x2apic: xen64 paravirt basic apic ops
[linux-2.6/mini2440.git] / arch / x86 / xen / enlighten.c
blob54e255667530ab961639dc05e607048a707df210
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
37 #include <asm/paravirt.h>
38 #include <asm/page.h>
39 #include <asm/xen/hypercall.h>
40 #include <asm/xen/hypervisor.h>
41 #include <asm/fixmap.h>
42 #include <asm/processor.h>
43 #include <asm/setup.h>
44 #include <asm/desc.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/reboot.h>
48 #include <asm/pgalloc.h>
50 #include "xen-ops.h"
51 #include "mmu.h"
52 #include "multicalls.h"
54 EXPORT_SYMBOL_GPL(hypercall_page);
56 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
57 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
60 * Note about cr3 (pagetable base) values:
62 * xen_cr3 contains the current logical cr3 value; it contains the
63 * last set cr3. This may not be the current effective cr3, because
64 * its update may be being lazily deferred. However, a vcpu looking
65 * at its own cr3 can use this value knowing that it everything will
66 * be self-consistent.
68 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
69 * hypercall to set the vcpu cr3 is complete (so it may be a little
70 * out of date, but it will never be set early). If one vcpu is
71 * looking at another vcpu's cr3 value, it should use this variable.
73 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
74 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
76 struct start_info *xen_start_info;
77 EXPORT_SYMBOL_GPL(xen_start_info);
79 struct shared_info xen_dummy_shared_info;
82 * Point at some empty memory to start with. We map the real shared_info
83 * page as soon as fixmap is up and running.
85 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
88 * Flag to determine whether vcpu info placement is available on all
89 * VCPUs. We assume it is to start with, and then set it to zero on
90 * the first failure. This is because it can succeed on some VCPUs
91 * and not others, since it can involve hypervisor memory allocation,
92 * or because the guest failed to guarantee all the appropriate
93 * constraints on all VCPUs (ie buffer can't cross a page boundary).
95 * Note that any particular CPU may be using a placed vcpu structure,
96 * but we can only optimise if the all are.
98 * 0: not available, 1: available
100 static int have_vcpu_info_placement = 1;
102 static void xen_vcpu_setup(int cpu)
104 struct vcpu_register_vcpu_info info;
105 int err;
106 struct vcpu_info *vcpup;
108 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
109 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
111 if (!have_vcpu_info_placement)
112 return; /* already tested, not available */
114 vcpup = &per_cpu(xen_vcpu_info, cpu);
116 info.mfn = virt_to_mfn(vcpup);
117 info.offset = offset_in_page(vcpup);
119 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
120 cpu, vcpup, info.mfn, info.offset);
122 /* Check to see if the hypervisor will put the vcpu_info
123 structure where we want it, which allows direct access via
124 a percpu-variable. */
125 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
127 if (err) {
128 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
129 have_vcpu_info_placement = 0;
130 } else {
131 /* This cpu is using the registered vcpu info, even if
132 later ones fail to. */
133 per_cpu(xen_vcpu, cpu) = vcpup;
135 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
136 cpu, vcpup);
141 * On restore, set the vcpu placement up again.
142 * If it fails, then we're in a bad state, since
143 * we can't back out from using it...
145 void xen_vcpu_restore(void)
147 if (have_vcpu_info_placement) {
148 int cpu;
150 for_each_online_cpu(cpu) {
151 bool other_cpu = (cpu != smp_processor_id());
153 if (other_cpu &&
154 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
155 BUG();
157 xen_vcpu_setup(cpu);
159 if (other_cpu &&
160 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
161 BUG();
164 BUG_ON(!have_vcpu_info_placement);
168 static void __init xen_banner(void)
170 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
171 pv_info.name);
172 printk(KERN_INFO "Hypervisor signature: %s%s\n",
173 xen_start_info->magic,
174 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
177 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
178 unsigned int *cx, unsigned int *dx)
180 unsigned maskedx = ~0;
183 * Mask out inconvenient features, to try and disable as many
184 * unsupported kernel subsystems as possible.
