2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
6 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
8 return container_of(rt_se
, struct task_struct
, rt
);
11 #ifdef CONFIG_RT_GROUP_SCHED
13 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
15 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
20 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
25 #else /* CONFIG_RT_GROUP_SCHED */
27 #define rt_entity_is_task(rt_se) (1)
29 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
31 return container_of(rt_rq
, struct rq
, rt
);
34 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
36 struct task_struct
*p
= rt_task_of(rt_se
);
37 struct rq
*rq
= task_rq(p
);
42 #endif /* CONFIG_RT_GROUP_SCHED */
46 static inline int rt_overloaded(struct rq
*rq
)
48 return atomic_read(&rq
->rd
->rto_count
);
51 static inline void rt_set_overload(struct rq
*rq
)
56 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
58 * Make sure the mask is visible before we set
59 * the overload count. That is checked to determine
60 * if we should look at the mask. It would be a shame
61 * if we looked at the mask, but the mask was not
65 atomic_inc(&rq
->rd
->rto_count
);
68 static inline void rt_clear_overload(struct rq
*rq
)
73 /* the order here really doesn't matter */
74 atomic_dec(&rq
->rd
->rto_count
);
75 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
78 static void update_rt_migration(struct rt_rq
*rt_rq
)
80 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
81 if (!rt_rq
->overloaded
) {
82 rt_set_overload(rq_of_rt_rq(rt_rq
));
83 rt_rq
->overloaded
= 1;
85 } else if (rt_rq
->overloaded
) {
86 rt_clear_overload(rq_of_rt_rq(rt_rq
));
87 rt_rq
->overloaded
= 0;
91 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
93 if (!rt_entity_is_task(rt_se
))
96 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
99 if (rt_se
->nr_cpus_allowed
> 1)
100 rt_rq
->rt_nr_migratory
++;
102 update_rt_migration(rt_rq
);
105 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
107 if (!rt_entity_is_task(rt_se
))
110 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
112 rt_rq
->rt_nr_total
--;
113 if (rt_se
->nr_cpus_allowed
> 1)
114 rt_rq
->rt_nr_migratory
--;
116 update_rt_migration(rt_rq
);
119 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
121 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
122 plist_node_init(&p
->pushable_tasks
, p
->prio
);
123 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
126 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
128 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
133 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
137 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
142 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
147 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
151 #endif /* CONFIG_SMP */
153 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
155 return !list_empty(&rt_se
->run_list
);
158 #ifdef CONFIG_RT_GROUP_SCHED
160 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
165 return rt_rq
->rt_runtime
;
168 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
170 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
173 #define for_each_leaf_rt_rq(rt_rq, rq) \
174 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
176 #define for_each_sched_rt_entity(rt_se) \
177 for (; rt_se; rt_se = rt_se->parent)
179 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
184 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
);
185 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
187 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
189 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
190 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
192 if (rt_rq
->rt_nr_running
) {
193 if (rt_se
&& !on_rt_rq(rt_se
))
194 enqueue_rt_entity(rt_se
);
195 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
200 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
202 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
204 if (rt_se
&& on_rt_rq(rt_se
))
205 dequeue_rt_entity(rt_se
);
208 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
210 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
213 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
215 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
216 struct task_struct
*p
;
219 return !!rt_rq
->rt_nr_boosted
;
221 p
= rt_task_of(rt_se
);
222 return p
->prio
!= p
->normal_prio
;
226 static inline const struct cpumask
*sched_rt_period_mask(void)
228 return cpu_rq(smp_processor_id())->rd
->span
;
231 static inline const struct cpumask
*sched_rt_period_mask(void)
233 return cpu_online_mask
;
238 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
240 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
243 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
245 return &rt_rq
->tg
->rt_bandwidth
;
248 #else /* !CONFIG_RT_GROUP_SCHED */
250 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
252 return rt_rq
->rt_runtime
;
255 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
257 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
260 #define for_each_leaf_rt_rq(rt_rq, rq) \
261 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
263 #define for_each_sched_rt_entity(rt_se) \
264 for (; rt_se; rt_se = NULL)
266 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
271 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
273 if (rt_rq
->rt_nr_running
)
274 resched_task(rq_of_rt_rq(rt_rq
)->curr
);
277 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
281 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
283 return rt_rq
->rt_throttled
;
286 static inline const struct cpumask
*sched_rt_period_mask(void)
288 return cpu_online_mask
;
292 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
294 return &cpu_rq(cpu
)->rt
;
297 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
299 return &def_rt_bandwidth
;
302 #endif /* CONFIG_RT_GROUP_SCHED */
306 * We ran out of runtime, see if we can borrow some from our neighbours.
