bugfix for memory cgroup controller: migration under memory controller fix
[linux-2.6/mini2440.git] / fs / dcache.c
blob44f6cf23b70e3baf4affccf31a68568aff7dd496
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include "internal.h"
37 int sysctl_vfs_cache_pressure __read_mostly = 100;
38 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
41 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43 EXPORT_SYMBOL(dcache_lock);
45 static struct kmem_cache *dentry_cache __read_mostly;
47 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
50 * This is the single most critical data structure when it comes
51 * to the dcache: the hashtable for lookups. Somebody should try
52 * to make this good - I've just made it work.
54 * This hash-function tries to avoid losing too many bits of hash
55 * information, yet avoid using a prime hash-size or similar.
57 #define D_HASHBITS d_hash_shift
58 #define D_HASHMASK d_hash_mask
60 static unsigned int d_hash_mask __read_mostly;
61 static unsigned int d_hash_shift __read_mostly;
62 static struct hlist_head *dentry_hashtable __read_mostly;
63 static LIST_HEAD(dentry_unused);
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 .age_limit = 45,
70 static void __d_free(struct dentry *dentry)
72 if (dname_external(dentry))
73 kfree(dentry->d_name.name);
74 kmem_cache_free(dentry_cache, dentry);
77 static void d_callback(struct rcu_head *head)
79 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
80 __d_free(dentry);
84 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
85 * inside dcache_lock.
87 static void d_free(struct dentry *dentry)
89 if (dentry->d_op && dentry->d_op->d_release)
90 dentry->d_op->d_release(dentry);
91 /* if dentry was never inserted into hash, immediate free is OK */
92 if (hlist_unhashed(&dentry->d_hash))
93 __d_free(dentry);
94 else
95 call_rcu(&dentry->d_u.d_rcu, d_callback);
99 * Release the dentry's inode, using the filesystem
100 * d_iput() operation if defined.
101 * Called with dcache_lock and per dentry lock held, drops both.
103 static void dentry_iput(struct dentry * dentry)
105 struct inode *inode = dentry->d_inode;
106 if (inode) {
107 dentry->d_inode = NULL;
108 list_del_init(&dentry->d_alias);
109 spin_unlock(&dentry->d_lock);
110 spin_unlock(&dcache_lock);
111 if (!inode->i_nlink)
112 fsnotify_inoderemove(inode);
113 if (dentry->d_op && dentry->d_op->d_iput)
114 dentry->d_op->d_iput(dentry, inode);
115 else
116 iput(inode);
117 } else {
118 spin_unlock(&dentry->d_lock);
119 spin_unlock(&dcache_lock);
124 * d_kill - kill dentry and return parent
125 * @dentry: dentry to kill
127 * Called with dcache_lock and d_lock, releases both. The dentry must
128 * already be unhashed and removed from the LRU.
130 * If this is the root of the dentry tree, return NULL.
132 static struct dentry *d_kill(struct dentry *dentry)
134 struct dentry *parent;
136 list_del(&dentry->d_u.d_child);
137 dentry_stat.nr_dentry--; /* For d_free, below */
138 /*drops the locks, at that point nobody can reach this dentry */
139 dentry_iput(dentry);
140 parent = dentry->d_parent;
141 d_free(dentry);
142 return dentry == parent ? NULL : parent;
146 * This is dput
148 * This is complicated by the fact that we do not want to put
149 * dentries that are no longer on any hash chain on the unused
150 * list: we'd much rather just get rid of them immediately.
152 * However, that implies that we have to traverse the dentry
153 * tree upwards to the parents which might _also_ now be
154 * scheduled for deletion (it may have been only waiting for
155 * its last child to go away).
157 * This tail recursion is done by hand as we don't want to depend
158 * on the compiler to always get this right (gcc generally doesn't).
159 * Real recursion would eat up our stack space.
163 * dput - release a dentry
164 * @dentry: dentry to release
166 * Release a dentry. This will drop the usage count and if appropriate
167 * call the dentry unlink method as well as removing it from the queues and
168 * releasing its resources. If the parent dentries were scheduled for release
169 * they too may now get deleted.
171 * no dcache lock, please.
174 void dput(struct dentry *dentry)
176 if (!dentry)
177 return;
179 repeat:
180 if (atomic_read(&dentry->d_count) == 1)
181 might_sleep();
182 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
183 return;
185 spin_lock(&dentry->d_lock);
186 if (atomic_read(&dentry->d_count)) {
187 spin_unlock(&dentry->d_lock);
188 spin_unlock(&dcache_lock);
189 return;
193 * AV: ->d_delete() is _NOT_ allowed to block now.
195 if (dentry->d_op && dentry->d_op->d_delete) {
196 if (dentry->d_op->d_delete(dentry))
197 goto unhash_it;
199 /* Unreachable? Get rid of it */
200 if (d_unhashed(dentry))
201 goto kill_it;
202 if (list_empty(&dentry->d_lru)) {
203 dentry->d_flags |= DCACHE_REFERENCED;
204 list_add(&dentry->d_lru, &dentry_unused);
205 dentry_stat.nr_unused++;
207 spin_unlock(&dentry->d_lock);
208 spin_unlock(&dcache_lock);
209 return;
211 unhash_it:
212 __d_drop(dentry);
213 kill_it:
214 /* If dentry was on d_lru list
215 * delete it from there
217 if (!list_empty(&dentry->d_lru)) {
218 list_del(&dentry->d_lru);
219 dentry_stat.nr_unused--;
221 dentry = d_kill(dentry);
222 if (dentry)
223 goto repeat;
227 * d_invalidate - invalidate a dentry
228 * @dentry: dentry to invalidate
230 * Try to invalidate the dentry if it turns out to be
231 * possible. If there are other dentries that can be
232 * reached through this one we can't delete it and we
233 * return -EBUSY. On success we return 0.
235 * no dcache lock.
238 int d_invalidate(struct dentry * dentry)
241 * If it's already been dropped, return OK.
243 spin_lock(&dcache_lock);
244 if (d_unhashed(dentry)) {
245 spin_unlock(&dcache_lock);
246 return 0;
249 * Check whether to do a partial shrink_dcache
250 * to get rid of unused child entries.
252 if (!list_empty(&dentry->d_subdirs)) {
253 spin_unlock(&dcache_lock);
254 shrink_dcache_parent(dentry);
255 spin_lock(&dcache_lock);
259 * Somebody else still using it?
261 * If it's a directory, we can't drop it
262 * for fear of somebody re-populating it
263 * with children (even though dropping it
264 * would make it unreachable from the root,
265 * we might still populate it if it was a
266 * working directory or similar).
268 spin_lock(&dentry->d_lock);
269 if (atomic_read(&dentry->d_count) > 1) {
270 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
271 spin_unlock(&dentry->d_lock);
272 spin_unlock(&dcache_lock);
273 return -EBUSY;
277 __d_drop(dentry);
278 spin_unlock(&dentry->d_lock);
279 spin_unlock(&dcache_lock);
280 return 0;
283 /* This should be called _only_ with dcache_lock held */
285 static inline struct dentry * __dget_locked(struct dentry *dentry)
287 atomic_inc(&dentry->d_count);
288 if (!list_empty(&dentry->d_lru)) {
289 dentry_stat.nr_unused--;
290 list_del_init(&dentry->d_lru);
292 return dentry;
295 struct dentry * dget_locked(struct dentry *dentry)
297 return __dget_locked(dentry);
301 * d_find_alias - grab a hashed alias of inode
302 * @inode: inode in question
303 * @want_discon: flag, used by d_splice_alias, to request
304 * that only a DISCONNECTED alias be returned.