186 if (*ax == 1)
187 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
188 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
189 (1 << X86_FEATURE_MCE) | /* disable MCE */
190 (1 << X86_FEATURE_MCA) | /* disable MCA */
191 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
193 asm(XEN_EMULATE_PREFIX "cpuid"
194 : "=a" (*ax),
195 "=b" (*bx),
196 "=c" (*cx),
197 "=d" (*dx)
198 : "0" (*ax), "2" (*cx));
199 *dx &= maskedx;
202 static void xen_set_debugreg(int reg, unsigned long val)
204 HYPERVISOR_set_debugreg(reg, val);
207 static unsigned long xen_get_debugreg(int reg)
209 return HYPERVISOR_get_debugreg(reg);
212 static unsigned long xen_save_fl(void)
214 struct vcpu_info *vcpu;
215 unsigned long flags;
217 vcpu = x86_read_percpu(xen_vcpu);
219 /* flag has opposite sense of mask */
220 flags = !vcpu->evtchn_upcall_mask;
222 /* convert to IF type flag
223 -0 -> 0x00000000
224 -1 -> 0xffffffff
226 return (-flags) & X86_EFLAGS_IF;
229 static void xen_restore_fl(unsigned long flags)
231 struct vcpu_info *vcpu;
233 /* convert from IF type flag */
234 flags = !(flags & X86_EFLAGS_IF);
236 /* There's a one instruction preempt window here. We need to
237 make sure we're don't switch CPUs between getting the vcpu
238 pointer and updating the mask. */
239 preempt_disable();
240 vcpu = x86_read_percpu(xen_vcpu);
241 vcpu->evtchn_upcall_mask = flags;
242 preempt_enable_no_resched();
244 /* Doesn't matter if we get preempted here, because any
245 pending event will get dealt with anyway. */
247 if (flags == 0) {
248 preempt_check_resched();
249 barrier(); /* unmask then check (avoid races) */
250 if (unlikely(vcpu->evtchn_upcall_pending))
251 force_evtchn_callback();
255 static void xen_irq_disable(void)
257 /* There's a one instruction preempt window here. We need to
258 make sure we're don't switch CPUs between getting the vcpu
259 pointer and updating the mask. */
260 preempt_disable();
261 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
262 preempt_enable_no_resched();
265 static void xen_irq_enable(void)
267 struct vcpu_info *vcpu;
269 /* We don't need to worry about being preempted here, since
270 either a) interrupts are disabled, so no preemption, or b)
271 the caller is confused and is trying to re-enable interrupts
272 on an indeterminate processor. */
274 vcpu = x86_read_percpu(xen_vcpu);
275 vcpu->evtchn_upcall_mask = 0;
277 /* Doesn't matter if we get preempted here, because any
278 pending event will get dealt with anyway. */
280 barrier(); /* unmask then check (avoid races) */
281 if (unlikely(vcpu->evtchn_upcall_pending))
282 force_evtchn_callback();
285 static void xen_safe_halt(void)
287 /* Blocking includes an implicit local_irq_enable(). */
288 if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
289 BUG();
292 static void xen_halt(void)
294 if (irqs_disabled())
295 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
296 else
297 xen_safe_halt();
300 static void xen_leave_lazy(void)
302 paravirt_leave_lazy(paravirt_get_lazy_mode());
303 xen_mc_flush();
306 static unsigned long xen_store_tr(void)
308 return 0;
311 static void xen_set_ldt(const void *addr, unsigned entries)
313 struct mmuext_op *op;
314 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
316 op = mcs.args;
317 op->cmd = MMUEXT_SET_LDT;
318 op->arg1.linear_addr = (unsigned long)addr;
319 op->arg2.nr_ents = entries;
321 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
323 xen_mc_issue(PARAVIRT_LAZY_CPU);
326 static void xen_load_gdt(const struct desc_ptr *dtr)
328 unsigned long *frames;
329 unsigned long va = dtr->address;
330 unsigned int size = dtr->size + 1;
331 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
332 int f;
333 struct multicall_space mcs;
335 /* A GDT can be up to 64k in size, which corresponds to 8192
336 8-byte entries, or 16 4k pages.. */
338 BUG_ON(size > 65536);
339 BUG_ON(va & ~PAGE_MASK);
341 mcs = xen_mc_entry(sizeof(*frames) * pages);
342 frames = mcs.args;
344 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
345 frames[f] = virt_to_mfn(va);
346 make_lowmem_page_readonly((void *)va);
349 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
351 xen_mc_issue(PARAVIRT_LAZY_CPU);
354 static void load_TLS_descriptor(struct thread_struct *t,
355 unsigned int cpu, unsigned int i)
357 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
358 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
359 struct multicall_space mc = __xen_mc_entry(0);
361 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
364 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
366 xen_mc_batch();
368 load_TLS_descriptor(t, cpu, 0);
369 load_TLS_descriptor(t, cpu, 1);
370 load_TLS_descriptor(t, cpu, 2);
372 xen_mc_issue(PARAVIRT_LAZY_CPU);
375 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
376 * it means we're in a context switch, and %gs has just been
377 * saved. This means we can zero it out to prevent faults on
378 * exit from the hypervisor if the next process has no %gs.
