priv->dino_alive.alive_command == 1
3059 && priv->dino_alive.ucode_valid == 1) {
3060 rc = 0;
3061 IPW_DEBUG_INFO
3062 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3063 "of %02d/%02d/%02d %02d:%02d\n",
3064 priv->dino_alive.software_revision,
3065 priv->dino_alive.software_revision,
3066 priv->dino_alive.device_identifier,
3067 priv->dino_alive.device_identifier,
3068 priv->dino_alive.time_stamp[0],
3069 priv->dino_alive.time_stamp[1],
3070 priv->dino_alive.time_stamp[2],
3071 priv->dino_alive.time_stamp[3],
3072 priv->dino_alive.time_stamp[4]);
3073 } else {
3074 IPW_DEBUG_INFO("Microcode is not alive\n");
3075 rc = -EINVAL;
3077 } else {
3078 IPW_DEBUG_INFO("No alive response from DINO\n");
3079 rc = -ETIME;
3082 /* disable DINO, otherwise for some reason
3083 firmware have problem getting alive resp. */
3084 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3086 // spin_unlock_irqrestore(&priv->lock, flags);
3088 return rc;
3091 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3093 int rc = -1;
3094 int offset = 0;
3095 struct fw_chunk *chunk;
3096 dma_addr_t shared_phys;
3097 u8 *shared_virt;
3099 IPW_DEBUG_TRACE("<< : \n");
3100 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3102 if (!shared_virt)
3103 return -ENOMEM;
3105 memmove(shared_virt, data, len);
3107 /* Start the Dma */
3108 rc = ipw_fw_dma_enable(priv);
3110 if (priv->sram_desc.last_cb_index > 0) {
3111 /* the DMA is already ready this would be a bug. */
3112 BUG();
3113 goto out;
3116 do {
3117 chunk = (struct fw_chunk *)(data + offset);
3118 offset += sizeof(struct fw_chunk);
3119 /* build DMA packet and queue up for sending */
3120 /* dma to chunk->address, the chunk->length bytes from data +
3121 * offeset*/
3122 /* Dma loading */
3123 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3124 le32_to_cpu(chunk->address),
3125 le32_to_cpu(chunk->length));
3126 if (rc) {
3127 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3128 goto out;
3131 offset += le32_to_cpu(chunk->length);
3132 } while (offset < len);
3134 /* Run the DMA and wait for the answer */
3135 rc = ipw_fw_dma_kick(priv);
3136 if (rc) {
3137 IPW_ERROR("dmaKick Failed\n");
3138 goto out;
3141 rc = ipw_fw_dma_wait(priv);
3142 if (rc) {
3143 IPW_ERROR("dmaWaitSync Failed\n");
3144 goto out;
3146 out:
3147 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3148 return rc;
3151 /* stop nic */
3152 static int ipw_stop_nic(struct ipw_priv *priv)
3154 int rc = 0;
3156 /* stop */
3157 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3159 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3160 IPW_RESET_REG_MASTER_DISABLED, 500);
3161 if (rc < 0) {
3162 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3163 return rc;
3166 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3168 return rc;
3171 static void ipw_start_nic(struct ipw_priv *priv)
3173 IPW_DEBUG_TRACE(">>\n");
3175 /* prvHwStartNic release ARC */
3176 ipw_clear_bit(priv, IPW_RESET_REG,
3177 IPW_RESET_REG_MASTER_DISABLED |
3178 IPW_RESET_REG_STOP_MASTER |
3179 CBD_RESET_REG_PRINCETON_RESET);
3181 /* enable power management */
3182 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3183 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3185 IPW_DEBUG_TRACE("<<\n");
3188 static int ipw_init_nic(struct ipw_priv *priv)
3190 int rc;
3192 IPW_DEBUG_TRACE(">>\n");
3193 /* reset */
3194 /*prvHwInitNic */
3195 /* set "initialization complete" bit to move adapter to D0 state */
3196 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3198 /* low-level PLL activation */
3199 ipw_write32(priv, IPW_READ_INT_REGISTER,
3200 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3202 /* wait for clock stabilization */
3203 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3204 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3205 if (rc < 0)
3206 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3208 /* assert SW reset */
3209 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3211 udelay(10);
3213 /* set "initialization complete" bit to move adapter to D0 state */
3214 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3216 IPW_DEBUG_TRACE(">>\n");
3217 return 0;
3220 /* Call this function from process context, it will sleep in request_firmware.
3221 * Probe is an ok place to call this from.
3223 static int ipw_reset_nic(struct ipw_priv *priv)
3225 int rc = 0;
3226 unsigned long flags;
3228 IPW_DEBUG_TRACE(">>\n");
3230 rc = ipw_init_nic(priv);
3232 spin_lock_irqsave(&priv->lock, flags);
3233 /* Clear the 'host command active' bit... */
3234 priv->status &= ~STATUS_HCMD_ACTIVE;
3235 wake_up_interruptible(&priv->wait_command_queue);
3236 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3237 wake_up_interruptible(&priv->wait_state);
3238 spin_unlock_irqrestore(&priv->lock, flags);
3240 IPW_DEBUG_TRACE("<<\n");
3241 return rc;
3245 struct ipw_fw {
3246 __le32 ver;
3247 __le32 boot_size;
3248 __le32 ucode_size;
3249 __le32 fw_size;
3250 u8 data[0];
3253 static int ipw_get_fw(struct ipw_priv *priv,
3254 const struct firmware **raw, const char *name)
3256 struct ipw_fw *fw;
3257 int rc;
3259 /* ask firmware_class module to get the boot firmware off disk */
3260 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3261 if (rc < 0) {
3262 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3263 return rc;
3266 if ((*raw)->size < sizeof(*fw)) {
3267 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3268 return -EINVAL;
3271 fw = (void *)(*raw)->data;
3273 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3274 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3275 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3276 name, (*raw)->size);
3277 return -EINVAL;
3280 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3281 name,
3282 le32_to_cpu(fw->ver) >> 16,
3283 le32_to_cpu(fw->ver) & 0xff,
3284 (*raw)->size - sizeof(*fw));
3285 return 0;
3288 #define IPW_RX_BUF_SIZE (3000)
3290 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3291 struct ipw_rx_queue *rxq)
3293 unsigned long flags;
3294 int i;
3296 spin_lock_irqsave(&rxq->lock, flags);
3298 INIT_LIST_HEAD(&rxq->rx_free);
3299 INIT_LIST_HEAD(&rxq->rx_used);
3301 /* Fill the rx_used queue with _all_ of the Rx buffers */
3302 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3303 /* In the reset function, these buffers may have been allocated
3304 * to an SKB, so we need to unmap and free potential storage */
3305 if (rxq->pool[i].skb != NULL) {
3306 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3307 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3308 dev_kfree_skb(rxq->pool[i].skb);
3309 rxq->pool[i].skb = NULL;
3311 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3314 /* Set us so that we have processed and used all buffers, but have
3315 * not restocked the Rx queue with fresh buffers */
3316 rxq->read = rxq->write = 0;
3317 rxq->processed = RX_QUEUE_SIZE - 1;
3318 rxq->free_count = 0;
3319 spin_unlock_irqrestore(&rxq->lock, flags);
3322 #ifdef CONFIG_PM
3323 static int fw_loaded = 0;
3324 static const struct firmware *raw = NULL;
3326 static void free_firmware(void)
3328 if (fw_loaded) {
3329 release_firmware(raw);
3330 raw = NULL;
3331 fw_loaded = 0;
3334 #else
3335 #define free_firmware() do {} while (0)
3336 #endif
3338 static int ipw_load(struct ipw_priv *priv)
3340 #ifndef CONFIG_PM
3341 const struct firmware *raw = NULL;
3342 #endif
3343 struct ipw_fw *fw;
3344 u8 *boot_img, *ucode_img, *fw_img;
3345 u8 *name = NULL;
3346 int rc = 0, retries = 3;
3348 switch (priv->ieee->iw_mode) {
3349 case IW_MODE_ADHOC:
3350 name = "ipw2200-ibss.fw";
3351 break;
3352 #ifdef CONFIG_IPW2200_MONITOR
3353 case IW_MODE_MONITOR:
3354 name = "ipw2200-sniffer.fw";
3355 break;
3356 #endif
3357 case IW_MODE_INFRA:
3358 name = "ipw2200-bss.fw";
3359 break;
3362 if (!name) {
3363 rc = -EINVAL;
3364 goto error;
3367 #ifdef CONFIG_PM
3368 if (!fw_loaded) {
3369 #endif
3370 rc = ipw_get_fw(priv, &raw, name);
3371 if (rc < 0)
3372 goto error;
3373 #ifdef CONFIG_PM
3375 #endif
3377 fw = (void *)raw->data;
3378 boot_img = &fw->data[0];
3379 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3380 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3381 le32_to_cpu(fw->ucode_size)];
3383 if (rc < 0)
3384 goto error;
3386 if (!priv->rxq)
3387 priv->rxq = ipw_rx_queue_alloc(priv);
3388 else
3389 ipw_rx_queue_reset(priv, priv->rxq);
3390 if (!priv->rxq) {
3391 IPW_ERROR("Unable to initialize Rx queue\n");
3392 goto error;
3395 retry:
3396 /* Ensure interrupts are disabled */
3397 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3398 priv->status &= ~STATUS_INT_ENABLED;
3400 /* ack pending interrupts */
3401 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3403 ipw_stop_nic(priv);
3405 rc = ipw_reset_nic(priv);
3406 if (rc < 0) {
3407 IPW_ERROR("Unable to reset NIC\n");
3408 goto error;
3411 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3412 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3414 /* DMA the initial boot firmware into the device */
3415 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3416 if (rc < 0) {
3417 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3418 goto error;
3421 /* kick start the device */
3422 ipw_start_nic(priv);
3424 /* wait for the device to finish its initial startup sequence */
3425 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3426 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3427 if (rc < 0) {
3428 IPW_ERROR("device failed to boot initial fw image\n");
3429 goto error;
3431 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3433 /* ack fw init done interrupt */
3434 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3436 /* DMA the ucode into the device */
3437 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3438 if (rc < 0) {
3439 IPW_ERROR("Unable to load ucode: %d\n", rc);
3440 goto error;
3443 /* stop nic */
3444 ipw_stop_nic(priv);
3446 /* DMA bss firmware into the device */
3447 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3448 if (rc < 0) {
3449 IPW_ERROR("Unable to load firmware: %d\n", rc);
3450 goto error;
3452 #ifdef CONFIG_PM
3453 fw_loaded = 1;
3454 #endif
3456 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3458 rc = ipw_queue_reset(priv);
3459 if (rc < 0) {
3460 IPW_ERROR("Unable to initialize queues\n");
3461 goto error;
3464 /* Ensure interrupts are disabled */
3465 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3466 /* ack pending interrupts */
3467 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3469 /* kick start the device */
3470 ipw_start_nic(priv);
3472 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3473 if (retries > 0) {
3474 IPW_WARNING("Parity error. Retrying init.\n");
3475 retries--;
3476 goto retry;
3479 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3480 rc = -EIO;
3481 goto error;
3484 /* wait for the device */
3485 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3486 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3487 if (rc < 0) {
3488 IPW_ERROR("device failed to start within 500ms\n");
3489 goto error;
3491 IPW_DEBUG_INFO("device response after %dms\n", rc);
3493 /* ack fw init done interrupt */
3494 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3496 /* read eeprom data and initialize the eeprom region of sram */
3497 priv->eeprom_delay = 1;
3498 ipw_eeprom_init_sram(priv);
3500 /* enable interrupts */
3501 ipw_enable_interrupts(priv);
3503 /* Ensure our queue has valid packets */
3504 ipw_rx_queue_replenish(priv);
3506 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3508 /* ack pending interrupts */
3509 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3511 #ifndef CONFIG_PM
3512 release_firmware(raw);
3513 #endif
3514 return 0;
3516 error:
3517 if (priv->rxq) {
3518 ipw_rx_queue_free(priv, priv->rxq);
3519 priv->rxq = NULL;
3521 ipw_tx_queue_free(priv);
3522 if (raw)
3523 release_firmware(raw);
3524 #ifdef CONFIG_PM
3525 fw_loaded = 0;
3526 raw = NULL;
3527 #endif
3529 return rc;
3533 * DMA services
3535 * Theory of operation
3537 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3538 * 2 empty entries always kept in the buffer to protect from overflow.
3540 * For Tx queue, there are low mark and high mark limits. If, after queuing
3541 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3542 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3543 * Tx queue resumed.
3545 * The IPW operates with six queues, one receive queue in the device's
3546 * sram, one transmit queue for sending commands to the device firmware,
3547 * and four transmit queues for data.
3549 * The four transmit queues allow for performing quality of service (qos)
3550 * transmissions as per the 802.11 protocol. Currently Linux does not
3551 * provide a mechanism to the user for utilizing prioritized queues, so
3552 * we only utilize the first data transmit queue (queue1).
3556 * Driver allocates buffers of this size for Rx
3559 static inline int ipw_queue_space(const struct clx2_queue *q)
3561 int s = q->last_used - q->first_empty;
3562 if (s <= 0)
3563 s += q->n_bd;
3564 s -= 2; /* keep some reserve to not confuse empty and full situations */
3565 if (s < 0)
3566 s = 0;
3567 return s;
3570 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3572 return (++index == n_bd) ? 0 : index;
3576 * Initialize common DMA queue structure
3578 * @param q queue to init
3579 * @param count Number of BD's to allocate. Should be power of 2
3580 * @param read_register Address for 'read' register
3581 * (not offset within BAR, full address)
3582 * @param write_register Address for 'write' register
3583 * (not offset within BAR, full address)
3584 * @param base_register Address for 'base' register
3585 * (not offset within BAR, full address)
3586 * @param size Address for 'size' register
3587 * (not offset within BAR, full address)
3589 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3590 int count, u32 read, u32 write, u32 base, u32 size)
3592 q->n_bd = count;
3594 q->low_mark = q->n_bd / 4;
3595 if (q->low_mark < 4)
3596 q->low_mark = 4;
3598 q->high_mark = q->n_bd / 8;
3599 if (q->high_mark < 2)
3600 q->high_mark = 2;
3602 q->first_empty = q->last_used = 0;
3603 q->reg_r = read;
3604 q->reg_w = write;
3606 ipw_write32(priv, base, q->dma_addr);
3607 ipw_write32(priv, size, count);
3608 ipw_write32(priv, read, 0);
3609 ipw_write32(priv, write, 0);
3611 _ipw_read32(priv, 0x90);
3614 static int ipw_queue_tx_init(struct ipw_priv *priv,
3615 struct clx2_tx_queue *q,
3616 int count, u32 read, u32 write, u32 base, u32 size)
3618 struct pci_dev *dev = priv->pci_dev;
3620 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3621 if (!q->txb) {
3622 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3623 return -ENOMEM;
3626 q->bd =
3627 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3628 if (!q->bd) {
3629 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3630 sizeof(q->bd[0]) * count);
3631 kfree(q->txb);
3632 q->txb = NULL;
3633 return -ENOMEM;
3636 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3637 return 0;
3641 * Free one TFD, those at index [txq->q.last_used].
3642 * Do NOT advance any indexes
3644 * @param dev
3645 * @param txq
3647 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3648 struct clx2_tx_queue *txq)
3650 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3651 struct pci_dev *dev = priv->pci_dev;
3652 int i;
3654 /* classify bd */
3655 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3656 /* nothing to cleanup after for host commands */
3657 return;
3659 /* sanity check */
3660 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3661 IPW_ERROR("Too many chunks: %i\n",
3662 le32_to_cpu(bd->u.data.num_chunks));
3663 /** @todo issue fatal error, it is quite serious situation */
3664 return;
3667 /* unmap chunks if any */
3668 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3669 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3670 le16_to_cpu(bd->u.data.chunk_len[i]),
3671 PCI_DMA_TODEVICE);
3672 if (txq->txb[txq->q.last_used]) {
3673 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3674 txq->txb[txq->q.last_used] = NULL;
3680 * Deallocate DMA queue.
3682 * Empty queue by removing and destroying all BD's.
3683 * Free all buffers.
3685 * @param dev
3686 * @param q
3688 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3690 struct clx2_queue *q = &txq->q;
3691 struct pci_dev *dev = priv->pci_dev;
3693 if (q->n_bd == 0)
3694 return;
3696 /* first, empty all BD's */
3697 for (; q->first_empty != q->last_used;
3698 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3699 ipw_queue_tx_free_tfd(priv, txq);
3702 /* free buffers belonging to queue itself */
3703 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3704 q->dma_addr);
3705 kfree(txq->txb);
3707 /* 0 fill whole structure */
3708 memset(txq, 0, sizeof(*txq));
3712 * Destroy all DMA queues and structures
3714 * @param priv
3716 static void ipw_tx_queue_free(struct ipw_priv *priv)
3718 /* Tx CMD queue */
3719 ipw_queue_tx_free(priv, &priv->txq_cmd);
3721 /* Tx queues */
3722 ipw_queue_tx_free(priv, &priv->txq[0]);
3723 ipw_queue_tx_free(priv, &priv->txq[1]);
3724 ipw_queue_tx_free(priv, &priv->txq[2]);
3725 ipw_queue_tx_free(priv, &priv->txq[3]);
3728 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3730 /* First 3 bytes are manufacturer */
3731 bssid[0] = priv->mac_addr[0];
3732 bssid[1] = priv->mac_addr[1];
3733 bssid[2] = priv->mac_addr[2];
3735 /* Last bytes are random */
3736 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3738 bssid[0] &= 0xfe; /* clear multicast bit */
3739 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3742 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3744 struct ipw_station_entry entry;
3745 int i;
3747 for (i = 0; i < priv->num_stations; i++) {
3748 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3749 /* Another node is active in network */
3750 priv->missed_adhoc_beacons = 0;
3751 if (!(priv->config & CFG_STATIC_CHANNEL))
3752 /* when other nodes drop out, we drop out */
3753 priv->config &= ~CFG_ADHOC_PERSIST;
3755 return i;
3759 if (i == MAX_STATIONS)
3760 return IPW_INVALID_STATION;
3762 IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3764 entry.reserved = 0;
3765 entry.support_mode = 0;
3766 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3767 memcpy(priv->stations[i], bssid, ETH_ALEN);
3768 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3769 &entry, sizeof(entry));
3770 priv->num_stations++;
3772 return i;
3775 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3777 int i;
3779 for (i = 0; i < priv->num_stations; i++)
3780 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3781 return i;
3783 return IPW_INVALID_STATION;
3786 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3788 int err;
3790 if (priv->status & STATUS_ASSOCIATING) {
3791 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3792 queue_work(priv->workqueue, &priv->disassociate);
3793 return;
3796 if (!(priv->status & STATUS_ASSOCIATED)) {
3797 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3798 return;
3801 IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3802 "on channel %d.\n",
3803 MAC_ARG(priv->assoc_request.bssid),
3804 priv->assoc_request.channel);
3806 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3807 priv->status |= STATUS_DISASSOCIATING;
3809 if (quiet)
3810 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3811 else
3812 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3814 err = ipw_send_associate(priv, &priv->assoc_request);
3815 if (err) {
3816 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3817 "failed.\n");
3818 return;
3823 static int ipw_disassociate(void *data)
3825 struct ipw_priv *priv = data;
3826 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3827 return 0;
3828 ipw_send_disassociate(data, 0);
3829 return 1;
3832 static void ipw_bg_disassociate(void *data)
3834 struct ipw_priv *priv = data;
3835 mutex_lock(&priv->mutex);
3836 ipw_disassociate(data);
3837 mutex_unlock(&priv->mutex);
3840 static void ipw_system_config(void *data)
3842 struct ipw_priv *priv = data;
3844 #ifdef CONFIG_IPW2200_PROMISCUOUS
3845 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3846 priv->sys_config.accept_all_data_frames = 1;
3847 priv->sys_config.accept_non_directed_frames = 1;
3848 priv->sys_config.accept_all_mgmt_bcpr = 1;
3849 priv->sys_config.accept_all_mgmt_frames = 1;
3851 #endif
3853 ipw_send_system_config(priv);
3856 struct ipw_status_code {
3857 u16 status;
3858 const char *reason;
3861 static const struct ipw_status_code ipw_status_codes[] = {
3862 {0x00, "Successful"},
3863 {0x01, "Unspecified failure"},
3864 {0x0A, "Cannot support all requested capabilities in the "
3865 "Capability information field"},
3866 {0x0B, "Reassociation denied due to inability to confirm that "
3867 "association exists"},
3868 {0x0C, "Association denied due to reason outside the scope of this "
3869 "standard"},
3870 {0x0D,
3871 "Responding station does not support the specified authentication "
3872 "algorithm"},
3873 {0x0E,
3874 "Received an Authentication frame with authentication sequence "
3875 "transaction sequence number out of expected sequence"},
3876 {0x0F, "Authentication rejected because of challenge failure"},
3877 {0x10, "Authentication rejected due to timeout waiting for next "
3878 "frame in sequence"},
3879 {0x11, "Association denied because AP is unable to handle additional "
3880 "associated stations"},
3881 {0x12,
3882 "Association denied due to requesting station not supporting all "
3883 "of the datarates in the BSSBasicServiceSet Parameter"},
3884 {0x13,
3885 "Association denied due to requesting station not supporting "
3886 "short preamble operation"},
3887 {0x14,
3888 "Association denied due to requesting station not supporting "
3889 "PBCC encoding"},
3890 {0x15,
3891 "Association denied due to requesting station not supporting "
3892 "channel agility"},
3893 {0x19,
3894 "Association denied due to requesting station not supporting "
3895 "short slot operation"},
3896 {0x1A,
3897 "Association denied due to requesting station not supporting "
3898 "DSSS-OFDM operation"},
3899 {0x28, "Invalid Information Element"},
3900 {0x29, "Group Cipher is not valid"},
3901 {0x2A, "Pairwise Cipher is not valid"},
3902 {0x2B, "AKMP is not valid"},
3903 {0x2C, "Unsupported RSN IE version"},
3904 {0x2D, "Invalid RSN IE Capabilities"},
3905 {0x2E, "Cipher suite is rejected per security policy"},
3908 #ifdef CONFIG_IPW2200_DEBUG
3909 static const char *ipw_get_status_code(u16 status)
3911 int i;
3912 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3913 if (ipw_status_codes[i].status == (status & 0xff))
3914 return ipw_status_codes[i].reason;
3915 return "Unknown status value.";
3917 #endif
3919 static void inline average_init(struct average *avg)
3921 memset(avg, 0, sizeof(*avg));
3924 #define DEPTH_RSSI 8
3925 #define DEPTH_NOISE 16
3926 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3928 return ((depth-1)*prev_avg + val)/depth;
3931 static void average_add(struct average *avg, s16 val)
3933 avg->sum -= avg->entries[avg->pos];
3934 avg->sum += val;
3935 avg->entries[avg->pos++] = val;
3936 if (unlikely(avg->pos == AVG_ENTRIES)) {
3937 avg->init = 1;
3938 avg->pos = 0;
3942 static s16 average_value(struct average *avg)
3944 if (!unlikely(avg->init)) {
3945 if (avg->pos)
3946 return avg->sum / avg->pos;
3947 return 0;
3950 return avg->sum / AVG_ENTRIES;
3953 static void ipw_reset_stats(struct ipw_priv *priv)
3955 u32 len = sizeof(u32);
3957 priv->quality = 0;
3959 average_init(&priv->average_missed_beacons);
3960 priv->exp_avg_rssi = -60;
3961 priv->exp_avg_noise = -85 + 0x100;
3963 priv->last_rate = 0;
3964 priv->last_missed_beacons = 0;
3965 priv->last_rx_packets = 0;
3966 priv->last_tx_packets = 0;
3967 priv->last_tx_failures = 0;
3969 /* Firmware managed, reset only when NIC is restarted, so we have to
3970 * normalize on the current value */
3971 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3972 &priv->last_rx_err, &len);
3973 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3974 &priv->last_tx_failures, &len);
3976 /* Driver managed, reset with each association */
3977 priv->missed_adhoc_beacons = 0;
3978 priv->missed_beacons = 0;
3979 priv->tx_packets = 0;
3980 priv->rx_packets = 0;
3984 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3986 u32 i = 0x80000000;
3987 u32 mask = priv->rates_mask;
3988 /* If currently associated in B mode, restrict the maximum
3989 * rate match to B rates */
3990 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3991 mask &= IEEE80211_CCK_RATES_MASK;
3993 /* TODO: Verify that the rate is supported by the current rates
3994 * list. */
3996 while (i && !(mask & i))
3997 i >>= 1;
3998 switch (i) {
3999 case IEEE80211_CCK_RATE_1MB_MASK:
4000 return 1000000;
4001 case IEEE80211_CCK_RATE_2MB_MASK:
4002 return 2000000;
4003 case IEEE80211_CCK_RATE_5MB_MASK:
4004 return 5500000;
4005 case IEEE80211_OFDM_RATE_6MB_MASK:
4006 return 6000000;
4007 case IEEE80211_OFDM_RATE_9MB_MASK:
4008 return 9000000;
4009 case IEEE80211_CCK_RATE_11MB_MASK:
4010 return 11000000;
4011 case IEEE80211_OFDM_RATE_12MB_MASK:
4012 return 12000000;
4013 case IEEE80211_OFDM_RATE_18MB_MASK:
4014 return 18000000;
4015 case IEEE80211_OFDM_RATE_24MB_MASK:
4016 return 24000000;
4017 case IEEE80211_OFDM_RATE_36MB_MASK:
4018 return 36000000;
4019 case IEEE80211_OFDM_RATE_48MB_MASK:
4020 return 48000000;
4021 case IEEE80211_OFDM_RATE_54MB_MASK:
4022 return 54000000;
4025 if (priv->ieee->mode == IEEE_B)
4026 return 11000000;
4027 else
4028 return 54000000;
4031 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4033 u32 rate, len = sizeof(rate);
4034 int err;
4036 if (!(priv->status & STATUS_ASSOCIATED))
4037 return 0;
4039 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4040 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4041 &len);
4042 if (err) {
4043 IPW_DEBUG_INFO("failed querying ordinals.\n");
4044 return 0;
4046 } else
4047 return ipw_get_max_rate(priv);
4049 switch (rate) {
4050 case IPW_TX_RATE_1MB:
4051 return 1000000;
4052 case IPW_TX_RATE_2MB:
4053 return 2000000;
4054 case IPW_TX_RATE_5MB:
4055 return 5500000;
4056 case IPW_TX_RATE_6MB:
4057 return 6000000;
4058 case IPW_TX_RATE_9MB:
4059 return 9000000;
4060 case IPW_TX_RATE_11MB:
4061 return 11000000;
4062 case IPW_TX_RATE_12MB:
4063 return 12000000;
4064 case IPW_TX_RATE_18MB:
4065 return 18000000;
4066 case IPW_TX_RATE_24MB:
4067 return 24000000;
4068 case IPW_TX_RATE_36MB:
4069 return 36000000;
4070 case IPW_TX_RATE_48MB:
4071 return 48000000;
4072 case IPW_TX_RATE_54MB:
4073 return 54000000;
4076 return 0;
4079 #define IPW_STATS_INTERVAL (2 * HZ)
4080 static void ipw_gather_stats(struct ipw_priv *priv)
4082 u32 rx_err, rx_err_delta, rx_packets_delta;
4083 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4084 u32 missed_beacons_percent, missed_beacons_delta;
4085 u32 quality = 0;
4086 u32 len = sizeof(u32);
4087 s16 rssi;
4088 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4089 rate_quality;
4090 u32 max_rate;
4092 if (!(priv->status & STATUS_ASSOCIATED)) {
4093 priv->quality = 0;
4094 return;
4097 /* Update the statistics */
4098 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4099 &priv->missed_beacons, &len);
4100 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4101 priv->last_missed_beacons = priv->missed_beacons;
4102 if (priv->assoc_request.beacon_interval) {
4103 missed_beacons_percent = missed_beacons_delta *
4104 (HZ * priv->assoc_request.beacon_interval) /
4105 (IPW_STATS_INTERVAL * 10);
4106 } else {
4107 missed_beacons_percent = 0;
4109 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4111 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4112 rx_err_delta = rx_err - priv->last_rx_err;
4113 priv->last_rx_err = rx_err;
4115 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4116 tx_failures_delta = tx_failures - priv->last_tx_failures;
4117 priv->last_tx_failures = tx_failures;
4119 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4120 priv->last_rx_packets = priv->rx_packets;
4122 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4123 priv->last_tx_packets = priv->tx_packets;
4125 /* Calculate quality based on the following:
4127 * Missed beacon: 100% = 0, 0% = 70% missed
4128 * Rate: 60% = 1Mbs, 100% = Max
4129 * Rx and Tx errors represent a straight % of total Rx/Tx
4130 * RSSI: 100% = > -50, 0% = < -80
4131 * Rx errors: 100% = 0, 0% = 50% missed
4133 * The lowest computed quality is used.
4136 #define BEACON_THRESHOLD 5
4137 beacon_quality = 100 - missed_beacons_percent;
4138 if (beacon_quality < BEACON_THRESHOLD)
4139 beacon_quality = 0;
4140 else
4141 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4142 (100 - BEACON_THRESHOLD);
4143 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4144 beacon_quality, missed_beacons_percent);
4146 priv->last_rate = ipw_get_current_rate(priv);
4147 max_rate = ipw_get_max_rate(priv);
4148 rate_quality = priv->last_rate * 40 / max_rate + 60;
4149 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4150 rate_quality, priv->last_rate / 1000000);
4152 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4153 rx_quality = 100 - (rx_err_delta * 100) /
4154 (rx_packets_delta + rx_err_delta);
4155 else
4156 rx_quality = 100;
4157 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4158 rx_quality, rx_err_delta, rx_packets_delta);
4160 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4161 tx_quality = 100 - (tx_failures_delta * 100) /
4162 (tx_packets_delta + tx_failures_delta);
4163 else
4164 tx_quality = 100;
4165 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4166 tx_quality, tx_failures_delta, tx_packets_delta);
4168 rssi = priv->exp_avg_rssi;
4169 signal_quality =
4170 (100 *
4171 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4172 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4173 (priv->ieee->perfect_rssi - rssi) *
4174 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4175 62 * (priv->ieee->perfect_rssi - rssi))) /
4176 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4177 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4178 if (signal_quality > 100)
4179 signal_quality = 100;
4180 else if (signal_quality < 1)
4181 signal_quality = 0;
4183 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4184 signal_quality, rssi);
4186 quality = min(beacon_quality,
4187 min(rate_quality,
4188 min(tx_quality, min(rx_quality, signal_quality))));
4189 if (quality == beacon_quality)
4190 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4191 quality);
4192 if (quality == rate_quality)
4193 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4194 quality);
4195 if (quality == tx_quality)
4196 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4197 quality);
4198 if (quality == rx_quality)
4199 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4200 quality);
4201 if (quality == signal_quality)
4202 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4203 quality);
4205 priv->quality = quality;
4207 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4208 IPW_STATS_INTERVAL);
4211 static void ipw_bg_gather_stats(void *data)
4213 struct ipw_priv *priv = data;
4214 mutex_lock(&priv->mutex);
4215 ipw_gather_stats(data);
4216 mutex_unlock(&priv->mutex);
4219 /* Missed beacon behavior:
4220 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4221 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4222 * Above disassociate threshold, give up and stop scanning.