306 * If inode has a hashed alias, or is a directory and has any alias,
307 * acquire the reference to alias and return it. Otherwise return NULL.
308 * Notice that if inode is a directory there can be only one alias and
309 * it can be unhashed only if it has no children, or if it is the root
310 * of a filesystem.
312 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
313 * any other hashed alias over that one unless @want_discon is set,
314 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
317 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
319 struct list_head *head, *next, *tmp;
320 struct dentry *alias, *discon_alias=NULL;
322 head = &inode->i_dentry;
323 next = inode->i_dentry.next;
324 while (next != head) {
325 tmp = next;
326 next = tmp->next;
327 prefetch(next);
328 alias = list_entry(tmp, struct dentry, d_alias);
329 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
330 if (IS_ROOT(alias) &&
331 (alias->d_flags & DCACHE_DISCONNECTED))
332 discon_alias = alias;
333 else if (!want_discon) {
334 __dget_locked(alias);
335 return alias;
339 if (discon_alias)
340 __dget_locked(discon_alias);
341 return discon_alias;
344 struct dentry * d_find_alias(struct inode *inode)
346 struct dentry *de = NULL;
348 if (!list_empty(&inode->i_dentry)) {
349 spin_lock(&dcache_lock);
350 de = __d_find_alias(inode, 0);
351 spin_unlock(&dcache_lock);
353 return de;
357 * Try to kill dentries associated with this inode.
358 * WARNING: you must own a reference to inode.
360 void d_prune_aliases(struct inode *inode)
362 struct dentry *dentry;
363 restart:
364 spin_lock(&dcache_lock);
365 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
366 spin_lock(&dentry->d_lock);
367 if (!atomic_read(&dentry->d_count)) {
368 __dget_locked(dentry);
369 __d_drop(dentry);
370 spin_unlock(&dentry->d_lock);
371 spin_unlock(&dcache_lock);
372 dput(dentry);
373 goto restart;
375 spin_unlock(&dentry->d_lock);
377 spin_unlock(&dcache_lock);
381 * Throw away a dentry - free the inode, dput the parent. This requires that
382 * the LRU list has already been removed.
384 * Try to prune ancestors as well. This is necessary to prevent
385 * quadratic behavior of shrink_dcache_parent(), but is also expected
386 * to be beneficial in reducing dentry cache fragmentation.
388 * Called with dcache_lock, drops it and then regains.
389 * Called with dentry->d_lock held, drops it.
391 static void prune_one_dentry(struct dentry * dentry)
393 __d_drop(dentry);
394 dentry = d_kill(dentry);
397 * Prune ancestors. Locking is simpler than in dput(),
398 * because dcache_lock needs to be taken anyway.
400 spin_lock(&dcache_lock);
401 while (dentry) {
402 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
403 return;
405 if (dentry->d_op && dentry->d_op->d_delete)
406 dentry->d_op->d_delete(dentry);
407 if (!list_empty(&dentry->d_lru)) {
408 list_del(&dentry->d_lru);
409 dentry_stat.nr_unused--;
411 __d_drop(dentry);
412 dentry = d_kill(dentry);
413 spin_lock(&dcache_lock);
418 * prune_dcache - shrink the dcache
419 * @count: number of entries to try and free
420 * @sb: if given, ignore dentries for other superblocks
421 * which are being unmounted.
423 * Shrink the dcache. This is done when we need
424 * more memory, or simply when we need to unmount
425 * something (at which point we need to unuse
426 * all dentries).
428 * This function may fail to free any resources if
429 * all the dentries are in use.
432 static void prune_dcache(int count, struct super_block *sb)
434 spin_lock(&dcache_lock);
435 for (; count ; count--) {
436 struct dentry *dentry;
437 struct list_head *tmp;
438 struct rw_semaphore *s_umount;
440 cond_resched_lock(&dcache_lock);
442 tmp = dentry_unused.prev;
443 if (sb) {
444 /* Try to find a dentry for this sb, but don't try
445 * too hard, if they aren't near the tail they will
446 * be moved down again soon
448 int skip = count;
449 while (skip && tmp != &dentry_unused &&
450 list_entry(tmp, struct dentry, d_lru)->d_sb != sb) {
451 skip--;
452 tmp = tmp->prev;
455 if (tmp == &dentry_unused)
456 break;
457 list_del_init(tmp);
458 prefetch(dentry_unused.prev);
459 dentry_stat.nr_unused--;
460 dentry = list_entry(tmp, struct dentry, d_lru);
462 spin_lock(&dentry->d_lock);
464 * We found an inuse dentry which was not removed from
465 * dentry_unused because of laziness during lookup. Do not free
466 * it - just keep it off the dentry_unused list.
468 if (atomic_read(&dentry->d_count)) {
469 spin_unlock(&dentry->d_lock);
470 continue;
472 /* If the dentry was recently referenced, don't free it. */
473 if (dentry->d_flags & DCACHE_REFERENCED) {
474 dentry->d_flags &= ~DCACHE_REFERENCED;
475 list_add(&dentry->d_lru, &dentry_unused);
476 dentry_stat.nr_unused++;
477 spin_unlock(&dentry->d_lock);
478 continue;
481 * If the dentry is not DCACHED_REFERENCED, it is time
482 * to remove it from the dcache, provided the super block is
483 * NULL (which means we are trying to reclaim memory)
484 * or this dentry belongs to the same super block that
485 * we want to shrink.
488 * If this dentry is for "my" filesystem, then I can prune it
489 * without taking the s_umount lock (I already hold it).
491 if (sb && dentry->d_sb == sb) {
492 prune_one_dentry(dentry);
493 continue;
496 * ...otherwise we need to be sure this filesystem isn't being
497 * unmounted, otherwise we could race with
498 * generic_shutdown_super(), and end up holding a reference to
499 * an inode while the filesystem is unmounted.
500 * So we try to get s_umount, and make sure s_root isn't NULL.
501 * (Take a local copy of s_umount to avoid a use-after-free of
502 * `dentry').
504 s_umount = &dentry->d_sb->s_umount;
505 if (down_read_trylock(s_umount)) {
506 if (dentry->d_sb->s_root != NULL) {
507 prune_one_dentry(dentry);
508 up_read(s_umount);
509 continue;
511 up_read(s_umount);
513 spin_unlock(&dentry->d_lock);
515 * Insert dentry at the head of the list as inserting at the
516 * tail leads to a cycle.
518 list_add(&dentry->d_lru, &dentry_unused);
519 dentry_stat.nr_unused++;
521 spin_unlock(&dcache_lock);
525 * Shrink the dcache for the specified super block.
526 * This allows us to unmount a device without disturbing
527 * the dcache for the other devices.
529 * This implementation makes just two traversals of the
530 * unused list. On the first pass we move the selected
531 * dentries to the most recent end, and on the second
532 * pass we free them. The second pass must restart after
533 * each dput(), but since the target dentries are all at
534 * the end, it's really just a single traversal.
538 * shrink_dcache_sb - shrink dcache for a superblock
539 * @sb: superblock
541 * Shrink the dcache for the specified super block. This
542 * is used to free the dcache before unmounting a file
543 * system
546 void shrink_dcache_sb(struct super_block * sb)
548 struct list_head *tmp, *next;
549 struct dentry *dentry;
552 * Pass one ... move the dentries for the specified
553 * superblock to the most recent end of the unused list.
555 spin_lock(&dcache_lock);
556 list_for_each_prev_safe(tmp, next, &dentry_unused) {
557 dentry = list_entry(tmp, struct dentry, d_lru);
558 if (dentry->d_sb != sb)
559 continue;
560 list_move_tail(tmp, &dentry_unused);
564 * Pass two ... free the dentries for this superblock.