379 * Either way, it has been saved, and the new value will get
380 * loaded properly. This will go away as soon as Xen has been
381 * modified to not save/restore %gs for normal hypercalls.
383 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
384 loadsegment(gs, 0);
387 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
388 const void *ptr)
390 unsigned long lp = (unsigned long)&dt[entrynum];
391 xmaddr_t mach_lp = virt_to_machine(lp);
392 u64 entry = *(u64 *)ptr;
394 preempt_disable();
396 xen_mc_flush();
397 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
398 BUG();
400 preempt_enable();
403 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
404 struct trap_info *info)
406 u8 type, dpl;
408 type = (high >> 8) & 0x1f;
409 dpl = (high >> 13) & 3;
411 if (type != 0xf && type != 0xe)
412 return 0;
414 info->vector = vector;
415 info->address = (high & 0xffff0000) | (low & 0x0000ffff);
416 info->cs = low >> 16;
417 info->flags = dpl;
418 /* interrupt gates clear IF */
419 if (type == 0xe)
420 info->flags |= 4;
422 return 1;
425 /* Locations of each CPU's IDT */
426 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
428 /* Set an IDT entry. If the entry is part of the current IDT, then
429 also update Xen. */
430 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
432 unsigned long p = (unsigned long)&dt[entrynum];
433 unsigned long start, end;
435 preempt_disable();
437 start = __get_cpu_var(idt_desc).address;
438 end = start + __get_cpu_var(idt_desc).size + 1;
440 xen_mc_flush();
442 native_write_idt_entry(dt, entrynum, g);
444 if (p >= start && (p + 8) <= end) {
445 struct trap_info info[2];
446 u32 *desc = (u32 *)g;
448 info[1].address = 0;
450 if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
451 if (HYPERVISOR_set_trap_table(info))
452 BUG();
455 preempt_enable();
458 static void xen_convert_trap_info(const struct desc_ptr *desc,
459 struct trap_info *traps)
461 unsigned in, out, count;
463 count = (desc->size+1) / 8;
464 BUG_ON(count > 256);
466 for (in = out = 0; in < count; in++) {
467 const u32 *entry = (u32 *)(desc->address + in * 8);
469 if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
470 out++;
472 traps[out].address = 0;
475 void xen_copy_trap_info(struct trap_info *traps)
477 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
479 xen_convert_trap_info(desc, traps);
482 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
483 hold a spinlock to protect the static traps[] array (static because
484 it avoids allocation, and saves stack space). */
485 static void xen_load_idt(const struct desc_ptr *desc)
487 static DEFINE_SPINLOCK(lock);
488 static struct trap_info traps[257];
490 spin_lock(&lock);
492 __get_cpu_var(idt_desc) = *desc;
494 xen_convert_trap_info(desc, traps);
496 xen_mc_flush();
497 if (HYPERVISOR_set_trap_table(traps))
498 BUG();
500 spin_unlock(&lock);
503 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
504 they're handled differently. */
505 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
506 const void *desc, int type)
508 preempt_disable();
510 switch (type) {
511 case DESC_LDT:
512 case DESC_TSS:
513 /* ignore */
514 break;
516 default: {
517 xmaddr_t maddr = virt_to_machine(&dt[entry]);
519 xen_mc_flush();
520 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
521 BUG();
526 preempt_enable();
529 static void xen_load_sp0(struct tss_struct *tss,
530 struct thread_struct *thread)
532 struct multicall_space mcs = xen_mc_entry(0);
533 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
534 xen_mc_issue(PARAVIRT_LAZY_CPU);
537 static void xen_set_iopl_mask(unsigned mask)
539 struct physdev_set_iopl set_iopl;
541 /* Force the change at ring 0. */
542 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
543 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
546 static void xen_io_delay(void)
550 #ifdef CONFIG_X86_LOCAL_APIC
551 static u32 xen_apic_read(u32 reg)
553 return 0;
556 static void xen_apic_write(u32 reg, u32 val)
558 /* Warn to see if there's any stray references */
559 WARN_ON(1);
562 #ifdef CONFIG_X86_64
563 static u64 xen_apic_icr_read(void)
565 return 0;
568 static void xen_apic_icr_write(u32 low, u32 id)
570 /* Warn to see if there's any stray references */
571 WARN_ON(1);
574 static void xen_apic_wait_icr_idle(void)