308 static int do_balance_runtime(struct rt_rq
*rt_rq
)
310 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
311 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
312 int i
, weight
, more
= 0;
315 weight
= cpumask_weight(rd
->span
);
317 spin_lock(&rt_b
->rt_runtime_lock
);
318 rt_period
= ktime_to_ns(rt_b
->rt_period
);
319 for_each_cpu(i
, rd
->span
) {
320 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
326 spin_lock(&iter
->rt_runtime_lock
);
328 * Either all rqs have inf runtime and there's nothing to steal
329 * or __disable_runtime() below sets a specific rq to inf to
330 * indicate its been disabled and disalow stealing.
332 if (iter
->rt_runtime
== RUNTIME_INF
)
336 * From runqueues with spare time, take 1/n part of their
337 * spare time, but no more than our period.
339 diff
= iter
->rt_runtime
- iter
->rt_time
;
341 diff
= div_u64((u64
)diff
, weight
);
342 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
343 diff
= rt_period
- rt_rq
->rt_runtime
;
344 iter
->rt_runtime
-= diff
;
345 rt_rq
->rt_runtime
+= diff
;
347 if (rt_rq
->rt_runtime
== rt_period
) {
348 spin_unlock(&iter
->rt_runtime_lock
);
353 spin_unlock(&iter
->rt_runtime_lock
);
355 spin_unlock(&rt_b
->rt_runtime_lock
);
361 * Ensure this RQ takes back all the runtime it lend to its neighbours.
363 static void __disable_runtime(struct rq
*rq
)
365 struct root_domain
*rd
= rq
->rd
;
368 if (unlikely(!scheduler_running
))
371 for_each_leaf_rt_rq(rt_rq
, rq
) {
372 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
376 spin_lock(&rt_b
->rt_runtime_lock
);
377 spin_lock(&rt_rq
->rt_runtime_lock
);
379 * Either we're all inf and nobody needs to borrow, or we're
380 * already disabled and thus have nothing to do, or we have
381 * exactly the right amount of runtime to take out.
383 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
384 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
386 spin_unlock(&rt_rq
->rt_runtime_lock
);
389 * Calculate the difference between what we started out with
390 * and what we current have, that's the amount of runtime
391 * we lend and now have to reclaim.
393 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
396 * Greedy reclaim, take back as much as we can.
398 for_each_cpu(i
, rd
->span
) {
399 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
403 * Can't reclaim from ourselves or disabled runqueues.
405 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
408 spin_lock(&iter
->rt_runtime_lock
);
410 diff
= min_t(s64
, iter
->rt_runtime
, want
);
411 iter
->rt_runtime
-= diff
;
414 iter
->rt_runtime
-= want
;
417 spin_unlock(&iter
->rt_runtime_lock
);
423 spin_lock(&rt_rq
->rt_runtime_lock
);
425 * We cannot be left wanting - that would mean some runtime
426 * leaked out of the system.
431 * Disable all the borrow logic by pretending we have inf
432 * runtime - in which case borrowing doesn't make sense.
434 rt_rq
->rt_runtime
= RUNTIME_INF
;
435 spin_unlock(&rt_rq
->rt_runtime_lock
);
436 spin_unlock(&rt_b
->rt_runtime_lock
);
440 static void disable_runtime(struct rq
*rq
)
444 spin_lock_irqsave(&rq
->lock
, flags
);
445 __disable_runtime(rq
);
446 spin_unlock_irqrestore(&rq
->lock
, flags
);
449 static void __enable_runtime(struct rq
*rq
)
453 if (unlikely(!scheduler_running
))
457 * Reset each runqueue's bandwidth settings
459 for_each_leaf_rt_rq(rt_rq
, rq
) {
460 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
462 spin_lock(&rt_b
->rt_runtime_lock
);
463 spin_lock(&rt_rq
->rt_runtime_lock
);
464 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
466 rt_rq
->rt_throttled
= 0;
467 spin_unlock(&rt_rq
->rt_runtime_lock
);
468 spin_unlock(&rt_b
->rt_runtime_lock
);
472 static void enable_runtime(struct rq
*rq
)
476 spin_lock_irqsave(&rq
->lock
, flags
);
477 __enable_runtime(rq
);
478 spin_unlock_irqrestore(&rq
->lock
, flags
);
481 static int balance_runtime(struct rt_rq
*rt_rq
)
485 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
486 spin_unlock(&rt_rq
->rt_runtime_lock
);
487 more
= do_balance_runtime(rt_rq
);
488 spin_lock(&rt_rq
->rt_runtime_lock
);
493 #else /* !CONFIG_SMP */
494 static inline int balance_runtime(struct rt_rq
*rt_rq
)
498 #endif /* CONFIG_SMP */
500 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
503 const struct cpumask
*span
;
505 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
508 span
= sched_rt_period_mask();
509 for_each_cpu(i
, span
) {
511 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
512 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
514 spin_lock(&rq
->lock
);
515 if (rt_rq
->rt_time
) {
518 spin_lock(&rt_rq
->rt_runtime_lock
);
519 if (rt_rq
->rt_throttled
)
520 balance_runtime(rt_rq
);
521 runtime
= rt_rq
->rt_runtime
;
522 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
523 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
524 rt_rq
->rt_throttled
= 0;
527 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
529 spin_unlock(&rt_rq
->rt_runtime_lock
);
530 } else if (rt_rq
->rt_nr_running
)
534 sched_rt_rq_enqueue(rt_rq
);
535 spin_unlock(&rq
->lock
);
541 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
543 #ifdef CONFIG_RT_GROUP_SCHED
544 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
547 return rt_rq
->highest_prio
.curr
;
550 return rt_task_of(rt_se
)->prio
;
553 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
555 u64 runtime
= sched_rt_runtime(rt_rq
);
557 if (rt_rq
->rt_throttled
)
558 return rt_rq_throttled(rt_rq
);
560 if (sched_rt_runtime(rt_rq
) >= sched_rt_period(rt_rq
))
563 balance_runtime(rt_rq
);
564 runtime
= sched_rt_runtime(rt_rq
);
565 if (runtime
== RUNTIME_INF
)
568 if (rt_rq
->rt_time
> runtime
) {
569 rt_rq
->rt_throttled
= 1;
570 if (rt_rq_throttled(rt_rq
)) {
571 sched_rt_rq_dequeue(rt_rq
);
580 * Update the current task's runtime statistics. Skip current tasks that
581 * are not in our scheduling class.