566 repeat:
567 list_for_each_prev_safe(tmp, next, &dentry_unused) {
568 dentry = list_entry(tmp, struct dentry, d_lru);
569 if (dentry->d_sb != sb)
570 continue;
571 dentry_stat.nr_unused--;
572 list_del_init(tmp);
573 spin_lock(&dentry->d_lock);
574 if (atomic_read(&dentry->d_count)) {
575 spin_unlock(&dentry->d_lock);
576 continue;
578 prune_one_dentry(dentry);
579 cond_resched_lock(&dcache_lock);
580 goto repeat;
582 spin_unlock(&dcache_lock);
586 * destroy a single subtree of dentries for unmount
587 * - see the comments on shrink_dcache_for_umount() for a description of the
588 * locking
590 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
592 struct dentry *parent;
593 unsigned detached = 0;
595 BUG_ON(!IS_ROOT(dentry));
597 /* detach this root from the system */
598 spin_lock(&dcache_lock);
599 if (!list_empty(&dentry->d_lru)) {
600 dentry_stat.nr_unused--;
601 list_del_init(&dentry->d_lru);
603 __d_drop(dentry);
604 spin_unlock(&dcache_lock);
606 for (;;) {
607 /* descend to the first leaf in the current subtree */
608 while (!list_empty(&dentry->d_subdirs)) {
609 struct dentry *loop;
611 /* this is a branch with children - detach all of them
612 * from the system in one go */
613 spin_lock(&dcache_lock);
614 list_for_each_entry(loop, &dentry->d_subdirs,
615 d_u.d_child) {
616 if (!list_empty(&loop->d_lru)) {
617 dentry_stat.nr_unused--;
618 list_del_init(&loop->d_lru);
621 __d_drop(loop);
622 cond_resched_lock(&dcache_lock);
624 spin_unlock(&dcache_lock);
626 /* move to the first child */
627 dentry = list_entry(dentry->d_subdirs.next,
628 struct dentry, d_u.d_child);
631 /* consume the dentries from this leaf up through its parents
632 * until we find one with children or run out altogether */
633 do {
634 struct inode *inode;
636 if (atomic_read(&dentry->d_count) != 0) {
637 printk(KERN_ERR
638 "BUG: Dentry %p{i=%lx,n=%s}"
639 " still in use (%d)"
640 " [unmount of %s %s]\n",
641 dentry,
642 dentry->d_inode ?
643 dentry->d_inode->i_ino : 0UL,
644 dentry->d_name.name,
645 atomic_read(&dentry->d_count),
646 dentry->d_sb->s_type->name,
647 dentry->d_sb->s_id);
648 BUG();
651 parent = dentry->d_parent;
652 if (parent == dentry)
653 parent = NULL;
654 else
655 atomic_dec(&parent->d_count);
657 list_del(&dentry->d_u.d_child);
658 detached++;
660 inode = dentry->d_inode;
661 if (inode) {
662 dentry->d_inode = NULL;
663 list_del_init(&dentry->d_alias);
664 if (dentry->d_op && dentry->d_op->d_iput)
665 dentry->d_op->d_iput(dentry, inode);
666 else
667 iput(inode);
670 d_free(dentry);
672 /* finished when we fall off the top of the tree,
673 * otherwise we ascend to the parent and move to the
674 * next sibling if there is one */
675 if (!parent)
676 goto out;
678 dentry = parent;
680 } while (list_empty(&dentry->d_subdirs));
682 dentry = list_entry(dentry->d_subdirs.next,
683 struct dentry, d_u.d_child);
685 out:
686 /* several dentries were freed, need to correct nr_dentry */
687 spin_lock(&dcache_lock);
688 dentry_stat.nr_dentry -= detached;
689 spin_unlock(&dcache_lock);
693 * destroy the dentries attached to a superblock on unmounting
694 * - we don't need to use dentry->d_lock, and only need dcache_lock when
695 * removing the dentry from the system lists and hashes because:
696 * - the superblock is detached from all mountings and open files, so the
697 * dentry trees will not be rearranged by the VFS
698 * - s_umount is write-locked, so the memory pressure shrinker will ignore
699 * any dentries belonging to this superblock that it comes across
700 * - the filesystem itself is no longer permitted to rearrange the dentries
701 * in this superblock
703 void shrink_dcache_for_umount(struct super_block *sb)
705 struct dentry *dentry;
707 if (down_read_trylock(&sb->s_umount))
708 BUG();
710 dentry = sb->s_root;
711 sb->s_root = NULL;
712 atomic_dec(&dentry->d_count);
713 shrink_dcache_for_umount_subtree(dentry);
715 while (!hlist_empty(&sb->s_anon)) {
716 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
717 shrink_dcache_for_umount_subtree(dentry);
722 * Search for at least 1 mount point in the dentry's subdirs.
723 * We descend to the next level whenever the d_subdirs
724 * list is non-empty and continue searching.
728 * have_submounts - check for mounts over a dentry
729 * @parent: dentry to check.
731 * Return true if the parent or its subdirectories contain
732 * a mount point
735 int have_submounts(struct dentry *parent)
737 struct dentry *this_parent = parent;
738 struct list_head *next;
740 spin_lock(&dcache_lock);
741 if (d_mountpoint(parent))
742 goto positive;
743 repeat:
744 next = this_parent->d_subdirs.next;
745 resume:
746 while (next != &this_parent->d_subdirs) {
747 struct list_head *tmp = next;
748 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
749 next = tmp->next;
750 /* Have we found a mount point ? */
751 if (d_mountpoint(dentry))
752 goto positive;
753 if (!list_empty(&dentry->d_subdirs)) {
754 this_parent = dentry;
755 goto repeat;
759 * All done at this level ... ascend and resume the search.
761 if (this_parent != parent) {
762 next = this_parent->d_u.d_child.next;
763 this_parent = this_parent->d_parent;
764 goto resume;
766 spin_unlock(&dcache_lock);
767 return 0; /* No mount points found in tree */
768 positive:
769 spin_unlock(&dcache_lock);
770 return 1;
774 * Search the dentry child list for the specified parent,
775 * and move any unused dentries to the end of the unused
776 * list for prune_dcache(). We descend to the next level
777 * whenever the d_subdirs list is non-empty and continue
778 * searching.
780 * It returns zero iff there are no unused children,
781 * otherwise it returns the number of children moved to
782 * the end of the unused list. This may not be the total
783 * number of unused children, because select_parent can
784 * drop the lock and return early due to latency
785 * constraints.
787 static int select_parent(struct dentry * parent)
789 struct dentry *this_parent = parent;
790 struct list_head *next;
791 int found = 0;
793 spin_lock(&dcache_lock);
794 repeat:
795 next = this_parent->d_subdirs.next;
796 resume:
797 while (next != &this_parent->d_subdirs) {
798 struct list_head *tmp = next;
799 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
800 next = tmp->next;
802 if (!list_empty(&dentry->d_lru)) {
803 dentry_stat.nr_unused--;
804 list_del_init(&dentry->d_lru);
807 * move only zero ref count dentries to the end
808 * of the unused list for prune_dcache
810 if (!atomic_read(&dentry->d_count)) {
811 list_add_tail(&dentry->d_lru, &dentry_unused);
812 dentry_stat.nr_unused++;
813 found++;
817 * We can return to the caller if we have found some (this
818 * ensures forward progress). We'll be coming back to find
819 * the rest.
821 if (found && need_resched())
822 goto out;
825 * Descend a level if the d_subdirs list is non-empty.
827 if (!list_empty(&dentry->d_subdirs)) {
828 this_parent = dentry;
829 goto repeat;
833 * All done at this level ... ascend and resume the search.