4223 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4224 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4225 int missed_count)
4227 priv->notif_missed_beacons = missed_count;
4229 if (missed_count > priv->disassociate_threshold &&
4230 priv->status & STATUS_ASSOCIATED) {
4231 /* If associated and we've hit the missed
4232 * beacon threshold, disassociate, turn
4233 * off roaming, and abort any active scans */
4234 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4235 IPW_DL_STATE | IPW_DL_ASSOC,
4236 "Missed beacon: %d - disassociate\n", missed_count);
4237 priv->status &= ~STATUS_ROAMING;
4238 if (priv->status & STATUS_SCANNING) {
4239 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4240 IPW_DL_STATE,
4241 "Aborting scan with missed beacon.\n");
4242 queue_work(priv->workqueue, &priv->abort_scan);
4245 queue_work(priv->workqueue, &priv->disassociate);
4246 return;
4249 if (priv->status & STATUS_ROAMING) {
4250 /* If we are currently roaming, then just
4251 * print a debug statement... */
4252 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4253 "Missed beacon: %d - roam in progress\n",
4254 missed_count);
4255 return;
4258 if (roaming &&
4259 (missed_count > priv->roaming_threshold &&
4260 missed_count <= priv->disassociate_threshold)) {
4261 /* If we are not already roaming, set the ROAM
4262 * bit in the status and kick off a scan.
4263 * This can happen several times before we reach
4264 * disassociate_threshold. */
4265 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4266 "Missed beacon: %d - initiate "
4267 "roaming\n", missed_count);
4268 if (!(priv->status & STATUS_ROAMING)) {
4269 priv->status |= STATUS_ROAMING;
4270 if (!(priv->status & STATUS_SCANNING))
4271 queue_work(priv->workqueue,
4272 &priv->request_scan);
4274 return;
4277 if (priv->status & STATUS_SCANNING) {
4278 /* Stop scan to keep fw from getting
4279 * stuck (only if we aren't roaming --
4280 * otherwise we'll never scan more than 2 or 3
4281 * channels..) */
4282 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4283 "Aborting scan with missed beacon.\n");
4284 queue_work(priv->workqueue, &priv->abort_scan);
4287 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4291 * Handle host notification packet.
4292 * Called from interrupt routine
4294 static void ipw_rx_notification(struct ipw_priv *priv,
4295 struct ipw_rx_notification *notif)
4297 notif->size = le16_to_cpu(notif->size);
4299 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4301 switch (notif->subtype) {
4302 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4303 struct notif_association *assoc = &notif->u.assoc;
4305 switch (assoc->state) {
4306 case CMAS_ASSOCIATED:{
4307 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4308 IPW_DL_ASSOC,
4309 "associated: '%s' " MAC_FMT
4310 " \n",
4311 escape_essid(priv->essid,
4312 priv->essid_len),
4313 MAC_ARG(priv->bssid));
4315 switch (priv->ieee->iw_mode) {
4316 case IW_MODE_INFRA:
4317 memcpy(priv->ieee->bssid,
4318 priv->bssid, ETH_ALEN);
4319 break;
4321 case IW_MODE_ADHOC:
4322 memcpy(priv->ieee->bssid,
4323 priv->bssid, ETH_ALEN);
4325 /* clear out the station table */
4326 priv->num_stations = 0;
4328 IPW_DEBUG_ASSOC
4329 ("queueing adhoc check\n");
4330 queue_delayed_work(priv->
4331 workqueue,
4332 &priv->
4333 adhoc_check,
4334 priv->
4335 assoc_request.
4336 beacon_interval);
4337 break;
4340 priv->status &= ~STATUS_ASSOCIATING;
4341 priv->status |= STATUS_ASSOCIATED;
4342 queue_work(priv->workqueue,
4343 &priv->system_config);
4345 #ifdef CONFIG_IPW_QOS
4346 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4347 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4348 if ((priv->status & STATUS_AUTH) &&
4349 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4350 == IEEE80211_STYPE_ASSOC_RESP)) {
4351 if ((sizeof
4352 (struct
4353 ieee80211_assoc_response)
4354 <= notif->size)
4355 && (notif->size <= 2314)) {
4356 struct
4357 ieee80211_rx_stats
4358 stats = {
4359 .len =
4360 notif->
4361 size - 1,
4364 IPW_DEBUG_QOS
4365 ("QoS Associate "
4366 "size %d\n",
4367 notif->size);
4368 ieee80211_rx_mgt(priv->
4369 ieee,
4370 (struct
4371 ieee80211_hdr_4addr
4373 &notif->u.raw, &stats);
4376 #endif
4378 schedule_work(&priv->link_up);
4380 break;
4383 case CMAS_AUTHENTICATED:{
4384 if (priv->
4385 status & (STATUS_ASSOCIATED |
4386 STATUS_AUTH)) {
4387 #ifdef CONFIG_IPW2200_DEBUG
4388 struct notif_authenticate *auth
4389 = &notif->u.auth;
4390 IPW_DEBUG(IPW_DL_NOTIF |
4391 IPW_DL_STATE |
4392 IPW_DL_ASSOC,
4393 "deauthenticated: '%s' "
4394 MAC_FMT
4395 ": (0x%04X) - %s \n",
4396 escape_essid(priv->
4397 essid,
4398 priv->
4399 essid_len),
4400 MAC_ARG(priv->bssid),
4401 ntohs(auth->status),
4402 ipw_get_status_code
4403 (ntohs
4404 (auth->status)));
4405 #endif
4407 priv->status &=
4408 ~(STATUS_ASSOCIATING |
4409 STATUS_AUTH |
4410 STATUS_ASSOCIATED);
4412 schedule_work(&priv->link_down);
4413 break;
4416 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4417 IPW_DL_ASSOC,
4418 "authenticated: '%s' " MAC_FMT
4419 "\n",
4420 escape_essid(priv->essid,
4421 priv->essid_len),
4422 MAC_ARG(priv->bssid));
4423 break;
4426 case CMAS_INIT:{
4427 if (priv->status & STATUS_AUTH) {
4428 struct
4429 ieee80211_assoc_response
4430 *resp;
4431 resp =
4432 (struct
4433 ieee80211_assoc_response
4434 *)&notif->u.raw;
4435 IPW_DEBUG(IPW_DL_NOTIF |
4436 IPW_DL_STATE |
4437 IPW_DL_ASSOC,
4438 "association failed (0x%04X): %s\n",
4439 ntohs(resp->status),
4440 ipw_get_status_code
4441 (ntohs
4442 (resp->status)));
4445 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4446 IPW_DL_ASSOC,
4447 "disassociated: '%s' " MAC_FMT
4448 " \n",
4449 escape_essid(priv->essid,
4450 priv->essid_len),
4451 MAC_ARG(priv->bssid));
4453 priv->status &=
4454 ~(STATUS_DISASSOCIATING |
4455 STATUS_ASSOCIATING |
4456 STATUS_ASSOCIATED | STATUS_AUTH);
4457 if (priv->assoc_network
4458 && (priv->assoc_network->
4459 capability &
4460 WLAN_CAPABILITY_IBSS))
4461 ipw_remove_current_network
4462 (priv);
4464 schedule_work(&priv->link_down);
4466 break;
4469 case CMAS_RX_ASSOC_RESP:
4470 break;
4472 default:
4473 IPW_ERROR("assoc: unknown (%d)\n",
4474 assoc->state);
4475 break;
4478 break;
4481 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4482 struct notif_authenticate *auth = &notif->u.auth;
4483 switch (auth->state) {
4484 case CMAS_AUTHENTICATED:
4485 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4486 "authenticated: '%s' " MAC_FMT " \n",
4487 escape_essid(priv->essid,
4488 priv->essid_len),
4489 MAC_ARG(priv->bssid));
4490 priv->status |= STATUS_AUTH;
4491 break;
4493 case CMAS_INIT:
4494 if (priv->status & STATUS_AUTH) {
4495 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4496 IPW_DL_ASSOC,
4497 "authentication failed (0x%04X): %s\n",
4498 ntohs(auth->status),
4499 ipw_get_status_code(ntohs
4500 (auth->
4501 status)));
4503 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4504 IPW_DL_ASSOC,
4505 "deauthenticated: '%s' " MAC_FMT "\n",
4506 escape_essid(priv->essid,
4507 priv->essid_len),
4508 MAC_ARG(priv->bssid));
4510 priv->status &= ~(STATUS_ASSOCIATING |
4511 STATUS_AUTH |
4512 STATUS_ASSOCIATED);
4514 schedule_work(&priv->link_down);
4515 break;
4517 case CMAS_TX_AUTH_SEQ_1:
4518 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4519 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4520 break;
4521 case CMAS_RX_AUTH_SEQ_2:
4522 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4523 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4524 break;
4525 case CMAS_AUTH_SEQ_1_PASS:
4526 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4527 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4528 break;
4529 case CMAS_AUTH_SEQ_1_FAIL:
4530 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4531 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4532 break;
4533 case CMAS_TX_AUTH_SEQ_3:
4534 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4535 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4536 break;
4537 case CMAS_RX_AUTH_SEQ_4:
4538 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4539 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4540 break;
4541 case CMAS_AUTH_SEQ_2_PASS:
4542 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4543 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4544 break;
4545 case CMAS_AUTH_SEQ_2_FAIL:
4546 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4547 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4548 break;
4549 case CMAS_TX_ASSOC:
4550 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4551 IPW_DL_ASSOC, "TX_ASSOC\n");
4552 break;
4553 case CMAS_RX_ASSOC_RESP:
4554 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4555 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4557 break;
4558 case CMAS_ASSOCIATED:
4559 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4560 IPW_DL_ASSOC, "ASSOCIATED\n");
4561 break;
4562 default:
4563 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4564 auth->state);
4565 break;
4567 break;
4570 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4571 struct notif_channel_result *x =
4572 &notif->u.channel_result;
4574 if (notif->size == sizeof(*x)) {
4575 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4576 x->channel_num);
4577 } else {
4578 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4579 "(should be %zd)\n",
4580 notif->size, sizeof(*x));
4582 break;
4585 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4586 struct notif_scan_complete *x = &notif->u.scan_complete;
4587 if (notif->size == sizeof(*x)) {
4588 IPW_DEBUG_SCAN
4589 ("Scan completed: type %d, %d channels, "
4590 "%d status\n", x->scan_type,
4591 x->num_channels, x->status);
4592 } else {
4593 IPW_ERROR("Scan completed of wrong size %d "
4594 "(should be %zd)\n",
4595 notif->size, sizeof(*x));
4598 priv->status &=
4599 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4601 wake_up_interruptible(&priv->wait_state);
4602 cancel_delayed_work(&priv->scan_check);
4604 if (priv->status & STATUS_EXIT_PENDING)
4605 break;
4607 priv->ieee->scans++;
4609 #ifdef CONFIG_IPW2200_MONITOR
4610 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4611 priv->status |= STATUS_SCAN_FORCED;
4612 queue_work(priv->workqueue,
4613 &priv->request_scan);
4614 break;
4616 priv->status &= ~STATUS_SCAN_FORCED;
4617 #endif /* CONFIG_IPW2200_MONITOR */
4619 if (!(priv->status & (STATUS_ASSOCIATED |
4620 STATUS_ASSOCIATING |
4621 STATUS_ROAMING |
4622 STATUS_DISASSOCIATING)))
4623 queue_work(priv->workqueue, &priv->associate);
4624 else if (priv->status & STATUS_ROAMING) {
4625 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4626 /* If a scan completed and we are in roam mode, then
4627 * the scan that completed was the one requested as a
4628 * result of entering roam... so, schedule the
4629 * roam work */
4630 queue_work(priv->workqueue,
4631 &priv->roam);
4632 else
4633 /* Don't schedule if we aborted the scan */
4634 priv->status &= ~STATUS_ROAMING;
4635 } else if (priv->status & STATUS_SCAN_PENDING)
4636 queue_work(priv->workqueue,
4637 &priv->request_scan);
4638 else if (priv->config & CFG_BACKGROUND_SCAN
4639 && priv->status & STATUS_ASSOCIATED)
4640 queue_delayed_work(priv->workqueue,
4641 &priv->request_scan, HZ);
4643 /* Send an empty event to user space.
4644 * We don't send the received data on the event because
4645 * it would require us to do complex transcoding, and
4646 * we want to minimise the work done in the irq handler
4647 * Use a request to extract the data.
4648 * Also, we generate this even for any scan, regardless
4649 * on how the scan was initiated. User space can just
4650 * sync on periodic scan to get fresh data...
4651 * Jean II */
4652 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4653 union iwreq_data wrqu;
4655 wrqu.data.length = 0;
4656 wrqu.data.flags = 0;
4657 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4658 &wrqu, NULL);
4660 break;
4663 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4664 struct notif_frag_length *x = &notif->u.frag_len;
4666 if (notif->size == sizeof(*x))
4667 IPW_ERROR("Frag length: %d\n",
4668 le16_to_cpu(x->frag_length));
4669 else
4670 IPW_ERROR("Frag length of wrong size %d "
4671 "(should be %zd)\n",
4672 notif->size, sizeof(*x));
4673 break;
4676 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4677 struct notif_link_deterioration *x =
4678 &notif->u.link_deterioration;
4680 if (notif->size == sizeof(*x)) {
4681 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4682 "link deterioration: type %d, cnt %d\n",
4683 x->silence_notification_type,
4684 x->silence_count);
4685 memcpy(&priv->last_link_deterioration, x,
4686 sizeof(*x));
4687 } else {
4688 IPW_ERROR("Link Deterioration of wrong size %d "
4689 "(should be %zd)\n",
4690 notif->size, sizeof(*x));
4692 break;
4695 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4696 IPW_ERROR("Dino config\n");
4697 if (priv->hcmd
4698 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4699 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4701 break;
4704 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4705 struct notif_beacon_state *x = &notif->u.beacon_state;
4706 if (notif->size != sizeof(*x)) {
4707 IPW_ERROR
4708 ("Beacon state of wrong size %d (should "
4709 "be %zd)\n", notif->size, sizeof(*x));
4710 break;
4713 if (le32_to_cpu(x->state) ==
4714 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4715 ipw_handle_missed_beacon(priv,
4716 le32_to_cpu(x->
4717 number));
4719 break;
4722 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4723 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4724 if (notif->size == sizeof(*x)) {
4725 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4726 "0x%02x station %d\n",
4727 x->key_state, x->security_type,
4728 x->station_index);
4729 break;
4732 IPW_ERROR
4733 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4734 notif->size, sizeof(*x));
4735 break;
4738 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4739 struct notif_calibration *x = &notif->u.calibration;
4741 if (notif->size == sizeof(*x)) {
4742 memcpy(&priv->calib, x, sizeof(*x));
4743 IPW_DEBUG_INFO("TODO: Calibration\n");
4744 break;
4747 IPW_ERROR
4748 ("Calibration of wrong size %d (should be %zd)\n",
4749 notif->size, sizeof(*x));
4750 break;
4753 case HOST_NOTIFICATION_NOISE_STATS:{
4754 if (notif->size == sizeof(u32)) {
4755 priv->exp_avg_noise =
4756 exponential_average(priv->exp_avg_noise,
4757 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4758 DEPTH_NOISE);
4759 break;
4762 IPW_ERROR
4763 ("Noise stat is wrong size %d (should be %zd)\n",
4764 notif->size, sizeof(u32));
4765 break;
4768 default:
4769 IPW_DEBUG_NOTIF("Unknown notification: "
4770 "subtype=%d,flags=0x%2x,size=%d\n",
4771 notif->subtype, notif->flags, notif->size);
4776 * Destroys all DMA structures and initialise them again
4778 * @param priv
4779 * @return error code
4781 static int ipw_queue_reset(struct ipw_priv *priv)
4783 int rc = 0;
4784 /** @todo customize queue sizes */
4785 int nTx = 64, nTxCmd = 8;
4786 ipw_tx_queue_free(priv);
4787 /* Tx CMD queue */
4788 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4789 IPW_TX_CMD_QUEUE_READ_INDEX,
4790 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4791 IPW_TX_CMD_QUEUE_BD_BASE,
4792 IPW_TX_CMD_QUEUE_BD_SIZE);
4793 if (rc) {
4794 IPW_ERROR("Tx Cmd queue init failed\n");
4795 goto error;
4797 /* Tx queue(s) */
4798 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4799 IPW_TX_QUEUE_0_READ_INDEX,
4800 IPW_TX_QUEUE_0_WRITE_INDEX,
4801 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4802 if (rc) {
4803 IPW_ERROR("Tx 0 queue init failed\n");
4804 goto error;
4806 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4807 IPW_TX_QUEUE_1_READ_INDEX,
4808 IPW_TX_QUEUE_1_WRITE_INDEX,
4809 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4810 if (rc) {
4811 IPW_ERROR("Tx 1 queue init failed\n");
4812 goto error;
4814 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4815 IPW_TX_QUEUE_2_READ_INDEX,
4816 IPW_TX_QUEUE_2_WRITE_INDEX,
4817 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4818 if (rc) {
4819 IPW_ERROR("Tx 2 queue init failed\n");
4820 goto error;
4822 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4823 IPW_TX_QUEUE_3_READ_INDEX,
4824 IPW_TX_QUEUE_3_WRITE_INDEX,
4825 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4826 if (rc) {
4827 IPW_ERROR("Tx 3 queue init failed\n");
4828 goto error;
4830 /* statistics */
4831 priv->rx_bufs_min = 0;
4832 priv->rx_pend_max = 0;
4833 return rc;
4835 error:
4836 ipw_tx_queue_free(priv);
4837 return rc;
4841 * Reclaim Tx queue entries no more used by NIC.
4843 * When FW adwances 'R' index, all entries between old and
4844 * new 'R' index need to be reclaimed. As result, some free space
4845 * forms. If there is enough free space (> low mark), wake Tx queue.
4847 * @note Need to protect against garbage in 'R' index
4848 * @param priv
4849 * @param txq
4850 * @param qindex
4851 * @return Number of used entries remains in the queue
4853 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4854 struct clx2_tx_queue *txq, int qindex)
4856 u32 hw_tail;
4857 int used;
4858 struct clx2_queue *q = &txq->q;
4860 hw_tail = ipw_read32(priv, q->reg_r);
4861 if (hw_tail >= q->n_bd) {
4862 IPW_ERROR
4863 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4864 hw_tail, q->n_bd);
4865 goto done;
4867 for (; q->last_used != hw_tail;
4868 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4869 ipw_queue_tx_free_tfd(priv, txq);
4870 priv->tx_packets++;
4872 done:
4873 if ((ipw_queue_space(q) > q->low_mark) &&
4874 (qindex >= 0) &&
4875 (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4876 netif_wake_queue(priv->net_dev);
4877 used = q->first_empty - q->last_used;
4878 if (used < 0)
4879 used += q->n_bd;
4881 return used;
4884 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4885 int len, int sync)
4887 struct clx2_tx_queue *txq = &priv->txq_cmd;
4888 struct clx2_queue *q = &txq->q;
4889 struct tfd_frame *tfd;
4891 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4892 IPW_ERROR("No space for Tx\n");
4893 return -EBUSY;
4896 tfd = &txq->bd[q->first_empty];
4897 txq->txb[q->first_empty] = NULL;
4899 memset(tfd, 0, sizeof(*tfd));
4900 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4901 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4902 priv->hcmd_seq++;
4903 tfd->u.cmd.index = hcmd;
4904 tfd->u.cmd.length = len;
4905 memcpy(tfd->u.cmd.payload, buf, len);
4906 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4907 ipw_write32(priv, q->reg_w, q->first_empty);
4908 _ipw_read32(priv, 0x90);
4910 return 0;
4914 * Rx theory of operation
4916 * The host allocates 32 DMA target addresses and passes the host address
4917 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4918 * 0 to 31
4920 * Rx Queue Indexes
4921 * The host/firmware share two index registers for managing the Rx buffers.
4923 * The READ index maps to the first position that the firmware may be writing
4924 * to -- the driver can read up to (but not including) this position and get
4925 * good data.
4926 * The READ index is managed by the firmware once the card is enabled.
4928 * The WRITE index maps to the last position the driver has read from -- the
4929 * position preceding WRITE is the last slot the firmware can place a packet.
4931 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4932 * WRITE = READ.
4934 * During initialization the host sets up the READ queue position to the first
4935 * INDEX position, and WRITE to the last (READ - 1 wrapped)
4937 * When the firmware places a packet in a buffer it will advance the READ index
4938 * and fire the RX interrupt. The driver can then query the READ index and
4939 * process as many packets as possible, moving the WRITE index forward as it
4940 * resets the Rx queue buffers with new memory.
4942 * The management in the driver is as follows:
4943 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
4944 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4945 * to replensish the ipw->rxq->rx_free.
4946 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4947 * ipw->rxq is replenished and the READ INDEX is updated (updating the
4948 * 'processed' and 'read' driver indexes as well)
4949 * + A received packet is processed and handed to the kernel network stack,
4950 * detached from the ipw->rxq. The driver 'processed' index is updated.
4951 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4952 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4953 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
4954 * were enough free buffers and RX_STALLED is set it is cleared.
4957 * Driver sequence:
4959 * ipw_rx_queue_alloc() Allocates rx_free
4960 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
4961 * ipw_rx_queue_restock
4962 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
4963 * queue, updates firmware pointers, and updates
4964 * the WRITE index. If insufficient rx_free buffers
4965 * are available, schedules ipw_rx_queue_replenish
4967 * -- enable interrupts --
4968 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
4969 * READ INDEX, detaching the SKB from the pool.
4970 * Moves the packet buffer from queue to rx_used.
4971 * Calls ipw_rx_queue_restock to refill any empty
4972 * slots.
4973 * ...
4978 * If there are slots in the RX queue that need to be restocked,
4979 * and we have free pre-allocated buffers, fill the ranks as much
4980 * as we can pulling from rx_free.
4982 * This moves the 'write' index forward to catch up with 'processed', and
4983 * also updates the memory address in the firmware to reference the new
4984 * target buffer.
4986 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4988 struct ipw_rx_queue *rxq = priv->rxq;
4989 struct list_head *element;
4990 struct ipw_rx_mem_buffer *rxb;
4991 unsigned long flags;
4992 int write;
4994 spin_lock_irqsave(&rxq->lock, flags);
4995 write = rxq->write;
4996 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4997 element = rxq->rx_free.next;
4998 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4999 list_del(element);
5001 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5002 rxb->dma_addr);
5003 rxq->queue[rxq->write] = rxb;
5004 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5005 rxq->free_count--;
5007 spin_unlock_irqrestore(&rxq->lock, flags);
5009 /* If the pre-allocated buffer pool is dropping low, schedule to
5010 * refill it */
5011 if (rxq->free_count <= RX_LOW_WATERMARK)
5012 queue_work(priv->workqueue, &priv->rx_replenish);
5014 /* If we've added more space for the firmware to place data, tell it */
5015 if (write != rxq->write)
5016 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5020 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5021 * Also restock the Rx queue via ipw_rx_queue_restock.