583 static void update_curr_rt(struct rq
*rq
)
585 struct task_struct
*curr
= rq
->curr
;
586 struct sched_rt_entity
*rt_se
= &curr
->rt
;
587 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
590 if (!task_has_rt_policy(curr
))
593 delta_exec
= rq
->clock
- curr
->se
.exec_start
;
594 if (unlikely((s64
)delta_exec
< 0))
597 schedstat_set(curr
->se
.exec_max
, max(curr
->se
.exec_max
, delta_exec
));
599 curr
->se
.sum_exec_runtime
+= delta_exec
;
600 account_group_exec_runtime(curr
, delta_exec
);
602 curr
->se
.exec_start
= rq
->clock
;
603 cpuacct_charge(curr
, delta_exec
);
605 if (!rt_bandwidth_enabled())
608 for_each_sched_rt_entity(rt_se
) {
609 rt_rq
= rt_rq_of_se(rt_se
);
611 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
612 spin_lock(&rt_rq
->rt_runtime_lock
);
613 rt_rq
->rt_time
+= delta_exec
;
614 if (sched_rt_runtime_exceeded(rt_rq
))
616 spin_unlock(&rt_rq
->rt_runtime_lock
);
621 #if defined CONFIG_SMP
623 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
);
625 static inline int next_prio(struct rq
*rq
)
627 struct task_struct
*next
= pick_next_highest_task_rt(rq
, rq
->cpu
);
629 if (next
&& rt_prio(next
->prio
))
636 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
638 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
640 if (prio
< prev_prio
) {
643 * If the new task is higher in priority than anything on the
644 * run-queue, we know that the previous high becomes our
647 rt_rq
->highest_prio
.next
= prev_prio
;
650 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
652 } else if (prio
== rt_rq
->highest_prio
.curr
)
654 * If the next task is equal in priority to the highest on
655 * the run-queue, then we implicitly know that the next highest
656 * task cannot be any lower than current
658 rt_rq
->highest_prio
.next
= prio
;
659 else if (prio
< rt_rq
->highest_prio
.next
)
661 * Otherwise, we need to recompute next-highest
663 rt_rq
->highest_prio
.next
= next_prio(rq
);
667 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
669 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
671 if (rt_rq
->rt_nr_running
&& (prio
<= rt_rq
->highest_prio
.next
))
672 rt_rq
->highest_prio
.next
= next_prio(rq
);
674 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
675 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
678 #else /* CONFIG_SMP */
681 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
683 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
685 #endif /* CONFIG_SMP */
687 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
689 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
691 int prev_prio
= rt_rq
->highest_prio
.curr
;
693 if (prio
< prev_prio
)
694 rt_rq
->highest_prio
.curr
= prio
;
696 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
700 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
702 int prev_prio
= rt_rq
->highest_prio
.curr
;
704 if (rt_rq
->rt_nr_running
) {
706 WARN_ON(prio
< prev_prio
);
709 * This may have been our highest task, and therefore
710 * we may have some recomputation to do
712 if (prio
== prev_prio
) {
713 struct rt_prio_array
*array
= &rt_rq
->active
;
715 rt_rq
->highest_prio
.curr
=
716 sched_find_first_bit(array
->bitmap
);
720 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
722 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
727 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
728 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
730 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
732 #ifdef CONFIG_RT_GROUP_SCHED
735 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
737 if (rt_se_boosted(rt_se
))
738 rt_rq
->rt_nr_boosted
++;
741 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
745 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
747 if (rt_se_boosted(rt_se
))
748 rt_rq
->rt_nr_boosted
--;
750 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
753 #else /* CONFIG_RT_GROUP_SCHED */
756 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
758 start_rt_bandwidth(&def_rt_bandwidth
);
762 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
764 #endif /* CONFIG_RT_GROUP_SCHED */
767 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
769 int prio
= rt_se_prio(rt_se
);
771 WARN_ON(!rt_prio(prio
));
772 rt_rq
->rt_nr_running
++;
774 inc_rt_prio(rt_rq
, prio
);
775 inc_rt_migration(rt_se
, rt_rq
);
776 inc_rt_group(rt_se
, rt_rq
);
780 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
782 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
783 WARN_ON(!rt_rq
->rt_nr_running
);
784 rt_rq
->rt_nr_running
--;
786 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
787 dec_rt_migration(rt_se
, rt_rq
);
788 dec_rt_group(rt_se
, rt_rq
);
791 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
)
793 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
794 struct rt_prio_array
*array
= &rt_rq
->active
;
795 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
796 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
799 * Don't enqueue the group if its throttled, or when empty.