835 if (this_parent != parent) {
836 next = this_parent->d_u.d_child.next;
837 this_parent = this_parent->d_parent;
838 goto resume;
840 out:
841 spin_unlock(&dcache_lock);
842 return found;
846 * shrink_dcache_parent - prune dcache
847 * @parent: parent of entries to prune
849 * Prune the dcache to remove unused children of the parent dentry.
852 void shrink_dcache_parent(struct dentry * parent)
854 int found;
856 while ((found = select_parent(parent)) != 0)
857 prune_dcache(found, parent->d_sb);
861 * Scan `nr' dentries and return the number which remain.
863 * We need to avoid reentering the filesystem if the caller is performing a
864 * GFP_NOFS allocation attempt. One example deadlock is:
866 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
867 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
868 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
870 * In this case we return -1 to tell the caller that we baled.
872 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
874 if (nr) {
875 if (!(gfp_mask & __GFP_FS))
876 return -1;
877 prune_dcache(nr, NULL);
879 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
882 static struct shrinker dcache_shrinker = {
883 .shrink = shrink_dcache_memory,
884 .seeks = DEFAULT_SEEKS,
888 * d_alloc - allocate a dcache entry
889 * @parent: parent of entry to allocate
890 * @name: qstr of the name
892 * Allocates a dentry. It returns %NULL if there is insufficient memory
893 * available. On a success the dentry is returned. The name passed in is
894 * copied and the copy passed in may be reused after this call.
897 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
899 struct dentry *dentry;
900 char *dname;
902 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
903 if (!dentry)
904 return NULL;
906 if (name->len > DNAME_INLINE_LEN-1) {
907 dname = kmalloc(name->len + 1, GFP_KERNEL);
908 if (!dname) {
909 kmem_cache_free(dentry_cache, dentry);
910 return NULL;
912 } else {
913 dname = dentry->d_iname;
915 dentry->d_name.name = dname;
917 dentry->d_name.len = name->len;
918 dentry->d_name.hash = name->hash;
919 memcpy(dname, name->name, name->len);
920 dname[name->len] = 0;
922 atomic_set(&dentry->d_count, 1);
923 dentry->d_flags = DCACHE_UNHASHED;
924 spin_lock_init(&dentry->d_lock);
925 dentry->d_inode = NULL;
926 dentry->d_parent = NULL;
927 dentry->d_sb = NULL;
928 dentry->d_op = NULL;
929 dentry->d_fsdata = NULL;
930 dentry->d_mounted = 0;
931 #ifdef CONFIG_PROFILING
932 dentry->d_cookie = NULL;
933 #endif
934 INIT_HLIST_NODE(&dentry->d_hash);
935 INIT_LIST_HEAD(&dentry->d_lru);
936 INIT_LIST_HEAD(&dentry->d_subdirs);
937 INIT_LIST_HEAD(&dentry->d_alias);
939 if (parent) {
940 dentry->d_parent = dget(parent);
941 dentry->d_sb = parent->d_sb;
942 } else {
943 INIT_LIST_HEAD(&dentry->d_u.d_child);
946 spin_lock(&dcache_lock);
947 if (parent)
948 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
949 dentry_stat.nr_dentry++;
950 spin_unlock(&dcache_lock);
952 return dentry;
955 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
957 struct qstr q;
959 q.name = name;
960 q.len = strlen(name);
961 q.hash = full_name_hash(q.name, q.len);
962 return d_alloc(parent, &q);
966 * d_instantiate - fill in inode information for a dentry
967 * @entry: dentry to complete
968 * @inode: inode to attach to this dentry
970 * Fill in inode information in the entry.
972 * This turns negative dentries into productive full members
973 * of society.
975 * NOTE! This assumes that the inode count has been incremented
976 * (or otherwise set) by the caller to indicate that it is now
977 * in use by the dcache.
980 void d_instantiate(struct dentry *entry, struct inode * inode)
982 BUG_ON(!list_empty(&entry->d_alias));
983 spin_lock(&dcache_lock);
984 if (inode)
985 list_add(&entry->d_alias, &inode->i_dentry);
986 entry->d_inode = inode;
987 fsnotify_d_instantiate(entry, inode);
988 spin_unlock(&dcache_lock);
989 security_d_instantiate(entry, inode);
993 * d_instantiate_unique - instantiate a non-aliased dentry
994 * @entry: dentry to instantiate
995 * @inode: inode to attach to this dentry
997 * Fill in inode information in the entry. On success, it returns NULL.
998 * If an unhashed alias of "entry" already exists, then we return the
999 * aliased dentry instead and drop one reference to inode.
1001 * Note that in order to avoid conflicts with rename() etc, the caller
1002 * had better be holding the parent directory semaphore.
1004 * This also assumes that the inode count has been incremented
1005 * (or otherwise set) by the caller to indicate that it is now
1006 * in use by the dcache.
1008 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1009 struct inode *inode)
1011 struct dentry *alias;
1012 int len = entry->d_name.len;
1013 const char *name = entry->d_name.name;
1014 unsigned int hash = entry->d_name.hash;
1016 if (!inode) {
1017 entry->d_inode = NULL;
1018 return NULL;
1021 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1022 struct qstr *qstr = &alias->d_name;
1024 if (qstr->hash != hash)
1025 continue;
1026 if (alias->d_parent != entry->d_parent)
1027 continue;
1028 if (qstr->len != len)
1029 continue;
1030 if (memcmp(qstr->name, name, len))
1031 continue;
1032 dget_locked(alias);
1033 return alias;
1036 list_add(&entry->d_alias, &inode->i_dentry);
1037 entry->d_inode = inode;
1038 fsnotify_d_instantiate(entry, inode);
1039 return NULL;
1042 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1044 struct dentry *result;
1046 BUG_ON(!list_empty(&entry->d_alias));
1048 spin_lock(&dcache_lock);
1049 result = __d_instantiate_unique(entry, inode);
1050 spin_unlock(&dcache_lock);
1052 if (!result) {
1053 security_d_instantiate(entry, inode);
1054 return NULL;
1057 BUG_ON(!d_unhashed(result));
1058 iput(inode);
1059 return result;
1062 EXPORT_SYMBOL(d_instantiate_unique);
1065 * d_alloc_root - allocate root dentry
1066 * @root_inode: inode to allocate the root for
1068 * Allocate a root ("/") dentry for the inode given. The inode is
1069 * instantiated and returned. %NULL is returned if there is insufficient
1070 * memory or the inode passed is %NULL.
1073 struct dentry * d_alloc_root(struct inode * root_inode)
1075 struct dentry *res = NULL;
1077 if (root_inode) {
1078 static const struct qstr name = { .name = "/", .len = 1 };
1080 res = d_alloc(NULL, &name);
1081 if (res) {
1082 res->d_sb = root_inode->i_sb;
1083 res->d_parent = res;
1084 d_instantiate(res, root_inode);
1087 return res;
1090 static inline struct hlist_head *d_hash(struct dentry *parent,
1091 unsigned long hash)
1093 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1094 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1095 return dentry_hashtable + (hash & D_HASHMASK);
1099 * d_alloc_anon - allocate an anonymous dentry
1100 * @inode: inode to allocate the dentry for
1102 * This is similar to d_alloc_root. It is used by filesystems when
1103 * creating a dentry for a given inode, often in the process of
1104 * mapping a filehandle to a dentry. The returned dentry may be
1105 * anonymous, or may have a full name (if the inode was already
1106 * in the cache). The file system may need to make further
1107 * efforts to connect this dentry into the dcache properly.
1109 * When called on a directory inode, we must ensure that
1110 * the inode only ever has one dentry. If a dentry is
1111 * found, that is returned instead of allocating a new one.