5023 * This is called as a scheduled work item (except for during intialization)
5025 static void ipw_rx_queue_replenish(void *data)
5027 struct ipw_priv *priv = data;
5028 struct ipw_rx_queue *rxq = priv->rxq;
5029 struct list_head *element;
5030 struct ipw_rx_mem_buffer *rxb;
5031 unsigned long flags;
5033 spin_lock_irqsave(&rxq->lock, flags);
5034 while (!list_empty(&rxq->rx_used)) {
5035 element = rxq->rx_used.next;
5036 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5037 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5038 if (!rxb->skb) {
5039 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5040 priv->net_dev->name);
5041 /* We don't reschedule replenish work here -- we will
5042 * call the restock method and if it still needs
5043 * more buffers it will schedule replenish */
5044 break;
5046 list_del(element);
5048 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
5049 rxb->dma_addr =
5050 pci_map_single(priv->pci_dev, rxb->skb->data,
5051 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5053 list_add_tail(&rxb->list, &rxq->rx_free);
5054 rxq->free_count++;
5056 spin_unlock_irqrestore(&rxq->lock, flags);
5058 ipw_rx_queue_restock(priv);
5061 static void ipw_bg_rx_queue_replenish(void *data)
5063 struct ipw_priv *priv = data;
5064 mutex_lock(&priv->mutex);
5065 ipw_rx_queue_replenish(data);
5066 mutex_unlock(&priv->mutex);
5069 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5070 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5071 * This free routine walks the list of POOL entries and if SKB is set to
5072 * non NULL it is unmapped and freed
5074 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5076 int i;
5078 if (!rxq)
5079 return;
5081 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5082 if (rxq->pool[i].skb != NULL) {
5083 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5084 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5085 dev_kfree_skb(rxq->pool[i].skb);
5089 kfree(rxq);
5092 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5094 struct ipw_rx_queue *rxq;
5095 int i;
5097 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5098 if (unlikely(!rxq)) {
5099 IPW_ERROR("memory allocation failed\n");
5100 return NULL;
5102 spin_lock_init(&rxq->lock);
5103 INIT_LIST_HEAD(&rxq->rx_free);
5104 INIT_LIST_HEAD(&rxq->rx_used);
5106 /* Fill the rx_used queue with _all_ of the Rx buffers */
5107 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5108 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5110 /* Set us so that we have processed and used all buffers, but have
5111 * not restocked the Rx queue with fresh buffers */
5112 rxq->read = rxq->write = 0;
5113 rxq->processed = RX_QUEUE_SIZE - 1;
5114 rxq->free_count = 0;
5116 return rxq;
5119 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5121 rate &= ~IEEE80211_BASIC_RATE_MASK;
5122 if (ieee_mode == IEEE_A) {
5123 switch (rate) {
5124 case IEEE80211_OFDM_RATE_6MB:
5125 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5126 1 : 0;
5127 case IEEE80211_OFDM_RATE_9MB:
5128 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5129 1 : 0;
5130 case IEEE80211_OFDM_RATE_12MB:
5131 return priv->
5132 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5133 case IEEE80211_OFDM_RATE_18MB:
5134 return priv->
5135 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5136 case IEEE80211_OFDM_RATE_24MB:
5137 return priv->
5138 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5139 case IEEE80211_OFDM_RATE_36MB:
5140 return priv->
5141 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5142 case IEEE80211_OFDM_RATE_48MB:
5143 return priv->
5144 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5145 case IEEE80211_OFDM_RATE_54MB:
5146 return priv->
5147 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5148 default:
5149 return 0;
5153 /* B and G mixed */
5154 switch (rate) {
5155 case IEEE80211_CCK_RATE_1MB:
5156 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5157 case IEEE80211_CCK_RATE_2MB:
5158 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5159 case IEEE80211_CCK_RATE_5MB:
5160 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5161 case IEEE80211_CCK_RATE_11MB:
5162 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5165 /* If we are limited to B modulations, bail at this point */
5166 if (ieee_mode == IEEE_B)
5167 return 0;
5169 /* G */
5170 switch (rate) {
5171 case IEEE80211_OFDM_RATE_6MB:
5172 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5173 case IEEE80211_OFDM_RATE_9MB:
5174 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5175 case IEEE80211_OFDM_RATE_12MB:
5176 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5177 case IEEE80211_OFDM_RATE_18MB:
5178 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5179 case IEEE80211_OFDM_RATE_24MB:
5180 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5181 case IEEE80211_OFDM_RATE_36MB:
5182 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5183 case IEEE80211_OFDM_RATE_48MB:
5184 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5185 case IEEE80211_OFDM_RATE_54MB:
5186 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5189 return 0;
5192 static int ipw_compatible_rates(struct ipw_priv *priv,
5193 const struct ieee80211_network *network,
5194 struct ipw_supported_rates *rates)
5196 int num_rates, i;
5198 memset(rates, 0, sizeof(*rates));
5199 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5200 rates->num_rates = 0;
5201 for (i = 0; i < num_rates; i++) {
5202 if (!ipw_is_rate_in_mask(priv, network->mode,
5203 network->rates[i])) {
5205 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5206 IPW_DEBUG_SCAN("Adding masked mandatory "
5207 "rate %02X\n",
5208 network->rates[i]);
5209 rates->supported_rates[rates->num_rates++] =
5210 network->rates[i];
5211 continue;
5214 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5215 network->rates[i], priv->rates_mask);
5216 continue;
5219 rates->supported_rates[rates->num_rates++] = network->rates[i];
5222 num_rates = min(network->rates_ex_len,
5223 (u8) (IPW_MAX_RATES - num_rates));
5224 for (i = 0; i < num_rates; i++) {
5225 if (!ipw_is_rate_in_mask(priv, network->mode,
5226 network->rates_ex[i])) {
5227 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5228 IPW_DEBUG_SCAN("Adding masked mandatory "
5229 "rate %02X\n",
5230 network->rates_ex[i]);
5231 rates->supported_rates[rates->num_rates++] =
5232 network->rates[i];
5233 continue;
5236 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5237 network->rates_ex[i], priv->rates_mask);
5238 continue;
5241 rates->supported_rates[rates->num_rates++] =
5242 network->rates_ex[i];
5245 return 1;
5248 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5249 const struct ipw_supported_rates *src)
5251 u8 i;
5252 for (i = 0; i < src->num_rates; i++)
5253 dest->supported_rates[i] = src->supported_rates[i];
5254 dest->num_rates = src->num_rates;
5257 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5258 * mask should ever be used -- right now all callers to add the scan rates are
5259 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5260 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5261 u8 modulation, u32 rate_mask)
5263 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5264 IEEE80211_BASIC_RATE_MASK : 0;
5266 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5267 rates->supported_rates[rates->num_rates++] =
5268 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5270 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5271 rates->supported_rates[rates->num_rates++] =
5272 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5274 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5275 rates->supported_rates[rates->num_rates++] = basic_mask |
5276 IEEE80211_CCK_RATE_5MB;
5278 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5279 rates->supported_rates[rates->num_rates++] = basic_mask |
5280 IEEE80211_CCK_RATE_11MB;
5283 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5284 u8 modulation, u32 rate_mask)
5286 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5287 IEEE80211_BASIC_RATE_MASK : 0;
5289 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5290 rates->supported_rates[rates->num_rates++] = basic_mask |
5291 IEEE80211_OFDM_RATE_6MB;
5293 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5294 rates->supported_rates[rates->num_rates++] =
5295 IEEE80211_OFDM_RATE_9MB;
5297 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5298 rates->supported_rates[rates->num_rates++] = basic_mask |
5299 IEEE80211_OFDM_RATE_12MB;
5301 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5302 rates->supported_rates[rates->num_rates++] =
5303 IEEE80211_OFDM_RATE_18MB;
5305 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5306 rates->supported_rates[rates->num_rates++] = basic_mask |
5307 IEEE80211_OFDM_RATE_24MB;
5309 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5310 rates->supported_rates[rates->num_rates++] =
5311 IEEE80211_OFDM_RATE_36MB;
5313 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5314 rates->supported_rates[rates->num_rates++] =
5315 IEEE80211_OFDM_RATE_48MB;
5317 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5318 rates->supported_rates[rates->num_rates++] =
5319 IEEE80211_OFDM_RATE_54MB;
5322 struct ipw_network_match {
5323 struct ieee80211_network *network;
5324 struct ipw_supported_rates rates;
5327 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5328 struct ipw_network_match *match,
5329 struct ieee80211_network *network,
5330 int roaming)
5332 struct ipw_supported_rates rates;
5334 /* Verify that this network's capability is compatible with the
5335 * current mode (AdHoc or Infrastructure) */
5336 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5337 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5338 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5339 "capability mismatch.\n",
5340 escape_essid(network->ssid, network->ssid_len),
5341 MAC_ARG(network->bssid));
5342 return 0;
5345 /* If we do not have an ESSID for this AP, we can not associate with
5346 * it */
5347 if (network->flags & NETWORK_EMPTY_ESSID) {
5348 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5349 "because of hidden ESSID.\n",
5350 escape_essid(network->ssid, network->ssid_len),
5351 MAC_ARG(network->bssid));
5352 return 0;
5355 if (unlikely(roaming)) {
5356 /* If we are roaming, then ensure check if this is a valid
5357 * network to try and roam to */
5358 if ((network->ssid_len != match->network->ssid_len) ||
5359 memcmp(network->ssid, match->network->ssid,
5360 network->ssid_len)) {
5361 IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5362 "because of non-network ESSID.\n",
5363 escape_essid(network->ssid,
5364 network->ssid_len),
5365 MAC_ARG(network->bssid));
5366 return 0;
5368 } else {
5369 /* If an ESSID has been configured then compare the broadcast
5370 * ESSID to ours */
5371 if ((priv->config & CFG_STATIC_ESSID) &&
5372 ((network->ssid_len != priv->essid_len) ||
5373 memcmp(network->ssid, priv->essid,
5374 min(network->ssid_len, priv->essid_len)))) {
5375 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5377 strncpy(escaped,
5378 escape_essid(network->ssid, network->ssid_len),
5379 sizeof(escaped));
5380 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5381 "because of ESSID mismatch: '%s'.\n",
5382 escaped, MAC_ARG(network->bssid),
5383 escape_essid(priv->essid,
5384 priv->essid_len));
5385 return 0;
5389 /* If the old network rate is better than this one, don't bother
5390 * testing everything else. */
5392 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5393 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5394 "current network.\n",
5395 escape_essid(match->network->ssid,
5396 match->network->ssid_len));
5397 return 0;
5398 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5399 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5400 "current network.\n",
5401 escape_essid(match->network->ssid,
5402 match->network->ssid_len));
5403 return 0;
5406 /* Now go through and see if the requested network is valid... */
5407 if (priv->ieee->scan_age != 0 &&
5408 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5409 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5410 "because of age: %ums.\n",
5411 escape_essid(network->ssid, network->ssid_len),
5412 MAC_ARG(network->bssid),
5413 jiffies_to_msecs(jiffies -
5414 network->last_scanned));
5415 return 0;
5418 if ((priv->config & CFG_STATIC_CHANNEL) &&
5419 (network->channel != priv->channel)) {
5420 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5421 "because of channel mismatch: %d != %d.\n",
5422 escape_essid(network->ssid, network->ssid_len),
5423 MAC_ARG(network->bssid),
5424 network->channel, priv->channel);
5425 return 0;
5428 /* Verify privacy compatability */
5429 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5430 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5431 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5432 "because of privacy mismatch: %s != %s.\n",
5433 escape_essid(network->ssid, network->ssid_len),
5434 MAC_ARG(network->bssid),
5435 priv->
5436 capability & CAP_PRIVACY_ON ? "on" : "off",
5437 network->
5438 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5439 "off");
5440 return 0;
5443 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5444 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5445 "because of the same BSSID match: " MAC_FMT
5446 ".\n", escape_essid(network->ssid,
5447 network->ssid_len),
5448 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5449 return 0;
5452 /* Filter out any incompatible freq / mode combinations */
5453 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5454 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5455 "because of invalid frequency/mode "
5456 "combination.\n",
5457 escape_essid(network->ssid, network->ssid_len),
5458 MAC_ARG(network->bssid));
5459 return 0;
5462 /* Ensure that the rates supported by the driver are compatible with
5463 * this AP, including verification of basic rates (mandatory) */
5464 if (!ipw_compatible_rates(priv, network, &rates)) {
5465 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5466 "because configured rate mask excludes "
5467 "AP mandatory rate.\n",
5468 escape_essid(network->ssid, network->ssid_len),
5469 MAC_ARG(network->bssid));
5470 return 0;
5473 if (rates.num_rates == 0) {
5474 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5475 "because of no compatible rates.\n",
5476 escape_essid(network->ssid, network->ssid_len),
5477 MAC_ARG(network->bssid));
5478 return 0;
5481 /* TODO: Perform any further minimal comparititive tests. We do not
5482 * want to put too much policy logic here; intelligent scan selection
5483 * should occur within a generic IEEE 802.11 user space tool. */
5485 /* Set up 'new' AP to this network */
5486 ipw_copy_rates(&match->rates, &rates);
5487 match->network = network;
5488 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5489 escape_essid(network->ssid, network->ssid_len),
5490 MAC_ARG(network->bssid));
5492 return 1;
5495 static void ipw_merge_adhoc_network(void *data)
5497 struct ipw_priv *priv = data;
5498 struct ieee80211_network *network = NULL;
5499 struct ipw_network_match match = {
5500 .network = priv->assoc_network
5503 if ((priv->status & STATUS_ASSOCIATED) &&
5504 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5505 /* First pass through ROAM process -- look for a better
5506 * network */
5507 unsigned long flags;
5509 spin_lock_irqsave(&priv->ieee->lock, flags);
5510 list_for_each_entry(network, &priv->ieee->network_list, list) {
5511 if (network != priv->assoc_network)
5512 ipw_find_adhoc_network(priv, &match, network,
5515 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5517 if (match.network == priv->assoc_network) {
5518 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5519 "merge to.\n");
5520 return;
5523 mutex_lock(&priv->mutex);
5524 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5525 IPW_DEBUG_MERGE("remove network %s\n",
5526 escape_essid(priv->essid,
5527 priv->essid_len));
5528 ipw_remove_current_network(priv);
5531 ipw_disassociate(priv);
5532 priv->assoc_network = match.network;
5533 mutex_unlock(&priv->mutex);
5534 return;
5538 static int ipw_best_network(struct ipw_priv *priv,
5539 struct ipw_network_match *match,
5540 struct ieee80211_network *network, int roaming)
5542 struct ipw_supported_rates rates;
5544 /* Verify that this network's capability is compatible with the
5545 * current mode (AdHoc or Infrastructure) */
5546 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5547 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5548 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5549 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5550 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5551 "capability mismatch.\n",
5552 escape_essid(network->ssid, network->ssid_len),
5553 MAC_ARG(network->bssid));
5554 return 0;
5557 /* If we do not have an ESSID for this AP, we can not associate with
5558 * it */
5559 if (network->flags & NETWORK_EMPTY_ESSID) {
5560 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5561 "because of hidden ESSID.\n",
5562 escape_essid(network->ssid, network->ssid_len),
5563 MAC_ARG(network->bssid));
5564 return 0;
5567 if (unlikely(roaming)) {
5568 /* If we are roaming, then ensure check if this is a valid
5569 * network to try and roam to */
5570 if ((network->ssid_len != match->network->ssid_len) ||
5571 memcmp(network->ssid, match->network->ssid,
5572 network->ssid_len)) {
5573 IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5574 "because of non-network ESSID.\n",
5575 escape_essid(network->ssid,
5576 network->ssid_len),
5577 MAC_ARG(network->bssid));
5578 return 0;
5580 } else {
5581 /* If an ESSID has been configured then compare the broadcast
5582 * ESSID to ours */
5583 if ((priv->config & CFG_STATIC_ESSID) &&
5584 ((network->ssid_len != priv->essid_len) ||
5585 memcmp(network->ssid, priv->essid,
5586 min(network->ssid_len, priv->essid_len)))) {
5587 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5588 strncpy(escaped,
5589 escape_essid(network->ssid, network->ssid_len),
5590 sizeof(escaped));
5591 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5592 "because of ESSID mismatch: '%s'.\n",
5593 escaped, MAC_ARG(network->bssid),
5594 escape_essid(priv->essid,
5595 priv->essid_len));
5596 return 0;
5600 /* If the old network rate is better than this one, don't bother
5601 * testing everything else. */
5602 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5603 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5604 strncpy(escaped,
5605 escape_essid(network->ssid, network->ssid_len),
5606 sizeof(escaped));
5607 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5608 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5609 escaped, MAC_ARG(network->bssid),
5610 escape_essid(match->network->ssid,
5611 match->network->ssid_len),
5612 MAC_ARG(match->network->bssid));
5613 return 0;
5616 /* If this network has already had an association attempt within the
5617 * last 3 seconds, do not try and associate again... */
5618 if (network->last_associate &&
5619 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5620 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5621 "because of storming (%ums since last "
5622 "assoc attempt).\n",
5623 escape_essid(network->ssid, network->ssid_len),
5624 MAC_ARG(network->bssid),
5625 jiffies_to_msecs(jiffies -
5626 network->last_associate));
5627 return 0;
5630 /* Now go through and see if the requested network is valid... */
5631 if (priv->ieee->scan_age != 0 &&
5632 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5633 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5634 "because of age: %ums.\n",
5635 escape_essid(network->ssid, network->ssid_len),
5636 MAC_ARG(network->bssid),
5637 jiffies_to_msecs(jiffies -
5638 network->last_scanned));
5639 return 0;
5642 if ((priv->config & CFG_STATIC_CHANNEL) &&
5643 (network->channel != priv->channel)) {
5644 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5645 "because of channel mismatch: %d != %d.\n",
5646 escape_essid(network->ssid, network->ssid_len),
5647 MAC_ARG(network->bssid),
5648 network->channel, priv->channel);
5649 return 0;
5652 /* Verify privacy compatability */
5653 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5654 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5655 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5656 "because of privacy mismatch: %s != %s.\n",
5657 escape_essid(network->ssid, network->ssid_len),
5658 MAC_ARG(network->bssid),
5659 priv->capability & CAP_PRIVACY_ON ? "on" :
5660 "off",
5661 network->capability &
5662 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5663 return 0;
5666 if ((priv->config & CFG_STATIC_BSSID) &&
5667 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5668 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5669 "because of BSSID mismatch: " MAC_FMT ".\n",
5670 escape_essid(network->ssid, network->ssid_len),
5671 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5672 return 0;
5675 /* Filter out any incompatible freq / mode combinations */
5676 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5677 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5678 "because of invalid frequency/mode "
5679 "combination.\n",
5680 escape_essid(network->ssid, network->ssid_len),
5681 MAC_ARG(network->bssid));
5682 return 0;
5685 /* Filter out invalid channel in current GEO */
5686 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5687 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5688 "because of invalid channel in current GEO\n",
5689 escape_essid(network->ssid, network->ssid_len),
5690 MAC_ARG(network->bssid));
5691 return 0;
5694 /* Ensure that the rates supported by the driver are compatible with
5695 * this AP, including verification of basic rates (mandatory) */
5696 if (!ipw_compatible_rates(priv, network, &rates)) {
5697 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5698 "because configured rate mask excludes "
5699 "AP mandatory rate.\n",
5700 escape_essid(network->ssid, network->ssid_len),
5701 MAC_ARG(network->bssid));
5702 return 0;
5705 if (rates.num_rates == 0) {
5706 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5707 "because of no compatible rates.\n",
5708 escape_essid(network->ssid, network->ssid_len),
5709 MAC_ARG(network->bssid));
5710 return 0;
5713 /* TODO: Perform any further minimal comparititive tests. We do not
5714 * want to put too much policy logic here; intelligent scan selection
5715 * should occur within a generic IEEE 802.11 user space tool. */
5717 /* Set up 'new' AP to this network */
5718 ipw_copy_rates(&match->rates, &rates);
5719 match->network = network;
5721 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5722 escape_essid(network->ssid, network->ssid_len),
5723 MAC_ARG(network->bssid));
5725 return 1;
5728 static void ipw_adhoc_create(struct ipw_priv *priv,
5729 struct ieee80211_network *network)
5731 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5732 int i;
5735 * For the purposes of scanning, we can set our wireless mode
5736 * to trigger scans across combinations of bands, but when it
5737 * comes to creating a new ad-hoc network, we have tell the FW
5738 * exactly which band to use.
5740 * We also have the possibility of an invalid channel for the
5741 * chossen band. Attempting to create a new ad-hoc network
5742 * with an invalid channel for wireless mode will trigger a
5743 * FW fatal error.
5746 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5747 case IEEE80211_52GHZ_BAND:
5748 network->mode = IEEE_A;
5749 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5750 BUG_ON(i == -1);
5751 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5752 IPW_WARNING("Overriding invalid channel\n");
5753 priv->channel = geo->a[0].channel;
5755 break;
5757 case IEEE80211_24GHZ_BAND:
5758 if (priv->ieee->mode & IEEE_G)
5759 network->mode = IEEE_G;
5760 else
5761 network->mode = IEEE_B;
5762 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5763 BUG_ON(i == -1);
5764 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5765 IPW_WARNING("Overriding invalid channel\n");
5766 priv->channel = geo->bg[0].channel;
5768 break;
5770 default:
5771 IPW_WARNING("Overriding invalid channel\n");
5772 if (priv->ieee->mode & IEEE_A) {
5773 network->mode = IEEE_A;
5774 priv->channel = geo->a[0].channel;
5775 } else if (priv->ieee->mode & IEEE_G) {
5776 network->mode = IEEE_G;
5777 priv->channel = geo->bg[0].channel;
5778 } else {
5779 network->mode = IEEE_B;
5780 priv->channel = geo->bg[0].channel;
5782 break;
5785 network->channel = priv->channel;
5786 priv->config |= CFG_ADHOC_PERSIST;
5787 ipw_create_bssid(priv, network->bssid);
5788 network->ssid_len = priv->essid_len;
5789 memcpy(network->ssid, priv->essid, priv->essid_len);
5790 memset(&network->stats, 0, sizeof(network->stats));
5791 network->capability = WLAN_CAPABILITY_IBSS;
5792 if (!(priv->config & CFG_PREAMBLE_LONG))
5793 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5794 if (priv->capability & CAP_PRIVACY_ON)
5795 network->capability |= WLAN_CAPABILITY_PRIVACY;
5796 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5797 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5798 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5799 memcpy(network->rates_ex,
5800 &priv->rates.supported_rates[network->rates_len],
5801 network->rates_ex_len);
5802 network->last_scanned = 0;
5803 network->flags = 0;
5804 network->last_associate = 0;
5805 network->time_stamp[0] = 0;
5806 network->time_stamp[1] = 0;
5807 network->beacon_interval = 100; /* Default */
5808 network->listen_interval = 10; /* Default */
5809 network->atim_window = 0; /* Default */
5810 network->wpa_ie_len = 0;
5811 network->rsn_ie_len = 0;
5814 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5816 struct ipw_tgi_tx_key key;
5818 if (!(priv->ieee->sec.flags & (1 << index)))
5819 return;
5821 key.key_id = index;
5822 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5823 key.security_type = type;
5824 key.station_index = 0; /* always 0 for BSS */
5825 key.flags = 0;
5826 /* 0 for new key; previous value of counter (after fatal error) */
5827 key.tx_counter[0] = 0;
5828 key.tx_counter[1] = 0;
5830 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5833 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5835 struct ipw_wep_key key;
5836 int i;
5838 key.cmd_id = DINO_CMD_WEP_KEY;
5839 key.seq_num = 0;
5841 /* Note: AES keys cannot be set for multiple times.
5842 * Only set it at the first time. */
5843 for (i = 0; i < 4; i++) {
5844 key.key_index = i | type;
5845 if (!(priv->ieee->sec.flags & (1 << i))) {
5846 key.key_size = 0;
5847 continue;
5850 key.key_size = priv->ieee->sec.key_sizes[i];
5851 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5853 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5857 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5859 if (priv->ieee->host_encrypt)
5860 return;
5862 switch (level) {
5863 case SEC_LEVEL_3:
5864 priv->sys_config.disable_unicast_decryption = 0;
5865 priv->ieee->host_decrypt = 0;
5866 break;
5867 case SEC_LEVEL_2:
5868 priv->sys_config.disable_unicast_decryption = 1;
5869 priv->ieee->host_decrypt = 1;
5870 break;
5871 case SEC_LEVEL_1:
5872 priv->sys_config.disable_unicast_decryption = 0;
5873 priv->ieee->host_decrypt = 0;
5874 break;
5875 case SEC_LEVEL_0:
5876 priv->sys_config.disable_unicast_decryption = 1;
5877 break;
5878 default:
5879 break;
5883 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5885 if (priv->ieee->host_encrypt)
5886 return;
5888 switch (level) {
5889 case SEC_LEVEL_3:
5890 priv->sys_config.disable_multicast_decryption = 0;
5891 break;
5892 case SEC_LEVEL_2:
5893 priv->sys_config.disable_multicast_decryption = 1;
5894 break;
5895 case SEC_LEVEL_1:
5896 priv->sys_config.disable_multicast_decryption = 0;
5897 break;
5898 case SEC_LEVEL_0:
5899 priv->sys_config.disable_multicast_decryption = 1;
5900 break;
5901 default:
5902 break;
5906 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5908 switch (priv->ieee->sec.level) {
5909 case SEC_LEVEL_3:
5910 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5911 ipw_send_tgi_tx_key(priv,
5912 DCT_FLAG_EXT_SECURITY_CCM,
5913 priv->ieee->sec.active_key);
5915 if (!priv->ieee->host_mc_decrypt)
5916 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5917 break;
5918 case SEC_LEVEL_2:
5919 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5920 ipw_send_tgi_tx_key(priv,
5921 DCT_FLAG_EXT_SECURITY_TKIP,
5922 priv->ieee->sec.active_key);
5923 break;
5924 case SEC_LEVEL_1:
5925 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5926 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5927 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5928 break;
5929 case SEC_LEVEL_0:
5930 default:
5931 break;
5935 static void ipw_adhoc_check(void *data)
5937 struct ipw_priv *priv = data;
5939 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5940 !(priv->config & CFG_ADHOC_PERSIST)) {
5941 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5942 IPW_DL_STATE | IPW_DL_ASSOC,
5943 "Missed beacon: %d - disassociate\n",
5944 priv->missed_adhoc_beacons);
5945 ipw_remove_current_network(priv);
5946 ipw_disassociate(priv);
5947 return;
5950 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5951 priv->assoc_request.beacon_interval);
5954 static void ipw_bg_adhoc_check(void *data)
5956 struct ipw_priv *priv = data;
5957 mutex_lock(&priv->mutex);
5958 ipw_adhoc_check(data);
5959 mutex_unlock(&priv->mutex);
5962 #ifdef CONFIG_IPW2200_DEBUG
5963 static void ipw_debug_config(struct ipw_priv *priv)
5965 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5966 "[CFG 0x%08X]\n", priv->config);
5967 if (priv->config & CFG_STATIC_CHANNEL)
5968 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5969 else
5970 IPW_DEBUG_INFO("Channel unlocked.\n");
5971 if (priv->config & CFG_STATIC_ESSID)
5972 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5973 escape_essid(priv->essid, priv->essid_len));
5974 else
5975 IPW_DEBUG_INFO("ESSID unlocked.\n");
5976 if (priv->config & CFG_STATIC_BSSID)
5977 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5978 MAC_ARG(priv->bssid));
5979 else
5980 IPW_DEBUG_INFO("BSSID unlocked.\n");
5981 if (priv->capability & CAP_PRIVACY_ON)
5982 IPW_DEBUG_INFO("PRIVACY on\n");
5983 else
5984 IPW_DEBUG_INFO("PRIVACY off\n");
5985 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5987 #else
5988 #define ipw_debug_config(x) do {} while (0)
5989 #endif
5991 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5993 /* TODO: Verify that this works... */
5994 struct ipw_fixed_rate fr = {
5995 .tx_rates = priv->rates_mask
5997 u32 reg;
5998 u16 mask = 0;
6000 /* Identify 'current FW band' and match it with the fixed
6001 * Tx rates */
6003 switch (priv->ieee->freq_band) {
6004 case IEEE80211_52GHZ_BAND: /* A only */
6005 /* IEEE_A */
6006 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6007 /* Invalid fixed rate mask */
6008 IPW_DEBUG_WX
6009 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6010 fr.tx_rates = 0;
6011 break;
6014 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6015 break;
6017 default: /* 2.4Ghz or Mixed */
6018 /* IEEE_B */
6019 if (mode == IEEE_B) {
6020 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6021 /* Invalid fixed rate mask */
6022 IPW_DEBUG_WX
6023 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6024 fr.tx_rates = 0;
6026 break;
6029 /* IEEE_G */
6030 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6031 IEEE80211_OFDM_RATES_MASK)) {
6032 /* Invalid fixed rate mask */
6033 IPW_DEBUG_WX
6034 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6035 fr.tx_rates = 0;
6036 break;
6039 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6040 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6041 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6044 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6045 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6046 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6049 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6050 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6051 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6054 fr.tx_rates |= mask;
6055 break;
6058 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6059 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6062 static void ipw_abort_scan(struct ipw_priv *priv)
6064 int err;
6066 if (priv->status & STATUS_SCAN_ABORTING) {
6067 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6068 return;
6070 priv->status |= STATUS_SCAN_ABORTING;
6072 err = ipw_send_scan_abort(priv);
6073 if (err)
6074 IPW_DEBUG_HC("Request to abort scan failed.\n");
6077 static void ipw_add_scan_channels(struct ipw_priv *priv,
6078 struct ipw_scan_request_ext *scan,
6079 int scan_type)
6081 int channel_index = 0;
6082 const struct ieee80211_geo *geo;
6083 int i;
6085 geo = ieee80211_get_geo(priv->ieee);
6087 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6088 int start = channel_index;
6089 for (i = 0; i < geo->a_channels; i++) {
6090 if ((priv->status & STATUS_ASSOCIATED) &&
6091 geo->a[i].channel == priv->channel)
6092 continue;
6093 channel_index++;
6094 scan->channels_list[channel_index] = geo->a[i].channel;
6095 ipw_set_scan_type(scan, channel_index,
6096 geo->a[i].
6097 flags & IEEE80211_CH_PASSIVE_ONLY ?
6098 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6099 scan_type);
6102 if (start != channel_index) {
6103 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6104 (channel_index - start);
6105 channel_index++;
6109 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6110 int start = channel_index;
6111 if (priv->config & CFG_SPEED_SCAN) {
6112 int index;
6113 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6114 /* nop out the list */
6115 [0] = 0
6118 u8 channel;
6119 while (channel_index < IPW_SCAN_CHANNELS) {
6120 channel =
6121 priv->speed_scan[priv->speed_scan_pos];
6122 if (channel == 0) {
6123 priv->speed_scan_pos = 0;
6124 channel = priv->speed_scan[0];
6126 if ((priv->status & STATUS_ASSOCIATED) &&
6127 channel == priv->channel) {
6128 priv->speed_scan_pos++;
6129 continue;
6132 /* If this channel has already been
6133 * added in scan, break from loop
6134 * and this will be the first channel
6135 * in the next scan.
6137 if (channels[channel - 1] != 0)
6138 break;
6140 channels[channel - 1] = 1;
6141 priv->speed_scan_pos++;
6142 channel_index++;
6143 scan->channels_list[channel_index] = channel;
6144 index =
6145 ieee80211_channel_to_index(priv->ieee, channel);
6146 ipw_set_scan_type(scan, channel_index,
6147 geo->bg[index].
6148 flags &
6149 IEEE80211_CH_PASSIVE_ONLY ?
6150 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6151 : scan_type);
6153 } else {
6154 for (i = 0; i < geo->bg_channels; i++) {
6155 if ((priv->status & STATUS_ASSOCIATED) &&
6156 geo->bg[i].channel == priv->channel)
6157 continue;
6158 channel_index++;
6159 scan->channels_list[channel_index] =
6160 geo->bg[i].channel;
6161 ipw_set_scan_type(scan, channel_index,
6162 geo->bg[i].
6163 flags &
6164 IEEE80211_CH_PASSIVE_ONLY ?
6165 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6166 : scan_type);
6170 if (start != channel_index) {
6171 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6172 (channel_index - start);
6177 static int ipw_request_scan(struct ipw_priv *priv)
6179 struct ipw_scan_request_ext scan;
6180 int err = 0, scan_type;
6182 if (!(priv->status & STATUS_INIT) ||
6183 (priv->status & STATUS_EXIT_PENDING))
6184 return 0;
6186 mutex_lock(&priv->mutex);
6188 if (priv->status & STATUS_SCANNING) {
6189 IPW_DEBUG_HC("Concurrent scan requested. Ignoring.\n");
6190 priv->status |= STATUS_SCAN_PENDING;
6191 goto done;
6194 if (!(priv->status & STATUS_SCAN_FORCED) &&
6195 priv->status & STATUS_SCAN_ABORTING) {
6196 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6197 priv->status |= STATUS_SCAN_PENDING;
6198 goto done;
6201 if (priv->status & STATUS_RF_KILL_MASK) {
6202 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6203 priv->status |= STATUS_SCAN_PENDING;
6204 goto done;
6207 memset(&scan, 0, sizeof(scan));
6209 if (priv->config & CFG_SPEED_SCAN)
6210 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6211 cpu_to_le16(30);
6212 else
6213 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6214 cpu_to_le16(20);
6216 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6217 cpu_to_le16(20);
6218 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6220 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6222 #ifdef CONFIG_IPW2200_MONITOR
6223 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6224 u8 channel;
6225 u8 band = 0;
6227 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6228 case IEEE80211_52GHZ_BAND:
6229 band = (u8) (IPW_A_MODE << 6) | 1;
6230 channel = priv->channel;
6231 break;
6233 case IEEE80211_24GHZ_BAND:
6234 band = (u8) (IPW_B_MODE << 6) | 1;
6235 channel = priv->channel;
6236 break;
6238 default:
6239 band = (u8) (IPW_B_MODE << 6) | 1;
6240 channel = 9;
6241 break;
6244 scan.channels_list[0] = band;
6245 scan.channels_list[1] = channel;
6246 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6248 /* NOTE: The card will sit on this channel for this time
6249 * period. Scan aborts are timing sensitive and frequently
6250 * result in firmware restarts. As such, it is best to
6251 * set a small dwell_time here and just keep re-issuing
6252 * scans. Otherwise fast channel hopping will not actually
6253 * hop channels.