576 return;
579 static struct apic_ops xen_basic_apic_ops = {
580 .read = xen_apic_read,
581 .write = xen_apic_write,
582 .write_atomic = xen_apic_write,
583 .icr_read = xen_apic_icr_read,
584 .icr_write = xen_apic_icr_write,
585 .wait_icr_idle = xen_apic_wait_icr_idle,
586 .safe_wait_icr_idle = xen_apic_wait_icr_idle,
588 #endif
590 #endif
592 static void xen_flush_tlb(void)
594 struct mmuext_op *op;
595 struct multicall_space mcs;
597 preempt_disable();
599 mcs = xen_mc_entry(sizeof(*op));
601 op = mcs.args;
602 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
603 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
605 xen_mc_issue(PARAVIRT_LAZY_MMU);
607 preempt_enable();
610 static void xen_flush_tlb_single(unsigned long addr)
612 struct mmuext_op *op;
613 struct multicall_space mcs;
615 preempt_disable();
617 mcs = xen_mc_entry(sizeof(*op));
618 op = mcs.args;
619 op->cmd = MMUEXT_INVLPG_LOCAL;
620 op->arg1.linear_addr = addr & PAGE_MASK;
621 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
623 xen_mc_issue(PARAVIRT_LAZY_MMU);
625 preempt_enable();
628 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
629 unsigned long va)
631 struct {
632 struct mmuext_op op;
633 cpumask_t mask;
634 } *args;
635 cpumask_t cpumask = *cpus;
636 struct multicall_space mcs;
639 * A couple of (to be removed) sanity checks:
641 * - current CPU must not be in mask
642 * - mask must exist :)
644 BUG_ON(cpus_empty(cpumask));
645 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
646 BUG_ON(!mm);
648 /* If a CPU which we ran on has gone down, OK. */
649 cpus_and(cpumask, cpumask, cpu_online_map);
650 if (cpus_empty(cpumask))
651 return;
653 mcs = xen_mc_entry(sizeof(*args));
654 args = mcs.args;
655 args->mask = cpumask;
656 args->op.arg2.vcpumask = &args->mask;
658 if (va == TLB_FLUSH_ALL) {
659 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
660 } else {
661 args->op.cmd = MMUEXT_INVLPG_MULTI;
662 args->op.arg1.linear_addr = va;
665 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
667 xen_mc_issue(PARAVIRT_LAZY_MMU);
670 static void xen_clts(void)
672 struct multicall_space mcs;
674 mcs = xen_mc_entry(0);
676 MULTI_fpu_taskswitch(mcs.mc, 0);
678 xen_mc_issue(PARAVIRT_LAZY_CPU);
681 static void xen_write_cr0(unsigned long cr0)
683 struct multicall_space mcs;
685 /* Only pay attention to cr0.TS; everything else is
686 ignored. */
687 mcs = xen_mc_entry(0);
689 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
691 xen_mc_issue(PARAVIRT_LAZY_CPU);
694 static void xen_write_cr2(unsigned long cr2)
696 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
699 static unsigned long xen_read_cr2(void)
701 return x86_read_percpu(xen_vcpu)->arch.cr2;
704 static unsigned long xen_read_cr2_direct(void)
706 return x86_read_percpu(xen_vcpu_info.arch.cr2);
709 static void xen_write_cr4(unsigned long cr4)
711 cr4 &= ~X86_CR4_PGE;
712 cr4 &= ~X86_CR4_PSE;
714 native_write_cr4(cr4);
717 static unsigned long xen_read_cr3(void)
719 return x86_read_percpu(xen_cr3);
722 static void set_current_cr3(void *v)
724 x86_write_percpu(xen_current_cr3, (unsigned long)v);
727 static void xen_write_cr3(unsigned long cr3)
729 struct mmuext_op *op;
730 struct multicall_space mcs;
731 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
733 BUG_ON(preemptible());
735 mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
737 /* Update while interrupts are disabled, so its atomic with
738 respect to ipis */
739 x86_write_percpu(xen_cr3, cr3);
741 op = mcs.args;
742 op->cmd = MMUEXT_NEW_BASEPTR;
743 op->arg1.mfn = mfn;
745 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
747 /* Update xen_update_cr3 once the batch has actually
748 been submitted. */
749 xen_mc_callback(set_current_cr3, (void *)cr3);
751 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
754 /* Early in boot, while setting up the initial pagetable, assume
755 everything is pinned. */
756 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
758 #ifdef CONFIG_FLATMEM
759 BUG_ON(mem_map); /* should only be used early */
760 #endif
761 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
764 /* Early release_pte assumes that all pts are pinned, since there's
765 only init_mm and anything attached to that is pinned. */