1113 * On successful return, the reference to the inode has been transferred
1114 * to the dentry. If %NULL is returned (indicating kmalloc failure),
1115 * the reference on the inode has not been released.
1118 struct dentry * d_alloc_anon(struct inode *inode)
1120 static const struct qstr anonstring = { .name = "" };
1121 struct dentry *tmp;
1122 struct dentry *res;
1124 if ((res = d_find_alias(inode))) {
1125 iput(inode);
1126 return res;
1129 tmp = d_alloc(NULL, &anonstring);
1130 if (!tmp)
1131 return NULL;
1133 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1135 spin_lock(&dcache_lock);
1136 res = __d_find_alias(inode, 0);
1137 if (!res) {
1138 /* attach a disconnected dentry */
1139 res = tmp;
1140 tmp = NULL;
1141 spin_lock(&res->d_lock);
1142 res->d_sb = inode->i_sb;
1143 res->d_parent = res;
1144 res->d_inode = inode;
1145 res->d_flags |= DCACHE_DISCONNECTED;
1146 res->d_flags &= ~DCACHE_UNHASHED;
1147 list_add(&res->d_alias, &inode->i_dentry);
1148 hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
1149 spin_unlock(&res->d_lock);
1151 inode = NULL; /* don't drop reference */
1153 spin_unlock(&dcache_lock);
1155 if (inode)
1156 iput(inode);
1157 if (tmp)
1158 dput(tmp);
1159 return res;
1164 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1165 * @inode: the inode which may have a disconnected dentry
1166 * @dentry: a negative dentry which we want to point to the inode.
1168 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1169 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1170 * and return it, else simply d_add the inode to the dentry and return NULL.
1172 * This is needed in the lookup routine of any filesystem that is exportable
1173 * (via knfsd) so that we can build dcache paths to directories effectively.
1175 * If a dentry was found and moved, then it is returned. Otherwise NULL
1176 * is returned. This matches the expected return value of ->lookup.
1179 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1181 struct dentry *new = NULL;
1183 if (inode && S_ISDIR(inode->i_mode)) {
1184 spin_lock(&dcache_lock);
1185 new = __d_find_alias(inode, 1);
1186 if (new) {
1187 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1188 fsnotify_d_instantiate(new, inode);
1189 spin_unlock(&dcache_lock);
1190 security_d_instantiate(new, inode);
1191 d_rehash(dentry);
1192 d_move(new, dentry);
1193 iput(inode);
1194 } else {
1195 /* d_instantiate takes dcache_lock, so we do it by hand */
1196 list_add(&dentry->d_alias, &inode->i_dentry);
1197 dentry->d_inode = inode;
1198 fsnotify_d_instantiate(dentry, inode);
1199 spin_unlock(&dcache_lock);
1200 security_d_instantiate(dentry, inode);
1201 d_rehash(dentry);
1203 } else
1204 d_add(dentry, inode);
1205 return new;
1210 * d_lookup - search for a dentry
1211 * @parent: parent dentry
1212 * @name: qstr of name we wish to find
1214 * Searches the children of the parent dentry for the name in question. If
1215 * the dentry is found its reference count is incremented and the dentry
1216 * is returned. The caller must use d_put to free the entry when it has
1217 * finished using it. %NULL is returned on failure.
1219 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1220 * Memory barriers are used while updating and doing lockless traversal.
1221 * To avoid races with d_move while rename is happening, d_lock is used.
1223 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1224 * and name pointer in one structure pointed by d_qstr.
1226 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1227 * lookup is going on.
1229 * dentry_unused list is not updated even if lookup finds the required dentry
1230 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1231 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1232 * acquisition.
1234 * d_lookup() is protected against the concurrent renames in some unrelated
1235 * directory using the seqlockt_t rename_lock.
1238 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1240 struct dentry * dentry = NULL;
1241 unsigned long seq;
1243 do {
1244 seq = read_seqbegin(&rename_lock);
1245 dentry = __d_lookup(parent, name);
1246 if (dentry)
1247 break;
1248 } while (read_seqretry(&rename_lock, seq));
1249 return dentry;
1252 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1254 unsigned int len = name->len;
1255 unsigned int hash = name->hash;
1256 const unsigned char *str = name->name;
1257 struct hlist_head *head = d_hash(parent,hash);
1258 struct dentry *found = NULL;
1259 struct hlist_node *node;
1260 struct dentry *dentry;
1262 rcu_read_lock();
1264 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1265 struct qstr *qstr;
1267 if (dentry->d_name.hash != hash)
1268 continue;
1269 if (dentry->d_parent != parent)
1270 continue;
1272 spin_lock(&dentry->d_lock);
1275 * Recheck the dentry after taking the lock - d_move may have
1276 * changed things. Don't bother checking the hash because we're
1277 * about to compare the whole name anyway.
1279 if (dentry->d_parent != parent)
1280 goto next;
1283 * It is safe to compare names since d_move() cannot
1284 * change the qstr (protected by d_lock).
1286 qstr = &dentry->d_name;
1287 if (parent->d_op && parent->d_op->d_compare) {
1288 if (parent->d_op->d_compare(parent, qstr, name))
1289 goto next;
1290 } else {
1291 if (qstr->len != len)
1292 goto next;
1293 if (memcmp(qstr->name, str, len))
1294 goto next;
1297 if (!d_unhashed(dentry)) {
1298 atomic_inc(&dentry->d_count);
1299 found = dentry;
1301 spin_unlock(&dentry->d_lock);
1302 break;
1303 next:
1304 spin_unlock(&dentry->d_lock);
1306 rcu_read_unlock();
1308 return found;
1312 * d_hash_and_lookup - hash the qstr then search for a dentry
1313 * @dir: Directory to search in
1314 * @name: qstr of name we wish to find
1316 * On hash failure or on lookup failure NULL is returned.
1318 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1320 struct dentry *dentry = NULL;
1323 * Check for a fs-specific hash function. Note that we must
1324 * calculate the standard hash first, as the d_op->d_hash()
1325 * routine may choose to leave the hash value unchanged.
1327 name->hash = full_name_hash(name->name, name->len);
1328 if (dir->d_op && dir->d_op->d_hash) {
1329 if (dir->d_op->d_hash(dir, name) < 0)
1330 goto out;
1332 dentry = d_lookup(dir, name);
1333 out:
1334 return dentry;
1338 * d_validate - verify dentry provided from insecure source
1339 * @dentry: The dentry alleged to be valid child of @dparent
1340 * @dparent: The parent dentry (known to be valid)
1341 * @hash: Hash of the dentry
1342 * @len: Length of the name
1344 * An insecure source has sent us a dentry, here we verify it and dget() it.
1345 * This is used by ncpfs in its readdir implementation.
1346 * Zero is returned in the dentry is invalid.
1349 int d_validate(struct dentry *dentry, struct dentry *dparent)
1351 struct hlist_head *base;
1352 struct hlist_node *lhp;
1354 /* Check whether the ptr might be valid at all.. */
1355 if (!kmem_ptr_validate(dentry_cache, dentry))
1356 goto out;
1358 if (dentry->d_parent != dparent)
1359 goto out;
1361 spin_lock(&dcache_lock);
1362 base = d_hash(dparent, dentry->d_name.hash);
1363 hlist_for_each(lhp,base) {
1364 /* hlist_for_each_entry_rcu() not required for d_hash list
1365 * as it is parsed under dcache_lock
1367 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1368 __dget_locked(dentry);
1369 spin_unlock(&dcache_lock);
1370 return 1;
1373 spin_unlock(&dcache_lock);
1374 out:
1375 return 0;
1379 * When a file is deleted, we have two options:
1380 * - turn this dentry into a negative dentry
1381 * - unhash this dentry and free it.