800 * The latter is a consequence of the former when a child group
801 * get throttled and the current group doesn't have any other
804 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
807 list_add_tail(&rt_se
->run_list
, queue
);
808 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
810 inc_rt_tasks(rt_se
, rt_rq
);
813 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
815 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
816 struct rt_prio_array
*array
= &rt_rq
->active
;
818 list_del_init(&rt_se
->run_list
);
819 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
820 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
822 dec_rt_tasks(rt_se
, rt_rq
);
826 * Because the prio of an upper entry depends on the lower
827 * entries, we must remove entries top - down.
829 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
831 struct sched_rt_entity
*back
= NULL
;
833 for_each_sched_rt_entity(rt_se
) {
838 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
840 __dequeue_rt_entity(rt_se
);
844 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
)
846 dequeue_rt_stack(rt_se
);
847 for_each_sched_rt_entity(rt_se
)
848 __enqueue_rt_entity(rt_se
);
851 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
853 dequeue_rt_stack(rt_se
);
855 for_each_sched_rt_entity(rt_se
) {
856 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
858 if (rt_rq
&& rt_rq
->rt_nr_running
)
859 __enqueue_rt_entity(rt_se
);
864 * Adding/removing a task to/from a priority array:
866 static void enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
868 struct sched_rt_entity
*rt_se
= &p
->rt
;
873 enqueue_rt_entity(rt_se
);
875 if (!task_current(rq
, p
) && p
->rt
.nr_cpus_allowed
> 1)
876 enqueue_pushable_task(rq
, p
);
878 inc_cpu_load(rq
, p
->se
.load
.weight
);
881 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int sleep
)
883 struct sched_rt_entity
*rt_se
= &p
->rt
;
886 dequeue_rt_entity(rt_se
);
888 dequeue_pushable_task(rq
, p
);
890 dec_cpu_load(rq
, p
->se
.load
.weight
);
894 * Put task to the end of the run list without the overhead of dequeue
895 * followed by enqueue.
898 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
900 if (on_rt_rq(rt_se
)) {
901 struct rt_prio_array
*array
= &rt_rq
->active
;
902 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
905 list_move(&rt_se
->run_list
, queue
);
907 list_move_tail(&rt_se
->run_list
, queue
);
911 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
913 struct sched_rt_entity
*rt_se
= &p
->rt
;
916 for_each_sched_rt_entity(rt_se
) {
917 rt_rq
= rt_rq_of_se(rt_se
);
918 requeue_rt_entity(rt_rq
, rt_se
, head
);
922 static void yield_task_rt(struct rq
*rq
)
924 requeue_task_rt(rq
, rq
->curr
, 0);
928 static int find_lowest_rq(struct task_struct
*task
);
930 static int select_task_rq_rt(struct task_struct
*p
, int sync
)
932 struct rq
*rq
= task_rq(p
);
935 * If the current task is an RT task, then
936 * try to see if we can wake this RT task up on another
937 * runqueue. Otherwise simply start this RT task
938 * on its current runqueue.
940 * We want to avoid overloading runqueues. Even if
941 * the RT task is of higher priority than the current RT task.
942 * RT tasks behave differently than other tasks. If
943 * one gets preempted, we try to push it off to another queue.