766 static void xen_release_pte_init(u32 pfn)
768 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
771 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
773 struct mmuext_op op;
774 op.cmd = cmd;
775 op.arg1.mfn = pfn_to_mfn(pfn);
776 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
777 BUG();
780 /* This needs to make sure the new pte page is pinned iff its being
781 attached to a pinned pagetable. */
782 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
784 struct page *page = pfn_to_page(pfn);
786 if (PagePinned(virt_to_page(mm->pgd))) {
787 SetPagePinned(page);
789 if (!PageHighMem(page)) {
790 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
791 if (level == PT_PTE)
792 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
793 } else
794 /* make sure there are no stray mappings of
795 this page */
796 kmap_flush_unused();
800 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
802 xen_alloc_ptpage(mm, pfn, PT_PTE);
805 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
807 xen_alloc_ptpage(mm, pfn, PT_PMD);
810 /* This should never happen until we're OK to use struct page */
811 static void xen_release_ptpage(u32 pfn, unsigned level)
813 struct page *page = pfn_to_page(pfn);
815 if (PagePinned(page)) {
816 if (!PageHighMem(page)) {
817 if (level == PT_PTE)
818 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
819 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
821 ClearPagePinned(page);
825 static void xen_release_pte(u32 pfn)
827 xen_release_ptpage(pfn, PT_PTE);
830 static void xen_release_pmd(u32 pfn)
832 xen_release_ptpage(pfn, PT_PMD);
835 #ifdef CONFIG_HIGHPTE
836 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
838 pgprot_t prot = PAGE_KERNEL;
840 if (PagePinned(page))
841 prot = PAGE_KERNEL_RO;
843 if (0 && PageHighMem(page))
844 printk("mapping highpte %lx type %d prot %s\n",
845 page_to_pfn(page), type,
846 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
848 return kmap_atomic_prot(page, type, prot);
850 #endif
852 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
854 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
855 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
856 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
857 pte_val_ma(pte));
859 return pte;
862 /* Init-time set_pte while constructing initial pagetables, which
863 doesn't allow RO pagetable pages to be remapped RW */
864 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
866 pte = mask_rw_pte(ptep, pte);
868 xen_set_pte(ptep, pte);
871 static __init void xen_pagetable_setup_start(pgd_t *base)
873 pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
874 int i;
876 /* special set_pte for pagetable initialization */
877 pv_mmu_ops.set_pte = xen_set_pte_init;
879 init_mm.pgd = base;
881 * copy top-level of Xen-supplied pagetable into place. This
882 * is a stand-in while we copy the pmd pages.
884 memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
887 * For PAE, need to allocate new pmds, rather than
888 * share Xen's, since Xen doesn't like pmd's being
889 * shared between address spaces.
891 for (i = 0; i < PTRS_PER_PGD; i++) {
892 if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
893 pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
895 memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
896 PAGE_SIZE);
898 make_lowmem_page_readonly(pmd);
900 set_pgd(&base[i], __pgd(1 + __pa(pmd)));
901 } else
902 pgd_clear(&base[i]);
905 /* make sure zero_page is mapped RO so we can use it in pagetables */
906 make_lowmem_page_readonly(empty_zero_page);
907 make_lowmem_page_readonly(base);
909 * Switch to new pagetable. This is done before
910 * pagetable_init has done anything so that the new pages
911 * added to the table can be prepared properly for Xen.
913 xen_write_cr3(__pa(base));
915 /* Unpin initial Xen pagetable */
916 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
917 PFN_DOWN(__pa(xen_start_info->pt_base)));
920 void xen_setup_shared_info(void)
922 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
923 unsigned long addr = fix_to_virt(FIX_PARAVIRT_BOOTMAP);
926 * Create a mapping for the shared info page.
927 * Should be set_fixmap(), but shared_info is a machine
928 * address with no corresponding pseudo-phys address.