1383 * Usually, we want to just turn this into
1384 * a negative dentry, but if anybody else is
1385 * currently using the dentry or the inode
1386 * we can't do that and we fall back on removing
1387 * it from the hash queues and waiting for
1388 * it to be deleted later when it has no users
1392 * d_delete - delete a dentry
1393 * @dentry: The dentry to delete
1395 * Turn the dentry into a negative dentry if possible, otherwise
1396 * remove it from the hash queues so it can be deleted later
1399 void d_delete(struct dentry * dentry)
1401 int isdir = 0;
1403 * Are we the only user?
1405 spin_lock(&dcache_lock);
1406 spin_lock(&dentry->d_lock);
1407 isdir = S_ISDIR(dentry->d_inode->i_mode);
1408 if (atomic_read(&dentry->d_count) == 1) {
1409 dentry_iput(dentry);
1410 fsnotify_nameremove(dentry, isdir);
1411 return;
1414 if (!d_unhashed(dentry))
1415 __d_drop(dentry);
1417 spin_unlock(&dentry->d_lock);
1418 spin_unlock(&dcache_lock);
1420 fsnotify_nameremove(dentry, isdir);
1423 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1426 entry->d_flags &= ~DCACHE_UNHASHED;
1427 hlist_add_head_rcu(&entry->d_hash, list);
1430 static void _d_rehash(struct dentry * entry)
1432 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1436 * d_rehash - add an entry back to the hash
1437 * @entry: dentry to add to the hash
1439 * Adds a dentry to the hash according to its name.
1442 void d_rehash(struct dentry * entry)
1444 spin_lock(&dcache_lock);
1445 spin_lock(&entry->d_lock);
1446 _d_rehash(entry);
1447 spin_unlock(&entry->d_lock);
1448 spin_unlock(&dcache_lock);
1451 #define do_switch(x,y) do { \
1452 __typeof__ (x) __tmp = x; \
1453 x = y; y = __tmp; } while (0)
1456 * When switching names, the actual string doesn't strictly have to
1457 * be preserved in the target - because we're dropping the target
1458 * anyway. As such, we can just do a simple memcpy() to copy over
1459 * the new name before we switch.
1461 * Note that we have to be a lot more careful about getting the hash
1462 * switched - we have to switch the hash value properly even if it
1463 * then no longer matches the actual (corrupted) string of the target.
1464 * The hash value has to match the hash queue that the dentry is on..
1466 static void switch_names(struct dentry *dentry, struct dentry *target)
1468 if (dname_external(target)) {
1469 if (dname_external(dentry)) {
1471 * Both external: swap the pointers
1473 do_switch(target->d_name.name, dentry->d_name.name);
1474 } else {
1476 * dentry:internal, target:external. Steal target's
1477 * storage and make target internal.
1479 memcpy(target->d_iname, dentry->d_name.name,
1480 dentry->d_name.len + 1);
1481 dentry->d_name.name = target->d_name.name;
1482 target->d_name.name = target->d_iname;
1484 } else {
1485 if (dname_external(dentry)) {
1487 * dentry:external, target:internal. Give dentry's
1488 * storage to target and make dentry internal
1490 memcpy(dentry->d_iname, target->d_name.name,
1491 target->d_name.len + 1);
1492 target->d_name.name = dentry->d_name.name;
1493 dentry->d_name.name = dentry->d_iname;
1494 } else {
1496 * Both are internal. Just copy target to dentry
1498 memcpy(dentry->d_iname, target->d_name.name,
1499 target->d_name.len + 1);
1505 * We cannibalize "target" when moving dentry on top of it,
1506 * because it's going to be thrown away anyway. We could be more
1507 * polite about it, though.
1509 * This forceful removal will result in ugly /proc output if
1510 * somebody holds a file open that got deleted due to a rename.
1511 * We could be nicer about the deleted file, and let it show
1512 * up under the name it had before it was deleted rather than
1513 * under the original name of the file that was moved on top of it.
1517 * d_move_locked - move a dentry
1518 * @dentry: entry to move
1519 * @target: new dentry
1521 * Update the dcache to reflect the move of a file name. Negative
1522 * dcache entries should not be moved in this way.
1524 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1526 struct hlist_head *list;
1528 if (!dentry->d_inode)
1529 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1531 write_seqlock(&rename_lock);
1533 * XXXX: do we really need to take target->d_lock?
1535 if (target < dentry) {
1536 spin_lock(&target->d_lock);
1537 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1538 } else {
1539 spin_lock(&dentry->d_lock);
1540 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1543 /* Move the dentry to the target hash queue, if on different bucket */
1544 if (d_unhashed(dentry))
1545 goto already_unhashed;
1547 hlist_del_rcu(&dentry->d_hash);
1549 already_unhashed:
1550 list = d_hash(target->d_parent, target->d_name.hash);
1551 __d_rehash(dentry, list);
1553 /* Unhash the target: dput() will then get rid of it */
1554 __d_drop(target);
1556 list_del(&dentry->d_u.d_child);
1557 list_del(&target->d_u.d_child);
1559 /* Switch the names.. */
1560 switch_names(dentry, target);
1561 do_switch(dentry->d_name.len, target->d_name.len);
1562 do_switch(dentry->d_name.hash, target->d_name.hash);
1564 /* ... and switch the parents */
1565 if (IS_ROOT(dentry)) {
1566 dentry->d_parent = target->d_parent;
1567 target->d_parent = target;
1568 INIT_LIST_HEAD(&target->d_u.d_child);
1569 } else {
1570 do_switch(dentry->d_parent, target->d_parent);
1572 /* And add them back to the (new) parent lists */
1573 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1576 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1577 spin_unlock(&target->d_lock);
1578 fsnotify_d_move(dentry);
1579 spin_unlock(&dentry->d_lock);
1580 write_sequnlock(&rename_lock);
1584 * d_move - move a dentry
1585 * @dentry: entry to move
1586 * @target: new dentry
1588 * Update the dcache to reflect the move of a file name. Negative
1589 * dcache entries should not be moved in this way.
1592 void d_move(struct dentry * dentry, struct dentry * target)
1594 spin_lock(&dcache_lock);
1595 d_move_locked(dentry, target);
1596 spin_unlock(&dcache_lock);
1600 * Helper that returns 1 if p1 is a parent of p2, else 0
1602 static int d_isparent(struct dentry *p1, struct dentry *p2)
1604 struct dentry *p;
1606 for (p = p2; p->d_parent != p; p = p->d_parent) {
1607 if (p->d_parent == p1)
1608 return 1;
1610 return 0;
1614 * This helper attempts to cope with remotely renamed directories
1616 * It assumes that the caller is already holding
1617 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1619 * Note: If ever the locking in lock_rename() changes, then please
1620 * remember to update this too...
1622 * On return, dcache_lock will have been unlocked.
1624 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1626 struct mutex *m1 = NULL, *m2 = NULL;
1627 struct dentry *ret;
1629 /* If alias and dentry share a parent, then no extra locks required */
1630 if (alias->d_parent == dentry->d_parent)
1631 goto out_unalias;
1633 /* Check for loops */
1634 ret = ERR_PTR(-ELOOP);
1635 if (d_isparent(alias, dentry))
1636 goto out_err;
1638 /* See lock_rename() */
1639 ret = ERR_PTR(-EBUSY);
1640 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1641 goto out_err;
1642 m1 = &dentry->d_sb->s_vfs_rename_mutex;
1643 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1644 goto out_err;
1645 m2 = &alias->d_parent->d_inode->i_mutex;
1646 out_unalias:
1647 d_move_locked(alias, dentry);
1648 ret = alias;
1649 out_err:
1650 spin_unlock(&dcache_lock);
1651 if (m2)
1652 mutex_unlock(m2);
1653 if (m1)
1654 mutex_unlock(m1);
1655 return ret;
1659 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1660 * named dentry in place of the dentry to be replaced.