944 * So trying to keep a preempting RT task on the same
945 * cache hot CPU will force the running RT task to
946 * a cold CPU. So we waste all the cache for the lower
947 * RT task in hopes of saving some of a RT task
948 * that is just being woken and probably will have
951 if (unlikely(rt_task(rq
->curr
)) &&
952 (p
->rt
.nr_cpus_allowed
> 1)) {
953 int cpu
= find_lowest_rq(p
);
955 return (cpu
== -1) ? task_cpu(p
) : cpu
;
959 * Otherwise, just let it ride on the affined RQ and the
960 * post-schedule router will push the preempted task away
965 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
967 if (rq
->curr
->rt
.nr_cpus_allowed
== 1)
970 if (p
->rt
.nr_cpus_allowed
!= 1
971 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
974 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
978 * There appears to be other cpus that can accept
979 * current and none to run 'p', so lets reschedule
980 * to try and push current away:
982 requeue_task_rt(rq
, p
, 1);
983 resched_task(rq
->curr
);
986 #endif /* CONFIG_SMP */
989 * Preempt the current task with a newly woken task if needed:
991 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int sync
)
993 if (p
->prio
< rq
->curr
->prio
) {
994 resched_task(rq
->curr
);
1002 * - the newly woken task is of equal priority to the current task
1003 * - the newly woken task is non-migratable while current is migratable
1004 * - current will be preempted on the next reschedule
1006 * we should check to see if current can readily move to a different
1007 * cpu. If so, we will reschedule to allow the push logic to try
1008 * to move current somewhere else, making room for our non-migratable
1011 if (p
->prio
== rq
->curr
->prio
&& !need_resched())
1012 check_preempt_equal_prio(rq
, p
);
1016 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1017 struct rt_rq
*rt_rq
)
1019 struct rt_prio_array
*array
= &rt_rq
->active
;
1020 struct sched_rt_entity
*next
= NULL
;
1021 struct list_head
*queue
;
1024 idx
= sched_find_first_bit(array
->bitmap
);
1025 BUG_ON(idx
>= MAX_RT_PRIO
);
1027 queue
= array
->queue
+ idx
;
1028 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1033 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1035 struct sched_rt_entity
*rt_se
;
1036 struct task_struct
*p
;
1037 struct rt_rq
*rt_rq
;
1041 if (unlikely(!rt_rq
->rt_nr_running
))
1044 if (rt_rq_throttled(rt_rq
))
1048 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1050 rt_rq
= group_rt_rq(rt_se
);
1053 p
= rt_task_of(rt_se
);
1054 p
->se
.exec_start
= rq
->clock
;
1059 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1061 struct task_struct
*p
= _pick_next_task_rt(rq
);
1063 /* The running task is never eligible for pushing */
1065 dequeue_pushable_task(rq
, p
);
1070 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1073 p
->se
.exec_start
= 0;
1076 * The previous task needs to be made eligible for pushing
1077 * if it is still active
1079 if (p
->se
.on_rq
&& p
->rt
.nr_cpus_allowed
> 1)
1080 enqueue_pushable_task(rq
, p
);
1085 /* Only try algorithms three times */
1086 #define RT_MAX_TRIES 3
1088 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
);
1090 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1092 if (!task_running(rq
, p
) &&
1093 (cpu
< 0 || cpumask_test_cpu(cpu
, &p
->cpus_allowed
)) &&
1094 (p
->rt
.nr_cpus_allowed
> 1))
1099 /* Return the second highest RT task, NULL otherwise */
1100 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
1102 struct task_struct
*next
= NULL
;
1103 struct sched_rt_entity
*rt_se
;
1104 struct rt_prio_array
*array
;
1105 struct rt_rq
*rt_rq
;
1108 for_each_leaf_rt_rq(rt_rq
, rq
) {
1109 array
= &rt_rq
->active
;
1110 idx
= sched_find_first_bit(array
->bitmap
);
1112 if (idx
>= MAX_RT_PRIO
)
1114 if (next
&& next
->prio
< idx
)
1116 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
1117 struct task_struct
*p
= rt_task_of(rt_se
);
1118 if (pick_rt_task(rq
, p
, cpu
)) {
1124 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
1132 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1134 static inline int pick_optimal_cpu(int this_cpu
,
1135 const struct cpumask
*mask
)
1139 /* "this_cpu" is cheaper to preempt than a remote processor */
1140 if ((this_cpu
!= -1) && cpumask_test_cpu(this_cpu
, mask
))
1143 first
= cpumask_first(mask
);
1144 if (first
< nr_cpu_ids
)
1150 static int find_lowest_rq(struct task_struct
*task
)
1152 struct sched_domain
*sd
;
1153 struct cpumask
*lowest_mask
= __get_cpu_var(local_cpu_mask
);
1154 int this_cpu
= smp_processor_id();
1155 int cpu
= task_cpu(task
);
1156 cpumask_var_t domain_mask
;
1158 if (task
->rt
.nr_cpus_allowed
== 1)
1159 return -1; /* No other targets possible */
1161 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1162 return -1; /* No targets found */
1165 * Only consider CPUs that are usable for migration.
1166 * I guess we might want to change cpupri_find() to ignore those
1167 * in the first place.
1169 cpumask_and(lowest_mask
, lowest_mask
, cpu_active_mask
);
1172 * At this point we have built a mask of cpus representing the
1173 * lowest priority tasks in the system. Now we want to elect
1174 * the best one based on our affinity and topology.