930 set_pte_mfn(addr,
931 PFN_DOWN(xen_start_info->shared_info),
932 PAGE_KERNEL);
934 HYPERVISOR_shared_info = (struct shared_info *)addr;
935 } else
936 HYPERVISOR_shared_info =
937 (struct shared_info *)__va(xen_start_info->shared_info);
939 #ifndef CONFIG_SMP
940 /* In UP this is as good a place as any to set up shared info */
941 xen_setup_vcpu_info_placement();
942 #endif
944 xen_setup_mfn_list_list();
947 static __init void xen_pagetable_setup_done(pgd_t *base)
949 /* This will work as long as patching hasn't happened yet
950 (which it hasn't) */
951 pv_mmu_ops.alloc_pte = xen_alloc_pte;
952 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
953 pv_mmu_ops.release_pte = xen_release_pte;
954 pv_mmu_ops.release_pmd = xen_release_pmd;
955 pv_mmu_ops.set_pte = xen_set_pte;
957 xen_setup_shared_info();
959 /* Actually pin the pagetable down, but we can't set PG_pinned
960 yet because the page structures don't exist yet. */
961 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(base)));
964 static __init void xen_post_allocator_init(void)
966 pv_mmu_ops.set_pmd = xen_set_pmd;
967 pv_mmu_ops.set_pud = xen_set_pud;
969 xen_mark_init_mm_pinned();
972 /* This is called once we have the cpu_possible_map */
973 void xen_setup_vcpu_info_placement(void)
975 int cpu;
977 for_each_possible_cpu(cpu)
978 xen_vcpu_setup(cpu);
980 /* xen_vcpu_setup managed to place the vcpu_info within the
981 percpu area for all cpus, so make use of it */
982 if (have_vcpu_info_placement) {
983 printk(KERN_INFO "Xen: using vcpu_info placement\n");
985 pv_irq_ops.save_fl = xen_save_fl_direct;
986 pv_irq_ops.restore_fl = xen_restore_fl_direct;
987 pv_irq_ops.irq_disable = xen_irq_disable_direct;
988 pv_irq_ops.irq_enable = xen_irq_enable_direct;
989 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
993 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
994 unsigned long addr, unsigned len)
996 char *start, *end, *reloc;
997 unsigned ret;
999 start = end = reloc = NULL;
1001 #define SITE(op, x) \
1002 case PARAVIRT_PATCH(op.x): \
1003 if (have_vcpu_info_placement) { \
1004 start = (char *)xen_##x##_direct; \
1005 end = xen_##x##_direct_end; \
1006 reloc = xen_##x##_direct_reloc; \
1008 goto patch_site
1010 switch (type) {
1011 SITE(pv_irq_ops, irq_enable);
1012 SITE(pv_irq_ops, irq_disable);
1013 SITE(pv_irq_ops, save_fl);
1014 SITE(pv_irq_ops, restore_fl);
1015 #undef SITE
1017 patch_site:
1018 if (start == NULL || (end-start) > len)
1019 goto default_patch;
1021 ret = paravirt_patch_insns(insnbuf, len, start, end);
1023 /* Note: because reloc is assigned from something that
1024 appears to be an array, gcc assumes it's non-null,
1025 but doesn't know its relationship with start and
1026 end. */
1027 if (reloc > start && reloc < end) {
1028 int reloc_off = reloc - start;
1029 long *relocp = (long *)(insnbuf + reloc_off);
1030 long delta = start - (char *)addr;
1032 *relocp += delta;
1034 break;
1036 default_patch:
1037 default:
1038 ret = paravirt_patch_default(type, clobbers, insnbuf,
1039 addr, len);
1040 break;
1043 return ret;
1046 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1048 pte_t pte;
1050 phys >>= PAGE_SHIFT;
1052 switch (idx) {
1053 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1054 #ifdef CONFIG_X86_F00F_BUG
1055 case FIX_F00F_IDT:
1056 #endif
1057 case FIX_WP_TEST:
1058 case FIX_VDSO:
1059 #ifdef CONFIG_X86_LOCAL_APIC
1060 case FIX_APIC_BASE: /* maps dummy local APIC */
1061 #endif
1062 pte = pfn_pte(phys, prot);
1063 break;
1065 default:
1066 pte = mfn_pte(phys, prot);
1067 break;
1070 __native_set_fixmap(idx, pte);
1073 static const struct pv_info xen_info __initdata = {
1074 .paravirt_enabled = 1,
1075 .shared_kernel_pmd = 0,
1077 .name = "Xen",
1080 static const struct pv_init_ops xen_init_ops __initdata = {
1081 .patch = xen_patch,
1083 .banner = xen_banner,
1084 .memory_setup = xen_memory_setup,
1085 .arch_setup = xen_arch_setup,
1086 .post_allocator_init = xen_post_allocator_init,
1089 static const struct pv_time_ops xen_time_ops __initdata = {