1662 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1664 struct dentry *dparent, *aparent;
1666 switch_names(dentry, anon);
1667 do_switch(dentry->d_name.len, anon->d_name.len);
1668 do_switch(dentry->d_name.hash, anon->d_name.hash);
1670 dparent = dentry->d_parent;
1671 aparent = anon->d_parent;
1673 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1674 list_del(&dentry->d_u.d_child);
1675 if (!IS_ROOT(dentry))
1676 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1677 else
1678 INIT_LIST_HEAD(&dentry->d_u.d_child);
1680 anon->d_parent = (dparent == dentry) ? anon : dparent;
1681 list_del(&anon->d_u.d_child);
1682 if (!IS_ROOT(anon))
1683 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1684 else
1685 INIT_LIST_HEAD(&anon->d_u.d_child);
1687 anon->d_flags &= ~DCACHE_DISCONNECTED;
1691 * d_materialise_unique - introduce an inode into the tree
1692 * @dentry: candidate dentry
1693 * @inode: inode to bind to the dentry, to which aliases may be attached
1695 * Introduces an dentry into the tree, substituting an extant disconnected
1696 * root directory alias in its place if there is one
1698 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1700 struct dentry *actual;
1702 BUG_ON(!d_unhashed(dentry));
1704 spin_lock(&dcache_lock);
1706 if (!inode) {
1707 actual = dentry;
1708 dentry->d_inode = NULL;
1709 goto found_lock;
1712 if (S_ISDIR(inode->i_mode)) {
1713 struct dentry *alias;
1715 /* Does an aliased dentry already exist? */
1716 alias = __d_find_alias(inode, 0);
1717 if (alias) {
1718 actual = alias;
1719 /* Is this an anonymous mountpoint that we could splice
1720 * into our tree? */
1721 if (IS_ROOT(alias)) {
1722 spin_lock(&alias->d_lock);
1723 __d_materialise_dentry(dentry, alias);
1724 __d_drop(alias);
1725 goto found;
1727 /* Nope, but we must(!) avoid directory aliasing */
1728 actual = __d_unalias(dentry, alias);
1729 if (IS_ERR(actual))
1730 dput(alias);
1731 goto out_nolock;
1735 /* Add a unique reference */
1736 actual = __d_instantiate_unique(dentry, inode);
1737 if (!actual)
1738 actual = dentry;
1739 else if (unlikely(!d_unhashed(actual)))
1740 goto shouldnt_be_hashed;
1742 found_lock:
1743 spin_lock(&actual->d_lock);
1744 found:
1745 _d_rehash(actual);
1746 spin_unlock(&actual->d_lock);
1747 spin_unlock(&dcache_lock);
1748 out_nolock:
1749 if (actual == dentry) {
1750 security_d_instantiate(dentry, inode);
1751 return NULL;
1754 iput(inode);
1755 return actual;
1757 shouldnt_be_hashed:
1758 spin_unlock(&dcache_lock);
1759 BUG();
1760 goto shouldnt_be_hashed;
1764 * d_path - return the path of a dentry
1765 * @dentry: dentry to report
1766 * @vfsmnt: vfsmnt to which the dentry belongs
1767 * @root: root dentry
1768 * @rootmnt: vfsmnt to which the root dentry belongs
1769 * @buffer: buffer to return value in
1770 * @buflen: buffer length
1772 * Convert a dentry into an ASCII path name. If the entry has been deleted
1773 * the string " (deleted)" is appended. Note that this is ambiguous.
1775 * Returns the buffer or an error code if the path was too long.
1777 * "buflen" should be positive. Caller holds the dcache_lock.
1779 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1780 struct dentry *root, struct vfsmount *rootmnt,
1781 char *buffer, int buflen)
1783 char * end = buffer+buflen;
1784 char * retval;
1785 int namelen;
1787 *--end = '\0';
1788 buflen--;
1789 if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1790 buflen -= 10;
1791 end -= 10;
1792 if (buflen < 0)
1793 goto Elong;
1794 memcpy(end, " (deleted)", 10);
1797 if (buflen < 1)
1798 goto Elong;
1799 /* Get '/' right */
1800 retval = end-1;
1801 *retval = '/';
1803 for (;;) {
1804 struct dentry * parent;
1806 if (dentry == root && vfsmnt == rootmnt)
1807 break;
1808 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1809 /* Global root? */
1810 spin_lock(&vfsmount_lock);
1811 if (vfsmnt->mnt_parent == vfsmnt) {
1812 spin_unlock(&vfsmount_lock);
1813 goto global_root;
1815 dentry = vfsmnt->mnt_mountpoint;
1816 vfsmnt = vfsmnt->mnt_parent;
1817 spin_unlock(&vfsmount_lock);
1818 continue;
1820 parent = dentry->d_parent;
1821 prefetch(parent);
1822 namelen = dentry->d_name.len;
1823 buflen -= namelen + 1;
1824 if (buflen < 0)
1825 goto Elong;
1826 end -= namelen;
1827 memcpy(end, dentry->d_name.name, namelen);
1828 *--end = '/';
1829 retval = end;
1830 dentry = parent;
1833 return retval;
1835 global_root:
1836 namelen = dentry->d_name.len;
1837 buflen -= namelen;
1838 if (buflen < 0)
1839 goto Elong;
1840 retval -= namelen-1; /* hit the slash */
1841 memcpy(retval, dentry->d_name.name, namelen);
1842 return retval;
1843 Elong:
1844 return ERR_PTR(-ENAMETOOLONG);
1847 /* write full pathname into buffer and return start of pathname */
1848 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1849 char *buf, int buflen)
1851 char *res;
1852 struct vfsmount *rootmnt;
1853 struct dentry *root;
1856 * We have various synthetic filesystems that never get mounted. On
1857 * these filesystems dentries are never used for lookup purposes, and
1858 * thus don't need to be hashed. They also don't need a name until a
1859 * user wants to identify the object in /proc/pid/fd/. The little hack
1860 * below allows us to generate a name for these objects on demand:
1862 if (dentry->d_op && dentry->d_op->d_dname)
1863 return dentry->d_op->d_dname(dentry, buf, buflen);
1865 read_lock(&current->fs->lock);
1866 rootmnt = mntget(current->fs->rootmnt);
1867 root = dget(current->fs->root);
1868 read_unlock(&current->fs->lock);
1869 spin_lock(&dcache_lock);
1870 res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1871 spin_unlock(&dcache_lock);
1872 dput(root);
1873 mntput(rootmnt);
1874 return res;
1878 * Helper function for dentry_operations.d_dname() members
1880 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
1881 const char *fmt, ...)