6255 * TODO: Move SPEED SCAN support to all modes and bands */
6256 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6257 cpu_to_le16(2000);
6258 } else {
6259 #endif /* CONFIG_IPW2200_MONITOR */
6260 /* If we are roaming, then make this a directed scan for the
6261 * current network. Otherwise, ensure that every other scan
6262 * is a fast channel hop scan */
6263 if ((priv->status & STATUS_ROAMING)
6264 || (!(priv->status & STATUS_ASSOCIATED)
6265 && (priv->config & CFG_STATIC_ESSID)
6266 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6267 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6268 if (err) {
6269 IPW_DEBUG_HC("Attempt to send SSID command "
6270 "failed.\n");
6271 goto done;
6274 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6275 } else
6276 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6278 ipw_add_scan_channels(priv, &scan, scan_type);
6279 #ifdef CONFIG_IPW2200_MONITOR
6281 #endif
6283 err = ipw_send_scan_request_ext(priv, &scan);
6284 if (err) {
6285 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6286 goto done;
6289 priv->status |= STATUS_SCANNING;
6290 priv->status &= ~STATUS_SCAN_PENDING;
6291 queue_delayed_work(priv->workqueue, &priv->scan_check,
6292 IPW_SCAN_CHECK_WATCHDOG);
6293 done:
6294 mutex_unlock(&priv->mutex);
6295 return err;
6298 static void ipw_bg_abort_scan(void *data)
6300 struct ipw_priv *priv = data;
6301 mutex_lock(&priv->mutex);
6302 ipw_abort_scan(data);
6303 mutex_unlock(&priv->mutex);
6306 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6308 /* This is called when wpa_supplicant loads and closes the driver
6309 * interface. */
6310 priv->ieee->wpa_enabled = value;
6311 return 0;
6314 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6316 struct ieee80211_device *ieee = priv->ieee;
6317 struct ieee80211_security sec = {
6318 .flags = SEC_AUTH_MODE,
6320 int ret = 0;
6322 if (value & IW_AUTH_ALG_SHARED_KEY) {
6323 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6324 ieee->open_wep = 0;
6325 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6326 sec.auth_mode = WLAN_AUTH_OPEN;
6327 ieee->open_wep = 1;
6328 } else if (value & IW_AUTH_ALG_LEAP) {
6329 sec.auth_mode = WLAN_AUTH_LEAP;
6330 ieee->open_wep = 1;
6331 } else
6332 return -EINVAL;
6334 if (ieee->set_security)
6335 ieee->set_security(ieee->dev, &sec);
6336 else
6337 ret = -EOPNOTSUPP;
6339 return ret;
6342 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6343 int wpa_ie_len)
6345 /* make sure WPA is enabled */
6346 ipw_wpa_enable(priv, 1);
6348 ipw_disassociate(priv);
6351 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6352 char *capabilities, int length)
6354 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6356 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6357 capabilities);
6361 * WE-18 support
6364 /* SIOCSIWGENIE */
6365 static int ipw_wx_set_genie(struct net_device *dev,
6366 struct iw_request_info *info,
6367 union iwreq_data *wrqu, char *extra)
6369 struct ipw_priv *priv = ieee80211_priv(dev);
6370 struct ieee80211_device *ieee = priv->ieee;
6371 u8 *buf;
6372 int err = 0;
6374 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6375 (wrqu->data.length && extra == NULL))
6376 return -EINVAL;
6378 //mutex_lock(&priv->mutex);
6380 //if (!ieee->wpa_enabled) {
6381 // err = -EOPNOTSUPP;
6382 // goto out;
6385 if (wrqu->data.length) {
6386 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6387 if (buf == NULL) {
6388 err = -ENOMEM;
6389 goto out;
6392 memcpy(buf, extra, wrqu->data.length);
6393 kfree(ieee->wpa_ie);
6394 ieee->wpa_ie = buf;
6395 ieee->wpa_ie_len = wrqu->data.length;
6396 } else {
6397 kfree(ieee->wpa_ie);
6398 ieee->wpa_ie = NULL;
6399 ieee->wpa_ie_len = 0;
6402 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6403 out:
6404 //mutex_unlock(&priv->mutex);
6405 return err;
6408 /* SIOCGIWGENIE */
6409 static int ipw_wx_get_genie(struct net_device *dev,
6410 struct iw_request_info *info,
6411 union iwreq_data *wrqu, char *extra)
6413 struct ipw_priv *priv = ieee80211_priv(dev);
6414 struct ieee80211_device *ieee = priv->ieee;
6415 int err = 0;
6417 //mutex_lock(&priv->mutex);
6419 //if (!ieee->wpa_enabled) {
6420 // err = -EOPNOTSUPP;
6421 // goto out;
6424 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6425 wrqu->data.length = 0;
6426 goto out;
6429 if (wrqu->data.length < ieee->wpa_ie_len) {
6430 err = -E2BIG;
6431 goto out;
6434 wrqu->data.length = ieee->wpa_ie_len;
6435 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6437 out:
6438 //mutex_unlock(&priv->mutex);
6439 return err;
6442 static int wext_cipher2level(int cipher)
6444 switch (cipher) {
6445 case IW_AUTH_CIPHER_NONE:
6446 return SEC_LEVEL_0;
6447 case IW_AUTH_CIPHER_WEP40:
6448 case IW_AUTH_CIPHER_WEP104:
6449 return SEC_LEVEL_1;
6450 case IW_AUTH_CIPHER_TKIP:
6451 return SEC_LEVEL_2;
6452 case IW_AUTH_CIPHER_CCMP:
6453 return SEC_LEVEL_3;
6454 default:
6455 return -1;
6459 /* SIOCSIWAUTH */
6460 static int ipw_wx_set_auth(struct net_device *dev,
6461 struct iw_request_info *info,
6462 union iwreq_data *wrqu, char *extra)
6464 struct ipw_priv *priv = ieee80211_priv(dev);
6465 struct ieee80211_device *ieee = priv->ieee;
6466 struct iw_param *param = &wrqu->param;
6467 struct ieee80211_crypt_data *crypt;
6468 unsigned long flags;
6469 int ret = 0;
6471 switch (param->flags & IW_AUTH_INDEX) {
6472 case IW_AUTH_WPA_VERSION:
6473 break;
6474 case IW_AUTH_CIPHER_PAIRWISE:
6475 ipw_set_hw_decrypt_unicast(priv,
6476 wext_cipher2level(param->value));
6477 break;
6478 case IW_AUTH_CIPHER_GROUP:
6479 ipw_set_hw_decrypt_multicast(priv,
6480 wext_cipher2level(param->value));
6481 break;
6482 case IW_AUTH_KEY_MGMT:
6484 * ipw2200 does not use these parameters
6486 break;
6488 case IW_AUTH_TKIP_COUNTERMEASURES:
6489 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6490 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6491 break;
6493 flags = crypt->ops->get_flags(crypt->priv);
6495 if (param->value)
6496 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6497 else
6498 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6500 crypt->ops->set_flags(flags, crypt->priv);
6502 break;
6504 case IW_AUTH_DROP_UNENCRYPTED:{
6505 /* HACK:
6507 * wpa_supplicant calls set_wpa_enabled when the driver
6508 * is loaded and unloaded, regardless of if WPA is being
6509 * used. No other calls are made which can be used to
6510 * determine if encryption will be used or not prior to
6511 * association being expected. If encryption is not being
6512 * used, drop_unencrypted is set to false, else true -- we
6513 * can use this to determine if the CAP_PRIVACY_ON bit should
6514 * be set.
6516 struct ieee80211_security sec = {
6517 .flags = SEC_ENABLED,
6518 .enabled = param->value,
6520 priv->ieee->drop_unencrypted = param->value;
6521 /* We only change SEC_LEVEL for open mode. Others
6522 * are set by ipw_wpa_set_encryption.
6524 if (!param->value) {
6525 sec.flags |= SEC_LEVEL;
6526 sec.level = SEC_LEVEL_0;
6527 } else {
6528 sec.flags |= SEC_LEVEL;
6529 sec.level = SEC_LEVEL_1;
6531 if (priv->ieee->set_security)
6532 priv->ieee->set_security(priv->ieee->dev, &sec);
6533 break;
6536 case IW_AUTH_80211_AUTH_ALG:
6537 ret = ipw_wpa_set_auth_algs(priv, param->value);
6538 break;
6540 case IW_AUTH_WPA_ENABLED:
6541 ret = ipw_wpa_enable(priv, param->value);
6542 break;
6544 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6545 ieee->ieee802_1x = param->value;
6546 break;
6548 //case IW_AUTH_ROAMING_CONTROL:
6549 case IW_AUTH_PRIVACY_INVOKED:
6550 ieee->privacy_invoked = param->value;
6551 break;
6553 default:
6554 return -EOPNOTSUPP;
6556 return ret;
6559 /* SIOCGIWAUTH */
6560 static int ipw_wx_get_auth(struct net_device *dev,
6561 struct iw_request_info *info,
6562 union iwreq_data *wrqu, char *extra)
6564 struct ipw_priv *priv = ieee80211_priv(dev);
6565 struct ieee80211_device *ieee = priv->ieee;
6566 struct ieee80211_crypt_data *crypt;
6567 struct iw_param *param = &wrqu->param;
6568 int ret = 0;
6570 switch (param->flags & IW_AUTH_INDEX) {
6571 case IW_AUTH_WPA_VERSION:
6572 case IW_AUTH_CIPHER_PAIRWISE:
6573 case IW_AUTH_CIPHER_GROUP:
6574 case IW_AUTH_KEY_MGMT:
6576 * wpa_supplicant will control these internally
6578 ret = -EOPNOTSUPP;
6579 break;
6581 case IW_AUTH_TKIP_COUNTERMEASURES:
6582 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6583 if (!crypt || !crypt->ops->get_flags)
6584 break;
6586 param->value = (crypt->ops->get_flags(crypt->priv) &
6587 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6589 break;
6591 case IW_AUTH_DROP_UNENCRYPTED:
6592 param->value = ieee->drop_unencrypted;
6593 break;
6595 case IW_AUTH_80211_AUTH_ALG:
6596 param->value = ieee->sec.auth_mode;
6597 break;
6599 case IW_AUTH_WPA_ENABLED:
6600 param->value = ieee->wpa_enabled;
6601 break;
6603 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6604 param->value = ieee->ieee802_1x;
6605 break;
6607 case IW_AUTH_ROAMING_CONTROL:
6608 case IW_AUTH_PRIVACY_INVOKED:
6609 param->value = ieee->privacy_invoked;
6610 break;
6612 default:
6613 return -EOPNOTSUPP;
6615 return 0;
6618 /* SIOCSIWENCODEEXT */
6619 static int ipw_wx_set_encodeext(struct net_device *dev,
6620 struct iw_request_info *info,
6621 union iwreq_data *wrqu, char *extra)
6623 struct ipw_priv *priv = ieee80211_priv(dev);
6624 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6626 if (hwcrypto) {
6627 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6628 /* IPW HW can't build TKIP MIC,
6629 host decryption still needed */
6630 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6631 priv->ieee->host_mc_decrypt = 1;
6632 else {
6633 priv->ieee->host_encrypt = 0;
6634 priv->ieee->host_encrypt_msdu = 1;
6635 priv->ieee->host_decrypt = 1;
6637 } else {
6638 priv->ieee->host_encrypt = 0;
6639 priv->ieee->host_encrypt_msdu = 0;
6640 priv->ieee->host_decrypt = 0;
6641 priv->ieee->host_mc_decrypt = 0;
6645 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6648 /* SIOCGIWENCODEEXT */
6649 static int ipw_wx_get_encodeext(struct net_device *dev,
6650 struct iw_request_info *info,
6651 union iwreq_data *wrqu, char *extra)
6653 struct ipw_priv *priv = ieee80211_priv(dev);
6654 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6657 /* SIOCSIWMLME */
6658 static int ipw_wx_set_mlme(struct net_device *dev,
6659 struct iw_request_info *info,
6660 union iwreq_data *wrqu, char *extra)
6662 struct ipw_priv *priv = ieee80211_priv(dev);
6663 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6664 u16 reason;
6666 reason = cpu_to_le16(mlme->reason_code);
6668 switch (mlme->cmd) {
6669 case IW_MLME_DEAUTH:
6670 // silently ignore
6671 break;
6673 case IW_MLME_DISASSOC:
6674 ipw_disassociate(priv);
6675 break;
6677 default:
6678 return -EOPNOTSUPP;
6680 return 0;
6683 #ifdef CONFIG_IPW_QOS
6685 /* QoS */
6687 * get the modulation type of the current network or
6688 * the card current mode
6690 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6692 u8 mode = 0;
6694 if (priv->status & STATUS_ASSOCIATED) {
6695 unsigned long flags;
6697 spin_lock_irqsave(&priv->ieee->lock, flags);
6698 mode = priv->assoc_network->mode;
6699 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6700 } else {
6701 mode = priv->ieee->mode;
6703 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6704 return mode;
6708 * Handle management frame beacon and probe response
6710 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6711 int active_network,
6712 struct ieee80211_network *network)
6714 u32 size = sizeof(struct ieee80211_qos_parameters);
6716 if (network->capability & WLAN_CAPABILITY_IBSS)
6717 network->qos_data.active = network->qos_data.supported;
6719 if (network->flags & NETWORK_HAS_QOS_MASK) {
6720 if (active_network &&
6721 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6722 network->qos_data.active = network->qos_data.supported;
6724 if ((network->qos_data.active == 1) && (active_network == 1) &&
6725 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6726 (network->qos_data.old_param_count !=
6727 network->qos_data.param_count)) {
6728 network->qos_data.old_param_count =
6729 network->qos_data.param_count;
6730 schedule_work(&priv->qos_activate);
6731 IPW_DEBUG_QOS("QoS parameters change call "
6732 "qos_activate\n");
6734 } else {
6735 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6736 memcpy(&network->qos_data.parameters,
6737 &def_parameters_CCK, size);
6738 else
6739 memcpy(&network->qos_data.parameters,
6740 &def_parameters_OFDM, size);
6742 if ((network->qos_data.active == 1) && (active_network == 1)) {
6743 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6744 schedule_work(&priv->qos_activate);
6747 network->qos_data.active = 0;
6748 network->qos_data.supported = 0;
6750 if ((priv->status & STATUS_ASSOCIATED) &&
6751 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6752 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6753 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6754 !(network->flags & NETWORK_EMPTY_ESSID))
6755 if ((network->ssid_len ==
6756 priv->assoc_network->ssid_len) &&
6757 !memcmp(network->ssid,
6758 priv->assoc_network->ssid,
6759 network->ssid_len)) {
6760 queue_work(priv->workqueue,
6761 &priv->merge_networks);
6765 return 0;
6769 * This function set up the firmware to support QoS. It sends
6770 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6772 static int ipw_qos_activate(struct ipw_priv *priv,
6773 struct ieee80211_qos_data *qos_network_data)
6775 int err;
6776 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6777 struct ieee80211_qos_parameters *active_one = NULL;
6778 u32 size = sizeof(struct ieee80211_qos_parameters);
6779 u32 burst_duration;
6780 int i;
6781 u8 type;
6783 type = ipw_qos_current_mode(priv);
6785 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6786 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6787 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6788 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6790 if (qos_network_data == NULL) {
6791 if (type == IEEE_B) {
6792 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6793 active_one = &def_parameters_CCK;
6794 } else
6795 active_one = &def_parameters_OFDM;
6797 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6798 burst_duration = ipw_qos_get_burst_duration(priv);
6799 for (i = 0; i < QOS_QUEUE_NUM; i++)
6800 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6801 (u16) burst_duration;
6802 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6803 if (type == IEEE_B) {
6804 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6805 type);
6806 if (priv->qos_data.qos_enable == 0)
6807 active_one = &def_parameters_CCK;
6808 else
6809 active_one = priv->qos_data.def_qos_parm_CCK;
6810 } else {
6811 if (priv->qos_data.qos_enable == 0)
6812 active_one = &def_parameters_OFDM;
6813 else
6814 active_one = priv->qos_data.def_qos_parm_OFDM;
6816 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6817 } else {
6818 unsigned long flags;
6819 int active;
6821 spin_lock_irqsave(&priv->ieee->lock, flags);
6822 active_one = &(qos_network_data->parameters);
6823 qos_network_data->old_param_count =
6824 qos_network_data->param_count;
6825 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6826 active = qos_network_data->supported;
6827 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6829 if (active == 0) {
6830 burst_duration = ipw_qos_get_burst_duration(priv);
6831 for (i = 0; i < QOS_QUEUE_NUM; i++)
6832 qos_parameters[QOS_PARAM_SET_ACTIVE].
6833 tx_op_limit[i] = (u16) burst_duration;
6837 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6838 err = ipw_send_qos_params_command(priv,
6839 (struct ieee80211_qos_parameters *)
6840 &(qos_parameters[0]));
6841 if (err)
6842 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6844 return err;
6848 * send IPW_CMD_WME_INFO to the firmware
6850 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6852 int ret = 0;
6853 struct ieee80211_qos_information_element qos_info;
6855 if (priv == NULL)
6856 return -1;
6858 qos_info.elementID = QOS_ELEMENT_ID;
6859 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6861 qos_info.version = QOS_VERSION_1;
6862 qos_info.ac_info = 0;
6864 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6865 qos_info.qui_type = QOS_OUI_TYPE;
6866 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6868 ret = ipw_send_qos_info_command(priv, &qos_info);
6869 if (ret != 0) {
6870 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6872 return ret;
6876 * Set the QoS parameter with the association request structure
6878 static int ipw_qos_association(struct ipw_priv *priv,
6879 struct ieee80211_network *network)
6881 int err = 0;
6882 struct ieee80211_qos_data *qos_data = NULL;
6883 struct ieee80211_qos_data ibss_data = {
6884 .supported = 1,
6885 .active = 1,
6888 switch (priv->ieee->iw_mode) {
6889 case IW_MODE_ADHOC:
6890 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6892 qos_data = &ibss_data;
6893 break;
6895 case IW_MODE_INFRA:
6896 qos_data = &network->qos_data;
6897 break;
6899 default:
6900 BUG();
6901 break;
6904 err = ipw_qos_activate(priv, qos_data);
6905 if (err) {
6906 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6907 return err;
6910 if (priv->qos_data.qos_enable && qos_data->supported) {
6911 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6912 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6913 return ipw_qos_set_info_element(priv);
6916 return 0;
6920 * handling the beaconing responces. if we get different QoS setting
6921 * of the network from the the associated setting adjust the QoS
6922 * setting
6924 static int ipw_qos_association_resp(struct ipw_priv *priv,
6925 struct ieee80211_network *network)
6927 int ret = 0;
6928 unsigned long flags;
6929 u32 size = sizeof(struct ieee80211_qos_parameters);
6930 int set_qos_param = 0;
6932 if ((priv == NULL) || (network == NULL) ||
6933 (priv->assoc_network == NULL))
6934 return ret;
6936 if (!(priv->status & STATUS_ASSOCIATED))
6937 return ret;
6939 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6940 return ret;
6942 spin_lock_irqsave(&priv->ieee->lock, flags);
6943 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6944 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6945 sizeof(struct ieee80211_qos_data));
6946 priv->assoc_network->qos_data.active = 1;
6947 if ((network->qos_data.old_param_count !=
6948 network->qos_data.param_count)) {
6949 set_qos_param = 1;
6950 network->qos_data.old_param_count =
6951 network->qos_data.param_count;
6954 } else {
6955 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6956 memcpy(&priv->assoc_network->qos_data.parameters,
6957 &def_parameters_CCK, size);
6958 else
6959 memcpy(&priv->assoc_network->qos_data.parameters,
6960 &def_parameters_OFDM, size);
6961 priv->assoc_network->qos_data.active = 0;
6962 priv->assoc_network->qos_data.supported = 0;
6963 set_qos_param = 1;
6966 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6968 if (set_qos_param == 1)
6969 schedule_work(&priv->qos_activate);
6971 return ret;
6974 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6976 u32 ret = 0;
6978 if ((priv == NULL))
6979 return 0;
6981 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6982 ret = priv->qos_data.burst_duration_CCK;
6983 else
6984 ret = priv->qos_data.burst_duration_OFDM;
6986 return ret;
6990 * Initialize the setting of QoS global
6992 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6993 int burst_enable, u32 burst_duration_CCK,
6994 u32 burst_duration_OFDM)
6996 priv->qos_data.qos_enable = enable;
6998 if (priv->qos_data.qos_enable) {
6999 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7000 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7001 IPW_DEBUG_QOS("QoS is enabled\n");
7002 } else {
7003 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7004 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7005 IPW_DEBUG_QOS("QoS is not enabled\n");
7008 priv->qos_data.burst_enable = burst_enable;
7010 if (burst_enable) {
7011 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7012 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7013 } else {
7014 priv->qos_data.burst_duration_CCK = 0;
7015 priv->qos_data.burst_duration_OFDM = 0;
7020 * map the packet priority to the right TX Queue
7022 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7024 if (priority > 7 || !priv->qos_data.qos_enable)
7025 priority = 0;
7027 return from_priority_to_tx_queue[priority] - 1;
7030 static int ipw_is_qos_active(struct net_device *dev,
7031 struct sk_buff *skb)
7033 struct ipw_priv *priv = ieee80211_priv(dev);
7034 struct ieee80211_qos_data *qos_data = NULL;
7035 int active, supported;
7036 u8 *daddr = skb->data + ETH_ALEN;
7037 int unicast = !is_multicast_ether_addr(daddr);
7039 if (!(priv->status & STATUS_ASSOCIATED))
7040 return 0;
7042 qos_data = &priv->assoc_network->qos_data;
7044 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7045 if (unicast == 0)
7046 qos_data->active = 0;
7047 else
7048 qos_data->active = qos_data->supported;
7050 active = qos_data->active;
7051 supported = qos_data->supported;
7052 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7053 "unicast %d\n",
7054 priv->qos_data.qos_enable, active, supported, unicast);
7055 if (active && priv->qos_data.qos_enable)
7056 return 1;
7058 return 0;
7062 * add QoS parameter to the TX command
7064 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7065 u16 priority,
7066 struct tfd_data *tfd)
7068 int tx_queue_id = 0;
7071 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7072 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7074 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7075 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7076 tfd->tfd.tfd_26.mchdr.qos_ctrl |= CTRL_QOS_NO_ACK;
7078 return 0;
7082 * background support to run QoS activate functionality
7084 static void ipw_bg_qos_activate(void *data)
7086 struct ipw_priv *priv = data;
7088 if (priv == NULL)
7089 return;
7091 mutex_lock(&priv->mutex);
7093 if (priv->status & STATUS_ASSOCIATED)
7094 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7096 mutex_unlock(&priv->mutex);
7099 static int ipw_handle_probe_response(struct net_device *dev,
7100 struct ieee80211_probe_response *resp,
7101 struct ieee80211_network *network)
7103 struct ipw_priv *priv = ieee80211_priv(dev);
7104 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7105 (network == priv->assoc_network));
7107 ipw_qos_handle_probe_response(priv, active_network, network);
7109 return 0;
7112 static int ipw_handle_beacon(struct net_device *dev,
7113 struct ieee80211_beacon *resp,
7114 struct ieee80211_network *network)
7116 struct ipw_priv *priv = ieee80211_priv(dev);
7117 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7118 (network == priv->assoc_network));
7120 ipw_qos_handle_probe_response(priv, active_network, network);
7122 return 0;
7125 static int ipw_handle_assoc_response(struct net_device *dev,
7126 struct ieee80211_assoc_response *resp,
7127 struct ieee80211_network *network)
7129 struct ipw_priv *priv = ieee80211_priv(dev);
7130 ipw_qos_association_resp(priv, network);
7131 return 0;
7134 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7135 *qos_param)
7137 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7138 sizeof(*qos_param) * 3, qos_param);
7141 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7142 *qos_param)
7144 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7145 qos_param);
7148 #endif /* CONFIG_IPW_QOS */
7150 static int ipw_associate_network(struct ipw_priv *priv,
7151 struct ieee80211_network *network,
7152 struct ipw_supported_rates *rates, int roaming)
7154 int err;
7156 if (priv->config & CFG_FIXED_RATE)
7157 ipw_set_fixed_rate(priv, network->mode);
7159 if (!(priv->config & CFG_STATIC_ESSID)) {
7160 priv->essid_len = min(network->ssid_len,
7161 (u8) IW_ESSID_MAX_SIZE);
7162 memcpy(priv->essid, network->ssid, priv->essid_len);
7165 network->last_associate = jiffies;
7167 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7168 priv->assoc_request.channel = network->channel;
7169 priv->assoc_request.auth_key = 0;
7171 if ((priv->capability & CAP_PRIVACY_ON) &&
7172 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7173 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7174 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7176 if (priv->ieee->sec.level == SEC_LEVEL_1)
7177 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7179 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7180 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7181 priv->assoc_request.auth_type = AUTH_LEAP;
7182 else
7183 priv->assoc_request.auth_type = AUTH_OPEN;
7185 if (priv->ieee->wpa_ie_len) {
7186 priv->assoc_request.policy_support = 0x02; /* RSN active */
7187 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7188 priv->ieee->wpa_ie_len);
7192 * It is valid for our ieee device to support multiple modes, but
7193 * when it comes to associating to a given network we have to choose
7194 * just one mode.
7196 if (network->mode & priv->ieee->mode & IEEE_A)
7197 priv->assoc_request.ieee_mode = IPW_A_MODE;
7198 else if (network->mode & priv->ieee->mode & IEEE_G)
7199 priv->assoc_request.ieee_mode = IPW_G_MODE;
7200 else if (network->mode & priv->ieee->mode & IEEE_B)
7201 priv->assoc_request.ieee_mode = IPW_B_MODE;
7203 priv->assoc_request.capability = network->capability;
7204 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7205 && !(priv->config & CFG_PREAMBLE_LONG)) {
7206 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7207 } else {
7208 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7210 /* Clear the short preamble if we won't be supporting it */
7211 priv->assoc_request.capability &=
7212 ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7215 /* Clear capability bits that aren't used in Ad Hoc */
7216 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7217 priv->assoc_request.capability &=
7218 ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7220 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7221 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7222 roaming ? "Rea" : "A",
7223 escape_essid(priv->essid, priv->essid_len),
7224 network->channel,
7225 ipw_modes[priv->assoc_request.ieee_mode],
7226 rates->num_rates,
7227 (priv->assoc_request.preamble_length ==
7228 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7229 network->capability &
7230 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7231 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7232 priv->capability & CAP_PRIVACY_ON ?
7233 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7234 "(open)") : "",
7235 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7236 priv->capability & CAP_PRIVACY_ON ?
7237 '1' + priv->ieee->sec.active_key : '.',
7238 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7240 priv->assoc_request.beacon_interval = network->beacon_interval;
7241 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7242 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7243 priv->assoc_request.assoc_type = HC_IBSS_START;
7244 priv->assoc_request.assoc_tsf_msw = 0;
7245 priv->assoc_request.assoc_tsf_lsw = 0;
7246 } else {
7247 if (unlikely(roaming))
7248 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7249 else
7250 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7251 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7252 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7255 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7257 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7258 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7259 priv->assoc_request.atim_window = network->atim_window;
7260 } else {
7261 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7262 priv->assoc_request.atim_window = 0;
7265 priv->assoc_request.listen_interval = network->listen_interval;
7267 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7268 if (err) {
7269 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7270 return err;
7273 rates->ieee_mode = priv->assoc_request.ieee_mode;
7274 rates->purpose = IPW_RATE_CONNECT;
7275 ipw_send_supported_rates(priv, rates);
7277 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7278 priv->sys_config.dot11g_auto_detection = 1;
7279 else
7280 priv->sys_config.dot11g_auto_detection = 0;
7282 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7283 priv->sys_config.answer_broadcast_ssid_probe = 1;
7284 else
7285 priv->sys_config.answer_broadcast_ssid_probe = 0;
7287 err = ipw_send_system_config(priv);
7288 if (err) {
7289 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7290 return err;
7293 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7294 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7295 if (err) {
7296 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7297 return err;
7301 * If preemption is enabled, it is possible for the association
7302 * to complete before we return from ipw_send_associate. Therefore
7303 * we have to be sure and update our priviate data first.
7305 priv->channel = network->channel;
7306 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7307 priv->status |= STATUS_ASSOCIATING;
7308 priv->status &= ~STATUS_SECURITY_UPDATED;
7310 priv->assoc_network = network;
7312 #ifdef CONFIG_IPW_QOS
7313 ipw_qos_association(priv, network);
7314 #endif
7316 err = ipw_send_associate(priv, &priv->assoc_request);
7317 if (err) {
7318 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7319 return err;
7322 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7323 escape_essid(priv->essid, priv->essid_len),
7324 MAC_ARG(priv->bssid));
7326 return 0;
7329 static void ipw_roam(void *data)
7331 struct ipw_priv *priv = data;
7332 struct ieee80211_network *network = NULL;
7333 struct ipw_network_match match = {
7334 .network = priv->assoc_network
7337 /* The roaming process is as follows:
7339 * 1. Missed beacon threshold triggers the roaming process by
7340 * setting the status ROAM bit and requesting a scan.
7341 * 2. When the scan completes, it schedules the ROAM work
7342 * 3. The ROAM work looks at all of the known networks for one that
7343 * is a better network than the currently associated. If none
7344 * found, the ROAM process is over (ROAM bit cleared)
7345 * 4. If a better network is found, a disassociation request is
7346 * sent.
7347 * 5. When the disassociation completes, the roam work is again
7348 * scheduled. The second time through, the driver is no longer
7349 * associated, and the newly selected network is sent an
7350 * association request.
7351 * 6. At this point ,the roaming process is complete and the ROAM
7352 * status bit is cleared.
7355 /* If we are no longer associated, and the roaming bit is no longer
7356 * set, then we are not actively roaming, so just return */
7357 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7358 return;
7360 if (priv->status & STATUS_ASSOCIATED) {
7361 /* First pass through ROAM process -- look for a better
7362 * network */
7363 unsigned long flags;
7364 u8 rssi = priv->assoc_network->stats.rssi;
7365 priv->assoc_network->stats.rssi = -128;
7366 spin_lock_irqsave(&priv->ieee->lock, flags);
7367 list_for_each_entry(network, &priv->ieee->network_list, list) {
7368 if (network != priv->assoc_network)
7369 ipw_best_network(priv, &match, network, 1);
7371 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7372 priv->assoc_network->stats.rssi = rssi;
7374 if (match.network == priv->assoc_network) {
7375 IPW_DEBUG_ASSOC("No better APs in this network to "
7376 "roam to.\n");
7377 priv->status &= ~STATUS_ROAMING;
7378 ipw_debug_config(priv);
7379 return;
7382 ipw_send_disassociate(priv, 1);
7383 priv->assoc_network = match.network;
7385 return;
7388 /* Second pass through ROAM process -- request association */
7389 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7390 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7391 priv->status &= ~STATUS_ROAMING;
7394 static void ipw_bg_roam(void *data)
7396 struct ipw_priv *priv = data;
7397 mutex_lock(&priv->mutex);
7398 ipw_roam(data);
7399 mutex_unlock(&priv->mutex);
7402 static int ipw_associate(void *data)
7404 struct ipw_priv *priv = data;
7406 struct ieee80211_network *network = NULL;
7407 struct ipw_network_match match = {
7408 .network = NULL
7410 struct ipw_supported_rates *rates;
7411 struct list_head *element;
7412 unsigned long flags;
7414 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7415 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7416 return 0;
7419 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7420 IPW_DEBUG_ASSOC("Not attempting association (already in "
7421 "progress)\n");
7422 return 0;
7425 if (priv->status & STATUS_DISASSOCIATING) {
7426 IPW_DEBUG_ASSOC("Not attempting association (in "
7427 "disassociating)\n ");
7428 queue_work(priv->workqueue, &priv->associate);
7429 return 0;
7432 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7433 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7434 "initialized)\n");
7435 return 0;
7438 if (!(priv->config & CFG_ASSOCIATE) &&
7439 !(priv->config & (CFG_STATIC_ESSID |
7440 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7441 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7442 return 0;
7445 /* Protect our use of the network_list */
7446 spin_lock_irqsave(&priv->ieee->lock, flags);
7447 list_for_each_entry(network, &priv->ieee->network_list, list)
7448 ipw_best_network(priv, &match, network, 0);
7450 network = match.network;
7451 rates = &match.rates;
7453 if (network == NULL &&
7454 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7455 priv->config & CFG_ADHOC_CREATE &&
7456 priv->config & CFG_STATIC_ESSID &&
7457 priv->config & CFG_STATIC_CHANNEL &&
7458 !list_empty(&priv->ieee->network_free_list)) {
7459 element = priv->ieee->network_free_list.next;
7460 network = list_entry(element, struct ieee80211_network, list);
7461 ipw_adhoc_create(priv, network);
7462 rates = &priv->rates;
7463 list_del(element);
7464 list_add_tail(&network->list, &priv->ieee->network_list);
7466 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7468 /* If we reached the end of the list, then we don't have any valid
7469 * matching APs */
7470 if (!network) {
7471 ipw_debug_config(priv);
7473 if (!(priv->status & STATUS_SCANNING)) {
7474 if (!(priv->config & CFG_SPEED_SCAN))
7475 queue_delayed_work(priv->workqueue,
7476 &priv->request_scan,
7477 SCAN_INTERVAL);
7478 else
7479 queue_work(priv->workqueue,
7480 &priv->request_scan);
7483 return 0;
7486 ipw_associate_network(priv, network, rates, 0);
7488 return 1;
7491 static void ipw_bg_associate(void *data)
7493 struct ipw_priv *priv = data;
7494 mutex_lock(&priv->mutex);
7495 ipw_associate(data);
7496 mutex_unlock(&priv->mutex);
7499 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7500 struct sk_buff *skb)
7502 struct ieee80211_hdr *hdr;
7503 u16 fc;
7505 hdr = (struct ieee80211_hdr *)skb->data;
7506 fc = le16_to_cpu(hdr->frame_ctl);
7507 if (!(fc & IEEE80211_FCTL_PROTECTED))
7508 return;
7510 fc &= ~IEEE80211_FCTL_PROTECTED;
7511 hdr->frame_ctl = cpu_to_le16(fc);
7512 switch (priv->ieee->sec.level) {
7513 case SEC_LEVEL_3:
7514 /* Remove CCMP HDR */
7515 memmove(skb->data + IEEE80211_3ADDR_LEN,
7516 skb->data + IEEE80211_3ADDR_LEN + 8,
7517 skb->len - IEEE80211_3ADDR_LEN - 8);
7518 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7519 break;
7520 case SEC_LEVEL_2:
7521 break;
7522 case SEC_LEVEL_1:
7523 /* Remove IV */
7524 memmove(skb->data + IEEE80211_3ADDR_LEN,
7525 skb->data + IEEE80211_3ADDR_LEN + 4,
7526 skb->len - IEEE80211_3ADDR_LEN - 4);
7527 skb_trim(skb, skb->len - 8); /* IV + ICV */
7528 break;
7529 case SEC_LEVEL_0:
7530 break;
7531 default:
7532 printk(KERN_ERR "Unknow security level %d\n",
7533 priv->ieee->sec.level);
7534 break;
7538 static void ipw_handle_data_packet(struct ipw_priv *priv,
7539 struct ipw_rx_mem_buffer *rxb,
7540 struct ieee80211_rx_stats *stats)
7542 struct ieee80211_hdr_4addr *hdr;
7543 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7545 /* We received data from the HW, so stop the watchdog */
7546 priv->net_dev->trans_start = jiffies;
7548 /* We only process data packets if the
7549 * interface is open */
7550 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7551 skb_tailroom(rxb->skb))) {
7552 priv->ieee->stats.rx_errors++;
7553 priv->wstats.discard.misc++;
7554 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7555 return;
7556 } else if (unlikely(!netif_running(priv->net_dev))) {
7557 priv->ieee->stats.rx_dropped++;
7558 priv->wstats.discard.misc++;
7559 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7560 return;
7563 /* Advance skb->data to the start of the actual payload */
7564 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7566 /* Set the size of the skb to the size of the frame */
7567 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7569 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7571 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7572 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7573 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7574 (is_multicast_ether_addr(hdr->addr1) ?