1090 .time_init = xen_time_init,
1092 .set_wallclock = xen_set_wallclock,
1093 .get_wallclock = xen_get_wallclock,
1094 .get_tsc_khz = xen_tsc_khz,
1095 .sched_clock = xen_sched_clock,
1098 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1099 .cpuid = xen_cpuid,
1101 .set_debugreg = xen_set_debugreg,
1102 .get_debugreg = xen_get_debugreg,
1104 .clts = xen_clts,
1106 .read_cr0 = native_read_cr0,
1107 .write_cr0 = xen_write_cr0,
1109 .read_cr4 = native_read_cr4,
1110 .read_cr4_safe = native_read_cr4_safe,
1111 .write_cr4 = xen_write_cr4,
1113 .wbinvd = native_wbinvd,
1115 .read_msr = native_read_msr_safe,
1116 .write_msr = native_write_msr_safe,
1117 .read_tsc = native_read_tsc,
1118 .read_pmc = native_read_pmc,
1120 .iret = xen_iret,
1121 .irq_enable_sysexit = xen_sysexit,
1123 .load_tr_desc = paravirt_nop,
1124 .set_ldt = xen_set_ldt,
1125 .load_gdt = xen_load_gdt,
1126 .load_idt = xen_load_idt,
1127 .load_tls = xen_load_tls,
1129 .store_gdt = native_store_gdt,
1130 .store_idt = native_store_idt,
1131 .store_tr = xen_store_tr,
1133 .write_ldt_entry = xen_write_ldt_entry,
1134 .write_gdt_entry = xen_write_gdt_entry,
1135 .write_idt_entry = xen_write_idt_entry,
1136 .load_sp0 = xen_load_sp0,
1138 .set_iopl_mask = xen_set_iopl_mask,
1139 .io_delay = xen_io_delay,
1141 .lazy_mode = {
1142 .enter = paravirt_enter_lazy_cpu,
1143 .leave = xen_leave_lazy,
1147 static const struct pv_irq_ops xen_irq_ops __initdata = {
1148 .init_IRQ = xen_init_IRQ,
1149 .save_fl = xen_save_fl,
1150 .restore_fl = xen_restore_fl,
1151 .irq_disable = xen_irq_disable,
1152 .irq_enable = xen_irq_enable,
1153 .safe_halt = xen_safe_halt,
1154 .halt = xen_halt,
1155 #ifdef CONFIG_X86_64
1156 .adjust_exception_frame = paravirt_nop,
1157 #endif
1160 static const struct pv_apic_ops xen_apic_ops __initdata = {
1161 #ifdef CONFIG_X86_LOCAL_APIC
1162 #ifndef CONFIG_X86_64
1163 .apic_write = xen_apic_write,
1164 .apic_write_atomic = xen_apic_write,
1165 .apic_read = xen_apic_read,
1166 #endif
1167 .setup_boot_clock = paravirt_nop,
1168 .setup_secondary_clock = paravirt_nop,
1169 .startup_ipi_hook = paravirt_nop,
1170 #endif
1173 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1174 .pagetable_setup_start = xen_pagetable_setup_start,
1175 .pagetable_setup_done = xen_pagetable_setup_done,
1177 .read_cr2 = xen_read_cr2,
1178 .write_cr2 = xen_write_cr2,
1180 .read_cr3 = xen_read_cr3,
1181 .write_cr3 = xen_write_cr3,
1183 .flush_tlb_user = xen_flush_tlb,
1184 .flush_tlb_kernel = xen_flush_tlb,
1185 .flush_tlb_single = xen_flush_tlb_single,
1186 .flush_tlb_others = xen_flush_tlb_others,
1188 .pte_update = paravirt_nop,
1189 .pte_update_defer = paravirt_nop,
1191 .pgd_alloc = __paravirt_pgd_alloc,
1192 .pgd_free = paravirt_nop,
1194 .alloc_pte = xen_alloc_pte_init,
1195 .release_pte = xen_release_pte_init,
1196 .alloc_pmd = xen_alloc_pte_init,
1197 .alloc_pmd_clone = paravirt_nop,
1198 .release_pmd = xen_release_pte_init,
1200 #ifdef CONFIG_HIGHPTE
1201 .kmap_atomic_pte = xen_kmap_atomic_pte,
1202 #endif
1204 .set_pte = NULL, /* see xen_pagetable_setup_* */
1205 .set_pte_at = xen_set_pte_at,
1206 .set_pmd = xen_set_pmd_hyper,
1208 .ptep_modify_prot_start = __ptep_modify_prot_start,
1209 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1211 .pte_val = xen_pte_val,
1212 .pte_flags = native_pte_val,
1213 .pgd_val = xen_pgd_val,
1215 .make_pte = xen_make_pte,
1216 .make_pgd = xen_make_pgd,
1218 .set_pte_atomic = xen_set_pte_atomic,
1219 .set_pte_present = xen_set_pte_at,
1220 .set_pud = xen_set_pud_hyper,
1221 .pte_clear = xen_pte_clear,
1222 .pmd_clear = xen_pmd_clear,
1224 .make_pmd = xen_make_pmd,
1225 .pmd_val = xen_pmd_val,
1227 .activate_mm = xen_activate_mm,
1228 .dup_mmap = xen_dup_mmap,
1229 .exit_mmap = xen_exit_mmap,
1231 .lazy_mode = {
1232 .enter = paravirt_enter_lazy_mmu,
1233 .leave = xen_leave_lazy,
1236 .set_fixmap = xen_set_fixmap,
1239 #ifdef CONFIG_SMP
1240 static const struct smp_ops xen_smp_ops __initdata = {
1241 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1242 .smp_prepare_cpus = xen_smp_prepare_cpus,