1176 * We prioritize the last cpu that the task executed on since
1177 * it is most likely cache-hot in that location.
1179 if (cpumask_test_cpu(cpu
, lowest_mask
))
1183 * Otherwise, we consult the sched_domains span maps to figure
1184 * out which cpu is logically closest to our hot cache data.
1186 if (this_cpu
== cpu
)
1187 this_cpu
= -1; /* Skip this_cpu opt if the same */
1189 if (alloc_cpumask_var(&domain_mask
, GFP_ATOMIC
)) {
1190 for_each_domain(cpu
, sd
) {
1191 if (sd
->flags
& SD_WAKE_AFFINE
) {
1194 cpumask_and(domain_mask
,
1195 sched_domain_span(sd
),
1198 best_cpu
= pick_optimal_cpu(this_cpu
,
1201 if (best_cpu
!= -1) {
1202 free_cpumask_var(domain_mask
);
1207 free_cpumask_var(domain_mask
);
1211 * And finally, if there were no matches within the domains
1212 * just give the caller *something* to work with from the compatible
1215 return pick_optimal_cpu(this_cpu
, lowest_mask
);
1218 /* Will lock the rq it finds */
1219 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1221 struct rq
*lowest_rq
= NULL
;
1225 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1226 cpu
= find_lowest_rq(task
);
1228 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1231 lowest_rq
= cpu_rq(cpu
);
1233 /* if the prio of this runqueue changed, try again */
1234 if (double_lock_balance(rq
, lowest_rq
)) {
1236 * We had to unlock the run queue. In
1237 * the mean time, task could have
1238 * migrated already or had its affinity changed.
1239 * Also make sure that it wasn't scheduled on its rq.
1241 if (unlikely(task_rq(task
) != rq
||
1242 !cpumask_test_cpu(lowest_rq
->cpu
,
1243 &task
->cpus_allowed
) ||
1244 task_running(rq
, task
) ||
1247 spin_unlock(&lowest_rq
->lock
);
1253 /* If this rq is still suitable use it. */
1254 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1258 double_unlock_balance(rq
, lowest_rq
);
1265 static inline int has_pushable_tasks(struct rq
*rq
)
1267 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
1270 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1272 struct task_struct
*p
;
1274 if (!has_pushable_tasks(rq
))
1277 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1278 struct task_struct
, pushable_tasks
);
1280 BUG_ON(rq
->cpu
!= task_cpu(p
));
1281 BUG_ON(task_current(rq
, p
));
1282 BUG_ON(p
->rt
.nr_cpus_allowed
<= 1);
1284 BUG_ON(!p
->se
.on_rq
);
1285 BUG_ON(!rt_task(p
));
1291 * If the current CPU has more than one RT task, see if the non
1292 * running task can migrate over to a CPU that is running a task
1293 * of lesser priority.
1295 static int push_rt_task(struct rq
*rq
)
1297 struct task_struct
*next_task
;
1298 struct rq
*lowest_rq
;
1300 if (!rq
->rt
.overloaded
)
1303 next_task
= pick_next_pushable_task(rq
);
1308 if (unlikely(next_task
== rq
->curr
)) {
1314 * It's possible that the next_task slipped in of
1315 * higher priority than current. If that's the case
1316 * just reschedule current.
1318 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1319 resched_task(rq
->curr
);
1323 /* We might release rq lock */
1324 get_task_struct(next_task
);
1326 /* find_lock_lowest_rq locks the rq if found */
1327 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1329 struct task_struct
*task
;
1331 * find lock_lowest_rq releases rq->lock
1332 * so it is possible that next_task has migrated.
1334 * We need to make sure that the task is still on the same
1335 * run-queue and is also still the next task eligible for
1338 task
= pick_next_pushable_task(rq
);
1339 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1341 * If we get here, the task hasnt moved at all, but
1342 * it has failed to push. We will not try again,
1343 * since the other cpus will pull from us when they
1346 dequeue_pushable_task(rq
, next_task
);
1351 /* No more tasks, just exit */
1355 * Something has shifted, try again.
1357 put_task_struct(next_task
);
1362 deactivate_task(rq
, next_task
, 0);
1363 set_task_cpu(next_task
, lowest_rq
->cpu
);
1364 activate_task(lowest_rq
, next_task
, 0);
1366 resched_task(lowest_rq
->curr
);
1368 double_unlock_balance(rq
, lowest_rq
);
1371 put_task_struct(next_task
);
1376 static void push_rt_tasks(struct rq
*rq
)
1378 /* push_rt_task will return true if it moved an RT */
1379 while (push_rt_task(rq
))
1383 static int pull_rt_task(struct rq
*this_rq
)
1385 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1386 struct task_struct
*p
;
1389 if (likely(!rt_overloaded(this_rq
)))
1392 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
1393 if (this_cpu
== cpu
)
1396 src_rq
= cpu_rq(cpu
);
1399 * Don't bother taking the src_rq->lock if the next highest
1400 * task is known to be lower-priority than our current task.