7575 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7576 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7578 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7579 priv->ieee->stats.rx_errors++;
7580 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7581 rxb->skb = NULL;
7582 __ipw_led_activity_on(priv);
7586 #ifdef CONFIG_IEEE80211_RADIOTAP
7587 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7588 struct ipw_rx_mem_buffer *rxb,
7589 struct ieee80211_rx_stats *stats)
7591 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7592 struct ipw_rx_frame *frame = &pkt->u.frame;
7594 /* initial pull of some data */
7595 u16 received_channel = frame->received_channel;
7596 u8 antennaAndPhy = frame->antennaAndPhy;
7597 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7598 u16 pktrate = frame->rate;
7600 /* Magic struct that slots into the radiotap header -- no reason
7601 * to build this manually element by element, we can write it much
7602 * more efficiently than we can parse it. ORDER MATTERS HERE */
7603 struct ipw_rt_hdr *ipw_rt;
7605 short len = le16_to_cpu(pkt->u.frame.length);
7607 /* We received data from the HW, so stop the watchdog */
7608 priv->net_dev->trans_start = jiffies;
7610 /* We only process data packets if the
7611 * interface is open */
7612 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7613 skb_tailroom(rxb->skb))) {
7614 priv->ieee->stats.rx_errors++;
7615 priv->wstats.discard.misc++;
7616 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7617 return;
7618 } else if (unlikely(!netif_running(priv->net_dev))) {
7619 priv->ieee->stats.rx_dropped++;
7620 priv->wstats.discard.misc++;
7621 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7622 return;
7625 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7626 * that now */
7627 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7628 /* FIXME: Should alloc bigger skb instead */
7629 priv->ieee->stats.rx_dropped++;
7630 priv->wstats.discard.misc++;
7631 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7632 return;
7635 /* copy the frame itself */
7636 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7637 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7639 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7640 * part of our real header, saves a little time.
7642 * No longer necessary since we fill in all our data. Purge before merging
7643 * patch officially.
7644 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7645 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7648 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7650 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7651 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7652 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total header+data */
7654 /* Big bitfield of all the fields we provide in radiotap */
7655 ipw_rt->rt_hdr.it_present =
7656 ((1 << IEEE80211_RADIOTAP_FLAGS) |
7657 (1 << IEEE80211_RADIOTAP_TSFT) |
7658 (1 << IEEE80211_RADIOTAP_RATE) |
7659 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7660 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7661 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7662 (1 << IEEE80211_RADIOTAP_ANTENNA));
7664 /* Zero the flags, we'll add to them as we go */
7665 ipw_rt->rt_flags = 0;
7667 /* Convert signal to DBM */
7668 ipw_rt->rt_dbmsignal = antsignal;
7670 /* Convert the channel data and set the flags */
7671 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7672 if (received_channel > 14) { /* 802.11a */
7673 ipw_rt->rt_chbitmask =
7674 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7675 } else if (antennaAndPhy & 32) { /* 802.11b */
7676 ipw_rt->rt_chbitmask =
7677 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7678 } else { /* 802.11g */
7679 ipw_rt->rt_chbitmask =
7680 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7683 /* set the rate in multiples of 500k/s */
7684 switch (pktrate) {
7685 case IPW_TX_RATE_1MB:
7686 ipw_rt->rt_rate = 2;
7687 break;
7688 case IPW_TX_RATE_2MB:
7689 ipw_rt->rt_rate = 4;
7690 break;
7691 case IPW_TX_RATE_5MB:
7692 ipw_rt->rt_rate = 10;
7693 break;
7694 case IPW_TX_RATE_6MB:
7695 ipw_rt->rt_rate = 12;
7696 break;
7697 case IPW_TX_RATE_9MB:
7698 ipw_rt->rt_rate = 18;
7699 break;
7700 case IPW_TX_RATE_11MB:
7701 ipw_rt->rt_rate = 22;
7702 break;
7703 case IPW_TX_RATE_12MB:
7704 ipw_rt->rt_rate = 24;
7705 break;
7706 case IPW_TX_RATE_18MB:
7707 ipw_rt->rt_rate = 36;
7708 break;
7709 case IPW_TX_RATE_24MB:
7710 ipw_rt->rt_rate = 48;
7711 break;
7712 case IPW_TX_RATE_36MB:
7713 ipw_rt->rt_rate = 72;
7714 break;
7715 case IPW_TX_RATE_48MB:
7716 ipw_rt->rt_rate = 96;
7717 break;
7718 case IPW_TX_RATE_54MB:
7719 ipw_rt->rt_rate = 108;
7720 break;
7721 default:
7722 ipw_rt->rt_rate = 0;
7723 break;
7726 /* antenna number */
7727 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7729 /* set the preamble flag if we have it */
7730 if ((antennaAndPhy & 64))
7731 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7733 /* Set the size of the skb to the size of the frame */
7734 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7736 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7738 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7739 priv->ieee->stats.rx_errors++;
7740 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7741 rxb->skb = NULL;
7742 /* no LED during capture */
7745 #endif
7747 #ifdef CONFIG_IPW2200_PROMISCUOUS
7748 #define ieee80211_is_probe_response(fc) \
7749 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7750 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7752 #define ieee80211_is_management(fc) \
7753 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7755 #define ieee80211_is_control(fc) \
7756 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7758 #define ieee80211_is_data(fc) \
7759 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7761 #define ieee80211_is_assoc_request(fc) \
7762 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7764 #define ieee80211_is_reassoc_request(fc) \
7765 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7767 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7768 struct ipw_rx_mem_buffer *rxb,
7769 struct ieee80211_rx_stats *stats)
7771 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7772 struct ipw_rx_frame *frame = &pkt->u.frame;
7773 struct ipw_rt_hdr *ipw_rt;
7775 /* First cache any information we need before we overwrite
7776 * the information provided in the skb from the hardware */
7777 struct ieee80211_hdr *hdr;
7778 u16 channel = frame->received_channel;
7779 u8 phy_flags = frame->antennaAndPhy;
7780 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7781 s8 noise = frame->noise;
7782 u8 rate = frame->rate;
7783 short len = le16_to_cpu(pkt->u.frame.length);
7784 u64 tsf = 0;
7785 struct sk_buff *skb;
7786 int hdr_only = 0;
7787 u16 filter = priv->prom_priv->filter;
7789 /* If the filter is set to not include Rx frames then return */
7790 if (filter & IPW_PROM_NO_RX)
7791 return;
7793 if (!noise)
7794 noise = priv->last_noise;
7796 /* We received data from the HW, so stop the watchdog */
7797 priv->prom_net_dev->trans_start = jiffies;
7799 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7800 priv->prom_priv->ieee->stats.rx_errors++;
7801 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7802 return;
7805 /* We only process data packets if the interface is open */
7806 if (unlikely(!netif_running(priv->prom_net_dev))) {
7807 priv->prom_priv->ieee->stats.rx_dropped++;
7808 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7809 return;
7812 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7813 * that now */
7814 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7815 /* FIXME: Should alloc bigger skb instead */
7816 priv->prom_priv->ieee->stats.rx_dropped++;
7817 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7818 return;
7821 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7822 if (ieee80211_is_management(hdr->frame_ctl)) {
7823 if (filter & IPW_PROM_NO_MGMT)
7824 return;
7825 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7826 hdr_only = 1;
7827 } else if (ieee80211_is_control(hdr->frame_ctl)) {
7828 if (filter & IPW_PROM_NO_CTL)
7829 return;
7830 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7831 hdr_only = 1;
7832 } else if (ieee80211_is_data(hdr->frame_ctl)) {
7833 if (filter & IPW_PROM_NO_DATA)
7834 return;
7835 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7836 hdr_only = 1;
7839 /* Copy the SKB since this is for the promiscuous side */
7840 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7841 if (skb == NULL) {
7842 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7843 return;
7846 /* copy the frame data to write after where the radiotap header goes */
7847 ipw_rt = (void *)skb->data;
7849 if (hdr_only)
7850 len = ieee80211_get_hdrlen(hdr->frame_ctl);
7852 memcpy(ipw_rt->payload, hdr, len);
7854 /* Zero the radiotap static buffer ... We only need to zero the bytes
7855 * NOT part of our real header, saves a little time.
7857 * No longer necessary since we fill in all our data. Purge before
7858 * merging patch officially.
7859 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7860 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7863 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7864 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7865 ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt); /* total header+data */
7867 /* Set the size of the skb to the size of the frame */
7868 skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7870 /* Big bitfield of all the fields we provide in radiotap */
7871 ipw_rt->rt_hdr.it_present =
7872 ((1 << IEEE80211_RADIOTAP_FLAGS) |
7873 (1 << IEEE80211_RADIOTAP_TSFT) |
7874 (1 << IEEE80211_RADIOTAP_RATE) |
7875 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7876 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7877 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7878 (1 << IEEE80211_RADIOTAP_ANTENNA));
7880 /* Zero the flags, we'll add to them as we go */
7881 ipw_rt->rt_flags = 0;
7883 ipw_rt->rt_tsf = tsf;
7885 /* Convert to DBM */
7886 ipw_rt->rt_dbmsignal = signal;
7887 ipw_rt->rt_dbmnoise = noise;
7889 /* Convert the channel data and set the flags */
7890 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7891 if (channel > 14) { /* 802.11a */
7892 ipw_rt->rt_chbitmask =
7893 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7894 } else if (phy_flags & (1 << 5)) { /* 802.11b */
7895 ipw_rt->rt_chbitmask =
7896 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7897 } else { /* 802.11g */
7898 ipw_rt->rt_chbitmask =
7899 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7902 /* set the rate in multiples of 500k/s */
7903 switch (rate) {
7904 case IPW_TX_RATE_1MB:
7905 ipw_rt->rt_rate = 2;
7906 break;
7907 case IPW_TX_RATE_2MB:
7908 ipw_rt->rt_rate = 4;
7909 break;
7910 case IPW_TX_RATE_5MB:
7911 ipw_rt->rt_rate = 10;
7912 break;
7913 case IPW_TX_RATE_6MB:
7914 ipw_rt->rt_rate = 12;
7915 break;
7916 case IPW_TX_RATE_9MB:
7917 ipw_rt->rt_rate = 18;
7918 break;
7919 case IPW_TX_RATE_11MB:
7920 ipw_rt->rt_rate = 22;
7921 break;
7922 case IPW_TX_RATE_12MB:
7923 ipw_rt->rt_rate = 24;
7924 break;
7925 case IPW_TX_RATE_18MB:
7926 ipw_rt->rt_rate = 36;
7927 break;
7928 case IPW_TX_RATE_24MB:
7929 ipw_rt->rt_rate = 48;
7930 break;
7931 case IPW_TX_RATE_36MB:
7932 ipw_rt->rt_rate = 72;
7933 break;
7934 case IPW_TX_RATE_48MB:
7935 ipw_rt->rt_rate = 96;
7936 break;
7937 case IPW_TX_RATE_54MB:
7938 ipw_rt->rt_rate = 108;
7939 break;
7940 default:
7941 ipw_rt->rt_rate = 0;
7942 break;
7945 /* antenna number */
7946 ipw_rt->rt_antenna = (phy_flags & 3);
7948 /* set the preamble flag if we have it */
7949 if (phy_flags & (1 << 6))
7950 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7952 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
7954 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
7955 priv->prom_priv->ieee->stats.rx_errors++;
7956 dev_kfree_skb_any(skb);
7959 #endif
7961 static int is_network_packet(struct ipw_priv *priv,
7962 struct ieee80211_hdr_4addr *header)
7964 /* Filter incoming packets to determine if they are targetted toward
7965 * this network, discarding packets coming from ourselves */
7966 switch (priv->ieee->iw_mode) {
7967 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
7968 /* packets from our adapter are dropped (echo) */
7969 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7970 return 0;
7972 /* {broad,multi}cast packets to our BSSID go through */
7973 if (is_multicast_ether_addr(header->addr1))
7974 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7976 /* packets to our adapter go through */
7977 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7978 ETH_ALEN);
7980 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
7981 /* packets from our adapter are dropped (echo) */
7982 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7983 return 0;
7985 /* {broad,multi}cast packets to our BSS go through */
7986 if (is_multicast_ether_addr(header->addr1))
7987 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7989 /* packets to our adapter go through */
7990 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7991 ETH_ALEN);
7994 return 1;
7997 #define IPW_PACKET_RETRY_TIME HZ
7999 static int is_duplicate_packet(struct ipw_priv *priv,
8000 struct ieee80211_hdr_4addr *header)
8002 u16 sc = le16_to_cpu(header->seq_ctl);
8003 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8004 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8005 u16 *last_seq, *last_frag;
8006 unsigned long *last_time;
8008 switch (priv->ieee->iw_mode) {
8009 case IW_MODE_ADHOC:
8011 struct list_head *p;
8012 struct ipw_ibss_seq *entry = NULL;
8013 u8 *mac = header->addr2;
8014 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8016 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8017 entry =
8018 list_entry(p, struct ipw_ibss_seq, list);
8019 if (!memcmp(entry->mac, mac, ETH_ALEN))
8020 break;
8022 if (p == &priv->ibss_mac_hash[index]) {
8023 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8024 if (!entry) {
8025 IPW_ERROR
8026 ("Cannot malloc new mac entry\n");
8027 return 0;
8029 memcpy(entry->mac, mac, ETH_ALEN);
8030 entry->seq_num = seq;
8031 entry->frag_num = frag;
8032 entry->packet_time = jiffies;
8033 list_add(&entry->list,
8034 &priv->ibss_mac_hash[index]);
8035 return 0;
8037 last_seq = &entry->seq_num;
8038 last_frag = &entry->frag_num;
8039 last_time = &entry->packet_time;
8040 break;
8042 case IW_MODE_INFRA:
8043 last_seq = &priv->last_seq_num;
8044 last_frag = &priv->last_frag_num;
8045 last_time = &priv->last_packet_time;
8046 break;
8047 default:
8048 return 0;
8050 if ((*last_seq == seq) &&
8051 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8052 if (*last_frag == frag)
8053 goto drop;
8054 if (*last_frag + 1 != frag)
8055 /* out-of-order fragment */
8056 goto drop;
8057 } else
8058 *last_seq = seq;
8060 *last_frag = frag;
8061 *last_time = jiffies;
8062 return 0;
8064 drop:
8065 /* Comment this line now since we observed the card receives
8066 * duplicate packets but the FCTL_RETRY bit is not set in the
8067 * IBSS mode with fragmentation enabled.
8068 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8069 return 1;
8072 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8073 struct ipw_rx_mem_buffer *rxb,
8074 struct ieee80211_rx_stats *stats)
8076 struct sk_buff *skb = rxb->skb;
8077 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8078 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8079 (skb->data + IPW_RX_FRAME_SIZE);
8081 ieee80211_rx_mgt(priv->ieee, header, stats);
8083 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8084 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8085 IEEE80211_STYPE_PROBE_RESP) ||
8086 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8087 IEEE80211_STYPE_BEACON))) {
8088 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8089 ipw_add_station(priv, header->addr2);
8092 if (priv->config & CFG_NET_STATS) {
8093 IPW_DEBUG_HC("sending stat packet\n");
8095 /* Set the size of the skb to the size of the full
8096 * ipw header and 802.11 frame */
8097 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8098 IPW_RX_FRAME_SIZE);
8100 /* Advance past the ipw packet header to the 802.11 frame */
8101 skb_pull(skb, IPW_RX_FRAME_SIZE);
8103 /* Push the ieee80211_rx_stats before the 802.11 frame */
8104 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8106 skb->dev = priv->ieee->dev;
8108 /* Point raw at the ieee80211_stats */
8109 skb->mac.raw = skb->data;
8111 skb->pkt_type = PACKET_OTHERHOST;
8112 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8113 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8114 netif_rx(skb);
8115 rxb->skb = NULL;
8120 * Main entry function for recieving a packet with 80211 headers. This
8121 * should be called when ever the FW has notified us that there is a new
8122 * skb in the recieve queue.
8124 static void ipw_rx(struct ipw_priv *priv)
8126 struct ipw_rx_mem_buffer *rxb;
8127 struct ipw_rx_packet *pkt;
8128 struct ieee80211_hdr_4addr *header;
8129 u32 r, w, i;
8130 u8 network_packet;
8132 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8133 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8134 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8136 while (i != r) {
8137 rxb = priv->rxq->queue[i];
8138 if (unlikely(rxb == NULL)) {
8139 printk(KERN_CRIT "Queue not allocated!\n");
8140 break;
8142 priv->rxq->queue[i] = NULL;
8144 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8145 IPW_RX_BUF_SIZE,
8146 PCI_DMA_FROMDEVICE);
8148 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8149 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8150 pkt->header.message_type,
8151 pkt->header.rx_seq_num, pkt->header.control_bits);
8153 switch (pkt->header.message_type) {
8154 case RX_FRAME_TYPE: /* 802.11 frame */ {
8155 struct ieee80211_rx_stats stats = {
8156 .rssi =
8157 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8158 IPW_RSSI_TO_DBM,
8159 .signal =
8160 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8161 IPW_RSSI_TO_DBM + 0x100,
8162 .noise =
8163 le16_to_cpu(pkt->u.frame.noise),
8164 .rate = pkt->u.frame.rate,
8165 .mac_time = jiffies,
8166 .received_channel =
8167 pkt->u.frame.received_channel,
8168 .freq =
8169 (pkt->u.frame.
8170 control & (1 << 0)) ?
8171 IEEE80211_24GHZ_BAND :
8172 IEEE80211_52GHZ_BAND,
8173 .len = le16_to_cpu(pkt->u.frame.length),
8176 if (stats.rssi != 0)
8177 stats.mask |= IEEE80211_STATMASK_RSSI;
8178 if (stats.signal != 0)
8179 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8180 if (stats.noise != 0)
8181 stats.mask |= IEEE80211_STATMASK_NOISE;
8182 if (stats.rate != 0)
8183 stats.mask |= IEEE80211_STATMASK_RATE;
8185 priv->rx_packets++;
8187 #ifdef CONFIG_IPW2200_PROMISCUOUS
8188 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8189 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8190 #endif
8192 #ifdef CONFIG_IPW2200_MONITOR
8193 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8194 #ifdef CONFIG_IEEE80211_RADIOTAP
8196 ipw_handle_data_packet_monitor(priv,
8197 rxb,
8198 &stats);
8199 #else
8200 ipw_handle_data_packet(priv, rxb,
8201 &stats);
8202 #endif
8203 break;
8205 #endif
8207 header =
8208 (struct ieee80211_hdr_4addr *)(rxb->skb->
8209 data +
8210 IPW_RX_FRAME_SIZE);
8211 /* TODO: Check Ad-Hoc dest/source and make sure
8212 * that we are actually parsing these packets
8213 * correctly -- we should probably use the
8214 * frame control of the packet and disregard
8215 * the current iw_mode */
8217 network_packet =
8218 is_network_packet(priv, header);
8219 if (network_packet && priv->assoc_network) {
8220 priv->assoc_network->stats.rssi =
8221 stats.rssi;
8222 priv->exp_avg_rssi =
8223 exponential_average(priv->exp_avg_rssi,
8224 stats.rssi, DEPTH_RSSI);
8227 IPW_DEBUG_RX("Frame: len=%u\n",
8228 le16_to_cpu(pkt->u.frame.length));
8230 if (le16_to_cpu(pkt->u.frame.length) <
8231 ieee80211_get_hdrlen(le16_to_cpu(
8232 header->frame_ctl))) {
8233 IPW_DEBUG_DROP
8234 ("Received packet is too small. "
8235 "Dropping.\n");
8236 priv->ieee->stats.rx_errors++;
8237 priv->wstats.discard.misc++;
8238 break;
8241 switch (WLAN_FC_GET_TYPE
8242 (le16_to_cpu(header->frame_ctl))) {
8244 case IEEE80211_FTYPE_MGMT:
8245 ipw_handle_mgmt_packet(priv, rxb,
8246 &stats);
8247 break;
8249 case IEEE80211_FTYPE_CTL:
8250 break;
8252 case IEEE80211_FTYPE_DATA:
8253 if (unlikely(!network_packet ||
8254 is_duplicate_packet(priv,
8255 header)))
8257 IPW_DEBUG_DROP("Dropping: "
8258 MAC_FMT ", "
8259 MAC_FMT ", "
8260 MAC_FMT "\n",
8261 MAC_ARG(header->
8262 addr1),
8263 MAC_ARG(header->
8264 addr2),
8265 MAC_ARG(header->
8266 addr3));
8267 break;
8270 ipw_handle_data_packet(priv, rxb,
8271 &stats);
8273 break;
8275 break;
8278 case RX_HOST_NOTIFICATION_TYPE:{
8279 IPW_DEBUG_RX
8280 ("Notification: subtype=%02X flags=%02X size=%d\n",
8281 pkt->u.notification.subtype,
8282 pkt->u.notification.flags,
8283 pkt->u.notification.size);
8284 ipw_rx_notification(priv, &pkt->u.notification);
8285 break;
8288 default:
8289 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8290 pkt->header.message_type);
8291 break;
8294 /* For now we just don't re-use anything. We can tweak this
8295 * later to try and re-use notification packets and SKBs that
8296 * fail to Rx correctly */
8297 if (rxb->skb != NULL) {
8298 dev_kfree_skb_any(rxb->skb);
8299 rxb->skb = NULL;
8302 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8303 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8304 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8306 i = (i + 1) % RX_QUEUE_SIZE;
8309 /* Backtrack one entry */
8310 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8312 ipw_rx_queue_restock(priv);
8315 #define DEFAULT_RTS_THRESHOLD 2304U
8316 #define MIN_RTS_THRESHOLD 1U
8317 #define MAX_RTS_THRESHOLD 2304U
8318 #define DEFAULT_BEACON_INTERVAL 100U
8319 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8320 #define DEFAULT_LONG_RETRY_LIMIT 4U
8323 * ipw_sw_reset
8324 * @option: options to control different reset behaviour
8325 * 0 = reset everything except the 'disable' module_param
8326 * 1 = reset everything and print out driver info (for probe only)
8327 * 2 = reset everything
8329 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8331 int band, modulation;
8332 int old_mode = priv->ieee->iw_mode;
8334 /* Initialize module parameter values here */
8335 priv->config = 0;
8337 /* We default to disabling the LED code as right now it causes
8338 * too many systems to lock up... */
8339 if (!led)
8340 priv->config |= CFG_NO_LED;
8342 if (associate)
8343 priv->config |= CFG_ASSOCIATE;
8344 else
8345 IPW_DEBUG_INFO("Auto associate disabled.\n");
8347 if (auto_create)
8348 priv->config |= CFG_ADHOC_CREATE;
8349 else
8350 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8352 priv->config &= ~CFG_STATIC_ESSID;
8353 priv->essid_len = 0;
8354 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8356 if (disable && option) {
8357 priv->status |= STATUS_RF_KILL_SW;
8358 IPW_DEBUG_INFO("Radio disabled.\n");
8361 if (channel != 0) {
8362 priv->config |= CFG_STATIC_CHANNEL;
8363 priv->channel = channel;
8364 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8365 /* TODO: Validate that provided channel is in range */
8367 #ifdef CONFIG_IPW_QOS
8368 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8369 burst_duration_CCK, burst_duration_OFDM);
8370 #endif /* CONFIG_IPW_QOS */
8372 switch (mode) {
8373 case 1:
8374 priv->ieee->iw_mode = IW_MODE_ADHOC;
8375 priv->net_dev->type = ARPHRD_ETHER;
8377 break;
8378 #ifdef CONFIG_IPW2200_MONITOR
8379 case 2:
8380 priv->ieee->iw_mode = IW_MODE_MONITOR;
8381 #ifdef CONFIG_IEEE80211_RADIOTAP
8382 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8383 #else
8384 priv->net_dev->type = ARPHRD_IEEE80211;
8385 #endif
8386 break;
8387 #endif
8388 default:
8389 case 0:
8390 priv->net_dev->type = ARPHRD_ETHER;
8391 priv->ieee->iw_mode = IW_MODE_INFRA;
8392 break;
8395 if (hwcrypto) {
8396 priv->ieee->host_encrypt = 0;
8397 priv->ieee->host_encrypt_msdu = 0;
8398 priv->ieee->host_decrypt = 0;
8399 priv->ieee->host_mc_decrypt = 0;
8401 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8403 /* IPW2200/2915 is abled to do hardware fragmentation. */
8404 priv->ieee->host_open_frag = 0;
8406 if ((priv->pci_dev->device == 0x4223) ||
8407 (priv->pci_dev->device == 0x4224)) {
8408 if (option == 1)
8409 printk(KERN_INFO DRV_NAME
8410 ": Detected Intel PRO/Wireless 2915ABG Network "
8411 "Connection\n");
8412 priv->ieee->abg_true = 1;
8413 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8414 modulation = IEEE80211_OFDM_MODULATION |
8415 IEEE80211_CCK_MODULATION;
8416 priv->adapter = IPW_2915ABG;
8417 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8418 } else {
8419 if (option == 1)
8420 printk(KERN_INFO DRV_NAME
8421 ": Detected Intel PRO/Wireless 2200BG Network "
8422 "Connection\n");
8424 priv->ieee->abg_true = 0;
8425 band = IEEE80211_24GHZ_BAND;
8426 modulation = IEEE80211_OFDM_MODULATION |
8427 IEEE80211_CCK_MODULATION;
8428 priv->adapter = IPW_2200BG;
8429 priv->ieee->mode = IEEE_G | IEEE_B;
8432 priv->ieee->freq_band = band;
8433 priv->ieee->modulation = modulation;
8435 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8437 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8438 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8440 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8441 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8442 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8444 /* If power management is turned on, default to AC mode */
8445 priv->power_mode = IPW_POWER_AC;
8446 priv->tx_power = IPW_TX_POWER_DEFAULT;
8448 return old_mode == priv->ieee->iw_mode;
8452 * This file defines the Wireless Extension handlers. It does not
8453 * define any methods of hardware manipulation and relies on the
8454 * functions defined in ipw_main to provide the HW interaction.
8456 * The exception to this is the use of the ipw_get_ordinal()
8457 * function used to poll the hardware vs. making unecessary calls.
8461 static int ipw_wx_get_name(struct net_device *dev,
8462 struct iw_request_info *info,
8463 union iwreq_data *wrqu, char *extra)
8465 struct ipw_priv *priv = ieee80211_priv(dev);
8466 mutex_lock(&priv->mutex);
8467 if (priv->status & STATUS_RF_KILL_MASK)
8468 strcpy(wrqu->name, "radio off");
8469 else if (!(priv->status & STATUS_ASSOCIATED))
8470 strcpy(wrqu->name, "unassociated");
8471 else
8472 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8473 ipw_modes[priv->assoc_request.ieee_mode]);
8474 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8475 mutex_unlock(&priv->mutex);
8476 return 0;
8479 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8481 if (channel == 0) {
8482 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8483 priv->config &= ~CFG_STATIC_CHANNEL;
8484 IPW_DEBUG_ASSOC("Attempting to associate with new "
8485 "parameters.\n");
8486 ipw_associate(priv);
8487 return 0;
8490 priv->config |= CFG_STATIC_CHANNEL;
8492 if (priv->channel == channel) {
8493 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8494 channel);
8495 return 0;
8498 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8499 priv->channel = channel;
8501 #ifdef CONFIG_IPW2200_MONITOR
8502 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8503 int i;
8504 if (priv->status & STATUS_SCANNING) {
8505 IPW_DEBUG_SCAN("Scan abort triggered due to "
8506 "channel change.\n");
8507 ipw_abort_scan(priv);
8510 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8511 udelay(10);
8513 if (priv->status & STATUS_SCANNING)
8514 IPW_DEBUG_SCAN("Still scanning...\n");
8515 else
8516 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8517 1000 - i);
8519 return 0;
8521 #endif /* CONFIG_IPW2200_MONITOR */
8523 /* Network configuration changed -- force [re]association */
8524 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8525 if (!ipw_disassociate(priv))
8526 ipw_associate(priv);
8528 return 0;
8531 static int ipw_wx_set_freq(struct net_device *dev,
8532 struct iw_request_info *info,
8533 union iwreq_data *wrqu, char *extra)
8535 struct ipw_priv *priv = ieee80211_priv(dev);
8536 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8537 struct iw_freq *fwrq = &wrqu->freq;
8538 int ret = 0, i;
8539 u8 channel, flags;
8540 int band;
8542 if (fwrq->m == 0) {
8543 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8544 mutex_lock(&priv->mutex);
8545 ret = ipw_set_channel(priv, 0);
8546 mutex_unlock(&priv->mutex);
8547 return ret;
8549 /* if setting by freq convert to channel */
8550 if (fwrq->e == 1) {
8551 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8552 if (channel == 0)
8553 return -EINVAL;
8554 } else
8555 channel = fwrq->m;
8557 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8558 return -EINVAL;
8560 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8561 i = ieee80211_channel_to_index(priv->ieee, channel);
8562 if (i == -1)
8563 return -EINVAL;
8565 flags = (band == IEEE80211_24GHZ_BAND) ?