1883 va_list args;
1884 char temp[64];
1885 int sz;
1887 va_start(args, fmt);
1888 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
1889 va_end(args);
1891 if (sz > sizeof(temp) || sz > buflen)
1892 return ERR_PTR(-ENAMETOOLONG);
1894 buffer += buflen - sz;
1895 return memcpy(buffer, temp, sz);
1899 * NOTE! The user-level library version returns a
1900 * character pointer. The kernel system call just
1901 * returns the length of the buffer filled (which
1902 * includes the ending '\0' character), or a negative
1903 * error value. So libc would do something like
1905 * char *getcwd(char * buf, size_t size)
1907 * int retval;
1909 * retval = sys_getcwd(buf, size);
1910 * if (retval >= 0)
1911 * return buf;
1912 * errno = -retval;
1913 * return NULL;
1916 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1918 int error;
1919 struct vfsmount *pwdmnt, *rootmnt;
1920 struct dentry *pwd, *root;
1921 char *page = (char *) __get_free_page(GFP_USER);
1923 if (!page)
1924 return -ENOMEM;
1926 read_lock(&current->fs->lock);
1927 pwdmnt = mntget(current->fs->pwdmnt);
1928 pwd = dget(current->fs->pwd);
1929 rootmnt = mntget(current->fs->rootmnt);
1930 root = dget(current->fs->root);
1931 read_unlock(&current->fs->lock);
1933 error = -ENOENT;
1934 /* Has the current directory has been unlinked? */
1935 spin_lock(&dcache_lock);
1936 if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1937 unsigned long len;
1938 char * cwd;
1940 cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1941 spin_unlock(&dcache_lock);
1943 error = PTR_ERR(cwd);
1944 if (IS_ERR(cwd))
1945 goto out;
1947 error = -ERANGE;
1948 len = PAGE_SIZE + page - cwd;
1949 if (len <= size) {
1950 error = len;
1951 if (copy_to_user(buf, cwd, len))
1952 error = -EFAULT;
1954 } else
1955 spin_unlock(&dcache_lock);
1957 out:
1958 dput(pwd);
1959 mntput(pwdmnt);
1960 dput(root);
1961 mntput(rootmnt);
1962 free_page((unsigned long) page);
1963 return error;
1967 * Test whether new_dentry is a subdirectory of old_dentry.
1969 * Trivially implemented using the dcache structure
1973 * is_subdir - is new dentry a subdirectory of old_dentry
1974 * @new_dentry: new dentry
1975 * @old_dentry: old dentry
1977 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1978 * Returns 0 otherwise.
1979 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1982 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1984 int result;
1985 struct dentry * saved = new_dentry;
1986 unsigned long seq;
1988 /* need rcu_readlock to protect against the d_parent trashing due to
1989 * d_move
1991 rcu_read_lock();
1992 do {
1993 /* for restarting inner loop in case of seq retry */
1994 new_dentry = saved;
1995 result = 0;
1996 seq = read_seqbegin(&rename_lock);
1997 for (;;) {
1998 if (new_dentry != old_dentry) {
1999 struct dentry * parent = new_dentry->d_parent;
2000 if (parent == new_dentry)
2001 break;
2002 new_dentry = parent;
2003 continue;
2005 result = 1;
2006 break;
2008 } while (read_seqretry(&rename_lock, seq));
2009 rcu_read_unlock();
2011 return result;
2014 void d_genocide(struct dentry *root)
2016 struct dentry *this_parent = root;
2017 struct list_head *next;
2019 spin_lock(&dcache_lock);
2020 repeat:
2021 next = this_parent->d_subdirs.next;
2022 resume:
2023 while (next != &this_parent->d_subdirs) {
2024 struct list_head *tmp = next;
2025 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2026 next = tmp->next;
2027 if (d_unhashed(dentry)||!dentry->d_inode)
2028 continue;
2029 if (!list_empty(&dentry->d_subdirs)) {
2030 this_parent = dentry;
2031 goto repeat;
2033 atomic_dec(&dentry->d_count);
2035 if (this_parent != root) {
2036 next = this_parent->d_u.d_child.next;
2037 atomic_dec(&this_parent->d_count);
2038 this_parent = this_parent->d_parent;
2039 goto resume;
2041 spin_unlock(&dcache_lock);
2045 * find_inode_number - check for dentry with name
2046 * @dir: directory to check
2047 * @name: Name to find.
2049 * Check whether a dentry already exists for the given name,
2050 * and return the inode number if it has an inode. Otherwise
2051 * 0 is returned.
2053 * This routine is used to post-process directory listings for
2054 * filesystems using synthetic inode numbers, and is necessary
2055 * to keep getcwd() working.
2058 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2060 struct dentry * dentry;
2061 ino_t ino = 0;
2063 dentry = d_hash_and_lookup(dir, name);
2064 if (dentry) {
2065 if (dentry->d_inode)
2066 ino = dentry->d_inode->i_ino;
2067 dput(dentry);
2069 return ino;
2072 static __initdata unsigned long dhash_entries;
2073 static int __init set_dhash_entries(char *str)
2075 if (!str)
2076 return 0;
2077 dhash_entries = simple_strtoul(str, &str, 0);
2078 return 1;
2080 __setup("dhash_entries=", set_dhash_entries);
2082 static void __init dcache_init_early(void)
2084 int loop;
2086 /* If hashes are distributed across NUMA nodes, defer
2087 * hash allocation until vmalloc space is available.
2089 if (hashdist)
2090 return;
2092 dentry_hashtable =
2093 alloc_large_system_hash("Dentry cache",
2094 sizeof(struct hlist_head),
2095 dhash_entries,
2097 HASH_EARLY,
2098 &d_hash_shift,
2099 &d_hash_mask,
2102 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2103 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2106 static void __init dcache_init(void)
2108 int loop;
2111 * A constructor could be added for stable state like the lists,
2112 * but it is probably not worth it because of the cache nature
2113 * of the dcache.
2115 dentry_cache = KMEM_CACHE(dentry,
2116 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2118 register_shrinker(&dcache_shrinker);
2120 /* Hash may have been set up in dcache_init_early */
2121 if (!hashdist)
2122 return;
2124 dentry_hashtable =
2125 alloc_large_system_hash("Dentry cache",
2126 sizeof(struct hlist_head),
2127 dhash_entries,
2130 &d_hash_shift,
2131 &d_hash_mask,
2134 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2135 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2138 /* SLAB cache for __getname() consumers */
2139 struct kmem_cache *names_cachep __read_mostly;
2141 /* SLAB cache for file structures */
2142 struct kmem_cache *filp_cachep __read_mostly;
2144 EXPORT_SYMBOL(d_genocide);
2146 void __init vfs_caches_init_early(void)
2148 dcache_init_early();
2149 inode_init_early();
2152 void __init vfs_caches_init(unsigned long mempages)
2154 unsigned long reserve;
2156 /* Base hash sizes on available memory, with a reserve equal to
2157 150% of current kernel size */
2159 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2160 mempages -= reserve;
2162 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2163 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2165 filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
2166 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2168 dcache_init();
2169 inode_init();
2170 files_init(mempages);
2171 mnt_init();
2172 bdev_cache_init();
2173 chrdev_init();
2176 EXPORT_SYMBOL(d_alloc);
2177 EXPORT_SYMBOL(d_alloc_anon);
2178 EXPORT_SYMBOL(d_alloc_root);
2179 EXPORT_SYMBOL(d_delete);
2180 EXPORT_SYMBOL(d_find_alias);
2181 EXPORT_SYMBOL(d_instantiate);
2182 EXPORT_SYMBOL(d_invalidate);
2183 EXPORT_SYMBOL(d_lookup);
2184 EXPORT_SYMBOL(d_move);
2185 EXPORT_SYMBOL_GPL(d_materialise_unique);
2186 EXPORT_SYMBOL(d_path);
2187 EXPORT_SYMBOL(d_prune_aliases);
2188 EXPORT_SYMBOL(d_rehash);
2189 EXPORT_SYMBOL(d_splice_alias);
2190 EXPORT_SYMBOL(d_validate);
2191 EXPORT_SYMBOL(dget_locked);
2192 EXPORT_SYMBOL(dput);
2193 EXPORT_SYMBOL(find_inode_number);
2194 EXPORT_SYMBOL(have_submounts);
2195 EXPORT_SYMBOL(names_cachep);
2196 EXPORT_SYMBOL(shrink_dcache_parent);
2197 EXPORT_SYMBOL(shrink_dcache_sb);