1401 * This may look racy, but if this value is about to go
1402 * logically higher, the src_rq will push this task away.
1403 * And if its going logically lower, we do not care
1405 if (src_rq
->rt
.highest_prio
.next
>=
1406 this_rq
->rt
.highest_prio
.curr
)
1410 * We can potentially drop this_rq's lock in
1411 * double_lock_balance, and another CPU could
1414 double_lock_balance(this_rq
, src_rq
);
1417 * Are there still pullable RT tasks?
1419 if (src_rq
->rt
.rt_nr_running
<= 1)
1422 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
1425 * Do we have an RT task that preempts
1426 * the to-be-scheduled task?
1428 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
1429 WARN_ON(p
== src_rq
->curr
);
1430 WARN_ON(!p
->se
.on_rq
);
1433 * There's a chance that p is higher in priority
1434 * than what's currently running on its cpu.
1435 * This is just that p is wakeing up and hasn't
1436 * had a chance to schedule. We only pull
1437 * p if it is lower in priority than the
1438 * current task on the run queue
1440 if (p
->prio
< src_rq
->curr
->prio
)
1445 deactivate_task(src_rq
, p
, 0);
1446 set_task_cpu(p
, this_cpu
);
1447 activate_task(this_rq
, p
, 0);
1449 * We continue with the search, just in
1450 * case there's an even higher prio task
1451 * in another runqueue. (low likelyhood
1456 double_unlock_balance(this_rq
, src_rq
);
1462 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1464 /* Try to pull RT tasks here if we lower this rq's prio */
1465 if (unlikely(rt_task(prev
)) && rq
->rt
.highest_prio
.curr
> prev
->prio
)
1470 * assumes rq->lock is held
1472 static int needs_post_schedule_rt(struct rq
*rq
)
1474 return has_pushable_tasks(rq
);
1477 static void post_schedule_rt(struct rq
*rq
)
1480 * This is only called if needs_post_schedule_rt() indicates that
1481 * we need to push tasks away
1483 spin_lock_irq(&rq
->lock
);
1485 spin_unlock_irq(&rq
->lock
);
1489 * If we are not running and we are not going to reschedule soon, we should
1490 * try to push tasks away now
1492 static void task_wake_up_rt(struct rq
*rq
, struct task_struct
*p
)
1494 if (!task_running(rq
, p
) &&
1495 !test_tsk_need_resched(rq
->curr
) &&
1496 has_pushable_tasks(rq
) &&
1497 p
->rt
.nr_cpus_allowed
> 1)
1501 static unsigned long
1502 load_balance_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1503 unsigned long max_load_move
,
1504 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1505 int *all_pinned
, int *this_best_prio
)
1507 /* don't touch RT tasks */
1512 move_one_task_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1513 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1515 /* don't touch RT tasks */
1519 static void set_cpus_allowed_rt(struct task_struct
*p
,
1520 const struct cpumask
*new_mask
)
1522 int weight
= cpumask_weight(new_mask
);
1524 BUG_ON(!rt_task(p
));
1527 * Update the migration status of the RQ if we have an RT task
1528 * which is running AND changing its weight value.
1530 if (p
->se
.on_rq
&& (weight
!= p
->rt
.nr_cpus_allowed
)) {
1531 struct rq
*rq
= task_rq(p
);
1533 if (!task_current(rq
, p
)) {
1535 * Make sure we dequeue this task from the pushable list
1536 * before going further. It will either remain off of
1537 * the list because we are no longer pushable, or it
1540 if (p
->rt
.nr_cpus_allowed
> 1)
1541 dequeue_pushable_task(rq
, p
);
1544 * Requeue if our weight is changing and still > 1
1547 enqueue_pushable_task(rq
, p
);
1551 if ((p
->rt
.nr_cpus_allowed
<= 1) && (weight
> 1)) {
1552 rq
->rt
.rt_nr_migratory
++;
1553 } else if ((p
->rt
.nr_cpus_allowed
> 1) && (weight
<= 1)) {
1554 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1555 rq
->rt
.rt_nr_migratory
--;
1558 update_rt_migration(&rq
->rt
);
1561 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1562 p
->rt
.nr_cpus_allowed
= weight
;
1565 /* Assumes rq->lock is held */
1566 static void rq_online_rt(struct rq
*rq
)
1568 if (rq
->rt
.overloaded
)
1569 rt_set_overload(rq
);
1571 __enable_runtime(rq
);
1573 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1576 /* Assumes rq->lock is held */
1577 static void rq_offline_rt(struct rq
*rq
)
1579 if (rq
->rt
.overloaded
)
1580 rt_clear_overload(rq
);
1582 __disable_runtime(rq
);
1584 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1588 * When switch from the rt queue, we bring ourselves to a position
1589 * that we might want to pull RT tasks from other runqueues.