8566 geo->bg[i].flags : geo->a[i].flags;
8567 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8568 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8569 return -EINVAL;
8573 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8574 mutex_lock(&priv->mutex);
8575 ret = ipw_set_channel(priv, channel);
8576 mutex_unlock(&priv->mutex);
8577 return ret;
8580 static int ipw_wx_get_freq(struct net_device *dev,
8581 struct iw_request_info *info,
8582 union iwreq_data *wrqu, char *extra)
8584 struct ipw_priv *priv = ieee80211_priv(dev);
8586 wrqu->freq.e = 0;
8588 /* If we are associated, trying to associate, or have a statically
8589 * configured CHANNEL then return that; otherwise return ANY */
8590 mutex_lock(&priv->mutex);
8591 if (priv->config & CFG_STATIC_CHANNEL ||
8592 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8593 wrqu->freq.m = priv->channel;
8594 else
8595 wrqu->freq.m = 0;
8597 mutex_unlock(&priv->mutex);
8598 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8599 return 0;
8602 static int ipw_wx_set_mode(struct net_device *dev,
8603 struct iw_request_info *info,
8604 union iwreq_data *wrqu, char *extra)
8606 struct ipw_priv *priv = ieee80211_priv(dev);
8607 int err = 0;
8609 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8611 switch (wrqu->mode) {
8612 #ifdef CONFIG_IPW2200_MONITOR
8613 case IW_MODE_MONITOR:
8614 #endif
8615 case IW_MODE_ADHOC:
8616 case IW_MODE_INFRA:
8617 break;
8618 case IW_MODE_AUTO:
8619 wrqu->mode = IW_MODE_INFRA;
8620 break;
8621 default:
8622 return -EINVAL;
8624 if (wrqu->mode == priv->ieee->iw_mode)
8625 return 0;
8627 mutex_lock(&priv->mutex);
8629 ipw_sw_reset(priv, 0);
8631 #ifdef CONFIG_IPW2200_MONITOR
8632 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8633 priv->net_dev->type = ARPHRD_ETHER;
8635 if (wrqu->mode == IW_MODE_MONITOR)
8636 #ifdef CONFIG_IEEE80211_RADIOTAP
8637 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8638 #else
8639 priv->net_dev->type = ARPHRD_IEEE80211;
8640 #endif
8641 #endif /* CONFIG_IPW2200_MONITOR */
8643 /* Free the existing firmware and reset the fw_loaded
8644 * flag so ipw_load() will bring in the new firmawre */
8645 free_firmware();
8647 priv->ieee->iw_mode = wrqu->mode;
8649 queue_work(priv->workqueue, &priv->adapter_restart);
8650 mutex_unlock(&priv->mutex);
8651 return err;
8654 static int ipw_wx_get_mode(struct net_device *dev,
8655 struct iw_request_info *info,
8656 union iwreq_data *wrqu, char *extra)
8658 struct ipw_priv *priv = ieee80211_priv(dev);
8659 mutex_lock(&priv->mutex);
8660 wrqu->mode = priv->ieee->iw_mode;
8661 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8662 mutex_unlock(&priv->mutex);
8663 return 0;
8666 /* Values are in microsecond */
8667 static const s32 timeout_duration[] = {
8668 350000,
8669 250000,
8670 75000,
8671 37000,
8672 25000,
8675 static const s32 period_duration[] = {
8676 400000,
8677 700000,
8678 1000000,
8679 1000000,
8680 1000000
8683 static int ipw_wx_get_range(struct net_device *dev,
8684 struct iw_request_info *info,
8685 union iwreq_data *wrqu, char *extra)
8687 struct ipw_priv *priv = ieee80211_priv(dev);
8688 struct iw_range *range = (struct iw_range *)extra;
8689 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8690 int i = 0, j;
8692 wrqu->data.length = sizeof(*range);
8693 memset(range, 0, sizeof(*range));
8695 /* 54Mbs == ~27 Mb/s real (802.11g) */
8696 range->throughput = 27 * 1000 * 1000;
8698 range->max_qual.qual = 100;
8699 /* TODO: Find real max RSSI and stick here */
8700 range->max_qual.level = 0;
8701 range->max_qual.noise = 0;
8702 range->max_qual.updated = 7; /* Updated all three */
8704 range->avg_qual.qual = 70;
8705 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8706 range->avg_qual.level = 0; /* FIXME to real average level */
8707 range->avg_qual.noise = 0;
8708 range->avg_qual.updated = 7; /* Updated all three */
8709 mutex_lock(&priv->mutex);
8710 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8712 for (i = 0; i < range->num_bitrates; i++)
8713 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8714 500000;
8716 range->max_rts = DEFAULT_RTS_THRESHOLD;
8717 range->min_frag = MIN_FRAG_THRESHOLD;
8718 range->max_frag = MAX_FRAG_THRESHOLD;
8720 range->encoding_size[0] = 5;
8721 range->encoding_size[1] = 13;
8722 range->num_encoding_sizes = 2;
8723 range->max_encoding_tokens = WEP_KEYS;
8725 /* Set the Wireless Extension versions */
8726 range->we_version_compiled = WIRELESS_EXT;
8727 range->we_version_source = 18;
8729 i = 0;
8730 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8731 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8732 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8733 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8734 continue;
8736 range->freq[i].i = geo->bg[j].channel;
8737 range->freq[i].m = geo->bg[j].freq * 100000;
8738 range->freq[i].e = 1;
8739 i++;
8743 if (priv->ieee->mode & IEEE_A) {
8744 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8745 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8746 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8747 continue;
8749 range->freq[i].i = geo->a[j].channel;
8750 range->freq[i].m = geo->a[j].freq * 100000;
8751 range->freq[i].e = 1;
8752 i++;
8756 range->num_channels = i;
8757 range->num_frequency = i;
8759 mutex_unlock(&priv->mutex);
8761 /* Event capability (kernel + driver) */
8762 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8763 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8764 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8765 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8766 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8768 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8769 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8771 IPW_DEBUG_WX("GET Range\n");
8772 return 0;
8775 static int ipw_wx_set_wap(struct net_device *dev,
8776 struct iw_request_info *info,
8777 union iwreq_data *wrqu, char *extra)
8779 struct ipw_priv *priv = ieee80211_priv(dev);
8781 static const unsigned char any[] = {
8782 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8784 static const unsigned char off[] = {
8785 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8788 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8789 return -EINVAL;
8790 mutex_lock(&priv->mutex);
8791 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8792 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8793 /* we disable mandatory BSSID association */
8794 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8795 priv->config &= ~CFG_STATIC_BSSID;
8796 IPW_DEBUG_ASSOC("Attempting to associate with new "
8797 "parameters.\n");
8798 ipw_associate(priv);
8799 mutex_unlock(&priv->mutex);
8800 return 0;
8803 priv->config |= CFG_STATIC_BSSID;
8804 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8805 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8806 mutex_unlock(&priv->mutex);
8807 return 0;
8810 IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8811 MAC_ARG(wrqu->ap_addr.sa_data));
8813 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8815 /* Network configuration changed -- force [re]association */
8816 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8817 if (!ipw_disassociate(priv))
8818 ipw_associate(priv);
8820 mutex_unlock(&priv->mutex);
8821 return 0;
8824 static int ipw_wx_get_wap(struct net_device *dev,
8825 struct iw_request_info *info,
8826 union iwreq_data *wrqu, char *extra)
8828 struct ipw_priv *priv = ieee80211_priv(dev);
8829 /* If we are associated, trying to associate, or have a statically
8830 * configured BSSID then return that; otherwise return ANY */
8831 mutex_lock(&priv->mutex);
8832 if (priv->config & CFG_STATIC_BSSID ||
8833 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8834 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8835 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8836 } else
8837 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8839 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8840 MAC_ARG(wrqu->ap_addr.sa_data));
8841 mutex_unlock(&priv->mutex);
8842 return 0;
8845 static int ipw_wx_set_essid(struct net_device *dev,
8846 struct iw_request_info *info,
8847 union iwreq_data *wrqu, char *extra)
8849 struct ipw_priv *priv = ieee80211_priv(dev);
8850 char *essid = ""; /* ANY */
8851 int length = 0;
8852 mutex_lock(&priv->mutex);
8853 if (wrqu->essid.flags && wrqu->essid.length) {
8854 length = wrqu->essid.length - 1;
8855 essid = extra;
8857 if (length == 0) {
8858 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8859 if ((priv->config & CFG_STATIC_ESSID) &&
8860 !(priv->status & (STATUS_ASSOCIATED |
8861 STATUS_ASSOCIATING))) {
8862 IPW_DEBUG_ASSOC("Attempting to associate with new "
8863 "parameters.\n");
8864 priv->config &= ~CFG_STATIC_ESSID;
8865 ipw_associate(priv);
8867 mutex_unlock(&priv->mutex);
8868 return 0;
8871 length = min(length, IW_ESSID_MAX_SIZE);
8873 priv->config |= CFG_STATIC_ESSID;
8875 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8876 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8877 mutex_unlock(&priv->mutex);
8878 return 0;
8881 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8882 length);
8884 priv->essid_len = length;
8885 memcpy(priv->essid, essid, priv->essid_len);
8887 /* Network configuration changed -- force [re]association */
8888 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8889 if (!ipw_disassociate(priv))
8890 ipw_associate(priv);
8892 mutex_unlock(&priv->mutex);
8893 return 0;
8896 static int ipw_wx_get_essid(struct net_device *dev,
8897 struct iw_request_info *info,
8898 union iwreq_data *wrqu, char *extra)
8900 struct ipw_priv *priv = ieee80211_priv(dev);
8902 /* If we are associated, trying to associate, or have a statically
8903 * configured ESSID then return that; otherwise return ANY */
8904 mutex_lock(&priv->mutex);
8905 if (priv->config & CFG_STATIC_ESSID ||
8906 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8907 IPW_DEBUG_WX("Getting essid: '%s'\n",
8908 escape_essid(priv->essid, priv->essid_len));
8909 memcpy(extra, priv->essid, priv->essid_len);
8910 wrqu->essid.length = priv->essid_len;
8911 wrqu->essid.flags = 1; /* active */
8912 } else {
8913 IPW_DEBUG_WX("Getting essid: ANY\n");
8914 wrqu->essid.length = 0;
8915 wrqu->essid.flags = 0; /* active */
8917 mutex_unlock(&priv->mutex);
8918 return 0;
8921 static int ipw_wx_set_nick(struct net_device *dev,
8922 struct iw_request_info *info,
8923 union iwreq_data *wrqu, char *extra)
8925 struct ipw_priv *priv = ieee80211_priv(dev);
8927 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8928 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8929 return -E2BIG;
8930 mutex_lock(&priv->mutex);
8931 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8932 memset(priv->nick, 0, sizeof(priv->nick));
8933 memcpy(priv->nick, extra, wrqu->data.length);
8934 IPW_DEBUG_TRACE("<<\n");
8935 mutex_unlock(&priv->mutex);
8936 return 0;
8940 static int ipw_wx_get_nick(struct net_device *dev,
8941 struct iw_request_info *info,
8942 union iwreq_data *wrqu, char *extra)
8944 struct ipw_priv *priv = ieee80211_priv(dev);
8945 IPW_DEBUG_WX("Getting nick\n");
8946 mutex_lock(&priv->mutex);
8947 wrqu->data.length = strlen(priv->nick) + 1;
8948 memcpy(extra, priv->nick, wrqu->data.length);
8949 wrqu->data.flags = 1; /* active */
8950 mutex_unlock(&priv->mutex);
8951 return 0;
8954 static int ipw_wx_set_sens(struct net_device *dev,
8955 struct iw_request_info *info,
8956 union iwreq_data *wrqu, char *extra)
8958 struct ipw_priv *priv = ieee80211_priv(dev);
8959 int err = 0;
8961 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
8962 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
8963 mutex_lock(&priv->mutex);
8965 if (wrqu->sens.fixed == 0)
8967 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8968 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8969 goto out;
8971 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
8972 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
8973 err = -EINVAL;
8974 goto out;
8977 priv->roaming_threshold = wrqu->sens.value;
8978 priv->disassociate_threshold = 3*wrqu->sens.value;
8979 out:
8980 mutex_unlock(&priv->mutex);
8981 return err;
8984 static int ipw_wx_get_sens(struct net_device *dev,
8985 struct iw_request_info *info,
8986 union iwreq_data *wrqu, char *extra)
8988 struct ipw_priv *priv = ieee80211_priv(dev);
8989 mutex_lock(&priv->mutex);
8990 wrqu->sens.fixed = 1;
8991 wrqu->sens.value = priv->roaming_threshold;
8992 mutex_unlock(&priv->mutex);
8994 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
8995 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8997 return 0;
9000 static int ipw_wx_set_rate(struct net_device *dev,
9001 struct iw_request_info *info,
9002 union iwreq_data *wrqu, char *extra)
9004 /* TODO: We should use semaphores or locks for access to priv */
9005 struct ipw_priv *priv = ieee80211_priv(dev);
9006 u32 target_rate = wrqu->bitrate.value;
9007 u32 fixed, mask;
9009 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9010 /* value = X, fixed = 1 means only rate X */
9011 /* value = X, fixed = 0 means all rates lower equal X */
9013 if (target_rate == -1) {
9014 fixed = 0;
9015 mask = IEEE80211_DEFAULT_RATES_MASK;
9016 /* Now we should reassociate */
9017 goto apply;
9020 mask = 0;
9021 fixed = wrqu->bitrate.fixed;
9023 if (target_rate == 1000000 || !fixed)
9024 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9025 if (target_rate == 1000000)
9026 goto apply;
9028 if (target_rate == 2000000 || !fixed)
9029 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9030 if (target_rate == 2000000)
9031 goto apply;
9033 if (target_rate == 5500000 || !fixed)
9034 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9035 if (target_rate == 5500000)
9036 goto apply;
9038 if (target_rate == 6000000 || !fixed)
9039 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9040 if (target_rate == 6000000)
9041 goto apply;
9043 if (target_rate == 9000000 || !fixed)
9044 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9045 if (target_rate == 9000000)
9046 goto apply;
9048 if (target_rate == 11000000 || !fixed)
9049 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9050 if (target_rate == 11000000)
9051 goto apply;
9053 if (target_rate == 12000000 || !fixed)
9054 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9055 if (target_rate == 12000000)
9056 goto apply;
9058 if (target_rate == 18000000 || !fixed)
9059 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9060 if (target_rate == 18000000)
9061 goto apply;
9063 if (target_rate == 24000000 || !fixed)
9064 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9065 if (target_rate == 24000000)
9066 goto apply;
9068 if (target_rate == 36000000 || !fixed)
9069 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9070 if (target_rate == 36000000)
9071 goto apply;
9073 if (target_rate == 48000000 || !fixed)
9074 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9075 if (target_rate == 48000000)
9076 goto apply;
9078 if (target_rate == 54000000 || !fixed)
9079 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9080 if (target_rate == 54000000)
9081 goto apply;
9083 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9084 return -EINVAL;
9086 apply:
9087 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9088 mask, fixed ? "fixed" : "sub-rates");
9089 mutex_lock(&priv->mutex);
9090 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9091 priv->config &= ~CFG_FIXED_RATE;
9092 ipw_set_fixed_rate(priv, priv->ieee->mode);
9093 } else
9094 priv->config |= CFG_FIXED_RATE;
9096 if (priv->rates_mask == mask) {
9097 IPW_DEBUG_WX("Mask set to current mask.\n");
9098 mutex_unlock(&priv->mutex);
9099 return 0;
9102 priv->rates_mask = mask;
9104 /* Network configuration changed -- force [re]association */
9105 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9106 if (!ipw_disassociate(priv))
9107 ipw_associate(priv);
9109 mutex_unlock(&priv->mutex);
9110 return 0;
9113 static int ipw_wx_get_rate(struct net_device *dev,
9114 struct iw_request_info *info,
9115 union iwreq_data *wrqu, char *extra)
9117 struct ipw_priv *priv = ieee80211_priv(dev);
9118 mutex_lock(&priv->mutex);
9119 wrqu->bitrate.value = priv->last_rate;
9120 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9121 mutex_unlock(&priv->mutex);
9122 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9123 return 0;
9126 static int ipw_wx_set_rts(struct net_device *dev,
9127 struct iw_request_info *info,
9128 union iwreq_data *wrqu, char *extra)
9130 struct ipw_priv *priv = ieee80211_priv(dev);
9131 mutex_lock(&priv->mutex);
9132 if (wrqu->rts.disabled)
9133 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9134 else {
9135 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9136 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9137 mutex_unlock(&priv->mutex);
9138 return -EINVAL;
9140 priv->rts_threshold = wrqu->rts.value;
9143 ipw_send_rts_threshold(priv, priv->rts_threshold);
9144 mutex_unlock(&priv->mutex);
9145 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9146 return 0;
9149 static int ipw_wx_get_rts(struct net_device *dev,
9150 struct iw_request_info *info,
9151 union iwreq_data *wrqu, char *extra)
9153 struct ipw_priv *priv = ieee80211_priv(dev);
9154 mutex_lock(&priv->mutex);
9155 wrqu->rts.value = priv->rts_threshold;
9156 wrqu->rts.fixed = 0; /* no auto select */
9157 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9158 mutex_unlock(&priv->mutex);
9159 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9160 return 0;
9163 static int ipw_wx_set_txpow(struct net_device *dev,
9164 struct iw_request_info *info,
9165 union iwreq_data *wrqu, char *extra)
9167 struct ipw_priv *priv = ieee80211_priv(dev);
9168 int err = 0;
9170 mutex_lock(&priv->mutex);
9171 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9172 err = -EINPROGRESS;
9173 goto out;
9176 if (!wrqu->power.fixed)
9177 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9179 if (wrqu->power.flags != IW_TXPOW_DBM) {
9180 err = -EINVAL;
9181 goto out;
9184 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9185 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9186 err = -EINVAL;
9187 goto out;
9190 priv->tx_power = wrqu->power.value;
9191 err = ipw_set_tx_power(priv);
9192 out:
9193 mutex_unlock(&priv->mutex);
9194 return err;
9197 static int ipw_wx_get_txpow(struct net_device *dev,
9198 struct iw_request_info *info,
9199 union iwreq_data *wrqu, char *extra)
9201 struct ipw_priv *priv = ieee80211_priv(dev);
9202 mutex_lock(&priv->mutex);
9203 wrqu->power.value = priv->tx_power;
9204 wrqu->power.fixed = 1;
9205 wrqu->power.flags = IW_TXPOW_DBM;
9206 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9207 mutex_unlock(&priv->mutex);
9209 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9210 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9212 return 0;
9215 static int ipw_wx_set_frag(struct net_device *dev,
9216 struct iw_request_info *info,
9217 union iwreq_data *wrqu, char *extra)
9219 struct ipw_priv *priv = ieee80211_priv(dev);
9220 mutex_lock(&priv->mutex);
9221 if (wrqu->frag.disabled)
9222 priv->ieee->fts = DEFAULT_FTS;
9223 else {
9224 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9225 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9226 mutex_unlock(&priv->mutex);
9227 return -EINVAL;
9230 priv->ieee->fts = wrqu->frag.value & ~0x1;
9233 ipw_send_frag_threshold(priv, wrqu->frag.value);
9234 mutex_unlock(&priv->mutex);
9235 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9236 return 0;
9239 static int ipw_wx_get_frag(struct net_device *dev,
9240 struct iw_request_info *info,
9241 union iwreq_data *wrqu, char *extra)
9243 struct ipw_priv *priv = ieee80211_priv(dev);
9244 mutex_lock(&priv->mutex);
9245 wrqu->frag.value = priv->ieee->fts;
9246 wrqu->frag.fixed = 0; /* no auto select */
9247 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9248 mutex_unlock(&priv->mutex);
9249 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9251 return 0;
9254 static int ipw_wx_set_retry(struct net_device *dev,
9255 struct iw_request_info *info,
9256 union iwreq_data *wrqu, char *extra)
9258 struct ipw_priv *priv = ieee80211_priv(dev);
9260 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9261 return -EINVAL;
9263 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9264 return 0;
9266 if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
9267 return -EINVAL;
9269 mutex_lock(&priv->mutex);
9270 if (wrqu->retry.flags & IW_RETRY_MIN)
9271 priv->short_retry_limit = (u8) wrqu->retry.value;
9272 else if (wrqu->retry.flags & IW_RETRY_MAX)
9273 priv->long_retry_limit = (u8) wrqu->retry.value;
9274 else {
9275 priv->short_retry_limit = (u8) wrqu->retry.value;
9276 priv->long_retry_limit = (u8) wrqu->retry.value;
9279 ipw_send_retry_limit(priv, priv->short_retry_limit,
9280 priv->long_retry_limit);
9281 mutex_unlock(&priv->mutex);
9282 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9283 priv->short_retry_limit, priv->long_retry_limit);
9284 return 0;
9287 static int ipw_wx_get_retry(struct net_device *dev,
9288 struct iw_request_info *info,
9289 union iwreq_data *wrqu, char *extra)
9291 struct ipw_priv *priv = ieee80211_priv(dev);
9293 mutex_lock(&priv->mutex);
9294 wrqu->retry.disabled = 0;
9296 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9297 mutex_unlock(&priv->mutex);
9298 return -EINVAL;
9301 if (wrqu->retry.flags & IW_RETRY_MAX) {
9302 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
9303 wrqu->retry.value = priv->long_retry_limit;
9304 } else if (wrqu->retry.flags & IW_RETRY_MIN) {
9305 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
9306 wrqu->retry.value = priv->short_retry_limit;
9307 } else {
9308 wrqu->retry.flags = IW_RETRY_LIMIT;
9309 wrqu->retry.value = priv->short_retry_limit;
9311 mutex_unlock(&priv->mutex);
9313 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9315 return 0;
9318 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9319 int essid_len)
9321 struct ipw_scan_request_ext scan;
9322 int err = 0, scan_type;
9324 if (!(priv->status & STATUS_INIT) ||
9325 (priv->status & STATUS_EXIT_PENDING))
9326 return 0;
9328 mutex_lock(&priv->mutex);
9330 if (priv->status & STATUS_RF_KILL_MASK) {
9331 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9332 priv->status |= STATUS_SCAN_PENDING;
9333 goto done;
9336 IPW_DEBUG_HC("starting request direct scan!\n");
9338 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9339 /* We should not sleep here; otherwise we will block most
9340 * of the system (for instance, we hold rtnl_lock when we
9341 * get here).