1243 .cpu_up = xen_cpu_up,
1244 .smp_cpus_done = xen_smp_cpus_done,
1246 .smp_send_stop = xen_smp_send_stop,
1247 .smp_send_reschedule = xen_smp_send_reschedule,
1248 .smp_call_function_mask = xen_smp_call_function_mask,
1250 #endif /* CONFIG_SMP */
1252 static void xen_reboot(int reason)
1254 struct sched_shutdown r = { .reason = reason };
1256 #ifdef CONFIG_SMP
1257 smp_send_stop();
1258 #endif
1260 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1261 BUG();
1264 static void xen_restart(char *msg)
1266 xen_reboot(SHUTDOWN_reboot);
1269 static void xen_emergency_restart(void)
1271 xen_reboot(SHUTDOWN_reboot);
1274 static void xen_machine_halt(void)
1276 xen_reboot(SHUTDOWN_poweroff);
1279 static void xen_crash_shutdown(struct pt_regs *regs)
1281 xen_reboot(SHUTDOWN_crash);
1284 static const struct machine_ops __initdata xen_machine_ops = {
1285 .restart = xen_restart,
1286 .halt = xen_machine_halt,
1287 .power_off = xen_machine_halt,
1288 .shutdown = xen_machine_halt,
1289 .crash_shutdown = xen_crash_shutdown,
1290 .emergency_restart = xen_emergency_restart,
1294 static void __init xen_reserve_top(void)
1296 unsigned long top = HYPERVISOR_VIRT_START;
1297 struct xen_platform_parameters pp;
1299 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1300 top = pp.virt_start;
1302 reserve_top_address(-top + 2 * PAGE_SIZE);
1305 /* First C function to be called on Xen boot */
1306 asmlinkage void __init xen_start_kernel(void)
1308 pgd_t *pgd;
1310 if (!xen_start_info)
1311 return;
1313 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1315 xen_setup_features();
1317 /* Install Xen paravirt ops */
1318 pv_info = xen_info;
1319 pv_init_ops = xen_init_ops;
1320 pv_time_ops = xen_time_ops;
1321 pv_cpu_ops = xen_cpu_ops;
1322 pv_irq_ops = xen_irq_ops;
1323 pv_apic_ops = xen_apic_ops;
1324 pv_mmu_ops = xen_mmu_ops;
1325 #ifdef CONFIG_X86_64
1327 * for 64bit, set up the basic apic ops aswell.
1329 apic_ops = &xen_basic_apic_ops;
1330 #endif
1332 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1333 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1334 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1337 machine_ops = xen_machine_ops;
1339 #ifdef CONFIG_SMP
1340 smp_ops = xen_smp_ops;
1341 #endif
1343 /* Get mfn list */
1344 if (!xen_feature(XENFEAT_auto_translated_physmap))
1345 xen_build_dynamic_phys_to_machine();
1347 pgd = (pgd_t *)xen_start_info->pt_base;
1349 init_pg_tables_start = __pa(pgd);
1350 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1351 max_pfn_mapped = (init_pg_tables_end + 512*1024) >> PAGE_SHIFT;
1353 init_mm.pgd = pgd; /* use the Xen pagetables to start */
1355 /* keep using Xen gdt for now; no urgent need to change it */
1357 x86_write_percpu(xen_cr3, __pa(pgd));
1358 x86_write_percpu(xen_current_cr3, __pa(pgd));
1360 /* Don't do the full vcpu_info placement stuff until we have a
1361 possible map and a non-dummy shared_info. */
1362 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1364 pv_info.kernel_rpl = 1;
1365 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1366 pv_info.kernel_rpl = 0;
1368 /* Prevent unwanted bits from being set in PTEs. */
1369 __supported_pte_mask &= ~_PAGE_GLOBAL;
1370 if (!is_initial_xendomain())
1371 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1373 /* set the limit of our address space */
1374 xen_reserve_top();
1376 /* set up basic CPUID stuff */
1377 cpu_detect(&new_cpu_data);
1378 new_cpu_data.hard_math = 1;
1379 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1381 /* Poke various useful things into boot_params */
1382 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1383 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1384 ? __pa(xen_start_info->mod_start) : 0;
1385 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1387 if (!is_initial_xendomain()) {
1388 add_preferred_console("xenboot", 0, NULL);
1389 add_preferred_console("tty", 0, NULL);
1390 add_preferred_console("hvc", 0, NULL);
1393 /* Start the world */
1394 i386_start_kernel();