1591 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
,
1595 * If there are other RT tasks then we will reschedule
1596 * and the scheduling of the other RT tasks will handle
1597 * the balancing. But if we are the last RT task
1598 * we may need to handle the pulling of RT tasks
1601 if (!rq
->rt
.rt_nr_running
)
1605 static inline void init_sched_rt_class(void)
1609 for_each_possible_cpu(i
)
1610 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
1611 GFP_KERNEL
, cpu_to_node(i
));
1613 #endif /* CONFIG_SMP */
1616 * When switching a task to RT, we may overload the runqueue
1617 * with RT tasks. In this case we try to push them off to
1620 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
,
1623 int check_resched
= 1;
1626 * If we are already running, then there's nothing
1627 * that needs to be done. But if we are not running
1628 * we may need to preempt the current running task.
1629 * If that current running task is also an RT task
1630 * then see if we can move to another run queue.
1634 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1635 /* Don't resched if we changed runqueues */
1638 #endif /* CONFIG_SMP */
1639 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1640 resched_task(rq
->curr
);
1645 * Priority of the task has changed. This may cause
1646 * us to initiate a push or pull.
1648 static void prio_changed_rt(struct rq
*rq
, struct task_struct
*p
,
1649 int oldprio
, int running
)
1654 * If our priority decreases while running, we
1655 * may need to pull tasks to this runqueue.
1657 if (oldprio
< p
->prio
)
1660 * If there's a higher priority task waiting to run
1661 * then reschedule. Note, the above pull_rt_task
1662 * can release the rq lock and p could migrate.
1663 * Only reschedule if p is still on the same runqueue.
1665 if (p
->prio
> rq
->rt
.highest_prio
.curr
&& rq
->curr
== p
)
1668 /* For UP simply resched on drop of prio */
1669 if (oldprio
< p
->prio
)
1671 #endif /* CONFIG_SMP */
1674 * This task is not running, but if it is
1675 * greater than the current running task
1678 if (p
->prio
< rq
->curr
->prio
)
1679 resched_task(rq
->curr
);
1683 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1685 unsigned long soft
, hard
;
1690 soft
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1691 hard
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1693 if (soft
!= RLIM_INFINITY
) {
1697 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1698 if (p
->rt
.timeout
> next
)
1699 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
1703 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1710 * RR tasks need a special form of timeslice management.
1711 * FIFO tasks have no timeslices.
1713 if (p
->policy
!= SCHED_RR
)
1716 if (--p
->rt
.time_slice
)
1719 p
->rt
.time_slice
= DEF_TIMESLICE
;
1722 * Requeue to the end of queue if we are not the only element
1725 if (p
->rt
.run_list
.prev
!= p
->rt
.run_list
.next
) {
1726 requeue_task_rt(rq
, p
, 0);
1727 set_tsk_need_resched(p
);
1731 static void set_curr_task_rt(struct rq
*rq
)
1733 struct task_struct
*p
= rq
->curr
;
1735 p
->se
.exec_start
= rq
->clock
;
1737 /* The running task is never eligible for pushing */
1738 dequeue_pushable_task(rq
, p
);
1741 static const struct sched_class rt_sched_class
= {
1742 .next
= &fair_sched_class
,
1743 .enqueue_task
= enqueue_task_rt
,
1744 .dequeue_task
= dequeue_task_rt
,
1745 .yield_task
= yield_task_rt
,
1747 .check_preempt_curr
= check_preempt_curr_rt
,
1749 .pick_next_task
= pick_next_task_rt
,
1750 .put_prev_task
= put_prev_task_rt
,
1753 .select_task_rq
= select_task_rq_rt
,
1755 .load_balance
= load_balance_rt
,
1756 .move_one_task
= move_one_task_rt
,
1757 .set_cpus_allowed
= set_cpus_allowed_rt
,
1758 .rq_online
= rq_online_rt
,
1759 .rq_offline
= rq_offline_rt
,
1760 .pre_schedule
= pre_schedule_rt
,
1761 .needs_post_schedule
= needs_post_schedule_rt
,
1762 .post_schedule
= post_schedule_rt
,
1763 .task_wake_up
= task_wake_up_rt
,
1764 .switched_from
= switched_from_rt
,
1767 .set_curr_task
= set_curr_task_rt
,
1768 .task_tick
= task_tick_rt
,
1770 .prio_changed
= prio_changed_rt
,
1771 .switched_to
= switched_to_rt
,
1774 #ifdef CONFIG_SCHED_DEBUG
1775 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
1777 static void print_rt_stats(struct seq_file
*m
, int cpu
)
1779 struct rt_rq
*rt_rq
;
1782 for_each_leaf_rt_rq(rt_rq
, cpu_rq(cpu
))
1783 print_rt_rq(m
, cpu
, rt_rq
);
1786 #endif /* CONFIG_SCHED_DEBUG */