9343 err = -EAGAIN;
9344 goto done;
9346 memset(&scan, 0, sizeof(scan));
9348 if (priv->config & CFG_SPEED_SCAN)
9349 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9350 cpu_to_le16(30);
9351 else
9352 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9353 cpu_to_le16(20);
9355 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9356 cpu_to_le16(20);
9357 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9358 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9360 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9362 err = ipw_send_ssid(priv, essid, essid_len);
9363 if (err) {
9364 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9365 goto done;
9367 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9369 ipw_add_scan_channels(priv, &scan, scan_type);
9371 err = ipw_send_scan_request_ext(priv, &scan);
9372 if (err) {
9373 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9374 goto done;
9377 priv->status |= STATUS_SCANNING;
9379 done:
9380 mutex_unlock(&priv->mutex);
9381 return err;
9384 static int ipw_wx_set_scan(struct net_device *dev,
9385 struct iw_request_info *info,
9386 union iwreq_data *wrqu, char *extra)
9388 struct ipw_priv *priv = ieee80211_priv(dev);
9389 struct iw_scan_req *req = NULL;
9390 if (wrqu->data.length
9391 && wrqu->data.length == sizeof(struct iw_scan_req)) {
9392 req = (struct iw_scan_req *)extra;
9393 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9394 ipw_request_direct_scan(priv, req->essid,
9395 req->essid_len);
9396 return 0;
9400 IPW_DEBUG_WX("Start scan\n");
9402 queue_work(priv->workqueue, &priv->request_scan);
9404 return 0;
9407 static int ipw_wx_get_scan(struct net_device *dev,
9408 struct iw_request_info *info,
9409 union iwreq_data *wrqu, char *extra)
9411 struct ipw_priv *priv = ieee80211_priv(dev);
9412 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9415 static int ipw_wx_set_encode(struct net_device *dev,
9416 struct iw_request_info *info,
9417 union iwreq_data *wrqu, char *key)
9419 struct ipw_priv *priv = ieee80211_priv(dev);
9420 int ret;
9421 u32 cap = priv->capability;
9423 mutex_lock(&priv->mutex);
9424 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9426 /* In IBSS mode, we need to notify the firmware to update
9427 * the beacon info after we changed the capability. */
9428 if (cap != priv->capability &&
9429 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9430 priv->status & STATUS_ASSOCIATED)
9431 ipw_disassociate(priv);
9433 mutex_unlock(&priv->mutex);
9434 return ret;
9437 static int ipw_wx_get_encode(struct net_device *dev,
9438 struct iw_request_info *info,
9439 union iwreq_data *wrqu, char *key)
9441 struct ipw_priv *priv = ieee80211_priv(dev);
9442 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9445 static int ipw_wx_set_power(struct net_device *dev,
9446 struct iw_request_info *info,
9447 union iwreq_data *wrqu, char *extra)
9449 struct ipw_priv *priv = ieee80211_priv(dev);
9450 int err;
9451 mutex_lock(&priv->mutex);
9452 if (wrqu->power.disabled) {
9453 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9454 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9455 if (err) {
9456 IPW_DEBUG_WX("failed setting power mode.\n");
9457 mutex_unlock(&priv->mutex);
9458 return err;
9460 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9461 mutex_unlock(&priv->mutex);
9462 return 0;
9465 switch (wrqu->power.flags & IW_POWER_MODE) {
9466 case IW_POWER_ON: /* If not specified */
9467 case IW_POWER_MODE: /* If set all mask */
9468 case IW_POWER_ALL_R: /* If explicitely state all */
9469 break;
9470 default: /* Otherwise we don't support it */
9471 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9472 wrqu->power.flags);
9473 mutex_unlock(&priv->mutex);
9474 return -EOPNOTSUPP;
9477 /* If the user hasn't specified a power management mode yet, default
9478 * to BATTERY */
9479 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9480 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9481 else
9482 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9483 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9484 if (err) {
9485 IPW_DEBUG_WX("failed setting power mode.\n");
9486 mutex_unlock(&priv->mutex);
9487 return err;
9490 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9491 mutex_unlock(&priv->mutex);
9492 return 0;
9495 static int ipw_wx_get_power(struct net_device *dev,
9496 struct iw_request_info *info,
9497 union iwreq_data *wrqu, char *extra)
9499 struct ipw_priv *priv = ieee80211_priv(dev);
9500 mutex_lock(&priv->mutex);
9501 if (!(priv->power_mode & IPW_POWER_ENABLED))
9502 wrqu->power.disabled = 1;
9503 else
9504 wrqu->power.disabled = 0;
9506 mutex_unlock(&priv->mutex);
9507 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9509 return 0;
9512 static int ipw_wx_set_powermode(struct net_device *dev,
9513 struct iw_request_info *info,
9514 union iwreq_data *wrqu, char *extra)
9516 struct ipw_priv *priv = ieee80211_priv(dev);
9517 int mode = *(int *)extra;
9518 int err;
9519 mutex_lock(&priv->mutex);
9520 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9521 mode = IPW_POWER_AC;
9522 priv->power_mode = mode;
9523 } else {
9524 priv->power_mode = IPW_POWER_ENABLED | mode;
9527 if (priv->power_mode != mode) {
9528 err = ipw_send_power_mode(priv, mode);
9530 if (err) {
9531 IPW_DEBUG_WX("failed setting power mode.\n");
9532 mutex_unlock(&priv->mutex);
9533 return err;
9536 mutex_unlock(&priv->mutex);
9537 return 0;
9540 #define MAX_WX_STRING 80
9541 static int ipw_wx_get_powermode(struct net_device *dev,
9542 struct iw_request_info *info,
9543 union iwreq_data *wrqu, char *extra)
9545 struct ipw_priv *priv = ieee80211_priv(dev);
9546 int level = IPW_POWER_LEVEL(priv->power_mode);
9547 char *p = extra;
9549 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9551 switch (level) {
9552 case IPW_POWER_AC:
9553 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9554 break;
9555 case IPW_POWER_BATTERY:
9556 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9557 break;
9558 default:
9559 p += snprintf(p, MAX_WX_STRING - (p - extra),
9560 "(Timeout %dms, Period %dms)",
9561 timeout_duration[level - 1] / 1000,
9562 period_duration[level - 1] / 1000);
9565 if (!(priv->power_mode & IPW_POWER_ENABLED))
9566 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9568 wrqu->data.length = p - extra + 1;
9570 return 0;
9573 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9574 struct iw_request_info *info,
9575 union iwreq_data *wrqu, char *extra)
9577 struct ipw_priv *priv = ieee80211_priv(dev);
9578 int mode = *(int *)extra;
9579 u8 band = 0, modulation = 0;
9581 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9582 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9583 return -EINVAL;
9585 mutex_lock(&priv->mutex);
9586 if (priv->adapter == IPW_2915ABG) {
9587 priv->ieee->abg_true = 1;
9588 if (mode & IEEE_A) {
9589 band |= IEEE80211_52GHZ_BAND;
9590 modulation |= IEEE80211_OFDM_MODULATION;
9591 } else
9592 priv->ieee->abg_true = 0;
9593 } else {
9594 if (mode & IEEE_A) {
9595 IPW_WARNING("Attempt to set 2200BG into "
9596 "802.11a mode\n");
9597 mutex_unlock(&priv->mutex);
9598 return -EINVAL;
9601 priv->ieee->abg_true = 0;
9604 if (mode & IEEE_B) {
9605 band |= IEEE80211_24GHZ_BAND;
9606 modulation |= IEEE80211_CCK_MODULATION;
9607 } else
9608 priv->ieee->abg_true = 0;
9610 if (mode & IEEE_G) {
9611 band |= IEEE80211_24GHZ_BAND;
9612 modulation |= IEEE80211_OFDM_MODULATION;
9613 } else
9614 priv->ieee->abg_true = 0;
9616 priv->ieee->mode = mode;
9617 priv->ieee->freq_band = band;
9618 priv->ieee->modulation = modulation;
9619 init_supported_rates(priv, &priv->rates);
9621 /* Network configuration changed -- force [re]association */
9622 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9623 if (!ipw_disassociate(priv)) {
9624 ipw_send_supported_rates(priv, &priv->rates);
9625 ipw_associate(priv);
9628 /* Update the band LEDs */
9629 ipw_led_band_on(priv);
9631 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9632 mode & IEEE_A ? 'a' : '.',
9633 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9634 mutex_unlock(&priv->mutex);
9635 return 0;
9638 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9639 struct iw_request_info *info,
9640 union iwreq_data *wrqu, char *extra)
9642 struct ipw_priv *priv = ieee80211_priv(dev);
9643 mutex_lock(&priv->mutex);
9644 switch (priv->ieee->mode) {
9645 case IEEE_A:
9646 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9647 break;
9648 case IEEE_B:
9649 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9650 break;
9651 case IEEE_A | IEEE_B:
9652 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9653 break;
9654 case IEEE_G:
9655 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9656 break;
9657 case IEEE_A | IEEE_G:
9658 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9659 break;
9660 case IEEE_B | IEEE_G:
9661 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9662 break;
9663 case IEEE_A | IEEE_B | IEEE_G:
9664 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9665 break;
9666 default:
9667 strncpy(extra, "unknown", MAX_WX_STRING);
9668 break;
9671 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9673 wrqu->data.length = strlen(extra) + 1;
9674 mutex_unlock(&priv->mutex);
9676 return 0;
9679 static int ipw_wx_set_preamble(struct net_device *dev,
9680 struct iw_request_info *info,
9681 union iwreq_data *wrqu, char *extra)
9683 struct ipw_priv *priv = ieee80211_priv(dev);
9684 int mode = *(int *)extra;
9685 mutex_lock(&priv->mutex);
9686 /* Switching from SHORT -> LONG requires a disassociation */
9687 if (mode == 1) {
9688 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9689 priv->config |= CFG_PREAMBLE_LONG;
9691 /* Network configuration changed -- force [re]association */
9692 IPW_DEBUG_ASSOC
9693 ("[re]association triggered due to preamble change.\n");
9694 if (!ipw_disassociate(priv))
9695 ipw_associate(priv);
9697 goto done;
9700 if (mode == 0) {
9701 priv->config &= ~CFG_PREAMBLE_LONG;
9702 goto done;
9704 mutex_unlock(&priv->mutex);
9705 return -EINVAL;
9707 done:
9708 mutex_unlock(&priv->mutex);
9709 return 0;
9712 static int ipw_wx_get_preamble(struct net_device *dev,
9713 struct iw_request_info *info,
9714 union iwreq_data *wrqu, char *extra)
9716 struct ipw_priv *priv = ieee80211_priv(dev);
9717 mutex_lock(&priv->mutex);
9718 if (priv->config & CFG_PREAMBLE_LONG)
9719 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9720 else
9721 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9722 mutex_unlock(&priv->mutex);
9723 return 0;
9726 #ifdef CONFIG_IPW2200_MONITOR
9727 static int ipw_wx_set_monitor(struct net_device *dev,
9728 struct iw_request_info *info,
9729 union iwreq_data *wrqu, char *extra)
9731 struct ipw_priv *priv = ieee80211_priv(dev);
9732 int *parms = (int *)extra;
9733 int enable = (parms[0] > 0);
9734 mutex_lock(&priv->mutex);
9735 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9736 if (enable) {
9737 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9738 #ifdef CONFIG_IEEE80211_RADIOTAP
9739 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9740 #else
9741 priv->net_dev->type = ARPHRD_IEEE80211;
9742 #endif
9743 queue_work(priv->workqueue, &priv->adapter_restart);
9746 ipw_set_channel(priv, parms[1]);
9747 } else {
9748 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9749 mutex_unlock(&priv->mutex);
9750 return 0;
9752 priv->net_dev->type = ARPHRD_ETHER;
9753 queue_work(priv->workqueue, &priv->adapter_restart);
9755 mutex_unlock(&priv->mutex);
9756 return 0;
9759 #endif // CONFIG_IPW2200_MONITOR
9761 static int ipw_wx_reset(struct net_device *dev,
9762 struct iw_request_info *info,
9763 union iwreq_data *wrqu, char *extra)
9765 struct ipw_priv *priv = ieee80211_priv(dev);
9766 IPW_DEBUG_WX("RESET\n");
9767 queue_work(priv->workqueue, &priv->adapter_restart);
9768 return 0;
9771 static int ipw_wx_sw_reset(struct net_device *dev,
9772 struct iw_request_info *info,
9773 union iwreq_data *wrqu, char *extra)
9775 struct ipw_priv *priv = ieee80211_priv(dev);
9776 union iwreq_data wrqu_sec = {
9777 .encoding = {
9778 .flags = IW_ENCODE_DISABLED,
9781 int ret;
9783 IPW_DEBUG_WX("SW_RESET\n");
9785 mutex_lock(&priv->mutex);
9787 ret = ipw_sw_reset(priv, 2);
9788 if (!ret) {
9789 free_firmware();
9790 ipw_adapter_restart(priv);
9793 /* The SW reset bit might have been toggled on by the 'disable'
9794 * module parameter, so take appropriate action */
9795 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9797 mutex_unlock(&priv->mutex);
9798 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9799 mutex_lock(&priv->mutex);
9801 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9802 /* Configuration likely changed -- force [re]association */
9803 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9804 "reset.\n");
9805 if (!ipw_disassociate(priv))
9806 ipw_associate(priv);
9809 mutex_unlock(&priv->mutex);
9811 return 0;
9814 /* Rebase the WE IOCTLs to zero for the handler array */
9815 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9816 static iw_handler ipw_wx_handlers[] = {
9817 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9818 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9819 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9820 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9821 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9822 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9823 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9824 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9825 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9826 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9827 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9828 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9829 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9830 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9831 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9832 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9833 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9834 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9835 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9836 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9837 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9838 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9839 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9840 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9841 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9842 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9843 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9844 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9845 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9846 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9847 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9848 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9849 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9850 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9851 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9852 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9853 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9854 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9855 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9856 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9857 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9860 enum {
9861 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9862 IPW_PRIV_GET_POWER,
9863 IPW_PRIV_SET_MODE,
9864 IPW_PRIV_GET_MODE,
9865 IPW_PRIV_SET_PREAMBLE,
9866 IPW_PRIV_GET_PREAMBLE,
9867 IPW_PRIV_RESET,
9868 IPW_PRIV_SW_RESET,
9869 #ifdef CONFIG_IPW2200_MONITOR
9870 IPW_PRIV_SET_MONITOR,
9871 #endif
9874 static struct iw_priv_args ipw_priv_args[] = {
9876 .cmd = IPW_PRIV_SET_POWER,
9877 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9878 .name = "set_power"},
9880 .cmd = IPW_PRIV_GET_POWER,
9881 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9882 .name = "get_power"},
9884 .cmd = IPW_PRIV_SET_MODE,
9885 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9886 .name = "set_mode"},
9888 .cmd = IPW_PRIV_GET_MODE,
9889 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9890 .name = "get_mode"},
9892 .cmd = IPW_PRIV_SET_PREAMBLE,
9893 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9894 .name = "set_preamble"},
9896 .cmd = IPW_PRIV_GET_PREAMBLE,
9897 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9898 .name = "get_preamble"},
9900 IPW_PRIV_RESET,
9901 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9903 IPW_PRIV_SW_RESET,
9904 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9905 #ifdef CONFIG_IPW2200_MONITOR
9907 IPW_PRIV_SET_MONITOR,
9908 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9909 #endif /* CONFIG_IPW2200_MONITOR */
9912 static iw_handler ipw_priv_handler[] = {
9913 ipw_wx_set_powermode,
9914 ipw_wx_get_powermode,
9915 ipw_wx_set_wireless_mode,
9916 ipw_wx_get_wireless_mode,
9917 ipw_wx_set_preamble,
9918 ipw_wx_get_preamble,
9919 ipw_wx_reset,
9920 ipw_wx_sw_reset,
9921 #ifdef CONFIG_IPW2200_MONITOR
9922 ipw_wx_set_monitor,
9923 #endif
9926 static struct iw_handler_def ipw_wx_handler_def = {
9927 .standard = ipw_wx_handlers,
9928 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9929 .num_private = ARRAY_SIZE(ipw_priv_handler),
9930 .num_private_args = ARRAY_SIZE(ipw_priv_args),
9931 .private = ipw_priv_handler,
9932 .private_args = ipw_priv_args,
9933 .get_wireless_stats = ipw_get_wireless_stats,
9937 * Get wireless statistics.
9938 * Called by /proc/net/wireless
9939 * Also called by SIOCGIWSTATS
9941 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9943 struct ipw_priv *priv = ieee80211_priv(dev);
9944 struct iw_statistics *wstats;
9946 wstats = &priv->wstats;
9948 /* if hw is disabled, then ipw_get_ordinal() can't be called.
9949 * netdev->get_wireless_stats seems to be called before fw is
9950 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
9951 * and associated; if not associcated, the values are all meaningless
9952 * anyway, so set them all to NULL and INVALID */
9953 if (!(priv->status & STATUS_ASSOCIATED)) {
9954 wstats->miss.beacon = 0;
9955 wstats->discard.retries = 0;
9956 wstats->qual.qual = 0;
9957 wstats->qual.level = 0;
9958 wstats->qual.noise = 0;
9959 wstats->qual.updated = 7;
9960 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9961 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9962 return wstats;
9965 wstats->qual.qual = priv->quality;
9966 wstats->qual.level = priv->exp_avg_rssi;
9967 wstats->qual.noise = priv->exp_avg_noise;
9968 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9969 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9971 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9972 wstats->discard.retries = priv->last_tx_failures;
9973 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9975 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9976 goto fail_get_ordinal;
9977 wstats->discard.retries += tx_retry; */
9979 return wstats;
9982 /* net device stuff */
9984 static void init_sys_config(struct ipw_sys_config *sys_config)
9986 memset(sys_config, 0, sizeof(struct ipw_sys_config));
9987 sys_config->bt_coexistence = 0;
9988 sys_config->answer_broadcast_ssid_probe = 0;
9989 sys_config->accept_all_data_frames = 0;
9990 sys_config->accept_non_directed_frames = 1;
9991 sys_config->exclude_unicast_unencrypted = 0;
9992 sys_config->disable_unicast_decryption = 1;
9993 sys_config->exclude_multicast_unencrypted = 0;
9994 sys_config->disable_multicast_decryption = 1;
9995 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
9996 antenna = CFG_SYS_ANTENNA_BOTH;
9997 sys_config->antenna_diversity = antenna;
9998 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
9999 sys_config->dot11g_auto_detection = 0;
10000 sys_config->enable_cts_to_self = 0;
10001 sys_config->bt_coexist_collision_thr = 0;
10002 sys_config->pass_noise_stats_to_host = 1; //1 -- fix for 256
10003 sys_config->silence_threshold = 0x1e;
10006 static int ipw_net_open(struct net_device *dev)
10008 struct ipw_priv *priv = ieee80211_priv(dev);
10009 IPW_DEBUG_INFO("dev->open\n");
10010 /* we should be verifying the device is ready to be opened */
10011 mutex_lock(&priv->mutex);
10012 if (!(priv->status & STATUS_RF_KILL_MASK) &&
10013 (priv->status & STATUS_ASSOCIATED))
10014 netif_start_queue(dev);
10015 mutex_unlock(&priv->mutex);
10016 return 0;
10019 static int ipw_net_stop(struct net_device *dev)
10021 IPW_DEBUG_INFO("dev->close\n");
10022 netif_stop_queue(dev);
10023 return 0;
10027 todo:
10029 modify to send one tfd per fragment instead of using chunking. otherwise
10030 we need to heavily modify the ieee80211_skb_to_txb.
10033 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10034 int pri)
10036 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10037 txb->fragments[0]->data;
10038 int i = 0;
10039 struct tfd_frame *tfd;
10040 #ifdef CONFIG_IPW_QOS
10041 int tx_id = ipw_get_tx_queue_number(priv, pri);
10042 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10043 #else
10044 struct clx2_tx_queue *txq = &priv->txq[0];
10045 #endif
10046 struct clx2_queue *q = &txq->q;
10047 u8 id, hdr_len, unicast;
10048 u16 remaining_bytes;
10049 int fc;
10051 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10052 switch (priv->ieee->iw_mode) {
10053 case IW_MODE_ADHOC:
10054 unicast = !is_multicast_ether_addr(hdr->addr1);
10055 id = ipw_find_station(priv, hdr->addr1);
10056 if (id == IPW_INVALID_STATION) {
10057 id = ipw_add_station(priv, hdr->addr1);
10058 if (id == IPW_INVALID_STATION) {
10059 IPW_WARNING("Attempt to send data to "
10060 "invalid cell: " MAC_FMT "\n",
10061 MAC_ARG(hdr->addr1));
10062 goto drop;
10065 break;
10067 case IW_MODE_INFRA:
10068 default:
10069 unicast = !is_multicast_ether_addr(hdr->addr3);
10070 id = 0;
10071 break;
10074 tfd = &txq->bd[q->first_empty];
10075 txq->txb[q->first_empty] = txb;
10076 memset(tfd, 0, sizeof(*tfd));
10077 tfd->u.data.station_number = id;
10079 tfd->control_flags.message_type = TX_FRAME_TYPE;
10080 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10082 tfd->u.data.cmd_id = DINO_CMD_TX;
10083 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10084 remaining_bytes = txb->payload_size;
10086 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10087 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10088 else
10089 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10091 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10092 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10094 fc = le16_to_cpu(hdr->frame_ctl);
10095 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10097 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10099 if (likely(unicast))
10100 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10102 if (txb->encrypted && !priv->ieee->host_encrypt) {
10103 switch (priv->ieee->sec.level) {
10104 case SEC_LEVEL_3:
10105 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10106 IEEE80211_FCTL_PROTECTED;
10107 /* XXX: ACK flag must be set for CCMP even if it
10108 * is a multicast/broadcast packet, because CCMP
10109 * group communication encrypted by GTK is
10110 * actually done by the AP. */
10111 if (!unicast)
10112 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10114 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10115 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10116 tfd->u.data.key_index = 0;
10117 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10118 break;
10119 case SEC_LEVEL_2:
10120 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10121 IEEE80211_FCTL_PROTECTED;
10122 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10123 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10124 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10125 break;
10126 case SEC_LEVEL_1:
10127 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10128 IEEE80211_FCTL_PROTECTED;
10129 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10130 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10132 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10133 else
10134 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10135 break;
10136 case SEC_LEVEL_0:
10137 break;
10138 default:
10139 printk(KERN_ERR "Unknow security level %d\n",
10140 priv->ieee->sec.level);
10141 break;
10143 } else
10144 /* No hardware encryption */
10145 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10147 #ifdef CONFIG_IPW_QOS
10148 if (fc & IEEE80211_STYPE_QOS_DATA)
10149 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10150 #endif /* CONFIG_IPW_QOS */
10152 /* payload */
10153 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10154 txb->nr_frags));
10155 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10156 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10157 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10158 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10159 i, le32_to_cpu(tfd->u.data.num_chunks),
10160 txb->fragments[i]->len - hdr_len);
10161 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10162 i, tfd->u.data.num_chunks,
10163 txb->fragments[i]->len - hdr_len);
10164 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10165 txb->fragments[i]->len - hdr_len);
10167 tfd->u.data.chunk_ptr[i] =
10168 cpu_to_le32(pci_map_single
10169 (priv->pci_dev,
10170 txb->fragments[i]->data + hdr_len,
10171 txb->fragments[i]->len - hdr_len,
10172 PCI_DMA_TODEVICE));
10173 tfd->u.data.chunk_len[i] =
10174 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10177 if (i != txb->nr_frags) {
10178 struct sk_buff *skb;
10179 u16 remaining_bytes = 0;
10180 int j;
10182 for (j = i; j < txb->nr_frags; j++)
10183 remaining_bytes += txb->fragments[j]->len - hdr_len;
10185 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10186 remaining_bytes);
10187 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10188 if (skb != NULL) {
10189 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10190 for (j = i; j < txb->nr_frags; j++) {
10191 int size = txb->fragments[j]->len - hdr_len;
10193 printk(KERN_INFO "Adding frag %d %d...\n",
10194 j, size);
10195 memcpy(skb_put(skb, size),
10196 txb->fragments[j]->data + hdr_len, size);
10198 dev_kfree_skb_any(txb->fragments[i]);
10199 txb->fragments[i] = skb;
10200 tfd->u.data.chunk_ptr[i] =
10201 cpu_to_le32(pci_map_single
10202 (priv->pci_dev, skb->data,
10203 tfd->u.data.chunk_len[i],
10204 PCI_DMA_TODEVICE));
10206 tfd->u.data.num_chunks =
10207 cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10212 /* kick DMA */
10213 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10214 ipw_write32(priv, q->reg_w, q->first_empty);
10216 if (ipw_queue_space(q) < q->high_mark)
10217 netif_stop_queue(priv->net_dev);
10219 return NETDEV_TX_OK;
10221 drop:
10222 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10223 ieee80211_txb_free(txb);
10224 return NETDEV_TX_OK;
10227 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10229 struct ipw_priv *priv = ieee80211_priv(dev);
10230 #ifdef CONFIG_IPW_QOS
10231 int tx_id = ipw_get_tx_queue_number(priv, pri);
10232 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10233 #else
10234 struct clx2_tx_queue *txq = &priv->txq[0];
10235 #endif /* CONFIG_IPW_QOS */
10237 if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10238 return 1;
10240 return 0;
10243 #ifdef CONFIG_IPW2200_PROMISCUOUS
10244 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10245 struct ieee80211_txb *txb)
10247 struct ieee80211_rx_stats dummystats;
10248 struct ieee80211_hdr *hdr;
10249 u8 n;
10250 u16 filter = priv->prom_priv->filter;
10251 int hdr_only = 0;
10253 if (filter & IPW_PROM_NO_TX)
10254 return;
10256 memset(&dummystats, 0, sizeof(dummystats));
10258 /* Filtering of fragment chains is done agains the first fragment */
10259 hdr = (void *)txb->fragments[0]->data;
10260 if (ieee80211_is_management(hdr->frame_ctl)) {
10261 if (filter & IPW_PROM_NO_MGMT)
10262 return;
10263 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10264 hdr_only = 1;
10265 } else if (ieee80211_is_control(hdr->frame_ctl)) {
10266 if (filter & IPW_PROM_NO_CTL)
10267 return;
10268 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10269 hdr_only = 1;
10270 } else if (ieee80211_is_data(hdr->frame_ctl)) {
10271 if (filter & IPW_PROM_NO_DATA)
10272 return;
10273 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10274 hdr_only = 1;
10277 for(n=0; n<txb->nr_frags; ++n) {
10278 struct sk_buff *src = txb->fragments[n];
10279 struct sk_buff *dst;
10280 struct ieee80211_radiotap_header *rt_hdr;
10281 int len;
10283 if (hdr_only) {
10284 hdr = (void *)src->data;
10285 len = ieee80211_get_hdrlen(hdr->frame_ctl);
10286 } else
10287 len = src->len;
10289 dst = alloc_skb(
10290 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10291 if (!dst) continue;
10293 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10295 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10296 rt_hdr->it_pad = 0;
10297 rt_hdr->it_present = 0; /* after all, it's just an idea */
10298 rt_hdr->it_present |= (1 << IEEE80211_RADIOTAP_CHANNEL);
10300 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10301 ieee80211chan2mhz(priv->channel));
10302 if (priv->channel > 14) /* 802.11a */
10303 *(u16*)skb_put(dst, sizeof(u16)) =
10304 cpu_to_le16(IEEE80211_CHAN_OFDM |
10305 IEEE80211_CHAN_5GHZ);
10306 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10307 *(u16*)skb_put(dst, sizeof(u16)) =
10308 cpu_to_le16(IEEE80211_CHAN_CCK |
10309 IEEE80211_CHAN_2GHZ);
10310 else /* 802.11g */
10311 *(u16*)skb_put(dst, sizeof(u16)) =
10312 cpu_to_le16(IEEE80211_CHAN_OFDM |
10313 IEEE80211_CHAN_2GHZ);
10315 rt_hdr->it_len = dst->len;
10317 memcpy(skb_put(dst, len), src->data, len);
10319 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10320 dev_kfree_skb_any(dst);
10323 #endif
10325 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10326 struct net_device *dev, int pri)
10328 struct ipw_priv *priv = ieee80211_priv(dev);
10329 unsigned long flags;
10330 int ret;
10332 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10333 spin_lock_irqsave(&priv->lock, flags);
10335 if (!(priv->status & STATUS_ASSOCIATED)) {
10336 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10337 priv->ieee->stats.tx_carrier_errors++;
10338 netif_stop_queue(dev);
10339 goto fail_unlock;
10342 #ifdef CONFIG_IPW2200_PROMISCUOUS
10343 if (rtap_iface && netif_running(priv->prom_net_dev))
10344 ipw_handle_promiscuous_tx(priv, txb);
10345 #endif
10347 ret = ipw_tx_skb(priv, txb, pri);
10348 if (ret == NETDEV_TX_OK)
10349 __ipw_led_activity_on(priv);
10350 spin_unlock_irqrestore(&priv->lock, flags);
10352 return ret;
10354 fail_unlock:
10355 spin_unlock_irqrestore(&priv->lock, flags);
10356 return 1;
10359 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10361 struct ipw_priv *priv = ieee80211_priv(dev);
10363 priv->ieee->stats.tx_packets = priv->tx_packets;
10364 priv->ieee->stats.rx_packets = priv->rx_packets;
10365 return &priv->ieee->stats;
10368 static void ipw_net_set_multicast_list(struct net_device *dev)
10373 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10375 struct ipw_priv *priv = ieee80211_priv(dev);
10376 struct sockaddr *addr = p;
10377 if (!is_valid_ether_addr(addr->sa_data))
10378 return -EADDRNOTAVAIL;
10379 mutex_lock(&priv->mutex);
10380 priv->config |= CFG_CUSTOM_MAC;
10381 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10382 printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10383 priv->net_dev->name, MAC_ARG(priv->mac_addr));
10384 queue_work(priv->workqueue, &priv->adapter_restart);
10385 mutex_unlock(&priv->mutex);
10386 return 0;
10389 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10390 struct ethtool_drvinfo *info)
10392 struct ipw_priv *p = ieee80211_priv(dev);
10393 char vers[64];
10394 char date[32];
10395 u32 len;
10397 strcpy(info->driver, DRV_NAME);
10398 strcpy(info->version, DRV_VERSION);
10400 len = sizeof(vers);
10401 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10402 len = sizeof(date);
10403 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10405 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10406 vers, date);
10407 strcpy(info->bus_info, pci_name(p->pci_dev));
10408 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10411 static u32 ipw_ethtool_get_link(struct net_device *dev)
10413 struct ipw_priv *priv = ieee80211_priv(dev);
10414 return (priv->status & STATUS_ASSOCIATED) != 0;
10417 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10419 return IPW_EEPROM_IMAGE_SIZE;
10422 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10423 struct ethtool_eeprom *eeprom, u8 * bytes)
10425 struct ipw_priv *p = ieee80211_priv(dev);
10427 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10428 return -EINVAL;
10429 mutex_lock(&p->mutex);
10430 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10431 mutex_unlock(&p->mutex);
10432 return 0;
10435 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10436 struct ethtool_eeprom *eeprom, u8 * bytes)
10438 struct ipw_priv *p = ieee80211_priv(dev);
10439 int i;
10441 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10442 return -EINVAL;
10443 mutex_lock(&p->mutex);
10444 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10445 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10446 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10447 mutex_unlock(&p->mutex);
10448 return 0;
10451 static struct ethtool_ops ipw_ethtool_ops = {
10452 .get_link = ipw_ethtool_get_link,
10453 .get_drvinfo = ipw_ethtool_get_drvinfo,
10454 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10455 .get_eeprom = ipw_ethtool_get_eeprom,
10456 .set_eeprom = ipw_ethtool_set_eeprom,
10459 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
10461 struct ipw_priv *priv = data;
10462 u32 inta, inta_mask;
10464 if (!priv)
10465 return IRQ_NONE;
10467 spin_lock(&priv->lock);
10469 if (!(priv->status & STATUS_INT_ENABLED)) {
10470 /* Shared IRQ */
10471 goto none;
10474 inta = ipw_read32(priv, IPW_INTA_RW);
10475 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10477 if (inta == 0xFFFFFFFF) {
10478 /* Hardware disappeared */
10479 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10480 goto none;
10483 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10484 /* Shared interrupt */
10485 goto none;
10488 /* tell the device to stop sending interrupts */
10489 ipw_disable_interrupts(priv);
10491 /* ack current interrupts */
10492 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10493 ipw_write32(priv, IPW_INTA_RW, inta);
10495 /* Cache INTA value for our tasklet */
10496 priv->isr_inta = inta;
10498 tasklet_schedule(&priv->irq_tasklet);
10500 spin_unlock(&priv->lock);
10502 return IRQ_HANDLED;
10503 none:
10504 spin_unlock(&priv->lock);
10505 return IRQ_NONE;
10508 static void ipw_rf_kill(void *adapter)
10510 struct ipw_priv *priv = adapter;
10511 unsigned long flags;
10513 spin_lock_irqsave(&priv->lock, flags);
10515 if (rf_kill_active(priv)) {
10516 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10517 if (priv->workqueue)
10518 queue_delayed_work(priv->workqueue,
10519 &priv->rf_kill, 2 * HZ);
10520 goto exit_unlock;
10523 /* RF Kill is now disabled, so bring the device back up */
10525 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10526 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10527 "device\n");
10529 /* we can not do an adapter restart while inside an irq lock */
10530 queue_work(priv->workqueue, &priv->adapter_restart);
10531 } else
10532 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10533 "enabled\n");
10535 exit_unlock:
10536 spin_unlock_irqrestore(&priv->lock, flags);
10539 static void ipw_bg_rf_kill(void *data)
10541 struct ipw_priv *priv = data;
10542 mutex_lock(&priv->mutex);
10543 ipw_rf_kill(data);
10544 mutex_unlock(&priv->mutex);
10547 static void ipw_link_up(struct ipw_priv *priv)
10549 priv->last_seq_num = -1;
10550 priv->last_frag_num = -1;
10551 priv->last_packet_time = 0;
10553 netif_carrier_on(priv->net_dev);
10554 if (netif_queue_stopped(priv->net_dev)) {
10555 IPW_DEBUG_NOTIF("waking queue\n");
10556 netif_wake_queue(priv->net_dev);
10557 } else {
10558 IPW_DEBUG_NOTIF("starting queue\n");
10559 netif_start_queue(priv->net_dev);
10562 cancel_delayed_work(&priv->request_scan);
10563 ipw_reset_stats(priv);
10564 /* Ensure the rate is updated immediately */
10565 priv->last_rate = ipw_get_current_rate(priv);
10566 ipw_gather_stats(priv);
10567 ipw_led_link_up(priv);
10568 notify_wx_assoc_event(priv);
10570 if (priv->config & CFG_BACKGROUND_SCAN)
10571 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10574 static void ipw_bg_link_up(void *data)
10576 struct ipw_priv *priv = data;
10577 mutex_lock(&priv->mutex);
10578 ipw_link_up(data);
10579 mutex_unlock(&priv->mutex);
10582 static void ipw_link_down(struct ipw_priv *priv)
10584 ipw_led_link_down(priv);
10585 netif_carrier_off(priv->net_dev);
10586 netif_stop_queue(priv->net_dev);
10587 notify_wx_assoc_event(priv);
10589 /* Cancel any queued work ... */
10590 cancel_delayed_work(&priv->request_scan);
10591 cancel_delayed_work(&priv->adhoc_check);
10592 cancel_delayed_work(&priv->gather_stats);
10594 ipw_reset_stats(priv);
10596 if (!(priv->status & STATUS_EXIT_PENDING)) {
10597 /* Queue up another scan... */
10598 queue_work(priv->workqueue, &priv->request_scan);
10602 static void ipw_bg_link_down(void *data)
10604 struct ipw_priv *priv = data;
10605 mutex_lock(&priv->mutex);
10606 ipw_link_down(data);
10607 mutex_unlock(&priv->mutex);
10610 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10612 int ret = 0;
10614 priv->workqueue = create_workqueue(DRV_NAME);
10615 init_waitqueue_head(&priv->wait_command_queue);
10616 init_waitqueue_head(&priv->wait_state);
10618 INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10619 INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10620 INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10621 INIT_WORK(&priv->system_config, ipw_system_config, priv);
10622 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10623 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10624 INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10625 INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10626 INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10627 INIT_WORK(&priv->request_scan,
10628 (void (*)(void *))ipw_request_scan, priv);
10629 INIT_WORK(&priv->gather_stats,
10630 (void (*)(void *))ipw_bg_gather_stats, priv);
10631 INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10632 INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10633 INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10634 INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10635 INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10636 INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10637 priv);
10638 INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10639 priv);
10640 INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10641 priv);
10642 INIT_WORK(&priv->merge_networks,
10643 (void (*)(void *))ipw_merge_adhoc_network, priv);
10645 #ifdef CONFIG_IPW_QOS
10646 INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10647 priv);
10648 #endif /* CONFIG_IPW_QOS */
10650 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10651 ipw_irq_tasklet, (unsigned long)priv);
10653 return ret;
10656 static void shim__set_security(struct net_device *dev,
10657 struct ieee80211_security *sec)
10659 struct ipw_priv *priv = ieee80211_priv(dev);
10660 int i;
10661 for (i = 0; i < 4; i++) {
10662 if (sec->flags & (1 << i)) {
10663 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10664 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10665 if (sec->key_sizes[i] == 0)
10666 priv->ieee->sec.flags &= ~(1 << i);
10667 else {
10668 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10669 sec->key_sizes[i]);
10670 priv->ieee->sec.flags |= (1 << i);
10672 priv->status |= STATUS_SECURITY_UPDATED;
10673 } else if (sec->level != SEC_LEVEL_1)
10674 priv->ieee->sec.flags &= ~(1 << i);
10677 if (sec->flags & SEC_ACTIVE_KEY) {
10678 if (sec->active_key <= 3) {
10679 priv->ieee->sec.active_key = sec->active_key;
10680 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10681 } else
10682 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10683 priv->status |= STATUS_SECURITY_UPDATED;
10684 } else
10685 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10687 if ((sec->flags & SEC_AUTH_MODE) &&
10688 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10689 priv->ieee->sec.auth_mode = sec->auth_mode;
10690 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10691 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10692 priv->capability |= CAP_SHARED_KEY;
10693 else
10694 priv->capability &= ~CAP_SHARED_KEY;
10695 priv->status |= STATUS_SECURITY_UPDATED;
10698 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10699 priv->ieee->sec.flags |= SEC_ENABLED;
10700 priv->ieee->sec.enabled = sec->enabled;
10701 priv->status |= STATUS_SECURITY_UPDATED;
10702 if (sec->enabled)
10703 priv->capability |= CAP_PRIVACY_ON;
10704 else
10705 priv->capability &= ~CAP_PRIVACY_ON;
10708 if (sec->flags & SEC_ENCRYPT)
10709 priv->ieee->sec.encrypt = sec->encrypt;
10711 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10712 priv->ieee->sec.level = sec->level;
10713 priv->ieee->sec.flags |= SEC_LEVEL;
10714 priv->status |= STATUS_SECURITY_UPDATED;
10717 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10718 ipw_set_hwcrypto_keys(priv);
10720 /* To match current functionality of ipw2100 (which works well w/
10721 * various supplicants, we don't force a disassociate if the
10722 * privacy capability changes ... */
10723 #if 0
10724 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10725 (((priv->assoc_request.capability &
10726 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10727 (!(priv->assoc_request.capability &
10728 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10729 IPW_DEBUG_ASSOC("Disassociating due to capability "
10730 "change.\n");
10731 ipw_disassociate(priv);
10733 #endif
10736 static int init_supported_rates(struct ipw_priv *priv,
10737 struct ipw_supported_rates *rates)
10739 /* TODO: Mask out rates based on priv->rates_mask */
10741 memset(rates, 0, sizeof(*rates));
10742 /* configure supported rates */
10743 switch (priv->ieee->freq_band) {
10744 case IEEE80211_52GHZ_BAND:
10745 rates->ieee_mode = IPW_A_MODE;
10746 rates->purpose = IPW_RATE_CAPABILITIES;
10747 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10748 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10749 break;
10751 default: /* Mixed or 2.4Ghz */
10752 rates->ieee_mode = IPW_G_MODE;
10753 rates->purpose = IPW_RATE_CAPABILITIES;
10754 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10755 IEEE80211_CCK_DEFAULT_RATES_MASK);
10756 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10757 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10758 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10760 break;
10763 return 0;
10766 static int ipw_config(struct ipw_priv *priv)
10768 /* This is only called from ipw_up, which resets/reloads the firmware
10769 so, we don't need to first disable the card before we configure
10770 it */
10771 if (ipw_set_tx_power(priv))
10772 goto error;
10774 /* initialize adapter address */
10775 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10776 goto error;
10778 /* set basic system config settings */
10779 init_sys_config(&priv->sys_config);
10781 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10782 * Does not support BT priority yet (don't abort or defer our Tx) */
10783 if (bt_coexist) {
10784 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10786 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10787 priv->sys_config.bt_coexistence
10788 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10789 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10790 priv->sys_config.bt_coexistence
10791 |= CFG_BT_COEXISTENCE_OOB;
10794 #ifdef CONFIG_IPW2200_PROMISCUOUS
10795 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10796 priv->sys_config.accept_all_data_frames = 1;
10797 priv->sys_config.accept_non_directed_frames = 1;
10798 priv->sys_config.accept_all_mgmt_bcpr = 1;
10799 priv->sys_config.accept_all_mgmt_frames = 1;
10801 #endif
10803 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10804 priv->sys_config.answer_broadcast_ssid_probe = 1;
10805 else
10806 priv->sys_config.answer_broadcast_ssid_probe = 0;
10808 if (ipw_send_system_config(priv))
10809 goto error;
10811 init_supported_rates(priv, &priv->rates);
10812 if (ipw_send_supported_rates(priv, &priv->rates))
10813 goto error;
10815 /* Set request-to-send threshold */
10816 if (priv->rts_threshold) {
10817 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10818 goto error;
10820 #ifdef CONFIG_IPW_QOS
10821 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10822 ipw_qos_activate(priv, NULL);
10823 #endif /* CONFIG_IPW_QOS */
10825 if (ipw_set_random_seed(priv))
10826 goto error;
10828 /* final state transition to the RUN state */
10829 if (ipw_send_host_complete(priv))
10830 goto error;
10832 priv->status |= STATUS_INIT;
10834 ipw_led_init(priv);
10835 ipw_led_radio_on(priv);
10836 priv->notif_missed_beacons = 0;
10838 /* Set hardware WEP key if it is configured. */
10839 if ((priv->capability & CAP_PRIVACY_ON) &&
10840 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10841 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10842 ipw_set_hwcrypto_keys(priv);
10844 return 0;
10846 error:
10847 return -EIO;
10851 * NOTE:
10853 * These tables have been tested in conjunction with the
10854 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10856 * Altering this values, using it on other hardware, or in geographies
10857 * not intended for resale of the above mentioned Intel adapters has
10858 * not been tested.
10860 * Remember to update the table in README.ipw2200 when changing this
10861 * table.
10864 static const struct ieee80211_geo ipw_geos[] = {
10865 { /* Restricted */
10866 "---",
10867 .bg_channels = 11,
10868 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10869 {2427, 4}, {2432, 5}, {2437, 6},
10870 {2442, 7}, {2447, 8}, {2452, 9},
10871 {2457, 10}, {2462, 11}},
10874 { /* Custom US/Canada */
10875 "ZZF",
10876 .bg_channels = 11,
10877 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10878 {2427, 4}, {2432, 5}, {2437, 6},
10879 {2442, 7}, {2447, 8}, {2452, 9},
10880 {2457, 10}, {2462, 11}},
10881 .a_channels = 8,
10882 .a = {{5180, 36},
10883 {5200, 40},
10884 {5220, 44},
10885 {5240, 48},
10886 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10887 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10888 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10889 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10892 { /* Rest of World */
10893 "ZZD",
10894 .bg_channels = 13,
10895 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10896 {2427, 4}, {2432, 5}, {2437, 6},
10897 {2442, 7}, {2447, 8}, {2452, 9},
10898 {2457, 10}, {2462, 11}, {2467, 12},
10899 {2472, 13}},
10902 { /* Custom USA & Europe & High */
10903 "ZZA",
10904 .bg_channels = 11,
10905 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10906 {2427, 4}, {2432, 5}, {2437, 6},
10907 {2442, 7}, {2447, 8}, {2452, 9},
10908 {2457, 10}, {2462, 11}},
10909 .a_channels = 13,
10910 .a = {{5180, 36},
10911 {5200, 40},
10912 {5220, 44},
10913 {5240, 48},
10914 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10915 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10916 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10917 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10918 {5745, 149},
10919 {5765, 153},
10920 {5785, 157},
10921 {5805, 161},
10922 {5825, 165}},
10925 { /* Custom NA & Europe */
10926 "ZZB",
10927 .bg_channels = 11,
10928 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10929 {2427, 4}, {2432, 5}, {2437, 6},
10930 {2442, 7}, {2447, 8}, {2452, 9},
10931 {2457, 10}, {2462, 11}},
10932 .a_channels = 13,
10933 .a = {{5180, 36},
10934 {5200, 40},
10935 {5220, 44},
10936 {5240, 48},
10937 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10938 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10939 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10940 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10941 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10942 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10943 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10944 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10945 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10948 { /* Custom Japan */
10949 "ZZC",
10950 .bg_channels = 11,
10951 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10952 {2427, 4}, {2432, 5}, {2437, 6},
10953 {2442, 7}, {2447, 8}, {2452, 9},
10954 {2457, 10}, {2462, 11}},
10955 .a_channels = 4,
10956 .a = {{5170, 34}, {5190, 38},
10957 {5210, 42}, {5230, 46}},
10960 { /* Custom */
10961 "ZZM",
10962 .bg_channels = 11,
10963 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10964 {2427, 4}, {2432, 5}, {2437, 6},
10965 {2442, 7}, {2447, 8}, {2452, 9},
10966 {2457, 10}, {2462, 11}},
10969 { /* Europe */
10970 "ZZE",
10971 .bg_channels = 13,
10972 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10973 {2427, 4}, {2432, 5}, {2437, 6},
10974 {2442, 7}, {2447, 8}, {2452, 9},
10975 {2457, 10}, {2462, 11}, {2467, 12},
10976 {2472, 13}},
10977 .a_channels = 19,
10978 .a = {{5180, 36},
10979 {5200, 40},
10980 {5220, 44},
10981 {5240, 48},
10982 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10983 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10984 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10985 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10986 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10987 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10988 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10989 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10990 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10991 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10992 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10993 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10994 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10995 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10996 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10999 { /* Custom Japan */
11000 "ZZJ",
11001 .bg_channels = 14,
11002 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11003 {2427, 4}, {2432, 5}, {2437, 6},
11004 {2442, 7}, {2447, 8}, {2452, 9},
11005 {2457, 10}, {2462, 11}, {2467, 12},
11006 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11007 .a_channels = 4,
11008 .a = {{5170, 34}, {5190, 38},
11009 {5210, 42}, {5230, 46}},
11012 { /* Rest of World */
11013 "ZZR",
11014 .bg_channels = 14,
11015 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11016 {2427, 4}, {2432, 5}, {2437, 6},
11017 {2442, 7}, {2447, 8}, {2452, 9},
11018 {2457, 10}, {2462, 11}, {2467, 12},
11019 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11020 IEEE80211_CH_PASSIVE_ONLY}},
11023 { /* High Band */
11024 "ZZH",
11025 .bg_channels = 13,
11026 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11027 {2427, 4}, {2432, 5}, {2437, 6},
11028 {2442, 7}, {2447, 8}, {2452, 9},
11029 {2457, 10}, {2462, 11},
11030 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11031 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11032 .a_channels = 4,
11033 .a = {{5745, 149}, {5765, 153},
11034 {5785, 157}, {5805, 161}},
11037 { /* Custom Europe */
11038 "ZZG",
11039 .bg_channels = 13,
11040 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11041 {2427, 4}, {2432, 5}, {2437, 6},
11042 {2442, 7}, {2447, 8}, {2452, 9},
11043 {2457, 10}, {2462, 11},
11044 {2467, 12}, {2472, 13}},
11045 .a_channels = 4,
11046 .a = {{5180, 36}, {5200, 40},
11047 {5220, 44}, {5240, 48}},
11050 { /* Europe */
11051 "ZZK",
11052 .bg_channels = 13,
11053 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11054 {2427, 4}, {2432, 5}, {2437, 6},
11055 {2442, 7}, {2447, 8}, {2452, 9},
11056 {2457, 10}, {2462, 11},
11057 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11058 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11059 .a_channels = 24,
11060 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11061 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11062 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11063 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11064 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11065 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11066 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11067 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11068 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11069 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11070 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11071 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11072 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11073 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11074 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11075 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11076 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11077 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11078 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11079 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11080 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11081 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11082 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11083 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11086 { /* Europe */
11087 "ZZL",
11088 .bg_channels = 11,
11089 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11090 {2427, 4}, {2432, 5}, {2437, 6},
11091 {2442, 7}, {2447, 8}, {2452, 9},
11092 {2457, 10}, {2462, 11}},
11093 .a_channels = 13,
11094 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11095 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11096 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11097 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11098 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11099 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11100 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11101 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11102 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11103 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11104 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11105 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11106 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11110 #define MAX_HW_RESTARTS 5
11111 static int ipw_up(struct ipw_priv *priv)
11113 int rc, i, j;
11115 if (priv->status & STATUS_EXIT_PENDING)
11116 return -EIO;
11118 if (cmdlog && !priv->cmdlog) {
11119 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
11120 GFP_KERNEL);
11121 if (priv->cmdlog == NULL) {
11122 IPW_ERROR("Error allocating %d command log entries.\n",
11123 cmdlog);
11124 return -ENOMEM;
11125 } else {
11126 memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
11127 priv->cmdlog_len = cmdlog;
11131 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11132 /* Load the microcode, firmware, and eeprom.
11133 * Also start the clocks. */
11134 rc = ipw_load(priv);
11135 if (rc) {
11136 IPW_ERROR("Unable to load firmware: %d\n", rc);
11137 return rc;
11140 ipw_init_ordinals(priv);
11141 if (!(priv->config & CFG_CUSTOM_MAC))
11142 eeprom_parse_mac(priv, priv->mac_addr);
11143 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11145 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11146 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11147 ipw_geos[j].name, 3))
11148 break;
11150 if (j == ARRAY_SIZE(ipw_geos)) {
11151 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11152 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11153 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11154 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11155 j = 0;
11157 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11158 IPW_WARNING("Could not set geography.");
11159 return 0;
11162 if (priv->status & STATUS_RF_KILL_SW) {
11163 IPW_WARNING("Radio disabled by module parameter.\n");
11164 return 0;
11165 } else if (rf_kill_active(priv)) {
11166 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11167 "Kill switch must be turned off for "
11168 "wireless networking to work.\n");
11169 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11170 2 * HZ);
11171 return 0;
11174 rc = ipw_config(priv);
11175 if (!rc) {
11176 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11178 /* If configure to try and auto-associate, kick
11179 * off a scan. */
11180 queue_work(priv->workqueue, &priv->request_scan);
11182 return 0;
11185 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11186 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11187 i, MAX_HW_RESTARTS);
11189 /* We had an error bringing up the hardware, so take it
11190 * all the way back down so we can try again */
11191 ipw_down(priv);
11194 /* tried to restart and config the device for as long as our
11195 * patience could withstand */
11196 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11198 return -EIO;
11201 static void ipw_bg_up(void *data)
11203 struct ipw_priv *priv = data;
11204 mutex_lock(&priv->mutex);
11205 ipw_up(data);
11206 mutex_unlock(&priv->mutex);
11209 static void ipw_deinit(struct ipw_priv *priv)
11211 int i;
11213 if (priv->status & STATUS_SCANNING) {
11214 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11215 ipw_abort_scan(priv);
11218 if (priv->status & STATUS_ASSOCIATED) {
11219 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11220 ipw_disassociate(priv);
11223 ipw_led_shutdown(priv);
11225 /* Wait up to 1s for status to change to not scanning and not
11226 * associated (disassociation can take a while for a ful 802.11
11227 * exchange */
11228 for (i = 1000; i && (priv->status &
11229 (STATUS_DISASSOCIATING |
11230 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11231 udelay(10);
11233 if (priv->status & (STATUS_DISASSOCIATING |
11234 STATUS_ASSOCIATED | STATUS_SCANNING))
11235 IPW_DEBUG_INFO("Still associated or scanning...\n");
11236 else
11237 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11239 /* Attempt to disable the card */
11240 ipw_send_card_disable(priv, 0);
11242 priv->status &= ~STATUS_INIT;
11245 static void ipw_down(struct ipw_priv *priv)
11247 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11249 priv->status |= STATUS_EXIT_PENDING;
11251 if (ipw_is_init(priv))
11252 ipw_deinit(priv);
11254 /* Wipe out the EXIT_PENDING status bit if we are not actually
11255 * exiting the module */
11256 if (!exit_pending)
11257 priv->status &= ~STATUS_EXIT_PENDING;
11259 /* tell the device to stop sending interrupts */
11260 ipw_disable_interrupts(priv);
11262 /* Clear all bits but the RF Kill */
11263 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11264 netif_carrier_off(priv->net_dev);
11265 netif_stop_queue(priv->net_dev);
11267 ipw_stop_nic(priv);
11269 ipw_led_radio_off(priv);
11272 static void ipw_bg_down(void *data)
11274 struct ipw_priv *priv = data;
11275 mutex_lock(&priv->mutex);
11276 ipw_down(data);
11277 mutex_unlock(&priv->mutex);
11280 /* Called by register_netdev() */
11281 static int ipw_net_init(struct net_device *dev)
11283 struct ipw_priv *priv = ieee80211_priv(dev);
11284 mutex_lock(&priv->mutex);
11286 if (ipw_up(priv)) {
11287 mutex_unlock(&priv->mutex);
11288 return -EIO;
11291 mutex_unlock(&priv->mutex);
11292 return 0;
11295 /* PCI driver stuff */
11296 static struct pci_device_id card_ids[] = {
11297 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11298 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11299 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11300 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11301 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11302 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11303 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11304 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11305 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11306 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11307 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11308 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11309 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11310 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11311 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11312 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11313 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11314 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11315 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11316 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11317 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11318 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11320 /* required last entry */
11321 {0,}
11324 MODULE_DEVICE_TABLE(pci, card_ids);
11326 static struct attribute *ipw_sysfs_entries[] = {
11327 &dev_attr_rf_kill.attr,
11328 &dev_attr_direct_dword.attr,
11329 &dev_attr_indirect_byte.attr,
11330 &dev_attr_indirect_dword.attr,
11331 &dev_attr_mem_gpio_reg.attr,
11332 &dev_attr_command_event_reg.attr,
11333 &dev_attr_nic_type.attr,
11334 &dev_attr_status.attr,
11335 &dev_attr_cfg.attr,
11336 &dev_attr_error.attr,
11337 &dev_attr_event_log.attr,
11338 &dev_attr_cmd_log.attr,
11339 &dev_attr_eeprom_delay.attr,
11340 &dev_attr_ucode_version.attr,
11341 &dev_attr_rtc.attr,
11342 &dev_attr_scan_age.attr,
11343 &dev_attr_led.attr,
11344 &dev_attr_speed_scan.attr,
11345 &dev_attr_net_stats.attr,
11346 #ifdef CONFIG_IPW2200_PROMISCUOUS
11347 &dev_attr_rtap_iface.attr,
11348 &dev_attr_rtap_filter.attr,
11349 #endif
11350 NULL
11353 static struct attribute_group ipw_attribute_group = {
11354 .name = NULL, /* put in device directory */
11355 .attrs = ipw_sysfs_entries,
11358 #ifdef CONFIG_IPW2200_PROMISCUOUS
11359 static int ipw_prom_open(struct net_device *dev)
11361 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11362 struct ipw_priv *priv = prom_priv->priv;
11364 IPW_DEBUG_INFO("prom dev->open\n");
11365 netif_carrier_off(dev);
11366 netif_stop_queue(dev);
11368 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11369 priv->sys_config.accept_all_data_frames = 1;
11370 priv->sys_config.accept_non_directed_frames = 1;
11371 priv->sys_config.accept_all_mgmt_bcpr = 1;
11372 priv->sys_config.accept_all_mgmt_frames = 1;
11374 ipw_send_system_config(priv);
11377 return 0;
11380 static int ipw_prom_stop(struct net_device *dev)
11382 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11383 struct ipw_priv *priv = prom_priv->priv;
11385 IPW_DEBUG_INFO("prom dev->stop\n");
11387 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11388 priv->sys_config.accept_all_data_frames = 0;
11389 priv->sys_config.accept_non_directed_frames = 0;
11390 priv->sys_config.accept_all_mgmt_bcpr = 0;
11391 priv->sys_config.accept_all_mgmt_frames = 0;
11393 ipw_send_system_config(priv);
11396 return 0;
11399 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11401 IPW_DEBUG_INFO("prom dev->xmit\n");
11402 netif_stop_queue(dev);
11403 return -EOPNOTSUPP;
11406 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11408 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11409 return &prom_priv->ieee->stats;
11412 static int ipw_prom_alloc(struct ipw_priv *priv)
11414 int rc = 0;
11416 if (priv->prom_net_dev)
11417 return -EPERM;
11419 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11420 if (priv->prom_net_dev == NULL)
11421 return -ENOMEM;
11423 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11424 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11425 priv->prom_priv->priv = priv;
11427 strcpy(priv->prom_net_dev->name, "rtap%d");
11429 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11430 priv->prom_net_dev->open = ipw_prom_open;
11431 priv->prom_net_dev->stop = ipw_prom_stop;
11432 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11433 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11435 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11437 rc = register_netdev(priv->prom_net_dev);
11438 if (rc) {
11439 free_ieee80211(priv->prom_net_dev);
11440 priv->prom_net_dev = NULL;
11441 return rc;
11444 return 0;
11447 static void ipw_prom_free(struct ipw_priv *priv)
11449 if (!priv->prom_net_dev)
11450 return;
11452 unregister_netdev(priv->prom_net_dev);
11453 free_ieee80211(priv->prom_net_dev);
11455 priv->prom_net_dev = NULL;
11458 #endif
11461 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11463 int err = 0;
11464 struct net_device *net_dev;
11465 void __iomem *base;
11466 u32 length, val;
11467 struct ipw_priv *priv;
11468 int i;
11470 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11471 if (net_dev == NULL) {
11472 err = -ENOMEM;
11473 goto out;
11476 priv = ieee80211_priv(net_dev);
11477 priv->ieee = netdev_priv(net_dev);
11479 priv->net_dev = net_dev;
11480 priv->pci_dev = pdev;
11481 #ifdef CONFIG_IPW2200_DEBUG
11482 ipw_debug_level = debug;
11483 #endif
11484 spin_lock_init(&priv->lock);
11485 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11486 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11488 mutex_init(&priv->mutex);
11489 if (pci_enable_device(pdev)) {
11490 err = -ENODEV;
11491 goto out_free_ieee80211;
11494 pci_set_master(pdev);
11496 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11497 if (!err)
11498 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11499 if (err) {
11500 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11501 goto out_pci_disable_device;
11504 pci_set_drvdata(pdev, priv);
11506 err = pci_request_regions(pdev, DRV_NAME);
11507 if (err)
11508 goto out_pci_disable_device;
11510 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11511 * PCI Tx retries from interfering with C3 CPU state */
11512 pci_read_config_dword(pdev, 0x40, &val);
11513 if ((val & 0x0000ff00) != 0)
11514 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11516 length = pci_resource_len(pdev, 0);
11517 priv->hw_len = length;
11519 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11520 if (!base) {
11521 err = -ENODEV;
11522 goto out_pci_release_regions;
11525 priv->hw_base = base;
11526 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11527 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11529 err = ipw_setup_deferred_work(priv);
11530 if (err) {
11531 IPW_ERROR("Unable to setup deferred work\n");
11532 goto out_iounmap;
11535 ipw_sw_reset(priv, 1);
11537 err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
11538 if (err) {
11539 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11540 goto out_destroy_workqueue;
11543 SET_MODULE_OWNER(net_dev);
11544 SET_NETDEV_DEV(net_dev, &pdev->dev);
11546 mutex_lock(&priv->mutex);
11548 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11549 priv->ieee->set_security = shim__set_security;
11550 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11552 #ifdef CONFIG_IPW_QOS
11553 priv->ieee->is_qos_active = ipw_is_qos_active;
11554 priv->ieee->handle_probe_response = ipw_handle_beacon;
11555 priv->ieee->handle_beacon = ipw_handle_probe_response;
11556 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11557 #endif /* CONFIG_IPW_QOS */
11559 priv->ieee->perfect_rssi = -20;
11560 priv->ieee->worst_rssi = -85;
11562 net_dev->open = ipw_net_open;
11563 net_dev->stop = ipw_net_stop;
11564 net_dev->init = ipw_net_init;
11565 net_dev->get_stats = ipw_net_get_stats;
11566 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11567 net_dev->set_mac_address = ipw_net_set_mac_address;
11568 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11569 net_dev->wireless_data = &priv->wireless_data;
11570 net_dev->wireless_handlers = &ipw_wx_handler_def;
11571 net_dev->ethtool_ops = &ipw_ethtool_ops;
11572 net_dev->irq = pdev->irq;
11573 net_dev->base_addr = (unsigned long)priv->hw_base;
11574 net_dev->mem_start = pci_resource_start(pdev, 0);
11575 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11577 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11578 if (err) {
11579 IPW_ERROR("failed to create sysfs device attributes\n");
11580 mutex_unlock(&priv->mutex);
11581 goto out_release_irq;
11584 mutex_unlock(&priv->mutex);
11585 err = register_netdev(net_dev);
11586 if (err) {
11587 IPW_ERROR("failed to register network device\n");
11588 goto out_remove_sysfs;
11591 #ifdef CONFIG_IPW2200_PROMISCUOUS
11592 if (rtap_iface) {
11593 err = ipw_prom_alloc(priv);
11594 if (err) {
11595 IPW_ERROR("Failed to register promiscuous network "
11596 "device (error %d).\n", err);
11597 unregister_netdev(priv->net_dev);
11598 goto out_remove_sysfs;
11601 #endif
11603 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11604 "channels, %d 802.11a channels)\n",
11605 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11606 priv->ieee->geo.a_channels);
11608 return 0;
11610 out_remove_sysfs:
11611 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11612 out_release_irq:
11613 free_irq(pdev->irq, priv);
11614 out_destroy_workqueue:
11615 destroy_workqueue(priv->workqueue);
11616 priv->workqueue = NULL;
11617 out_iounmap:
11618 iounmap(priv->hw_base);
11619 out_pci_release_regions:
11620 pci_release_regions(pdev);
11621 out_pci_disable_device:
11622 pci_disable_device(pdev);
11623 pci_set_drvdata(pdev, NULL);
11624 out_free_ieee80211:
11625 free_ieee80211(priv->net_dev);
11626 out:
11627 return err;
11630 static void ipw_pci_remove(struct pci_dev *pdev)
11632 struct ipw_priv *priv = pci_get_drvdata(pdev);
11633 struct list_head *p, *q;
11634 int i;
11636 if (!priv)
11637 return;
11639 mutex_lock(&priv->mutex);
11641 priv->status |= STATUS_EXIT_PENDING;
11642 ipw_down(priv);
11643 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11645 mutex_unlock(&priv->mutex);
11647 unregister_netdev(priv->net_dev);
11649 if (priv->rxq) {
11650 ipw_rx_queue_free(priv, priv->rxq);
11651 priv->rxq = NULL;
11653 ipw_tx_queue_free(priv);
11655 if (priv->cmdlog) {
11656 kfree(priv->cmdlog);
11657 priv->cmdlog = NULL;
11659 /* ipw_down will ensure that there is no more pending work
11660 * in the workqueue's, so we can safely remove them now. */
11661 cancel_delayed_work(&priv->adhoc_check);
11662 cancel_delayed_work(&priv->gather_stats);
11663 cancel_delayed_work(&priv->request_scan);
11664 cancel_delayed_work(&priv->rf_kill);
11665 cancel_delayed_work(&priv->scan_check);
11666 destroy_workqueue(priv->workqueue);
11667 priv->workqueue = NULL;
11669 /* Free MAC hash list for ADHOC */
11670 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11671 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11672 list_del(p);
11673 kfree(list_entry(p, struct ipw_ibss_seq, list));
11677 if (priv->error) {
11678 ipw_free_error_log(priv->error);
11679 priv->error = NULL;
11682 #ifdef CONFIG_IPW2200_PROMISCUOUS
11683 ipw_prom_free(priv);
11684 #endif
11686 free_irq(pdev->irq, priv);
11687 iounmap(priv->hw_base);
11688 pci_release_regions(pdev);
11689 pci_disable_device(pdev);
11690 pci_set_drvdata(pdev, NULL);
11691 free_ieee80211(priv->net_dev);
11692 free_firmware();
11695 #ifdef CONFIG_PM
11696 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11698 struct ipw_priv *priv = pci_get_drvdata(pdev);
11699 struct net_device *dev = priv->net_dev;
11701 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11703 /* Take down the device; powers it off, etc. */
11704 ipw_down(priv);
11706 /* Remove the PRESENT state of the device */
11707 netif_device_detach(dev);
11709 pci_save_state(pdev);
11710 pci_disable_device(pdev);
11711 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11713 return 0;
11716 static int ipw_pci_resume(struct pci_dev *pdev)
11718 struct ipw_priv *priv = pci_get_drvdata(pdev);
11719 struct net_device *dev = priv->net_dev;
11720 u32 val;
11722 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11724 pci_set_power_state(pdev, PCI_D0);
11725 pci_enable_device(pdev);
11726 pci_restore_state(pdev);
11729 * Suspend/Resume resets the PCI configuration space, so we have to
11730 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11731 * from interfering with C3 CPU state. pci_restore_state won't help
11732 * here since it only restores the first 64 bytes pci config header.
11734 pci_read_config_dword(pdev, 0x40, &val);
11735 if ((val & 0x0000ff00) != 0)
11736 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11738 /* Set the device back into the PRESENT state; this will also wake
11739 * the queue of needed */
11740 netif_device_attach(dev);
11742 /* Bring the device back up */
11743 queue_work(priv->workqueue, &priv->up);
11745 return 0;
11747 #endif
11749 /* driver initialization stuff */
11750 static struct pci_driver ipw_driver = {
11751 .name = DRV_NAME,
11752 .id_table = card_ids,
11753 .probe = ipw_pci_probe,
11754 .remove = __devexit_p(ipw_pci_remove),
11755 #ifdef CONFIG_PM
11756 .suspend = ipw_pci_suspend,
11757 .resume = ipw_pci_resume,
11758 #endif
11761 static int __init ipw_init(void)
11763 int ret;
11765 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11766 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11768 ret = pci_module_init(&ipw_driver);
11769 if (ret) {
11770 IPW_ERROR("Unable to initialize PCI module\n");
11771 return ret;
11774 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11775 if (ret) {
11776 IPW_ERROR("Unable to create driver sysfs file\n");
11777 pci_unregister_driver(&ipw_driver);
11778 return ret;
11781 return ret;
11784 static void __exit ipw_exit(void)
11786 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11787 pci_unregister_driver(&ipw_driver);
11790 module_param(disable, int, 0444);
11791 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11793 module_param(associate, int, 0444);
11794 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11796 module_param(auto_create, int, 0444);
11797 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11799 module_param(led, int, 0444);
11800 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11802 #ifdef CONFIG_IPW2200_DEBUG
11803 module_param(debug, int, 0444);
11804 MODULE_PARM_DESC(debug, "debug output mask");
11805 #endif
11807 module_param(channel, int, 0444);
11808 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11810 #ifdef CONFIG_IPW2200_PROMISCUOUS
11811 module_param(rtap_iface, int, 0444);
11812 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11813 #endif
11815 #ifdef CONFIG_IPW_QOS
11816 module_param(qos_enable, int, 0444);
11817 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11819 module_param(qos_burst_enable, int, 0444);
11820 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11822 module_param(qos_no_ack_mask, int, 0444);
11823 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11825 module_param(burst_duration_CCK, int, 0444);
11826 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11828 module_param(burst_duration_OFDM, int, 0444);
11829 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11830 #endif /* CONFIG_IPW_QOS */
11832 #ifdef CONFIG_IPW2200_MONITOR
11833 module_param(mode, int, 0444);
11834 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11835 #else
11836 module_param(mode, int, 0444);
11837 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11838 #endif
11840 module_param(bt_coexist, int, 0444);
11841 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11843 module_param(hwcrypto, int, 0444);
11844 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11846 module_param(cmdlog, int, 0444);
11847 MODULE_PARM_DESC(cmdlog,
11848 "allocate a ring buffer for logging firmware commands");
11850 module_param(roaming, int, 0444);
11851 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11853 module_param(antenna, int, 0444);
11854 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11856 module_exit(ipw_exit);
11857 module_init(ipw_init);